1
|
Ighem Chi S, Flint A, Weedmark K, Pagotto F, Ramirez-Arcos S. Comparative genome analyses of Staphylococcus aureus from platelet concentrates reveal rearrangements involving loss of type VII secretion genes. Access Microbiol 2024; 6:000820.v4. [PMID: 39697362 PMCID: PMC11652724 DOI: 10.1099/acmi.0.000820.v4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/02/2024] [Indexed: 12/20/2024] Open
Abstract
Staphylococcus aureus has been involved in transfusion-transmitted fatalities associated with platelet concentrates (PCs) due to its heightened pathogenicity enhanced by genome-encoded virulence and antibiotic resistance genes. This may be facilitated by mobile genetic elements (MGEs) that can cause rearrangements. Several factors contribute to S. aureus virulence, including the type VII secretion system (T7SS), composed of six core genes conserved across S. aureus strains. In this study, we conducted comparative genome analyses of five S. aureus isolates from PCs (CI/BAC/25/13 /W, PS/BAC/169/17 /W and PS/BAC/317/16 /W were detected during PCs screening with the BACT/ALERT automated culture system, and ATR-20003 and CBS2016-05 were missed during screening and caused septic transfusion reactions). Multiple alignments of the genomes revealed evidence of rearrangements involving phage Sa3int in PS/BAC/169/17 /W and PS/BAC/317/16 /W. While the former had undergone translocation of its immune evasion cluster (IEC), the latter had lost part of the phage, leaving behind the IEC. This observation highlights S. aureus genome plasticity. Unexpectedly, strain CBS2016-05 was found to encode a pseudo-type VII secretion system (T7SS) that had lost five of the conserved core genes (esxA, esaA, essA, esaB and essB) and contained a 5' truncated essC. Since these genes are essential for the function of the T7SS protein transport machinery, which plays a key role in S. aureus virulence, CBS2016-05 probably compensates by recruiting other export mechanisms and/or alternative virulence factors, such as neu-tralizing immunity proteins. This study unravels genome rearrangements in S. aureus isolated from PCs and reports the first S. aureus isolate lacking conserved T7SS core genes.
Collapse
Affiliation(s)
- Sylvia Ighem Chi
- Medical Affairs and Innovation, Canadian Blood Services, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
| | - Annika Flint
- Listeriosis Reference Centre, Microbiology Research Division, Bureau of Microbial Hazards, Food Directorate, Health Canada, Ottawa, Canada
- Microbiology Research Division, Bureau of Microbial Hazards, Food Directorate, Health Canada, Ottawa, Canada
| | - Kelly Weedmark
- Listeriosis Reference Centre, Microbiology Research Division, Bureau of Microbial Hazards, Food Directorate, Health Canada, Ottawa, Canada
- Microbiology Research Division, Bureau of Microbial Hazards, Food Directorate, Health Canada, Ottawa, Canada
| | - Franco Pagotto
- Listeriosis Reference Centre, Microbiology Research Division, Bureau of Microbial Hazards, Food Directorate, Health Canada, Ottawa, Canada
- Microbiology Research Division, Bureau of Microbial Hazards, Food Directorate, Health Canada, Ottawa, Canada
| | - Sandra Ramirez-Arcos
- Medical Affairs and Innovation, Canadian Blood Services, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
| |
Collapse
|
2
|
Kumaran D, Ramirez-Arcos S. Cutibacterium acnes contamination does not enhance the proinflammatory profile of platelet concentrates. Transfusion 2024; 64:1437-1446. [PMID: 38922882 DOI: 10.1111/trf.17931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/08/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Cutibacterium acnes, a common anaerobic platelet concentrate (PC) contaminant, has been associated with rare mild adverse transfusion reactions and is often considered a harmless commensal. Notably, C. acnes can cause chronic infections and has been shown to induce the release of proinflammatory cytokines by immune cells. Since elevated concentrations of proinflammatory factors in PCs have been linked to noninfectious adverse reactions, this study aimed to assess whether C. acnes could elicit the release and accumulation of proinflammatory factors during PC storage, thereby enhancing the risk of such reactions. STUDY DESIGN/METHODS Four ABO-matched buffy coat PCs were pooled and split into six units, each were inoculated with either saline (negative control), a Staphylococcus aureus isolate (positive control, 30 colony forming units [CFU]/unit), or four C. acnes PC isolates (10 CFU/mL) and stored at 20-24°C with agitation. Bacterial counts, platelet activation, and concentration of proinflammatory factors were assessed on days 0, 3, and 5. N = 3. RESULTS C. acnes counts remained stable, while S. aureus proliferated reaching 108CFU/mL by the end of PC storage. By day 5, no significant differences in platelet activation or proinflammatory cytokine profiles were observed in C. acnes-contaminated PCs compared to the negative control (p > .05), while there was a significant increase (p ≤ .05) in sCD40L concentration (day 3), and platelet activation and IL-8 concentration (day 5) in S. aureus-contaminated units. DISCUSSION C. acnes contamination does not promote the accumulation of proinflammatory factors in the absence of proliferation during storage and may not enhance the risk of inflammatory reactions when transfused to patients.
Collapse
Affiliation(s)
- Dilini Kumaran
- Medical Affairs and Innovation, Canadian Blood Services, Ottawa, Ontario, Canada
- Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Sandra Ramirez-Arcos
- Medical Affairs and Innovation, Canadian Blood Services, Ottawa, Ontario, Canada
- Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
3
|
Na B, Lee J, Chang HE, Park E, Park S, Lee J, Oh S, Shin DW, Hong YJ, Park KU. Verification of a method using magnetic bead enrichment and nucleic acid extraction to improve the molecular detection of bacterial contamination in blood components. Microbiol Spectr 2024; 12:e0276023. [PMID: 38319091 PMCID: PMC10913752 DOI: 10.1128/spectrum.02760-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 12/26/2023] [Indexed: 02/07/2024] Open
Abstract
Bacterial contamination of blood products poses a significant risk in transfusion medicine. Platelets are particularly vulnerable to bacterial growth because they must be stored at room temperature with constant agitation for >5 days. The limitations of bacterial detection using conventional methods, such as blood cultures and lateral flow assays, include the long detection times, low sensitivity, and the requirement for substantial volumes of blood components. To address these limitations, we assessed the performance of a bacterial enrichment technique using antibiotic-conjugated magnetic nanobeads (AcMNBs) and real-time PCR for the detection of bacterial contamination in plasma. AcMNBs successfully captured >80% of four bacterial strains, including Staphylococcus aureus, Bacillus cereus, Escherichia coli, and Klebsiella pneumoniae, in both plasma and phosphate-buffered saline. After 24-h incubation with bacterial enrichment, S. aureus and B. cereus were each detected at 101 CFU/mL in all trials (5/5), E. coli at 101 CFU/mL in 1/5 trials, and K. pneumoniae at 10² CFU/mL in 4/5 trials. Additionally, without incubation, the improvement was also achieved in samples with bacterial enrichment, S. aureus at 10² CFU/mL and B. cereus at 101 CFU/mL in 1/5 trials each, E. coli at 10³ CFU/mL in 3/5 trials, and K. pneumoniae at 10¹ CFU/mL in 2/5 trials. Overall, the findings from this study strongly support the superiority of bacterial enrichment in detecting low-level bacterial contamination in plasma when employing AcMNBs and PCR.IMPORTANCEThe study presents a breakthrough approach to detect bacterial contamination in plasma, a critical concern in transfusion medicine. Traditional methods, such as blood cultures and lateral flow assays, are hampered by slow detection times, low sensitivity, and the need for large blood sample volumes. Our research introduces a novel technique using antibiotic-conjugated magnetic nanobeads combined with real-time PCR, enhancing the detection of bacteria in blood products, especially platelets. This method has shown exceptional efficiency in identifying even low levels of four different species of bacteria in plasma. The ability to detect bacterial contamination rapidly and accurately is vital for ensuring the safety of blood transfusions and can significantly reduce the risk of infections transmitted through blood products. This advancement is a pivotal step in improving patient outcomes and elevating the standards of care in transfusion medicine.
Collapse
Affiliation(s)
- Byungjoon Na
- KingoBio Inc. Research Center, Seoul, South Korea
| | - Jinyeop Lee
- KingoBio Inc. Research Center, Seoul, South Korea
| | | | - Eunseon Park
- KingoBio Inc. Research Center, Seoul, South Korea
| | - Sojin Park
- KingoBio Inc. Research Center, Seoul, South Korea
| | | | - Sujin Oh
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Dong Woo Shin
- Department of Laboratory Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Yun Ji Hong
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, South Korea
- Department of Laboratory Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Kyoung Un Park
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, South Korea
- Department of Laboratory Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| |
Collapse
|
4
|
Kumaran D, Ramirez-Arcos S. Sebum Components Dampen the Efficacy of Skin Disinfectants against Cutibacterium acnes Biofilms. Microorganisms 2024; 12:271. [PMID: 38399675 PMCID: PMC10891977 DOI: 10.3390/microorganisms12020271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
At Canadian Blood Services, despite the use of 2% chlorhexidine and 70% isopropyl alcohol (standard disinfectant, SD) prior to venipuncture, Cutibacterium acnes evades eradication and is a major contaminant of platelet concentrates (PCs). Since C. acnes forms bacterial aggregates known as biofilms in the sebaceous niches of the skin, this study aimed to assess whether sebum-like components impact disinfectant efficacy against C. acnes leading to its dominance as a PC contaminant. C. acnes mono-species and dual-species biofilms (C. acness and a transfusion-relevant Staphylococcus aureus isolate) were formed in the presence and absence of sebum-like components and exposed to SD, a hypochlorous acid-based disinfectant (Clinisept+, CP), or a combination of both disinfectants to assess disinfectant efficacy. Our data indicate that sebum-like components significantly reduce the disinfectant efficacy of all disinfectant strategies tested against C. acnes in both biofilm models. Furthermore, though none of the disinfectants led to bacterial eradication, the susceptibility of C. acnes to disinfectants was heightened in an isolate-dependent manner when grown in the presence of S. aureus. The reduction of skin disinfection efficacy in the presence of sebum may contribute to the overrepresentation of C. acnes as a PC contaminant and highlights the need for improved disinfection strategies.
Collapse
Affiliation(s)
- Dilini Kumaran
- Innovation & Portfolio Management, Canadian Blood Services, Ottawa, ON K1G 4J5, Canada;
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Sandra Ramirez-Arcos
- Innovation & Portfolio Management, Canadian Blood Services, Ottawa, ON K1G 4J5, Canada;
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
5
|
O’Flaherty N, Bryce L, Nolan J, Lambert M. Changing Strategies for the Detection of Bacteria in Platelet Components in Ireland: From Primary and Secondary Culture (2010-2020) to Large Volume Delayed Sampling (2020-2023). Microorganisms 2023; 11:2765. [PMID: 38004776 PMCID: PMC10673373 DOI: 10.3390/microorganisms11112765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Bacterial contamination of platelet components (PC) poses the greatest microbial risk to recipients, as bacteria can multiply over the course of PC storage at room temperature. Between 2010 and 2020, the Irish Blood Transfusion Service (IBTS) screened over 170,000 buffy coat-derived pooled (BCDP) and single-donor apheresis platelets (SDAPs) with the BACT/ALERT 3D microbial detection system (Biomerieux, L'Etoile, France), using a two-step screening protocol which incorporated primary and secondary cultures. Although the protocol was successful in averting septic transfusion reactions (STRs), testing large sample volumes at later time points was reported to improve detection of bacterial contamination. A modified large-volume delayed sampling (LVDS)-type protocol was adopted in 2020, which in the case of SDAP was applied to collections rather than individual splits (2020-2023, 44,642 PC screened). Rates of bacterial contamination for BCDP were 0.125% on Day-2, 0.043% on Day-4 vs. 0.191% in the post-LVDS period. SDAP contamination rates in the pre-LVDS period were 0.065% on Day-1, 0.017% on Day-4 vs. 0.072% in the post-LVDS period. Confirmed STRs were absent, and the interdiction rate for possibly contaminated SDAP was over 70%. In the post-LVDS period, BCDPs had a higher total positivity rate than SDAPs, 0.191% (1:525) versus 0.072% (1:1385), respectively, (chi-squared 12.124, 1 df, p = 0.0005). The majority of organisms detected were skin-flora-type, low pathogenicity organisms, including coagulase-negative staphylococci and Cutibacterium acnes, with little change in the frequency of clinically significant organisms identified over time. Both protocols prevented the issue of potentially harmful components contaminated (rarely) with a range of pathogenic bacteria, including Escherichia coli, Serratia marcesens, Staphylococcus aureus, and streptococci. Culture positivity of outdates post-LVDS whereby 100% of expired platelets are retested provides a residual risk estimate of 0.06% (95% CI 0.016-0.150). However, bacterial contamination rates in expired platelets did not demonstrate a statistically significant difference between the pre-LVDS 0.100% (CI 0.033-0.234) and post-LVDS 0.059% (0.016-0.150) periods (chi-squared = 0.651, 1 df, p = 0.42).
Collapse
Affiliation(s)
- Niamh O’Flaherty
- Irish Blood Transfusion Service, National Blood Centre, D08 NH5R Dublin, Ireland; (L.B.); (M.L.)
| | | | | | | |
Collapse
|
6
|
Chi SI, Ramirez-Arcos S. Staphylococcal Enterotoxins Enhance Biofilm Formation by Staphylococcus aureus in Platelet Concentrates. Microorganisms 2022; 11:microorganisms11010089. [PMID: 36677381 PMCID: PMC9864821 DOI: 10.3390/microorganisms11010089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/26/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
Biofilm formation and slow growth by Staphylococcus aureus in platelet concentrates (PCs) cause missed detection of this bacterium during routine PC screening with automated culture systems. This heightens the chances of false-negative screening transfusions and pre-disposes transfusion patients to an elevated risk of sepsis due to secretion of staphylococcal enterotoxins (SEs) in PCs. A hybrid approach of comparative RNAseq analyses and CRISPR mutagenesis of SE genes was employed to investigate the effect of SEs in S. aureus growth and biofilm formation in PCs. RNAseq data showed no differential expression for key biofilm genes, whereas SE genes were upregulated (>0.5- to 3.6-fold change) in PCs compared to trypticase soy broth (TSB). Remarkably, growth and biofilm formation assays revealed increased growth for the S. aureus SE mutants, while their ability to form biofilms was significantly impaired (−6.8- to −2.4-fold change) in comparison to the wild type strain, in both PCs and TSB. Through the well-established superantigen mechanism of SEs, we propose three roles for SEs during biofilm development in PCs: (1) provide a scaffold for biofilm matrix, (2) mediate cell-to-cell aggregation, and (3) guarantee biofilm survival. Furthermore, SE contribution to both growth and biofilm development seems to be centrally regulated by agr via quorum sensing and by saeSR and sigB. This study reveals new roles for SEs, which enforce their relevance in ensuring PC safety for transfusion patients. It further deciphers the underlying reasons for failed S. aureus detection in PCs during screening with automated culture systems.
Collapse
Affiliation(s)
- Sylvia Ighem Chi
- Medical Affairs and Innovation, Canadian Blood Services, Ottawa, ON K2E 8A6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Sandra Ramirez-Arcos
- Medical Affairs and Innovation, Canadian Blood Services, Ottawa, ON K2E 8A6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Correspondence:
| |
Collapse
|
7
|
Yousuf B, Pasha R, Pineault N, Ramirez‐Arcos S. Contamination of platelet concentrates with
Staphylococcus aureus
induces significant modulations in platelet functionality. Vox Sang 2022; 117:1318-1322. [DOI: 10.1111/vox.13353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/11/2022] [Accepted: 08/14/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Basit Yousuf
- Medical Affairs and Innovation Canadian Blood Services Ottawa Ontario Canada
- Department of Biochemistry, Microbiology and Immunology University of Ottawa Ottawa Ontario Canada
| | - Roya Pasha
- Medical Affairs and Innovation Canadian Blood Services Ottawa Ontario Canada
| | - Nicolas Pineault
- Medical Affairs and Innovation Canadian Blood Services Ottawa Ontario Canada
- Department of Biochemistry, Microbiology and Immunology University of Ottawa Ottawa Ontario Canada
| | - Sandra Ramirez‐Arcos
- Medical Affairs and Innovation Canadian Blood Services Ottawa Ontario Canada
- Department of Biochemistry, Microbiology and Immunology University of Ottawa Ottawa Ontario Canada
| |
Collapse
|
8
|
Kamel H, Ramirez-Arcos S, McDonald C. The international experience of bacterial screen testing of platelet components with automated microbial detection systems: An update. Vox Sang 2022; 117:647-655. [PMID: 35178718 DOI: 10.1111/vox.13247] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/23/2021] [Accepted: 12/04/2021] [Indexed: 12/22/2022]
Abstract
In 2014, the bacterial subgroup of the Transfusion-Transmitted Infectious Diseases working party of ISBT published a review on the International Experience of Bacterial Screen Testing of Platelet Components (PCs) with an Automated Microbial Detection System. The purpose of this review, which is focused on publications on or after 2014, is to summarize recent experiences related to bacterial contamination of PCs and the use of an automated culture method to safeguard the blood supply. We first reviewed septic transfusion reactions after PC transfusion as reported in national haemovigilance systems along with a few reports from various countries on bacterial contamination of blood products. Next, we reviewed PC automated culture protocols employed by national blood services in the United Kingdom, Australia, Canada and large blood collection organization and hospital transfusion services in the United States. Then, we acknowledged the limitations of currently available culture methodologies in abating the risks of transfusion-transmitted bacterial infection, through a review of case reports. This review was neither meant to be critical of the literature reviewed nor meant to identify or recommend a best practice. We concluded that significant risk reduction can be achieved by one or a combination of more than one strategy. No one approach is feasible for all institutions worldwide. In selecting strategies, institutions should consider the possible impact on platelet components availability and entertain a risk-based decision-making approach that accounts for operational, logistical and financial factors.
Collapse
Affiliation(s)
- Hany Kamel
- Medical Affairs, Vitalant, Scottsdale, Arizona, USA
| | - Sandra Ramirez-Arcos
- Medical Affairs and Innovation, Canadian Blood Services, Ottawa, Canada.,University of Ottawa, Ottawa, Canada
| | | | | |
Collapse
|
9
|
Fonseca S, Cayer MP, Ahmmed KMT, Khadem-Mohtaram N, Charette SJ, Brouard D. Characterization of the Antibacterial Activity of an SiO2 Nanoparticular Coating to Prevent Bacterial Contamination in Blood Products. Antibiotics (Basel) 2022; 11:antibiotics11010107. [PMID: 35052984 PMCID: PMC8773057 DOI: 10.3390/antibiotics11010107] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/10/2022] [Accepted: 01/10/2022] [Indexed: 11/16/2022] Open
Abstract
Technological innovations and quality control processes within blood supply organizations have significantly improved blood safety for both donors and recipients. Nevertheless, the risk of transfusion-transmitted infection remains non-negligible. Applying a nanoparticular, antibacterial coating at the surface of medical devices is a promising strategy to prevent the spread of infections. In this study, we characterized the antibacterial activity of an SiO2 nanoparticular coating (i.e., the “Medical Antibacterial and Antiadhesive Coating” [MAAC]) applied on relevant polymeric materials (PM) used in the biomedical field. Electron microscopy revealed a smoother surface for the MAAC-treated PM compared to the reference, suggesting antiadhesive properties. The antibacterial activity was tested against selected Gram-positive and Gram-negative bacteria in accordance with ISO 22196. Bacterial growth was significantly reduced for the MAAC-treated PVC, plasticized PVC, polyurethane and silicone (90–99.999%) in which antibacterial activity of ≥1 log reduction was reached for all bacterial strains tested. Cytotoxicity was evaluated following ISO 10993-5 guidelines and L929 cell viability was calculated at ≥90% in the presence of MAAC. This study demonstrates that the MAAC could prevent bacterial contamination as demonstrated by the ISO 22196 tests, while further work needs to be done to improve the coating processability and effectiveness of more complex matrices.
Collapse
Affiliation(s)
- Sahra Fonseca
- Héma-Québec, Medical Affairs and Innovation, 1070, Avenue des Sciences-de-la-Vie, Quebec, QC G1V 5C3, Canada; (S.F.); (M.-P.C.)
- Department of Biochemistry, Microbiology and Bioinformatics, Faculty of Science and Engineering, Laval University, Quebec, QC G1V 0A6, Canada;
| | - Marie-Pierre Cayer
- Héma-Québec, Medical Affairs and Innovation, 1070, Avenue des Sciences-de-la-Vie, Quebec, QC G1V 5C3, Canada; (S.F.); (M.-P.C.)
| | | | | | - Steve J. Charette
- Department of Biochemistry, Microbiology and Bioinformatics, Faculty of Science and Engineering, Laval University, Quebec, QC G1V 0A6, Canada;
| | - Danny Brouard
- Héma-Québec, Medical Affairs and Innovation, 1070, Avenue des Sciences-de-la-Vie, Quebec, QC G1V 5C3, Canada; (S.F.); (M.-P.C.)
- Department of Chemistry, Faculty of Science and Engineering, Laval University, Quebec, QC G1V 0A6, Canada
- Correspondence:
| |
Collapse
|
10
|
Complete Genome Sequence of Staphylococcus aureus PS/BAC/169/17/W, Isolated from a Contaminated Platelet Concentrate in England. Microbiol Resour Announc 2021; 10:e0084121. [PMID: 34761954 PMCID: PMC8582312 DOI: 10.1128/mra.00841-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report the genome sequence of Staphylococcus aureus PS/BAC/169/17/W, which was isolated in 2017 from a contaminated platelet concentrate at the National Health Service Blood and Transplant. Assessment of the genome sequence of this strain showed the presence of a 2,753,746-bp chromosome and a plasmid of 2,762 bp.
Collapse
|
11
|
Complete Genome Sequence of Staphylococcus aureus CI/BAC/25/13/W, Isolated from Contaminated Platelet Concentrates in England. Microbiol Resour Announc 2021; 10:e0084021. [PMID: 34761952 PMCID: PMC8582310 DOI: 10.1128/mra.00840-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We present the genome sequence of Staphylococcus aureus CI/BAC/25/13/W, which was isolated in 2013 as a contaminant of a platelet concentrate with abnormal clotting at the National Health Service Blood and Transplant. Assessment of the genome sequence showed the presence of one chromosome (2,719,347 bp) and one plasmid (1,533 bp).
Collapse
|
12
|
Larrea L, Vera B, Gómez I, Navarro L, Castro E, Arbona C. Massive amorphous mass in apheresis platelet product. Transfusion 2021; 61:3293-3294. [PMID: 34726273 DOI: 10.1111/trf.16720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/26/2021] [Accepted: 10/10/2021] [Indexed: 12/01/2022]
Affiliation(s)
- Luis Larrea
- Servicio de Procesamiento, Centro de Transfusión de la Comunidad Valenciana, Valencia, Spain
| | - Belén Vera
- Servicio de Procesamiento, Centro de Transfusión de la Comunidad Valenciana, Valencia, Spain
| | - Inés Gómez
- Servicio de Hematologia, Hospital Universitari i Politècnic La Fe, València, Spain
| | - Laura Navarro
- Servicio de Procesamiento, Centro de Transfusión de la Comunidad Valenciana, Valencia, Spain
| | - Emma Castro
- Servicio de Procesamiento, Centro de Transfusión de la Comunidad Valenciana, Valencia, Spain
| | - Cristina Arbona
- Servicio de Procesamiento, Centro de Transfusión de la Comunidad Valenciana, Valencia, Spain
| |
Collapse
|
13
|
Yousuf B, Flint A, Weedmark K, McDonald C, Bearne J, Pagotto F, Ramirez-Arcos S. Genome Sequence of Staphylococcus aureus Strain PS/BAC/317/16/W, Isolated from Contaminated Platelet Concentrates in England. Microbiol Resour Announc 2021; 10:e0057721. [PMID: 34472978 PMCID: PMC8411914 DOI: 10.1128/mra.00577-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/13/2021] [Indexed: 11/20/2022] Open
Abstract
We present the genome sequence of Staphylococcus aureus strain PS/BAC/317/16/W, which was isolated from contaminated platelet concentrates by the National Health Service Blood and Transplant in England (2017). Genome sequence analysis revealed the presence of one chromosome (2,665,983 bp) and two plasmids (4,265 bp and 2,921 bp) in this strain.
Collapse
Affiliation(s)
- Basit Yousuf
- Centre for Innovation, Canadian Blood Services, Ottawa, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
| | - Annika Flint
- Bureau of Microbial Hazards, Health Products and Food Branch, Health Canada, Ottawa, Canada
| | - Kelly Weedmark
- Bureau of Microbial Hazards, Health Products and Food Branch, Health Canada, Ottawa, Canada
| | - Carl McDonald
- National Health Service Blood and Transplant, London, United Kingdom
| | - Jennifer Bearne
- National Health Service Blood and Transplant, London, United Kingdom
| | - Franco Pagotto
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
- Bureau of Microbial Hazards, Health Products and Food Branch, Health Canada, Ottawa, Canada
| | - Sandra Ramirez-Arcos
- Centre for Innovation, Canadian Blood Services, Ottawa, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
| |
Collapse
|
14
|
Genome Sequence of Staphylococcus aureus Strain CBS2016-05, Isolated from Contaminated Platelet Concentrates in Canada. Microbiol Resour Announc 2021; 10:e0028821. [PMID: 34435853 PMCID: PMC8388531 DOI: 10.1128/mra.00288-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
We present the genome sequence of Staphylococcus aureus strain CBS2016-05, which was isolated from contaminated platelet concentrates by Canadian Blood Services in 2016. This strain caused a septic reaction in an acute leukemia patient. Genome sequence analysis revealed the presence of one chromosome (2,766,936 bp) and one plasmid (36,441 bp).
Collapse
|
15
|
Catelli LF, Saad STO. Ex Vivo Manufacture of Megakaryocytes and Platelets from Stem Cells: Recent Advances Toward Transfusion in Humans. Stem Cells Dev 2021; 30:351-362. [PMID: 33622080 DOI: 10.1089/scd.2020.0185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The generation of ex vivo functional megakaryocytes (MK) and platelets is an important issue in transfusion medicine as donor dependence implies in limitations, such as shortage of eligible volunteers. Indeed, platelet transfusion is still a procedure that saves the lives of patients with defective platelet production. Recent technological development has enabled the isolation and expansion of stem cells that can be used as a source for the production of functional platelets for transfusion. In this review, we discuss recent approaches of in vitro or ex vivo production of MK and platelets, suggesting that, in the near future, donor-independent sources may become a possibility. The feasibility of using these cells in the clinic may be safer, and in vitro manipulation could generate universally compatible products, solving problems related to platelet refractoriness. However, functionality and survival testing of these products in human beings are scarce; therefore, additional studies are needed to consolidate this purpose.
Collapse
Affiliation(s)
- Lucas Ferioli Catelli
- Hematology and Transfusion Medicine Center, University of Campinas, Campinas, São Paulo, Brazil
| | | |
Collapse
|
16
|
Kozakai M, Matsumoto C, Matsumoto M, Takakura A, Matsubayashi K, Satake M. Different growth kinetics in blood components and genetic analysis of Lactococcus garvieae isolated from platelet concentrates. Transfusion 2020; 60:1492-1499. [PMID: 32436250 DOI: 10.1111/trf.15836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 03/21/2020] [Accepted: 03/21/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND In 2014, we experienced the first isolation of Lactococcus garvieae from a platelet concentrate (PC). Thereafter, L. garvieae contamination of PCs occurred in two more cases in Japan. It is rare that bacterial contamination with uncommon strains like this species occurs frequently within a short period. Therefore, we performed a detailed analysis of the characteristics of these strains. STUDY DESIGN AND METHODS Three bacterial strains were identified by biochemical testing and molecular analysis. Genomic diversity was characterized by multilocus sequence typing (MLST). To observe growth kinetics in blood components, PCs were inoculated with the three different strains. RESULTS All three strains were identified as L. garvieae by molecular analysis. Each strain belonged to a different phylogenetic group according to MLST analysis. In the spiking trial, the three strains demonstrated differences in their final concentrations and changes in appearance of PCs. CONCLUSION In this study, all three L. garvieae strains were correctly identified by molecular analysis. Since the three strains were collected in different regions of Japan and belonged to different phylogenetic groups according to MLST analysis, it is suggested that L. garvieae have a wide distribution with diversity in Japan. In PCs, the three L. garvieae strains showed clear differences in growth kinetics and changes in appearance of PCs. These differences may have been the primary determinant of whether PC contamination was detected before transfusion. Moreover, L. garvieae represents an emerging foodborne bacterium that can cause transfusion-transmitted bacteremia. Understanding our cases may help prevent bacterial contamination of blood products.
Collapse
Affiliation(s)
- Moe Kozakai
- Central Blood Institute, Blood Service Headquarters, Japanese Red Cross Society, Tokyo, Japan
| | - Chieko Matsumoto
- Central Blood Institute, Blood Service Headquarters, Japanese Red Cross Society, Tokyo, Japan
| | - Mami Matsumoto
- Central Blood Institute, Blood Service Headquarters, Japanese Red Cross Society, Tokyo, Japan
| | - Akiko Takakura
- Central Blood Institute, Blood Service Headquarters, Japanese Red Cross Society, Tokyo, Japan
| | - Keiji Matsubayashi
- Central Blood Institute, Blood Service Headquarters, Japanese Red Cross Society, Tokyo, Japan
| | - Masahiro Satake
- Central Blood Institute, Blood Service Headquarters, Japanese Red Cross Society, Tokyo, Japan
| |
Collapse
|
17
|
Satake M, Kozakai M, Matsumoto M, Matsubayashi K, Taira R, Goto N. Platelet safety strategies in Japan: impact of short shelf life on the incidence of septic reactions. Transfusion 2020; 60:731-738. [PMID: 32119134 DOI: 10.1111/trf.15733] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 01/17/2020] [Accepted: 01/29/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Transfusion-transmitted bacterial infections (TTBIs) often have serious consequences for patients. The Japanese Red Cross (JRC) has not implemented culture screening for platelet concentrate (PC), but it has maintained a shelf life of 85 hours for PC. STUDY DESIGN AND METHODS The JRC collected reports of suspected TTBI and investigated causal relationships using PC samples and patient blood samples. PCs showing apparent abnormalities were retrieved and cultured and analyzed for bacterial growth. RESULTS The JRC analyzed 86 samples available from 135 transfused PCs with suspected TTBIs that were collected over the past 12 years; 17 (19.8%) were culture-positive. One, 6, and 10 TTBIs developed in patients on Days 1, 2, and 3 after PC collection, respectively. Assuming that PC is transfused on the day of issue, the TTBI risk was fourfold higher on Day 3 than on Day 2, after adjusting the TTBI incidence for the number of PCs issued per day. Compared with the model of issuing all PCs on Day 3, issuing PCs with the current distribution of storage time could have decreased the TTBI incidence by 56%. During the past 8 years, the JRC retrieved 960 PC units because of apparent abnormalities, 2.8% of which were culture-positive. CONCLUSION The short shelf life of PC is associated with a low incidence of reported TTBIs, more than half of which occurred on Day 3 relative to earlier time points. Visual inspection of PC before transfusion is crucial in detecting bacterially contaminated PC despite its low positive predictive value.
Collapse
Affiliation(s)
- Masahiro Satake
- Central Blood Institute, Japanese Red Cross, Tokyo, Japan.,Blood Service Headquarters, Japanese Red Cross, Tokyo, Japan
| | - Moe Kozakai
- Central Blood Institute, Japanese Red Cross, Tokyo, Japan
| | - Mami Matsumoto
- Central Blood Institute, Japanese Red Cross, Tokyo, Japan
| | | | - Rikizo Taira
- Blood Service Headquarters, Japanese Red Cross, Tokyo, Japan
| | - Naoko Goto
- Blood Service Headquarters, Japanese Red Cross, Tokyo, Japan
| |
Collapse
|
18
|
Prax M, Bekeredjian-Ding I, Krut O. Microbiological Screening of Platelet Concentrates in Europe. Transfus Med Hemother 2019; 46:76-86. [PMID: 31191193 PMCID: PMC6514488 DOI: 10.1159/000499349] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 02/27/2019] [Indexed: 01/05/2023] Open
Abstract
The risk of transfusion-associated sepsis due to transmission of bacteria is a persistent problem in the transfusion field. Despite numerous interventions to reduce the risk, cases of bacterial sepsis following transfusion are repeatedly being reported. Especially platelet concentrates are highly susceptible to bacterial contaminations due to the growth-promoting storage conditions. In Europe, blood establishments and national authorities have implemented individual precaution measures to mitigate the risk of bacterial transmission. To obtain an overview of the different approaches, we compiled information from national authorities, blood establishments, and the current literature. Several aspects such as the shelf life of platelets, time of sampling and the applied control measures are compared between the member states. The analysis of the data revealed a broad heterogeneity of procedures on a national level ranging from platelet release without any safety testing up to mandatory screening of all platelet concentrates prior to transfusion. Despite the substantial progress made in recent years, several bacterial reports on transfusion-associated sepsis indicate that further efforts are needed to increase the safety of blood transfusions in the long term.
Collapse
Affiliation(s)
- Marcel Prax
- Division of Microbiology, Paul Ehrlich Institute, Langen, Germany
| | | | | |
Collapse
|
19
|
Vossier L, Valera L, Leon F, Roche S, Piquer D, Rubrecht L, Favier C, Cremer GA, Pouzet A, Dagland T, Rihet S, Galea P, Farre C, Bonnet R, Jaffrézic-Renault N, Chaix C, Fareh J, Fournier-Wirth C. Combining culture and microbead-based immunoassay for the early and generic detection of bacteria in platelet concentrates. Transfusion 2018; 59:277-286. [PMID: 30430585 DOI: 10.1111/trf.15019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 07/16/2018] [Accepted: 07/22/2018] [Indexed: 01/15/2023]
Abstract
BACKGROUND Despite current preventive strategies, bacterial contamination of platelets is the highest residual infectious risk in transfusion. Bacteria can grow from an initial concentration of 0.03-0.3 colony-forming units (CFUs)/mL up to 108 to 109 CFUs/mL over the product shelf life. The aim of this study was to develop a cost-effective approach for an early, rapid, sensitive, and generic detection of bacteria in platelet concentrates. STUDY DESIGN AND METHODS A large panel of bacteria involved in transfusion reactions, including clinical isolates and reference strains, was established. Sampling was performed 24 hours after platelet spiking. After an optimized culture step for increasing bacterial growth, a microbead-based immunoassay allowed the generic detection of bacteria. Antibody production and immunoassay development took place exclusively with bacteria spiked in fresh platelet concentrates to improve the specificity of the test. RESULTS Antibodies for the generic detection of either gram-negative or gram-positive bacteria were selected for the microbead-based immunoassay. Our approach, combining the improved culture step with the immunoassay, allowed sensitive detection of 1 to 10 CFUs/mL for gram-negative and 1 to 102 CFUs/mL for gram-positive species. CONCLUSION In this study, a new approach combining bacterial culture with immunoassay was developed for the generic and sensitive detection of bacteria in platelet concentrates. This efficient and easily automatable approach allows tested platelets to be used on Day 2 after collection and could represent an alternative strategy for reducing the risk of transfusion-transmitted bacterial infections. This strategy could be adapted for the detection of bacteria in other cellular products.
Collapse
Affiliation(s)
- Ludivine Vossier
- Pathogenesis and Control of Chronic Infections, EFS, Inserm, Université de Montpellier, Montpellier, France
| | - Lionel Valera
- Bio-Rad, R&D Marnes la Coquette, Steenvoorde and, Montpellier, France
| | - Fanny Leon
- Pathogenesis and Control of Chronic Infections, EFS, Inserm, Université de Montpellier, Montpellier, France
| | - Stéphanie Roche
- Bio-Rad, R&D Marnes la Coquette, Steenvoorde and, Montpellier, France
| | - Dominique Piquer
- Bio-Rad, R&D Marnes la Coquette, Steenvoorde and, Montpellier, France
| | - Laetitia Rubrecht
- Bio-Rad, R&D Marnes la Coquette, Steenvoorde and, Montpellier, France
| | - Christine Favier
- Bio-Rad, R&D Marnes la Coquette, Steenvoorde and, Montpellier, France
| | | | - Agnès Pouzet
- Bio-Rad, R&D Marnes la Coquette, Steenvoorde and, Montpellier, France
| | - Typhaine Dagland
- Bio-Rad, R&D Marnes la Coquette, Steenvoorde and, Montpellier, France
| | - Stéphane Rihet
- Bio-Rad, R&D Marnes la Coquette, Steenvoorde and, Montpellier, France
| | - Pascale Galea
- Bio-Rad, R&D Marnes la Coquette, Steenvoorde and, Montpellier, France
| | - Carole Farre
- Institut des Sciences Analytiques, (CNRS-Université de Lyon 1-ENS), Lyon, France
| | - Romaric Bonnet
- Institut des Sciences Analytiques, (CNRS-Université de Lyon 1-ENS), Lyon, France
| | | | - Carole Chaix
- Institut des Sciences Analytiques, (CNRS-Université de Lyon 1-ENS), Lyon, France
| | - Jeannette Fareh
- Bio-Rad, R&D Marnes la Coquette, Steenvoorde and, Montpellier, France
| | - Chantal Fournier-Wirth
- Pathogenesis and Control of Chronic Infections, EFS, Inserm, Université de Montpellier, Montpellier, France
| |
Collapse
|
20
|
Brailsford SR, Tossell J, Morrison R, McDonald CP, Pitt TL. Failure of bacterial screening to detect Staphylococcus aureus: the English experience of donor follow-up. Vox Sang 2018; 113:540-546. [PMID: 29799121 DOI: 10.1111/vox.12670] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 04/27/2018] [Accepted: 05/05/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND OBJECTIVES Between February 2011 and December 2016, over 1·6 million platelet units, 36% pooled platelets, underwent bacterial screening prior to issue. Contamination rates for apheresis and pooled platelets were 0·02% and 0·07%, respectively. Staphylococcus aureus accounted for 21 contaminations, including four pooled platelets, one confirmed transfusion-transmitted infection (TTI) and three 'near-miss' incidents detected on visual inspection which were negative on screening. We describe follow-up investigations of 16 donors for skin carriage of S. aureus and molecular characterisation of donor and pack isolates. MATERIALS AND METHODS Units were screened by the BacT/ALERT 3D detection system. Contributing donors were interviewed and consent requested for skin and nasal swabbing. S. aureus isolates were referred for spa gene type and DNA macrorestriction profile to determine identity between carriage strains and packs. RESULTS Donors of 10 apheresis and two pooled packs screen positive for S. aureus were confirmed as the source of contamination; seven had a history of skin conditions, predominantly eczema; 11 were nasal carriers. The 'near-miss' incidents were associated with apheresis donors, two donors harboured strains indistinguishable from the pack strain. The TTI was due to a screen-negative pooled unit, and a nasal isolate of one donor was indistinguishable from that in the unit. CONCLUSION Staphylococcus aureus contamination is rare but potentially harmful in platelet units. Donor isolates showed almost universal correspondence in molecular type with pack isolates, thus confirming the source of contamination. The importance of visual inspection of packs prior to transfusion is underlined by the 'near-miss' incidents.
Collapse
Affiliation(s)
- S R Brailsford
- Microbiology Services, NHS Blood and Transplant, London, UK
| | - J Tossell
- Microbiology Services, NHS Blood and Transplant, London, UK
| | - R Morrison
- Microbiology Services, NHS Blood and Transplant, London, UK
| | - C P McDonald
- Microbiology Services, NHS Blood and Transplant, London, UK
| | - T L Pitt
- Microbiology Services, NHS Blood and Transplant, London, UK
| |
Collapse
|
21
|
Ramirez-Arcos S, DiFranco C, McIntyre T, Goldman M. Residual risk of bacterial contamination of platelets: six years of experience with sterility testing. Transfusion 2017; 57:2174-2181. [DOI: 10.1111/trf.14202] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 04/04/2017] [Accepted: 04/30/2017] [Indexed: 01/29/2023]
|