1
|
Burgstaller A, Piernitzki N, Küchler N, Koch M, Kister T, Eichler H, Kraus T, Schwarz EC, Dustin ML, Lautenschläger F, Staufer O. Soft Synthetic Cells with Mobile Membrane Ligands for Ex Vivo Expansion of Therapy-Relevant T Cell Phenotypes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401844. [PMID: 38751204 DOI: 10.1002/smll.202401844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/29/2024] [Indexed: 10/01/2024]
Abstract
The expansion of T cells ex vivo is crucial for effective immunotherapy but currently limited by a lack of expansion approaches that closely mimic in vivo T cell activation. Taking inspiration from bottom-up synthetic biology, a new synthetic cell technology is introduced based on dispersed liquid-liquid phase-separated droplet-supported lipid bilayers (dsLBs) with tunable biochemical and biophysical characteristics, as artificial antigen presenting cells (aAPCs) for ex vivo T cell expansion. These findings obtained with the dsLB technology reveal three key insights: first, introducing laterally mobile stimulatory ligands on soft aAPCs promotes expansion of IL-4/IL-10 secreting regulatory CD8+ T cells, with a PD-1 negative phenotype, less prone to immune suppression. Second, it is demonstrated that lateral ligand mobility can mask differential T cell activation observed on substrates of varying stiffness. Third, dsLBs are applied to reveal a mechanosensitive component in bispecific Her2/CD3 T cell engager-mediated T cell activation. Based on these three insights, lateral ligand mobility, alongside receptor- and mechanosignaling, is proposed to be considered as a third crucial dimension for the design of ex vivo T cell expansion technologies.
Collapse
Affiliation(s)
- Anna Burgstaller
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Center for Infection Research, Campus E8 1, 66123, Saarbrücken, Germany
- Center for Biophysics, Saarland University, Campus Saarland, 66123, Saarbrücken, Germany
| | - Nils Piernitzki
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Center for Infection Research, Campus E8 1, 66123, Saarbrücken, Germany
- Center for Biophysics, Saarland University, Campus Saarland, 66123, Saarbrücken, Germany
| | - Nadja Küchler
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Building 48, 66421, Homburg, Germany
| | - Marcus Koch
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
| | - Thomas Kister
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
| | - Hermann Eichler
- Institute of Clinical Hemostaseology and Transfusion Medicine, Saarland University and Saarland University Medical Center, Homburg, Germany
| | - Tobias Kraus
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
- Saarland University, Colloid and Interface Chemistry, 66123, Saarbrücken, Germany
| | - Eva C Schwarz
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Building 48, 66421, Homburg, Germany
| | - Michael L Dustin
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopedics, Rheumatology and, Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Franziska Lautenschläger
- Center for Biophysics, Saarland University, Campus Saarland, 66123, Saarbrücken, Germany
- Experimental Physics, Faculty of Natural Science and Technology, Saarland University, Campus Saarbrücken, 66123, Saarbrücken, Germany
| | - Oskar Staufer
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Center for Infection Research, Campus E8 1, 66123, Saarbrücken, Germany
- Center for Biophysics, Saarland University, Campus Saarland, 66123, Saarbrücken, Germany
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopedics, Rheumatology and, Musculoskeletal Sciences, University of Oxford, Oxford, UK
- Max Planck Bristol Centre for Minimal Biology, Cantock's Close, Bristol, BS8 1TS, UK
| |
Collapse
|
2
|
Yanamandra AK, Bhusari S, Del Campo A, Sankaran S, Qu B. In vitro evaluation of immune responses to bacterial hydrogels for the development of living therapeutic materials. BIOMATERIALS ADVANCES 2023; 153:213554. [PMID: 37480604 DOI: 10.1016/j.bioadv.2023.213554] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/03/2023] [Accepted: 07/06/2023] [Indexed: 07/24/2023]
Abstract
In living therapeutic materials (LTMs), organisms genetically programmed to produce and deliver drugs are encapsulated in porous matrices acting as physical barriers between the therapeutic organisms and the host cells. LTMs consisting of engineered E. coli encapsulated in Pluronic F127-based hydrogels have been frequently used in LTM designs but their immunogenicity has not been tested. In this study, we investigate the response of human peripheral blood mononuclear cells (PBMCs) exposed to this bacteria/hydrogel combination. The release of inflammation-related cytokines and cytotoxic proteins and the subsets of natural killer cells and T cells were examined. Encapsulation of the bacteria in hydrogels considerably lowers their immunogenicity. ClearColi, an endotoxin-free variant of E. coli, did not polarize NK cells into the more cytolytic CD16dim subset as E. coli. Our results demonstrate that ClearColi-encapsulated hydrogels generate low immunogenic response and are suitable candidates for the development of LTMs for in vivo testing to assess a potential clinical use. Nevertheless, we observed a stronger immune response (elevated levels of IFNγ, IL-6 and cytotoxic proteins) in pro-inflammatory PBMCs characterized by a high spontaneous release of IL-2. This highlights the need to identify recipients who have a higher likelihood of experiencing undesired immune responses to LTMs with IL-2 serving as a potential predictive marker. Additionally, including anti-inflammatory measures in living therapeutic material designs could be beneficial for such recipients.
Collapse
Affiliation(s)
- Archana K Yanamandra
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Homburg, Germany; INM - Leibniz Institute for New Materials, Saarbrücken, Germany
| | - Shardul Bhusari
- INM - Leibniz Institute for New Materials, Saarbrücken, Germany; Chemistry Department, Saarland University, 66123 Saarbrücken, Germany
| | - Aránzazu Del Campo
- INM - Leibniz Institute for New Materials, Saarbrücken, Germany; Chemistry Department, Saarland University, 66123 Saarbrücken, Germany
| | | | - Bin Qu
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Homburg, Germany; INM - Leibniz Institute for New Materials, Saarbrücken, Germany.
| |
Collapse
|
3
|
Zöphel S, Schäfer G, Nazarieh M, Konetzki V, Hoxha C, Meese E, Hoth M, Helms V, Hamed M, Schwarz EC. Identification of molecular candidates which regulate calcium-dependent CD8 + T-cell cytotoxicity. Mol Immunol 2023; 157:202-213. [PMID: 37075611 DOI: 10.1016/j.molimm.2023.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/10/2023] [Accepted: 04/02/2023] [Indexed: 04/21/2023]
Abstract
Cytotoxic CD8+ T lymphocytes (CTL) eliminate infected cells or transformed tumor cells by releasing perforin-containing cytotoxic granules at the immunological synapse. The secretion of such granules depends on Ca2+-influx through store operated Ca2+ channels, formed by STIM (stromal interaction molecule)-activated Orai proteins. Whereas molecular mechanisms of the secretion machinery are well understood, much less is known about the molecular machinery that regulates the efficiency of Ca2+-dependent target cell killing. CTL killing efficiency is of high interest considering the number of studies on CD8+ T lymphocytes modified for clinical use. Here, we isolated total RNA from primary human cells: natural killer (NK) cells, non-stimulated CD8+ T-cells, and from Staphylococcus aureus enterotoxin A (SEA) stimulated CD8+ T-cells (SEA-CTL) and conducted whole genome expression profiling by microarray experiments. Based on differential expression analysis of the transcriptome data and analysis of master regulator genes, we identified 31 candidates which potentially regulate Ca2+-homeostasis in CTL. To investigate a putative function of these candidates in CTL cytotoxicity, we transfected either SEA-stimulated CTL (SEA-CTL) or antigen specific CD8+ T-cell clones (CTL-MART-1) with siRNAs specific against the identified candidates and analyzed the killing capacity using a real-time killing assay. In addition, we complemented the analysis by studying the effect of inhibitory substances acting on the candidate proteins if available. Finally, to unmask their involvement in Ca2+ dependent cytotoxicity, candidates were also analyzed under Ca2+-limiting conditions. Overall, we identified four hits, CCR5 (C-C chemokine receptor type five), KCNN4 (potassium calcium-activated channel subfamily N), RCAN3 (regulator of calcineurin) and BCL (B-cell lymphoma) 2 which clearly affect the efficiency of Ca2+ dependent cytotoxicity in CTL-MART-1 cells, CCR5, BCL2, and KCNN4 in a positive manner, and RCAN3 in a negative way.
Collapse
Affiliation(s)
- Sylvia Zöphel
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Building 48, 66421 Homburg, Germany
| | - Gertrud Schäfer
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Building 48, 66421 Homburg, Germany
| | - Maryam Nazarieh
- Center for Bioinformatics, Saarland Informatics Campus, Saarland University, 66041 Saarbrücken, Germany
| | - Verena Konetzki
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Building 48, 66421 Homburg, Germany
| | - Cora Hoxha
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Building 48, 66421 Homburg, Germany
| | - Eckart Meese
- Human Genetics, School of Medicine, Saarland University, Building 60, 66421 Homburg, Germany
| | - Markus Hoth
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Building 48, 66421 Homburg, Germany
| | - Volkhard Helms
- Center for Bioinformatics, Saarland Informatics Campus, Saarland University, 66041 Saarbrücken, Germany
| | - Mohamed Hamed
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Centre, 18057 Rostock, Germany
| | - Eva C Schwarz
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Building 48, 66421 Homburg, Germany.
| |
Collapse
|
4
|
Friedmann KS, Kaschek L, Knörck A, Cappello S, Lünsmann N, Küchler N, Hoxha C, Schäfer G, Iden S, Bogeski I, Kummerow C, Schwarz EC, Hoth M. Interdependence of sequential cytotoxic T lymphocyte and natural killer cell cytotoxicity against melanoma cells. J Physiol 2022; 600:5027-5054. [PMID: 36226443 DOI: 10.1113/jp283667] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/06/2022] [Indexed: 01/05/2023] Open
Abstract
Cytotoxic T lymphocytes (CTL) and natural killer (NK) cells recognize and eliminate cancer cells. However, immune evasion, downregulation of immune function by the tumour microenvironment and resistance of cancer cells are major problems. Although CTL and NK cells are both important to eliminate cancer, most studies address them individually. We quantified sequential primary human CTL and NK cell cytotoxicity against the melanoma cell line SK-Mel-5. At high effector-to-target ratios, NK cells or melan-A (MART-1)-specific CTL eliminated all SK-Mel-5 cells within 24 h, indicating that SK-Mel-5 cells are not resistant initially. However, at lower effector-to-target ratios, which resemble numbers of the immune contexture in human cancer, a substantial number of SK-Mel-5 cells survived. Pre-exposure to CTL induced resistance in surviving SK-Mel-5 cells to subsequent CTL or NK cell cytotoxicity, and pre-exposure to NK cells induced resistance in surviving SK-Mel-5 cells to NK cells. Higher human leucocyte antigen class I expression or interleukin-6 levels were correlated with resistance to NK cells, whereas reduction in MART-1 antigen expression was correlated with reduced CTL cytotoxicity. The CTL cytotoxicity was rescued beyond control levels by exogenous MART-1 antigen. In contrast to the other three combinations, CTL cytotoxicity against SK-Mel-5 cells was enhanced following NK cell pre-exposure. Our assay allows quantification of sequential CTL and NK cell cytotoxicity and might guide strategies for efficient CTL-NK cell anti-melanoma therapies. KEY POINTS: Cytotoxic T lymphocytes (CTL) and natural killer (NK) cells eliminate cancer cells. Both CTL and NK cells attack the same targets, but most studies address them individually. In a sequential cytotoxicity model, the interdependence of antigen-specific CTL and NK cell cytotoxicity against melanoma is quantified. High numbers of antigen-specific CTL and NK cells eliminate all melanoma cells. However, lower numbers induce resistance if secondary CTL or NK cell exposure follows initial CTL exposure or if secondary NK cell exposure follows initial NK cell exposure. On the contrary, if secondary CTL exposure follows initial NK cell exposure, cytotoxicity is enhanced. Alterations in human leucocyte antigen class I expression and interleukin-6 levels are correlated with resistance to NK cells, whereas a reduction in antigen expression is correlated with reduced CTL cytotoxicity; CTL cytotoxicity is rescued beyond control levels by exogenous antigen. This assay and the results on interdependencies will help us to understand and optimize immune therapies against cancer.
Collapse
Affiliation(s)
- Kim S Friedmann
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Homburg, Germany
| | - Lea Kaschek
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Homburg, Germany
| | - Arne Knörck
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Homburg, Germany
| | - Sabrina Cappello
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Homburg, Germany.,Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Center, Georg August University, Göttingen, Germany
| | - Niklas Lünsmann
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Homburg, Germany
| | - Nadja Küchler
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Homburg, Germany
| | - Cora Hoxha
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Homburg, Germany
| | - Gertrud Schäfer
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Homburg, Germany
| | - Sandra Iden
- Cell and Developmental Biology, Center of Human and Molecular Biology (ZHMB), School of Medicine, Saarland University, Homburg, Germany
| | - Ivan Bogeski
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Homburg, Germany.,Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Center, Georg August University, Göttingen, Germany
| | - Carsten Kummerow
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Homburg, Germany
| | - Eva C Schwarz
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Homburg, Germany
| | - Markus Hoth
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Homburg, Germany
| |
Collapse
|
5
|
Knörck A, Schäfer G, Alansary D, Richter J, Thurner L, Hoth M, Schwarz EC. Cytotoxic Efficiency of Human CD8+ T Cell Memory Subtypes. Front Immunol 2022; 13:838484. [PMID: 35493468 PMCID: PMC9043813 DOI: 10.3389/fimmu.2022.838484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/21/2022] [Indexed: 12/14/2022] Open
Abstract
Immunological memory is important to protect humans against recurring diseases. Memory CD8+ T cells are required for quick expansion into effector cells but also provide immediate cytotoxicity against their targets. Whereas many functions of the two main cytotoxic subtypes, effector memory CD8+ T cells (TEM) and central memory CD8+ T cells (TCM), are well defined, single TEM and TCM cell cytotoxicity has not been quantified. To quantify cytotoxic efficiency of TEM and TCM, we developed a FRET-based single cell fluorescent assay with NALM6 target cells which allows analysis of target cell apoptosis, secondary necrosis following apoptosis, and primary necrosis after TEM- or TCM-target cell contact. Both, single cell and population cytotoxicity assays reveal a higher cytotoxic efficiency of TEM compared to TCM, as quantified by target cell apoptosis and secondary necrosis. Perforin, granzyme B, FasL, but not TRAIL expression are higher in TEM compared to TCM. Higher perforin levels (likely in combination with higher granzyme levels) mediate higher cytotoxic efficiency of TEM compared to TCM. Both, TEM and TCM need the same time to find their targets, however contact time between CTL and target, time to induce apoptosis, and time to induce secondary necrosis are all shorter for TEM. In addition, immune synapse formation in TEM appears to be slightly more efficient than in TCM. Defining and quantifying single TEM and TCM cytotoxicity and the respective mechanisms is important to optimize future subset-based immune therapies.
Collapse
Affiliation(s)
- Arne Knörck
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, Germany
| | - Gertrud Schäfer
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, Germany
| | - Dalia Alansary
- Molecular Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, Germany
| | - Josephine Richter
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, Germany
| | - Lorenz Thurner
- Internal Medicine I, School of Medicine, Saarland University, Homburg, Germany
| | - Markus Hoth
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, Germany
| | - Eva C. Schwarz
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, Germany
- *Correspondence: Eva C. Schwarz,
| |
Collapse
|
6
|
Chegini A, Fani P, Samiee S, Shaiegan M, Hajati E, Maghari A. The effect of platelet apheresis collection on some immunological factors in donors using two different apheresis devices. Ther Apher Dial 2021; 26:1040-1046. [PMID: 34859594 DOI: 10.1111/1744-9987.13771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 11/29/2022]
Abstract
INTRODUCTION The aim of this study was to evaluate and compare two different apheresis and changes in some immunological factors in donors. MATERIAL AND METHODS The cross-sectional study was performed from January 2017 to September 2018. Fifty six male blood donors were randomly divided into two groups. CD4, CD8, and CD25 markers by flow cytometry, and TGFBeta by real-time polymerase chain reaction (RT-PCR) method were done before and 7 days after the apheresis procedure. Independent Sample t-test, Mann-Whitney U Test, Wilcoxon signed ranked test, and Fisher exact test were used. RESULTS WBC in MCS+ group after donation is significantly higher than before donation (P < 0.05) but no significant difference was seen between MCS+ and Trima groups in these two indicators. But in CD4, CD25, and TGFBeta, there was no significant difference between the two groups. CONCLUSION There was no significant difference on CD4, CD25, and TGFBeta gene 7 days after donation.
Collapse
Affiliation(s)
- Azita Chegini
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Parvaneh Fani
- Immunohematology Department, Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Shahram Samiee
- Immunohematology Department, Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Mojgan Shaiegan
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Esmerdis Hajati
- Immunohematology Department, Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Amirhossein Maghari
- Department of Family Health, Social Determinants of Health Research Center (SDHRC), Ardebil University of Medical Sciences, Ardebil, Iran
| |
Collapse
|
7
|
Zhu J, Yang W, Zhou X, Zöphel D, Soriano-Baguet L, Dolgener D, Carlein C, Hof C, Zhao R, Ye S, Schwarz EC, Brenner D, Prates Roma L, Qu B. High Glucose Enhances Cytotoxic T Lymphocyte-Mediated Cytotoxicity. Front Immunol 2021; 12:689337. [PMID: 34248978 PMCID: PMC8267470 DOI: 10.3389/fimmu.2021.689337] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/10/2021] [Indexed: 12/18/2022] Open
Abstract
Cytotoxic T lymphocytes (CTLs) are key players to eliminate tumorigenic or pathogen-infected cells using lytic granules (LG) and Fas ligand (FasL) pathways. Depletion of glucose leads to severely impaired cytotoxic function of CTLs. However, the impact of excessive glucose on CTL functions still remains largely unknown. Here we used primary human CD8+ T cells, which were stimulated by CD3/CD28 beads and cultured in medium either containing high glucose (HG, 25 mM) or normal glucose (NG, 5.6 mM). We found that in HG-CTLs, glucose uptake and glycolysis were enhanced, whereas proliferation remained unaltered. Furthermore, CTLs cultured in HG exhibited an enhanced CTL killing efficiency compared to their counterparts in NG. Unexpectedly, expression of cytotoxic proteins (perforin, granzyme A, granzyme B and FasL), LG release, cytokine/cytotoxic protein release and CTL migration remained unchanged in HG-cultured CTLs. Interestingly, additional extracellular Ca2+ diminished HG-enhanced CTL killing function. Our findings suggest that in an environment with excessive glucose, CTLs could eliminate target cells more efficiently, at least for a certain period of time, in a Ca2+-dependent manner.
Collapse
Affiliation(s)
- Jie Zhu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Homburg, Germany
| | - Wenjuan Yang
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Homburg, Germany
| | - Xiangda Zhou
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Homburg, Germany
| | - Dorina Zöphel
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Homburg, Germany
| | - Leticia Soriano-Baguet
- Experimental and Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Immunology and Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Denise Dolgener
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Homburg, Germany
| | - Christopher Carlein
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Homburg, Germany
| | - Chantal Hof
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Homburg, Germany
| | - Renping Zhao
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Homburg, Germany
| | - Shandong Ye
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Eva C. Schwarz
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Homburg, Germany
| | - Dirk Brenner
- Experimental and Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Immunology and Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg
- Odense Research Center for Anaphylaxis, Department of Dermatology and Allergy Center, Odense University Hospital University of Southern Denmark, Odense, Denmark
| | - Leticia Prates Roma
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Homburg, Germany
| | - Bin Qu
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Homburg, Germany
- INM – Leibniz Institute for New Materials, Saarbrücken, Germany
| |
Collapse
|
8
|
Merino-Wong M, Niemeyer BA, Alansary D. Plasma Membrane Calcium ATPase Regulates Stoichiometry of CD4 + T-Cell Compartments. Front Immunol 2021; 12:687242. [PMID: 34093590 PMCID: PMC8175910 DOI: 10.3389/fimmu.2021.687242] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/04/2021] [Indexed: 11/13/2022] Open
Abstract
Immune responses involve mobilization of T cells within naïve and memory compartments. Tightly regulated Ca2+ levels are essential for balanced immune outcomes. How Ca2+ contributes to regulating compartment stoichiometry is unknown. Here, we show that plasma membrane Ca2+ ATPase 4 (PMCA4) is differentially expressed in human CD4+ T compartments yielding distinct store operated Ca2+ entry (SOCE) profiles. Modulation of PMCA4 yielded a more prominent increase of SOCE in memory than in naïve CD4+ T cell. Interestingly, downregulation of PMCA4 reduced the effector compartment fraction and led to accumulation of cells in the naïve compartment. In silico analysis and chromatin immunoprecipitation point towards Ying Yang 1 (YY1) as a transcription factor regulating PMCA4 expression. Analyses of PMCA and YY1 expression patterns following activation and of PMCA promoter activity following downregulation of YY1 highlight repressive role of YY1 on PMCA expression. Our findings show that PMCA4 adapts Ca2+ levels to cellular requirements during effector and quiescent phases and thereby represent a potential target to intervene with the outcome of the immune response.
Collapse
Affiliation(s)
| | | | - Dalia Alansary
- Molecular Biophysics, Saarland University, Homburg, Germany
| |
Collapse
|
9
|
McGinnis CS, Siegel DA, Xie G, Hartoularos G, Stone M, Ye CJ, Gartner ZJ, Roan NR, Lee SA. No detectable alloreactive transcriptional responses under standard sample preparation conditions during donor-multiplexed single-cell RNA sequencing of peripheral blood mononuclear cells. BMC Biol 2021; 19:10. [PMID: 33472616 PMCID: PMC7816397 DOI: 10.1186/s12915-020-00941-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 12/13/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Single-cell RNA sequencing (scRNA-seq) provides high-dimensional measurements of transcript counts in individual cells. However, high assay costs and artifacts associated with analyzing samples across multiple sequencing runs limit the study of large numbers of samples. Sample multiplexing technologies such as MULTI-seq and antibody hashing using single-cell multiplexing kit (SCMK) reagents (BD Biosciences) use sample-specific sequence tags to enable individual samples to be sequenced in a pooled format, markedly lowering per-sample processing and sequencing costs while minimizing technical artifacts. Critically, however, pooling samples could introduce new artifacts, partially negating the benefits of sample multiplexing. In particular, no study to date has evaluated whether pooling peripheral blood mononuclear cells (PBMCs) from unrelated donors under standard scRNA-seq sample preparation conditions (e.g., 30 min co-incubation at 4 °C) results in significant changes in gene expression resulting from alloreactivity (i.e., response to non-self). The ability to demonstrate minimal to no alloreactivity is crucial to avoid confounded data analyses, particularly for cross-sectional studies evaluating changes in immunologic gene signatures. RESULTS Here, we applied the 10x Genomics scRNA-seq platform to MULTI-seq and/or SCMK-labeled PBMCs from a single donor with and without pooling with PBMCs from unrelated donors for 30 min at 4 °C. We did not detect any alloreactivity signal between mixed and unmixed PBMCs across a variety of metrics, including alloreactivity marker gene expression in CD4+ T cells, cell type proportion shifts, and global gene expression profile comparisons using Gene Set Enrichment Analysis and Jensen-Shannon Divergence. These results were additionally mirrored in publicly-available scRNA-seq data generated using a similar experimental design. Moreover, we identified confounding gene expression signatures linked to PBMC preparation method (e.g., Trima apheresis), as well as SCMK sample classification biases against activated CD4+ T cells which were recapitulated in two other SCMK-incorporating scRNA-seq datasets. CONCLUSIONS We demonstrate that (i) mixing PBMCs from unrelated donors under standard scRNA-seq sample preparation conditions (e.g., 30 min co-incubation at 4 °C) does not cause an allogeneic response, and (ii) that Trima apheresis and PBMC sample multiplexing using SCMK reagents can introduce undesirable technical artifacts into scRNA-seq data. Collectively, these observations establish important benchmarks for future cross-sectional immunological scRNA-seq experiments.
Collapse
Affiliation(s)
- Christopher S McGinnis
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - David A Siegel
- Department of Medicine, Division of HIV/AIDS, UCSF, San Francisco, CA, USA
| | - Guorui Xie
- Gladstone Institute of Virology, San Francisco, CA, USA
- Department of Urology, UCSF, San Francisco, CA, USA
| | - George Hartoularos
- Institute for Human Genetics, UCSF, San Francisco, CA, USA
- Graduate Program in Biological and Medical Informatics, UCSF, San Francisco, CA, USA
| | - Mars Stone
- Department of Laboratory Medicine, UCSF, San Francisco, CA, USA
- Vitalant Research Institute, UCSF, San Francisco, CA, USA
| | - Chun J Ye
- Institute for Human Genetics, UCSF, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, UCSF, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, UCSF, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Chan Zuckerberg BioHub, UCSF, San Francisco, CA, USA
| | - Zev J Gartner
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
- Chan Zuckerberg BioHub, UCSF, San Francisco, CA, USA
- Center for Cellular Construction, UCSF, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA
| | - Nadia R Roan
- Gladstone Institute of Virology, San Francisco, CA, USA.
- Department of Urology, UCSF, San Francisco, CA, USA.
| | - Sulggi A Lee
- Department of Medicine, Division of HIV/AIDS, UCSF, San Francisco, CA, USA.
| |
Collapse
|
10
|
He H, Tang L, Jiang N, Zheng R, Li W, Gu Y, Wang M. Characterization of peripheral blood mononuclear cells isolated using two kinds of leukocyte filters. Transfus Clin Biol 2019; 27:10-17. [PMID: 31812494 DOI: 10.1016/j.tracli.2019.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/13/2019] [Indexed: 10/25/2022]
Abstract
OBJECTIVE The objective of this study was to compare the activity and biological function of leukocytes isolated using apheresis platelet leukoreduction system chambers (LRSC), whole blood leukoreduction filters (LRF), and leukocytes in unfiltered peripheral whole blood (WB). METHODS Peripheral blood mononuclear cells (PBMCs) and granulocytes were obtained by density gradient centrifugation using recovery filters and WB. Flow cytometry was used to detect the activity, phenotype, and apoptosis ratio of each cell subtype. RESULTS The proportion of lymphocytes obtained from PBMCs was similar when using the two different filters as compared to traditional isolation; however, there were significant differences between the monocytes and granulocytes. The phenotypic frequency of lymphocytes was similar, but the apoptosis rate of lymphocytes from the two filters was slightly higher. Additionally, monocytes isolated via the three sources were able to be induced into dendritic cells expressing specific molecules; Granulocytes isolated from the LRF showed a lower purity and a higher level of apoptosis than granulocytes isolated from the WB. CONCLUSION Compared with WB, the PBMCs isolated from the filters used in our blood center had no statistical difference in their activity and biological function, but they did differ in the proportion and quantity of monocytes and granulocytes. Our results show that the two filters can be used as an alternative method to collect leukocytes, which solves the problem of an insufficient blood supply for clinical and basic science research. Thus, these filters have significant value beyond their practical use in clinics.
Collapse
Affiliation(s)
- H He
- Suzhou Blood Center, 215006 Suzhou, China.
| | - L Tang
- Suzhou Blood Center, 215006 Suzhou, China.
| | - N Jiang
- Suzhou Blood Center, 215006 Suzhou, China.
| | - R Zheng
- Suzhou Blood Center, 215006 Suzhou, China.
| | - W Li
- Suzhou Blood Center, 215006 Suzhou, China.
| | - Y Gu
- Clinical Immunology Institute, The First Affiliated Hospital of Soochow University, 215006 Suzhou, China; Jiangsu Key Laboratory of Clinical Immunology, Soochow University, 215006 Suzhou, China.
| | - M Wang
- Suzhou Blood Center, 215006 Suzhou, China.
| |
Collapse
|
11
|
Gansner JM, Papari M, Goldstein J, Gaufberg RA, Neuberg D, Makar RS, Kaufman RM. Severe CD4+ T‐cell lymphopenia is not observed in frequent plateletpheresis donors collected on the Fenwal Amicus. Transfusion 2019; 59:2783-2787. [DOI: 10.1111/trf.15441] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 06/17/2019] [Accepted: 06/17/2019] [Indexed: 11/27/2022]
Affiliation(s)
- John M. Gansner
- Hematology DivisionBrigham and Women's Hospital Boston Massachusetts
| | | | - Jake Goldstein
- Hematology DivisionBrigham and Women's Hospital Boston Massachusetts
| | | | - Donna Neuberg
- Department of Biostatistics and Computational BiologyDana‐Farber Cancer Institute Boston Massachusetts
| | - Robert S. Makar
- Department of PathologyMassachusetts General Hospital Boston Massachusetts
| | - Richard M. Kaufman
- Department of PathologyBrigham and Women's Hospital Boston Massachusetts
| |
Collapse
|
12
|
Rosado M, Silva R, G Bexiga M, G Jones J, Manadas B, Anjo SI. Advances in biomarker detection: Alternative approaches for blood-based biomarker detection. Adv Clin Chem 2019; 92:141-199. [PMID: 31472753 DOI: 10.1016/bs.acc.2019.04.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the clinical setting, a blood sample is typically the starting point for biomarker search and discovery. Mass spectrometry (MS) is a highly sensitive and informative method for characterizing a very wide range of metabolites and proteins and is therefore a potentially powerful tool for biomarker discovery. However, the physicochemical characteristics of blood coupled with very large ranges of protein and metabolite concentrations present a significant technical obstacle for resolving and quantifying putative biomarkers by MS. Blood fractionation procedures are being developed to reduce the proteome/metabolome complexity and concentration ranges, allowing a greater diversity of analytes, including those at very low concentrations, to be quantified. In this chapter, several strategies for enriching and/or isolating specific blood components are summarized, including methods for the analysis of low and high molecular weight compounds, usually neglected in this type of assays, extracellular vesicles, and peripheral blood mononuclear cells (PBMCs). For each method, relevant practical information is presented for effective implementation.
Collapse
Affiliation(s)
- Miguel Rosado
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Rafael Silva
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Mariana G Bexiga
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - John G Jones
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Bruno Manadas
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Sandra I Anjo
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
13
|
Boudreau G, Carli C, Lamarche C, Rulleau C, Bonnaure G, Néron S, Delisle JS. Leukoreduction system chambers are a reliable cellular source for the manufacturing of T-cell therapeutics. Transfusion 2018; 59:1300-1311. [DOI: 10.1111/trf.15121] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/15/2018] [Accepted: 11/21/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Gabrielle Boudreau
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont; Montréal Québec Canada
| | - Cédric Carli
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont; Montréal Québec Canada
| | - Caroline Lamarche
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont; Montréal Québec Canada
| | - Caroline Rulleau
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont; Montréal Québec Canada
| | - Guillaume Bonnaure
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont; Montréal Québec Canada
- Medical Affairs and Innovation; Héma-Québec; Québec Québec Canada
| | - Sonia Néron
- Medical Affairs and Innovation; Héma-Québec; Québec Québec Canada
- Department of Biochemistry, Microbiology and Bio-informatics; Université Laval; Québec Québec Canada
| | - Jean-Sébastien Delisle
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont; Montréal Québec Canada
- Hematology-Oncology Division; Hôpital Maisonneuve-Rosemont; Montréal Québec Canada
- Department of Medicine; Université de Montréal; Montreal Québec Canada
| |
Collapse
|