1
|
O’Flaherty N, Bryce L, Nolan J, Lambert M. Changing Strategies for the Detection of Bacteria in Platelet Components in Ireland: From Primary and Secondary Culture (2010-2020) to Large Volume Delayed Sampling (2020-2023). Microorganisms 2023; 11:2765. [PMID: 38004776 PMCID: PMC10673373 DOI: 10.3390/microorganisms11112765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Bacterial contamination of platelet components (PC) poses the greatest microbial risk to recipients, as bacteria can multiply over the course of PC storage at room temperature. Between 2010 and 2020, the Irish Blood Transfusion Service (IBTS) screened over 170,000 buffy coat-derived pooled (BCDP) and single-donor apheresis platelets (SDAPs) with the BACT/ALERT 3D microbial detection system (Biomerieux, L'Etoile, France), using a two-step screening protocol which incorporated primary and secondary cultures. Although the protocol was successful in averting septic transfusion reactions (STRs), testing large sample volumes at later time points was reported to improve detection of bacterial contamination. A modified large-volume delayed sampling (LVDS)-type protocol was adopted in 2020, which in the case of SDAP was applied to collections rather than individual splits (2020-2023, 44,642 PC screened). Rates of bacterial contamination for BCDP were 0.125% on Day-2, 0.043% on Day-4 vs. 0.191% in the post-LVDS period. SDAP contamination rates in the pre-LVDS period were 0.065% on Day-1, 0.017% on Day-4 vs. 0.072% in the post-LVDS period. Confirmed STRs were absent, and the interdiction rate for possibly contaminated SDAP was over 70%. In the post-LVDS period, BCDPs had a higher total positivity rate than SDAPs, 0.191% (1:525) versus 0.072% (1:1385), respectively, (chi-squared 12.124, 1 df, p = 0.0005). The majority of organisms detected were skin-flora-type, low pathogenicity organisms, including coagulase-negative staphylococci and Cutibacterium acnes, with little change in the frequency of clinically significant organisms identified over time. Both protocols prevented the issue of potentially harmful components contaminated (rarely) with a range of pathogenic bacteria, including Escherichia coli, Serratia marcesens, Staphylococcus aureus, and streptococci. Culture positivity of outdates post-LVDS whereby 100% of expired platelets are retested provides a residual risk estimate of 0.06% (95% CI 0.016-0.150). However, bacterial contamination rates in expired platelets did not demonstrate a statistically significant difference between the pre-LVDS 0.100% (CI 0.033-0.234) and post-LVDS 0.059% (0.016-0.150) periods (chi-squared = 0.651, 1 df, p = 0.42).
Collapse
Affiliation(s)
- Niamh O’Flaherty
- Irish Blood Transfusion Service, National Blood Centre, D08 NH5R Dublin, Ireland; (L.B.); (M.L.)
| | | | | | | |
Collapse
|
2
|
Pati I, Masiello F, Pupella S, Cruciani M, De Angelis V. Efficacy and Safety of Pathogen-Reduced Platelets Compared with Standard Apheresis Platelets: A Systematic Review of RCTs. Pathogens 2022; 11:pathogens11060639. [PMID: 35745493 PMCID: PMC9231062 DOI: 10.3390/pathogens11060639] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 05/28/2022] [Accepted: 05/30/2022] [Indexed: 02/04/2023] Open
Abstract
In this systematic review, we evaluate the efficacy and safety of blood components treated with pathogen reduction technologies (PRTs). We searched the Medline, Embase, Scopus, Ovid, and Cochrane Library to identify RCTs evaluating PRTs. Risk of bias assessment and the Mantel–Haenszel method for data synthesis were used. We included in this review 19 RCTs evaluating 4332 patients (mostly oncohematological patients) receiving blood components treated with three different PRTs. Compared with standard platelets (St-PLTs), the treatment with pathogen-reduced platelets (PR-PLTs) does not increase the occurrence of bleeding events, although a slight increase in the occurrence of severe bleeding events was observed in the overall comparison. No between-groups difference in the occurrence of serious adverse events was observed. PR-PLT recipients had a lower 1 and 24 h CI and CCI. The number of patients with platelet refractoriness and alloimmunization was significantly higher in PR-PLT recipients compared with St-PLT recipients. PR-PLT recipients had a higher number of platelet and RBC transfusions compared with St-PLT recipients, with a shorter transfusion time interval. The quality of evidence for these outcomes was from moderate to high. Blood components treated with PRTs are not implicated in serious adverse events, and PR-PLTs do not have a major effect on the increase in bleeding events. However, treatment with PRTs may require a greater number of transfusions in shorter time intervals and may be implicated in an increase in platelet refractoriness and alloimmunization.
Collapse
|
3
|
Lee J, Abafogi AT, Oh S, Chang HE, Tepeng W, Lee D, Park S, Park KU, Hong YJ. Molecular detection of bacterial contamination in plasma using magnetic-based enrichment. Sci Rep 2022; 12:9151. [PMID: 35650226 PMCID: PMC9160056 DOI: 10.1038/s41598-022-12960-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/25/2022] [Indexed: 11/24/2022] Open
Abstract
Bacterial contamination of blood products is a major problem in transfusion medicine, in terms of both morbidity and mortality. Platelets (PLTs) are stored at room temperature (under constant agitation) for more than 5 days, and bacteria can thus grow significantly from a low level to high titers. However, conventional methods like blood culture and lateral flow assay have disadvantages such as long detection time, low sensitivity, and the need for a large volume of blood components. We used real-time polymerase chain reaction (PCR) assays with antibiotic-conjugated magnetic nanobeads (MNBs) to detect enriched Gram-positive and -negative bacteria. The MNBs were coated with polyethylene glycol (PEG) to prevent aggregation by blood components. Over 80% of all bacteria were captured by the MNBs, and the levels of detection were 101 colony forming unit [CFU]/mL and 102 CFU/mL for Gram-positive and -negative bacteria, respectively. The detection time is < 3 h using only small volumes of blood components. Thus, compared to conventional methods, real-time PCR using MNBs allows for rapid detection with high sensitivity using only a small volume of blood components.
Collapse
Affiliation(s)
- Jinyeop Lee
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, South Korea.,KingoBio Inc. Research Center, Suwon, South Korea
| | | | - Sujin Oh
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | | | - Wu Tepeng
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, South Korea.,KingoBio Inc. Research Center, Suwon, South Korea
| | - Daekyu Lee
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, South Korea
| | - Sungsu Park
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, South Korea. .,Department of Biophysics, Institute of Quantum Biophysics (IQB), Sungkyunkwan University, Suwon, South Korea.
| | - Kyoung Un Park
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, South Korea.,Department of Laboratory Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Yun Ji Hong
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, South Korea. .,Department of Laboratory Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea.
| |
Collapse
|
4
|
Reuther S, Floegel K, Ceusters G, Albertini V, Baran J, Dempke W. OUP accepted manuscript. Stem Cells Transl Med 2022; 11:604-612. [PMID: 35486383 PMCID: PMC9216499 DOI: 10.1093/stcltm/szac020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/06/2022] [Indexed: 12/01/2022] Open
Abstract
Cord blood (CB) collected at birth has become a valuable stem cell source for hematopoietic stem cell transplantation (HSCT). However, the collection of umbilical cord blood always bears a risk of microbiological contamination, both in vaginal birth and in cesarean section. A total of 10 054 umbilical cord stem cell samples were successfully cryopreserved between 2010 and 2020, of which 783 (8%) samples were tested positive for bacterial contamination. Umbilical CB with a volume of less than 60 mL showed a bacterial contamination rate of 12%, and above 60 mL volume a rate of 6% was found demonstrating an inverse relationship between sample volume and contamination rate (correlation coefficient r = −0.9). The contamination rate was associated with the mode of delivery and showed a significantly higher contamination rate of 9.7% when compared with cesarean deliveries (1.4%). The 10-year period consistently shows an average contamination rate between 4% and 6% per year. It is conceivable that the inverse relationship between volume and contamination rate might be related to thinner veins although no scientific evidence has been provided so far. The lower contamination rate in cesarean sections appears to be related to the sterile operating setting. Overall, the rate of bacterial contamination varies and depends on the type of birth, the way of delivery, and probably the experience of the staff.
Collapse
Affiliation(s)
- Susanne Reuther
- Eticur Germany GmbH, Munich, Germany
- Ludwig-Maximillians University Munich, Munich, Germany
| | | | - Gunther Ceusters
- Eticur Germany GmbH, Munich, Germany
- Famicord SA Suisse, Contone, Switzerland
| | | | | | - Wolfram Dempke
- Corresponding author: Wolfram Dempke, MD, PhD, MBA, Professor of Hematology & Oncology, Worldwide Clinical Trials, Waterfront House, Beeston Business Park, Nottingham NG9 1LA, UK. Tel: +41 797 836 706; Fax: +44 207 121 6160;
| |
Collapse
|
5
|
Baseri N, Meysamie A, Campanile F, Hamidieh AA, Jafarian A. Bacterial contamination of bone allografts in the tissue banks: a systematic review and meta-analysis. J Hosp Infect 2021; 123:156-173. [PMID: 34752801 DOI: 10.1016/j.jhin.2021.10.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/02/2021] [Accepted: 10/25/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Bone allografts are harvested and transplanted under sterile conditions. However, the risk of bacterial contamination of grafts during these processes is a health concern. Bioburden testing and bacterial contamination detection are conducted to ensure allograft sterility. AIM The present study aimed to determine the incidence of bacterial contamination in bone allografts based on different classifications. METHODS PROSPERO registration number was received for the study. Systematic searches were conducted in PubMed and EMBASE databases with relevant keywords from January 2000 to March 2021. After choosing related studies according to the PRISMA flow diagram, Stata software was used for data analysis. We considered I2 ˃ 50% as heterogeneity between studies. FINDINGS The overall incidence of bacterial contamination was 12.6% (95% CI 0.100, 0.152) among 19,805 bone allografts of 17 studies. The bacterial contamination rate among bone allografts was 10.8% before 2010 and 14.7% in 2010-March 2021. The contamination frequency in Asia, Europe, and Australia was 11.5%, 14.3%, and 5.2%, respectively. Bone contamination rates were higher in cadaver donors (19.9%), retrieval time sampling (13.5%), and swab samples (13.2%) compared to those in living donors (7.5%), implantation time sampling (6.9%), and bone fragments cultures (6.3%). Bacterial contamination was recovered 24.4%, 19.7%, 13.2%, and 21% from tibia, fibula, femoral, and other bones, respectively. Staphylococcus spp. was the predominant isolated bacteria from bones (63.2% of all isolated genera), followed by Propionibacterium spp. (10.6%). CONCLUSION The high contamination of bone allografts is a health concern, indicating the need for more health monitoring and improvement of standards.
Collapse
Affiliation(s)
- Neda Baseri
- Department of Epidemiology and Biostatistics, Research Centre for Emerging and Reemerging infectious diseases, Pasteur Institute of Iran, Tehran, Iran; National Reference laboratory for Plague, Tularemia and Q fever, Research Centre for Emerging and Reemerging infectious diseases, Pasteur Institute of Iran, Akanlu, Kabudar Ahang, Hamadan, Iran
| | - Alipasha Meysamie
- Department of Community Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Floriana Campanile
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Medical Molecular Microbiology and Antibiotic Resistance laboratory (MMARLab), University of Catania, Catania, Italy
| | - Amir Ali Hamidieh
- Pediatric Cell and Gene Therapy Research Center, Tehran University of Medical Sciences, Tehran, Iran; Iranian Tissue Bank & Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Arefeh Jafarian
- Iranian Tissue Bank & Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Microbial contamination risk in hematopoietic stem cell products: retrospective analysis of 1996–2016 data. ACTA ACUST UNITED AC 2020. [DOI: 10.2478/ahp-2020-0007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AbstractQuality assurance and safety of hematopoietic stem cells (HSC) with special emphasis on bacterial and fungal contamination is the prerequisite for any transplantation procedure. The aim was to determine the incidence rate of such contamination during processing of transplantation material with regard to HSC source: peripheral blood stem cell (PBSC), bone marrow (BM), or cord blood (CB). Analysis involved autologous and allogenic products dedicated for patients and comprised in all 4135 donations, including 112 BM (2.70%), 3787 PBSC (91.60%), and 236 CB (5.70%) processed in cell bank over the period 1996–2016. Aerobic and anaerobic contamination was determined.Analysis of the 20-year data revealed 42 contaminated products: 25 PBSC (0.66% of tested units) and 17 CB (7.20% of tested units). No microbial contamination of BM products was detected. Overall percentage of contaminated products was 1.01%, mostly with Staphylococcus epidermidis (61.36%). Bacterial contamination rate at cell bank is relatively low and processing in a closed system does not seem as crucial as might be expected. This is particularly true for BM components. Equally important are evaluation of donor’s medical status and condition of the puncture site for collection of source material. Implementation of appropriate sample collection procedures should help minimize the risk of false-positive results due to environmental contamination.
Collapse
|
7
|
Sousa V, Gomes ATPC, Freitas A, Faustino MAF, Neves MGPMS, Almeida A. Photodynamic Inactivation of Candida albicans in Blood Plasma and Whole Blood. Antibiotics (Basel) 2019; 8:antibiotics8040221. [PMID: 31766190 PMCID: PMC6963715 DOI: 10.3390/antibiotics8040221] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/10/2019] [Accepted: 11/11/2019] [Indexed: 11/17/2022] Open
Abstract
The few approved disinfection techniques for blood derivatives promote damage in the blood components, representing risks for the transfusion receptor. Antimicrobial photodynamic therapy (aPDT) seems to be a promising approach for the photoinactivation of pathogens in blood, but only three photosensitizers (PSs) have been approved, methylene blue (MB) for plasma and riboflavin and amotosalen for plasma and platelets. In this study, the efficiency of the porphyrinic photosensitizer Tri-Py(+)-Me and of the porphyrinic formulation FORM was studied in the photoinactivation of Candida albicans in plasma and in whole blood and the results were compared to the ones obtained with the already approved PS MB. The results show that FORM and Tri-Py(+)-Me are promising PSs to inactivate C. albicans in plasma. Although in whole blood the inactivation rates obtained were higher than the ones obtained with MB, further improvements are required. None of these PSs had promoted hemolysis at the isotonic conditions when hemolysis was evaluated in whole blood and after the addition of treated plasma with these PSs to concentrates of red blood cells.
Collapse
Affiliation(s)
- Vera Sousa
- Department of Biology & CESAM, University of Aveiro, Aveiro 3810-193, Portugal;
| | - Ana T. P. C. Gomes
- Department of Biology & CESAM, University of Aveiro, Aveiro 3810-193, Portugal;
- Correspondence: (A.T.P.C.G.); (M.A.F.F.); (A.A.)
| | - Américo Freitas
- Clinical Analysis Laboratory Avelab, Rua Cerâmica do Vouga, Aveiro 3800-011, Portugal;
| | - Maria A. F. Faustino
- Department of Chemistry & QOPNA and LAQV-REQUIMTE, University of Aveiro, Aveiro 3810-193, Portugal;
- Correspondence: (A.T.P.C.G.); (M.A.F.F.); (A.A.)
| | - Maria G. P. M. S. Neves
- Department of Chemistry & QOPNA and LAQV-REQUIMTE, University of Aveiro, Aveiro 3810-193, Portugal;
| | - Adelaide Almeida
- Department of Biology & CESAM, University of Aveiro, Aveiro 3810-193, Portugal;
- Correspondence: (A.T.P.C.G.); (M.A.F.F.); (A.A.)
| |
Collapse
|
8
|
Prax M, Bekeredjian-Ding I, Krut O. Microbiological Screening of Platelet Concentrates in Europe. Transfus Med Hemother 2019; 46:76-86. [PMID: 31191193 PMCID: PMC6514488 DOI: 10.1159/000499349] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 02/27/2019] [Indexed: 01/05/2023] Open
Abstract
The risk of transfusion-associated sepsis due to transmission of bacteria is a persistent problem in the transfusion field. Despite numerous interventions to reduce the risk, cases of bacterial sepsis following transfusion are repeatedly being reported. Especially platelet concentrates are highly susceptible to bacterial contaminations due to the growth-promoting storage conditions. In Europe, blood establishments and national authorities have implemented individual precaution measures to mitigate the risk of bacterial transmission. To obtain an overview of the different approaches, we compiled information from national authorities, blood establishments, and the current literature. Several aspects such as the shelf life of platelets, time of sampling and the applied control measures are compared between the member states. The analysis of the data revealed a broad heterogeneity of procedures on a national level ranging from platelet release without any safety testing up to mandatory screening of all platelet concentrates prior to transfusion. Despite the substantial progress made in recent years, several bacterial reports on transfusion-associated sepsis indicate that further efforts are needed to increase the safety of blood transfusions in the long term.
Collapse
Affiliation(s)
- Marcel Prax
- Division of Microbiology, Paul Ehrlich Institute, Langen, Germany
| | | | | |
Collapse
|
9
|
Desroches M, Clermont O, Lafeuillade B, Rodriguez C, Darty M, Royer G, Bouvet O, Ounnoughene N, Noizat-Pirenne F, Denamur E, Decousser JW. Genotypic and phenotypic characteristics of Escherichia coli involved in transfusion-transmitted bacterial infections: implications for preventive strategies. Transfusion 2019; 58:1940-1950. [PMID: 30198609 DOI: 10.1111/trf.14812] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 03/05/2018] [Accepted: 04/09/2018] [Indexed: 01/23/2023]
Abstract
BACKGROUND Transfusion-transmitted bacterial infections (TTBIs) are the main residual infectious complications of transfusions. Escherichia coli and platelet (PLT) concentrates may be epidemiologically associated, leading to severe, if not lethal, TTBIs. We investigated the genotypic and phenotypic reasons for this clinically deleterious combination. STUDY DESIGN AND METHODS We investigated a French national E. coli strain collection related to six independent episodes of TTBIs. Their phenotypic characterizations included antibiotic susceptibility testing, growth testing under different culture conditions, serum survival assays, and virulence in a sepsis mouse model. Their genotypic characterizations included polymerase chain reaction phylotyping, whole genome sequencing, and a subsequent in silico analysis. RESULTS We highlighted a selection process of highly extraintestinal virulent strains, mainly belonging to the B2 phylogroup, adapted to the hostile environment (high citrate concentration and a bactericidal serum effect) of apheresis-collected platelet concentrates (PCs). Compared to controls, the E. coli TTBI strains grew faster in the PCs due to a superior ability to capture iron. The in vitro growth performances were highly compatible with blood-derived product real-life conditions, including storage conditions and delays. The consistent serum resistance of TTBI strains promotes their survival in both the donor's and the receiver's blood and in the PCs. CONCLUSION This study pointed out that E. coli strains responsible for TTBI exhibit very specific traits. They belong to the extraintestinal pathogenic phylogroups and have a high intrinsic virulence. They can be resistant to complement, capture iron, and grow in the apheresis-collected PCs. These findings therefore support the reinforcement of the postdonation information.
Collapse
Affiliation(s)
- Marine Desroches
- INSERM UMR1137, IAME, Paris Diderot University, Faculty of Medicine Xavier Bichat, Paris, France.,Department of Bacteriology and Infection Control, University Hospital Henri Mondor, Assistance Publique-Hôpitaux de Paris, Créteil, France
| | - Olivier Clermont
- INSERM UMR1137, IAME, Paris Diderot University, Faculty of Medicine Xavier Bichat, Paris, France
| | - Bruno Lafeuillade
- Rhône-Alpes French Blood Establishment-Grenoble Site, La Tronche, France
| | - Christophe Rodriguez
- Next Generation Sequencing Platform, University Hospital Henri Mondor, Créteil, France
| | - Mélanie Darty
- Next Generation Sequencing Platform, University Hospital Henri Mondor, Créteil, France
| | - Guilhem Royer
- INSERM UMR1137, IAME, Paris Diderot University, Faculty of Medicine Xavier Bichat, Paris, France.,Department of Bacteriology and Infection Control, University Hospital Henri Mondor, Assistance Publique-Hôpitaux de Paris, Créteil, France
| | - Odile Bouvet
- INSERM UMR1137, IAME, Paris Diderot University, Faculty of Medicine Xavier Bichat, Paris, France
| | | | | | - Erick Denamur
- INSERM UMR1137, IAME, Paris Diderot University, Faculty of Medicine Xavier Bichat, Paris, France.,Department of Molecular Genetics, University Hospital Bichat, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Jean-Winoc Decousser
- INSERM UMR1137, IAME, Paris Diderot University, Faculty of Medicine Xavier Bichat, Paris, France.,Department of Bacteriology and Infection Control, University Hospital Henri Mondor, Assistance Publique-Hôpitaux de Paris, Créteil, France
| |
Collapse
|
10
|
Paolin A, Montagner G, Petit P, Trojan D. Contamination profile in allografts retrieved from multitissue donors: longitudinal analysis. Cell Tissue Bank 2018; 19:809-817. [PMID: 30460478 DOI: 10.1007/s10561-018-9739-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 11/17/2018] [Indexed: 11/27/2022]
Abstract
Microbiological contamination of retrieved tissues has become an issue of key importance and is a critical aspect of allograft safety, especially in the case of multi-tissue donations, which frequently become contaminated during retrieval and handling. We analysed contamination in 11,129 tissues with a longitudinal contamination profile for each individual tissue. Specifically, 10,035 musculoskeletal tissues and 1094 cardiovascular tissues were retrieved from a total of 763 multi-tissue donors, of whom 105 heart-beating organ donors and 658 deceased tissue donors. Of the 1955 tissues found to be contaminated after the first decontamination step, 1401 tissues (72%) were contaminated by the same species as the one(s) isolated at retrieval (Time1) and 554 (28%) by different species. Among the 113 tissues testing positive after the 2nd decontamination (Time3), 36 tissues (32%) were contaminated by the same species detected at Timel while the contaminating species differed from Time1 in 77 tissues (68%). The higher the number of contaminating species per tissue the higher the percentage of tissues in which contamination changed over time compared to Time1. The analysis revealed a 28% incidence of new species in tissues already testing positive after retrieval and of 3.5% of tissues becoming positive after admission to the tissue bank. Of these, coagulase-negative Staphylococcus accounted for over 70% of new contaminations.
Collapse
Affiliation(s)
| | | | - Pieter Petit
- Foundation European Tissue Banks, Berlin, Germany
| | | |
Collapse
|
11
|
Vossier L, Valera L, Leon F, Roche S, Piquer D, Rubrecht L, Favier C, Cremer GA, Pouzet A, Dagland T, Rihet S, Galea P, Farre C, Bonnet R, Jaffrézic-Renault N, Chaix C, Fareh J, Fournier-Wirth C. Combining culture and microbead-based immunoassay for the early and generic detection of bacteria in platelet concentrates. Transfusion 2018; 59:277-286. [PMID: 30430585 DOI: 10.1111/trf.15019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 07/16/2018] [Accepted: 07/22/2018] [Indexed: 01/15/2023]
Abstract
BACKGROUND Despite current preventive strategies, bacterial contamination of platelets is the highest residual infectious risk in transfusion. Bacteria can grow from an initial concentration of 0.03-0.3 colony-forming units (CFUs)/mL up to 108 to 109 CFUs/mL over the product shelf life. The aim of this study was to develop a cost-effective approach for an early, rapid, sensitive, and generic detection of bacteria in platelet concentrates. STUDY DESIGN AND METHODS A large panel of bacteria involved in transfusion reactions, including clinical isolates and reference strains, was established. Sampling was performed 24 hours after platelet spiking. After an optimized culture step for increasing bacterial growth, a microbead-based immunoassay allowed the generic detection of bacteria. Antibody production and immunoassay development took place exclusively with bacteria spiked in fresh platelet concentrates to improve the specificity of the test. RESULTS Antibodies for the generic detection of either gram-negative or gram-positive bacteria were selected for the microbead-based immunoassay. Our approach, combining the improved culture step with the immunoassay, allowed sensitive detection of 1 to 10 CFUs/mL for gram-negative and 1 to 102 CFUs/mL for gram-positive species. CONCLUSION In this study, a new approach combining bacterial culture with immunoassay was developed for the generic and sensitive detection of bacteria in platelet concentrates. This efficient and easily automatable approach allows tested platelets to be used on Day 2 after collection and could represent an alternative strategy for reducing the risk of transfusion-transmitted bacterial infections. This strategy could be adapted for the detection of bacteria in other cellular products.
Collapse
Affiliation(s)
- Ludivine Vossier
- Pathogenesis and Control of Chronic Infections, EFS, Inserm, Université de Montpellier, Montpellier, France
| | - Lionel Valera
- Bio-Rad, R&D Marnes la Coquette, Steenvoorde and, Montpellier, France
| | - Fanny Leon
- Pathogenesis and Control of Chronic Infections, EFS, Inserm, Université de Montpellier, Montpellier, France
| | - Stéphanie Roche
- Bio-Rad, R&D Marnes la Coquette, Steenvoorde and, Montpellier, France
| | - Dominique Piquer
- Bio-Rad, R&D Marnes la Coquette, Steenvoorde and, Montpellier, France
| | - Laetitia Rubrecht
- Bio-Rad, R&D Marnes la Coquette, Steenvoorde and, Montpellier, France
| | - Christine Favier
- Bio-Rad, R&D Marnes la Coquette, Steenvoorde and, Montpellier, France
| | | | - Agnès Pouzet
- Bio-Rad, R&D Marnes la Coquette, Steenvoorde and, Montpellier, France
| | - Typhaine Dagland
- Bio-Rad, R&D Marnes la Coquette, Steenvoorde and, Montpellier, France
| | - Stéphane Rihet
- Bio-Rad, R&D Marnes la Coquette, Steenvoorde and, Montpellier, France
| | - Pascale Galea
- Bio-Rad, R&D Marnes la Coquette, Steenvoorde and, Montpellier, France
| | - Carole Farre
- Institut des Sciences Analytiques, (CNRS-Université de Lyon 1-ENS), Lyon, France
| | - Romaric Bonnet
- Institut des Sciences Analytiques, (CNRS-Université de Lyon 1-ENS), Lyon, France
| | | | - Carole Chaix
- Institut des Sciences Analytiques, (CNRS-Université de Lyon 1-ENS), Lyon, France
| | - Jeannette Fareh
- Bio-Rad, R&D Marnes la Coquette, Steenvoorde and, Montpellier, France
| | - Chantal Fournier-Wirth
- Pathogenesis and Control of Chronic Infections, EFS, Inserm, Université de Montpellier, Montpellier, France
| |
Collapse
|
12
|
Garraud O, Lozano M. Pathogen inactivation/reduction technologies for platelet transfusion: Where do we stand? Transfus Clin Biol 2018; 25:165-171. [DOI: 10.1016/j.tracli.2018.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|