1
|
D’Alessandro A. Red blood cell metabolism: a window on systems health towards clinical metabolomics. Curr Opin Hematol 2025; 32:111-119. [PMID: 40085132 PMCID: PMC11949704 DOI: 10.1097/moh.0000000000000863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
PURPOSE OF REVIEW This review focuses on recent advances in the understanding of red blood cell (RBC) metabolism as a function of hypoxia and oxidant stress. In particular, we will focus on RBC metabolic alterations during storage in the blood bank, a medically relevant model of erythrocyte responses to energy and redox stress. RECENT FINDINGS Recent studies on over 13 000 healthy blood donors, as part of the Recipient Epidemiology and Donor Evaluation Study (REDS) III and IV-P RBC omics, and 525 diversity outbred mice have highlighted the impact on RBC metabolism of biological factors (age, BMI), genetics (sex, polymorphisms) and exposure (dietary, professional or recreational habits, drugs that are not grounds for blood donor deferral). SUMMARY We review RBC metabolism from basic biochemistry to storage biology, briefly discussing the impact of inborn errors of metabolism and genetic factors on RBC metabolism, as a window on systems metabolic health. Expanding on the concept of clinical chemistry towards clinical metabolomics, monitoring metabolism at scale in large populations (e.g., millions of blood donors) may thus provide insights into population health as a complementary tool to genetic screening and standard clinical measurements.
Collapse
Affiliation(s)
- Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
2
|
Wang J, Xia J, Su J, Cao Z, Yang W, Zhang P, Xu Y. Multi-omics Analysis Sheds Light on the Extracellular Role of PCMT1. J Proteome Res 2025. [PMID: 40287848 DOI: 10.1021/acs.jproteome.4c01111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2025]
Abstract
Proteins are constantly damaged by intracellular and extracellular factors, particularly under stress conditions, leading to an accumulation of modified proteins such as isoaspartate (isoD), which is linked to aging and various diseases. The repair enzyme PCMT1 (protein-l-isoaspartate o-methyltransferase) specifically restores isoD residues to aspartate, preventing abnormal protein functions. Despite its importance, its role in non-neural tissues remains underexplored. This study employed isoD-proteomics, global proteomics, and transcriptomics on Pcmt1 knockout (KO) and wild-type (WT) mice, revealing significant gene and protein changes in various KO tissues, enriched in extracellular and membrane-related categories, highlighting genome-proteome correlations. IsoD-carrying proteins were increased in KO tissues, predominantly consisting of long-lived proteins. Additionally, the proteomic analysis of PCMT1-overexpressing cells identified interacting proteins mainly in extracellular and membrane-related categories. These findings revealed both tissue-specific and shared roles of PCMT1, emphasizing its importance in maintaining protein integrity under physiological and stress conditions while also uncovering an unexpected extracellular function of PCMT1.
Collapse
Affiliation(s)
- Jie Wang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
- Department of Pharmacology and Chemical Biology, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
- Shanghai Key Laboratory of Emotions and Affective Disorders (LEAD), Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Jia Xia
- Department of Nephrology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P.R. China
| | - Juncheng Su
- Department of Gastrointestinal Surgery, Renji Hospital Affiliated, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P.R. China
| | - Ziyi Cao
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Wen Yang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Peng Zhang
- Department of Pharmacology and Chemical Biology, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
- Shanghai Key Laboratory of Emotions and Affective Disorders (LEAD), Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Yingjie Xu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| |
Collapse
|
3
|
Joseph D. The Unified Theory of Neurodegeneration Pathogenesis Based on Axon Deamidation. Int J Mol Sci 2025; 26:4143. [PMID: 40362380 PMCID: PMC12071446 DOI: 10.3390/ijms26094143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/21/2025] [Accepted: 04/24/2025] [Indexed: 05/15/2025] Open
Abstract
Until now, neurodegenerative diseases like Alzheimer's and Parkinson's have been studied separately in biochemistry and therapeutic drug development, and no causal link has ever been established between them. This study has developed a Unified Theory, which establishes that the regulation of axon and dendrite-specific 4E-BP2 deamidation rates controls the occurrence and progression of neurodegenerative diseases. This is based on identifying axon-specific 4E-BP2 deamidation as a universal denominator for the biochemical processes of deamidation, translational control, oxidative stress, and neurodegeneration. This was achieved by conducting a thorough and critical review of 224 scientific publications regarding (a) deamidation, (b) translational control in protein synthesis initiation, (c) neurodegeneration and (d) oxidative stress, and by applying my discovery of the fundamental neurobiological mechanism behind neuron-specific 4E-BP2 deamidation to practical applications in medicine. Based on this newly developed Unified Theory and my critical review of the scientific literature, I also designed three biochemical flowsheets of (1) in-vivo deamidation, (2) protein synthesis initiation and translational control, and (3) 4E-BP2 deamidation as a control system of the four biochemical processes. The Unified Theory of Neurodegeneration Pathogenesis based on axon deamidation, developed in this work, paves the way to controlling the occurrence and progression of neurodegenerative diseases such as Alzheimer's and Parkinson's through a unique, neuron-specific regulatory system that is 4E-BP2 deamidation, caused by the proteasome-poor environment in neuronal projections, consisting mainly of axons.
Collapse
Affiliation(s)
- Davis Joseph
- Faculty of Medicine, McGill University, Montreal, QC H3A 0G4, Canada;
- Flogen Technologies Inc., Mount Royal, QC H3P 2T1, Canada
| |
Collapse
|
4
|
Fortis SP, Grier AL, Reisz JA, Dzieciatkowska M, Cendali FI, Kauffman V, Morton DH, D'Alessandro A. Advancing the Biochemical Understanding of Maple Syrup Urine Disease and the Impact of Liver Transplantation: A Pilot Study. J Proteome Res 2025. [PMID: 40232068 DOI: 10.1021/acs.jproteome.5c00166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Maple syrup urine disease (MSUD) is a rare autosomal recessive metabolic disorder causing impaired branched-chain amino acid (BCAA) catabolism and systemic metabolic dysregulation. MSUD has an incidence of approximately 1 in 185,000 U.S. births, with much higher prevalence in the Mennonite communities (up to 1 in 400 live births due to the c.1312T > A p.Tyr438Asn BCKDHA founder mutation). Using a multiomic approach integrating metabolomics, lipidomics, and proteomics, we analyzed blood samples from three patients on a BCAA-restricted diet (MSUDDR), two MSUD patients who received liver transplants (MSUDLT), and six healthy controls. Gene ontology analysis of integrated omics data confirmed systemic metabolic imbalances in MSUD, highlighting increases in glycolysis, oxidative phosphorylation, and purine metabolism. Lipidomic analysis revealed disruptions in sphingolipids and lysophosphatidylcholines, affecting signaling and membrane integrity. Liver transplantation corrected some abnormalities, but key metabolites and proteins remained altered. Proteomic analysis revealed significant alterations in redox homeostasis, energy metabolism, and cytoskeletal organization with partial recovery post-transplantation. Post-translational modifications indicated ongoing oxidative stress and immune activation in the MSUDLT group. Elevated levels of l-isoleucine, l-valine, and their ketoacids persisted post-transplant, correlating with impaired amino acid metabolism, lipid remodeling, and protein folding. These findings provide insights into MSUD-associated metabolic dysfunction and highlight potential therapeutic targets.
Collapse
Affiliation(s)
- Sotirios P Fortis
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Abby L Grier
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Francesca I Cendali
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Vienna Kauffman
- Central Pennsylvania Clinic, A Medical Home for Special Children and Adults, Belleville, Pennsylvania 17004, United States
| | - D Holmes Morton
- Central Pennsylvania Clinic, A Medical Home for Special Children and Adults, Belleville, Pennsylvania 17004, United States
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| |
Collapse
|
5
|
Nemkov T, Stauffer E, Cendali F, Stephenson D, Nader E, Robert M, Skinner S, Dzieciatkowska M, Hansen KC, Robach P, Millet G, Connes P, D'Alessandro A. Long-Distance Trail Running Induces Inflammatory-Associated Protein, Lipid, and Purine Oxidation in Red Blood Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.09.648006. [PMID: 40291720 PMCID: PMC12027326 DOI: 10.1101/2025.04.09.648006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Ultra-endurance exercise places extreme physiological demands on oxygen transport, yet its impact on red blood cells (RBCs) remains underexplored. We conducted a multi-omics analysis of plasma and RBCs from endurance athletes before and after a 40-km trail race (MCC) and a 171-km ultramarathon (UTMB®). Ultra-running led to oxidative stress, metabolic shifts, and inflammation-driven RBC damage, including increased acylcarnitines, kynurenine accumulation, oxidative lipid and protein modifications, reduced RBC deformability, enhanced microparticle release, and decreased hematocrit - hallmarks of accelerated RBC aging and clearance. Post-race interleukin-6 strongly correlated with kynurenine elevation, mirroring inflammatory responses in severe infections. These findings challenge the assumption that RBC damage in endurance exercise is primarily mechanical, revealing systemic inflammation and metabolic remodeling as key drivers. This study underscores RBCs as both mediators and casualties of extreme exercise stress, with implications for optimizing athlete recovery, endurance training, and understanding inflammation-linked RBC dysfunction in clinical settings. Teaser Marathon running imparts molecular damage to red blood cells, the effects of which are exacerbated by increased distances of ultramarathons.
Collapse
|
6
|
Keele GR, Dzieciatkowska M, Hay AM, Vincent M, O'Connor C, Stephenson D, Reisz JA, Nemkov T, Hansen KC, Page GP, Zimring JC, Churchill GA, D'Alessandro A. Genetic architecture of the red blood cell proteome in genetically diverse mice reveals central role of hemoglobin beta cysteine redox status in maintaining circulating glutathione pools. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.27.640676. [PMID: 40093052 PMCID: PMC11908137 DOI: 10.1101/2025.02.27.640676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Red blood cells (RBCs) transport oxygen but accumulate oxidative damage over time, reducing function in vivo and during storage-critical for transfusions. To explore genetic influences on RBC resilience, we profiled proteins, metabolites, and lipids from fresh and stored RBCs obtained from 350 genetically diverse mice. Our analysis identified over 6,000 quantitative trait loci (QTL). Compared to other tissues, prevalence of trans genetic effects over cis reflects the absence of de novo protein synthesis in anucleated RBCs. QTL hotspots at Hbb, Hba, Mon1a, and storage-specific Steap3 linked ferroptosis to hemolysis. Proteasome components clustered at multiple loci, underscoring the importance of degrading oxidized proteins. Post-translational modifications (PTMs) mapped predominantly to hemoglobins, particularly cysteine residues. Loss of reactive C93 in humanized mice (HBB C93A) disrupted redox balance, affecting glutathione pools, protein glutathionylation, and redox PTMs. These findings highlight genetic regulation of RBC oxidation, with implications for transfusion biology and oxidative stress-dependent hemolytic disorders.
Collapse
|
7
|
Haiman ZB, Key A, D’Alessandro A, Palsson BO. RBC-GEM: A genome-scale metabolic model for systems biology of the human red blood cell. PLoS Comput Biol 2025; 21:e1012109. [PMID: 40072998 PMCID: PMC11925312 DOI: 10.1371/journal.pcbi.1012109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 03/20/2025] [Accepted: 02/04/2025] [Indexed: 03/14/2025] Open
Abstract
Advancements with cost-effective, high-throughput omics technologies have had a transformative effect on both fundamental and translational research in the medical sciences. These advancements have facilitated a departure from the traditional view of human red blood cells (RBCs) as mere carriers of hemoglobin, devoid of significant biological complexity. Over the past decade, proteomic analyses have identified a growing number of different proteins present within RBCs, enabling systems biology analysis of their physiological functions. Here, we introduce RBC-GEM, one of the most comprehensive, curated genome-scale metabolic reconstructions of a specific human cell type to-date. It was developed through meta-analysis of proteomic data from 29 studies published over the past two decades resulting in an RBC proteome composed of more than 4,600 distinct proteins. Through workflow-guided manual curation, we have compiled the metabolic reactions carried out by this proteome to form a genome-scale metabolic model (GEM) of the RBC. RBC-GEM is hosted on a version-controlled GitHub repository, ensuring adherence to the standardized protocols for metabolic reconstruction quality control and data stewardship principles. RBC-GEM represents a metabolic network is a consisting of 820 genes encoding proteins acting on 1,685 unique metabolites through 2,723 biochemical reactions: a 740% size expansion over its predecessor. We demonstrated the utility of RBC-GEM by creating context-specific proteome-constrained models derived from proteomic data of stored RBCs for 616 blood donors, and classified reactions based on their simulated abundance dependence. This reconstruction as an up-to-date curated GEM can be used for contextualization of data and for the construction of a computational whole-cell models of the human RBC.
Collapse
Affiliation(s)
- Zachary B. Haiman
- Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
| | - Alicia Key
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Bernhard O. Palsson
- Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
- Department of Pediatrics, University of California San Diego, La Jolla, California, United States of America
- Bioinformatics and Systems Biology Program, University of California, La Jolla, San Diego, California, United States of America
| |
Collapse
|
8
|
Nemkov T, Isiksacan Z, William N, Senturk R, Boudreau LE, Yarmush ML, Acker JP, D'Alessandro A, Usta OB. Supercooled storage of red blood cells slows down the metabolic storage lesion. RESEARCH SQUARE 2025:rs.3.rs-5256734. [PMID: 40060052 PMCID: PMC11888543 DOI: 10.21203/rs.3.rs-5256734/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/21/2025]
Abstract
Red blood cell (RBC) transfusion, a life-saving intervention, is limited by reduced RBC potency over time. Cold storage at +4 °C for up to 42 days can reduce transfusion efficacy due to alterations termed the "storage lesion." Strategies to mitigate the storage lesion include alkaline additive solutions and supercooled storage to extend storage by reducing metabolic stresses. However, RBC metabolism during supercooled storage in standard or alkaline additives remains unstudied. This study, thus, investigated the impact of storage additives (alkaline E-Sol5 and standard SAGM) and temperatures (+4 °C, -4 °C, -8 °C) on RBC metabolism during 21- and 42-days storage using high-throughput metabolomics. RBCs stored with E-Sol5 showed increased glycolysis and higher ratios of reduced to oxidized glutathione compared to SAGM. Supercooled storage at -4 °C showed markedly lower hemolysis than -8°C, preserved adenylate pools, decreased glucose consumption, and reduced lactate accumulation and pentose phosphate pathway activation. The combination of supercooled storage and E-Sol5 helped to preserve ATP and 2,3-DPG reservoirs, while preventing catabolism and free fatty acid accumulation. While supercooled storage with E-Sol5 offers a promising alternative to standard storage, preserving RBC metabolic and functional quality, further research is necessary to validate and improve on these foundational findings.
Collapse
Affiliation(s)
- Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA 80045
| | - Ziya Isiksacan
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
- Shriners Children's, Boston, MA 02114
| | - Nishaka William
- Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2R8, Canada
| | - Rahime Senturk
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
- Shriners Children's, Boston, MA 02114
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands, 5612 AZ
| | - Luke E Boudreau
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
- Shriners Children's, Boston, MA 02114
| | - Martin L Yarmush
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
- Shriners Children's, Boston, MA 02114
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA, 08854
| | - Jason P Acker
- Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2R8, Canada
- Innovation and Portfolio Management, Canadian Blood Services, Edmonton, AB T6G 2R8, Canada
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA 80045
| | - O Berk Usta
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
- Shriners Children's, Boston, MA 02114
| |
Collapse
|
9
|
Reisz JA, Earley EJ, Nemkov T, Key A, Stephenson D, Keele GR, Dzieciatkowska M, Spitalnik SL, Hod EA, Kleinman S, Roubinian NH, Gladwin MT, Hansen KC, Norris PJ, Busch MP, Zimring JC, Churchill GA, Page GP, D'Alessandro A. Arginine metabolism is a biomarker of red blood cell and human aging. Aging Cell 2025; 24:e14388. [PMID: 39478346 PMCID: PMC11822668 DOI: 10.1111/acel.14388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/06/2024] [Accepted: 10/04/2024] [Indexed: 11/05/2024] Open
Abstract
Increasing global life expectancy motivates investigations of molecular mechanisms of aging and age-related diseases. This study examines age-associated changes in red blood cells (RBCs), the most numerous host cell in humans. Four cohorts, including healthy individuals and patients with sickle cell disease, were analyzed to define age-dependent changes in RBC metabolism. Over 15,700 specimens from 13,757 humans were examined, a major expansion over previous studies of RBCs in aging. Multi-omics approaches identified chronological age-related alterations in the arginine pathway with increased arginine utilization in RBCs from older individuals. These changes were consistent across healthy and sickle cell disease cohorts and were influenced by genetic variation, sex, and body mass index. Integrating multi-omics data and metabolite quantitative trait loci (mQTL) in humans and 525 diversity outbred mice functionally linked metabolism of arginine during RBC storage to increased vesiculation-a hallmark of RBC aging-and lower post-transfusion hemoglobin increments. Thus, arginine metabolism is a biomarker of RBC and organismal aging, suggesting potential new targets for addressing sequelae of aging.
Collapse
Affiliation(s)
- Julie A. Reisz
- Department of Biochemistry and Molecular GeneticsUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | | | - Travis Nemkov
- Department of Biochemistry and Molecular GeneticsUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
- Omix Technologies IncAuroraColoradoUSA
| | - Alicia Key
- Department of Biochemistry and Molecular GeneticsUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Daniel Stephenson
- Department of Biochemistry and Molecular GeneticsUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | | | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular GeneticsUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Steven L. Spitalnik
- Department of Pathology and Cell BiologyColumbia University Irving Medical CenterNew York CityNew YorkUSA
| | - Eldad A. Hod
- Department of Pathology and Cell BiologyColumbia University Irving Medical CenterNew York CityNew YorkUSA
| | - Steven Kleinman
- University of British ColumbiaVictoriaBritish ColumbiaCanada
| | - Nareg H. Roubinian
- Vitalant Research InstituteSan FranciscoCaliforniaUSA
- Kaiser Permanente Northern California Division of ResearchPleasantonCaliforniaUSA
- Department of Laboratory MedicineUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Mark T. Gladwin
- Department of MedicineUniversity of Maryland School of Medicine, University of MarylandBaltimoreMarylandUSA
| | - Kirk C. Hansen
- Department of Biochemistry and Molecular GeneticsUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
- Omix Technologies IncAuroraColoradoUSA
| | - Philip J. Norris
- Vitalant Research InstituteSan FranciscoCaliforniaUSA
- Department of Laboratory MedicineUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Michael P. Busch
- Vitalant Research InstituteSan FranciscoCaliforniaUSA
- Department of Laboratory MedicineUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - James C. Zimring
- Department of PathologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | | | | | - Angelo D'Alessandro
- Department of Biochemistry and Molecular GeneticsUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
- Omix Technologies IncAuroraColoradoUSA
| |
Collapse
|
10
|
Spinelli S, Marino A, Morabito R, Remigante A. Interplay Between Metabolic Pathways and Increased Oxidative Stress in Human Red Blood Cells. Cells 2024; 13:2026. [PMID: 39682773 PMCID: PMC11640724 DOI: 10.3390/cells13232026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024] Open
Abstract
Red blood cells (RBCs) are highly specialized cells with a limited metabolic repertoire. However, it has been demonstrated that metabolic processes are affected by the production of reactive oxygen species (ROS), and critical enzymes allied to metabolic pathways can be impaired by redox reactions. Thus, oxidative stress-induced alternations in the metabolic pathways can contribute to cell dysfunction of human RBCs. Herein, we aim to provide an overview on the metabolic pathways of human RBCs, focusing on their pathophysiological relevance and their regulation in oxidative stress-related conditions.
Collapse
|
11
|
D'Alessandro A. It's in your blood: The impact of age, sex, genetic factors and exposures on stored red blood cell metabolism. Transfus Apher Sci 2024; 63:104011. [PMID: 39423666 PMCID: PMC11606750 DOI: 10.1016/j.transci.2024.104011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Transfusion of packed red blood cell (RBCs) saves millions of lives yearly worldwide, making packed RBCs the most commonly administered drug in hospitals after vaccines. However, not all blood units are created equal. By examining blood products as they age in blood banks, transfusion scientists are gaining insights into the intricacies of human chemical individuality as regulated by biological factors (such as sex, age, and body mass index), genetic and non-genetic factors like environmental, dietary, and other exposures. Here, we review recent literature on this topic, with an emphasis on studies linking genetic traits to the metabolic heterogeneity of blood products, the hemolytic propensity of stored RBCs, and transfusion outcomes in both healthy autologous and non-autologous patients requiring transfusion. Given the role of RBCs as a simplified model of eukaryotic cells, and RBC storage as a medically relevant application modeling erythrocyte responses to oxidant stress, these insights have the potential not only to guide the development of precision transfusion strategies, but also to identify novel mechanisms of RBC metabolic regulation relevant to responses to hypoxia and oxidant stress in human (patho)physiology.
Collapse
Affiliation(s)
- Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
12
|
Joseph D. The Fundamental Neurobiological Mechanism of Oxidative Stress-Related 4E-BP2 Protein Deamidation. Int J Mol Sci 2024; 25:12268. [PMID: 39596333 PMCID: PMC11594350 DOI: 10.3390/ijms252212268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/10/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Memory impairment is caused by the absence of the 4E-BP2 protein in the brain. This protein undergoes deamidation spontaneously in the neurons. 4E-BP2 deamidation significantly alters protein synthesis in the neurons and affects the balance of protein production required for a healthy nervous system. Any imbalance in protein production in the nervous system causes neurodegenerative diseases. Discovering what causes 4E-BP2 deamidation will make it possible to control this balance of protein production and develop effective treatments against neurodegenerative diseases such as Alzheimer's and Parkinson's. The purpose of this work is to discover the neurobiological mechanism that causes the deamidation reaction in the 4E-BP2 protein by performing immunoblotting in the retinal ganglia, the optic nerve, the dorsal root ganglia, the sciatic nerve, and the whole brain, extracted via dissection from 2-month-old, Wild-type male mice. The results show that axons and their unique properties cause neuron-specific 4E-BP2 deamidation in the nervous system, confirming conclusively that axons are the critical factors behind the fundamental neurobiological mechanism of 4E-BP2 protein deamidation.
Collapse
Affiliation(s)
- Davis Joseph
- Faculty of Medicine, McGill University, Montreal, QC H3A 0G4, Canada; or
- Flogen Technologies Inc., Mount Royal, QC H3P 2T1, Canada
| |
Collapse
|
13
|
Caughey MC, Francis RO, Karafin MS. New and emerging technologies for pretransfusion blood quality assessment: A state-of-the-art review. Transfusion 2024; 64:2196-2208. [PMID: 39325509 PMCID: PMC11573642 DOI: 10.1111/trf.18019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/14/2024] [Accepted: 09/07/2024] [Indexed: 09/27/2024]
Affiliation(s)
- Melissa C. Caughey
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University; Chapel Hill, NC
| | - Richard O. Francis
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center; New York, New York
| | - Matthew S. Karafin
- Department of Pathology and Laboratory Medicine, University of North Carolina; Chapel Hill, NC
| |
Collapse
|
14
|
Jin X, Zhang Y, Wang D, Zhang X, Li Y, Wang D, Liang Y, Wang J, Zheng L, Song H, Zhu X, Liang J, Ma J, Gao J, Tong J, Shi L. Metabolite and protein shifts in mature erythrocyte under hypoxia. iScience 2024; 27:109315. [PMID: 38487547 PMCID: PMC10937114 DOI: 10.1016/j.isci.2024.109315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024] Open
Abstract
As the only cell type responsible for oxygen delivery, erythrocytes play a crucial role in supplying oxygen to hypoxic tissues, ensuring their normal functions. Hypoxia commonly occurs under physiological or pathological conditions, and understanding how erythrocytes adapt to hypoxia is fundamental for exploring the mechanisms of hypoxic diseases. Additionally, investigating acute and chronic mountain sickness caused by plateaus, which are naturally hypoxic environments, will aid in the study of hypoxic diseases. In recent years, increasingly developed proteomics and metabolomics technologies have become powerful tools for studying mature enucleated erythrocytes, which has significantly contributed to clarifying how hypoxia affects erythrocytes. The aim of this article is to summarize the composition of the cytoskeleton and cytoplasmic proteins of hypoxia-altered erythrocytes and explore the impact of hypoxia on their essential functions. Furthermore, we discuss the role of microRNAs in the adaptation of erythrocytes to hypoxia, providing new perspectives on hypoxia-related diseases.
Collapse
Affiliation(s)
- Xu Jin
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Yingnan Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Ding Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Xiaoru Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Yue Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Di Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Yipeng Liang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Jingwei Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Lingyue Zheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Haoze Song
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Xu Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Jing Liang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Jinfa Ma
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Jie Gao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Jingyuan Tong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Lihong Shi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
- CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| |
Collapse
|
15
|
Chatzinikolaou PN, Margaritelis NV, Paschalis V, Theodorou AA, Vrabas IS, Kyparos A, D'Alessandro A, Nikolaidis MG. Erythrocyte metabolism. Acta Physiol (Oxf) 2024; 240:e14081. [PMID: 38270467 DOI: 10.1111/apha.14081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/11/2023] [Accepted: 01/01/2024] [Indexed: 01/26/2024]
Abstract
Our aim is to present an updated overview of the erythrocyte metabolism highlighting its richness and complexity. We have manually collected and connected the available biochemical pathways and integrated them into a functional metabolic map. The focus of this map is on the main biochemical pathways consisting of glycolysis, the pentose phosphate pathway, redox metabolism, oxygen metabolism, purine/nucleoside metabolism, and membrane transport. Other recently emerging pathways are also curated, like the methionine salvage pathway, the glyoxalase system, carnitine metabolism, and the lands cycle, as well as remnants of the carboxylic acid metabolism. An additional goal of this review is to present the dynamics of erythrocyte metabolism, providing key numbers used to perform basic quantitative analyses. By synthesizing experimental and computational data, we conclude that glycolysis, pentose phosphate pathway, and redox metabolism are the foundations of erythrocyte metabolism. Additionally, the erythrocyte can sense oxygen levels and oxidative stress adjusting its mechanics, metabolism, and function. In conclusion, fine-tuning of erythrocyte metabolism controls one of the most important biological processes, that is, oxygen loading, transport, and delivery.
Collapse
Affiliation(s)
- Panagiotis N Chatzinikolaou
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Nikos V Margaritelis
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Vassilis Paschalis
- School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastasios A Theodorou
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
| | - Ioannis S Vrabas
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Antonios Kyparos
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Michalis G Nikolaidis
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| |
Collapse
|
16
|
Bardyn M, Crettaz D, Rappaz B, Hamelin R, Armand F, Tissot JD, Turcatti G, Prudent M. Phosphoproteomics and morphology of stored human red blood cells treated by protein tyrosine phosphatases inhibitor. Blood Adv 2024; 8:1-13. [PMID: 37910801 PMCID: PMC10784683 DOI: 10.1182/bloodadvances.2023009964] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 10/17/2023] [Accepted: 10/24/2023] [Indexed: 11/03/2023] Open
Abstract
ABSTRACT The process of protein phosphorylation is involved in numerous cell functions. In particular, phosphotyrosine (pY) has been reported to play a role in red blood cell (RBC) functions, including the cytoskeleton organization. During their storage before transfusion, RBCs suffer from storage lesions that affect their energy metabolism and morphology. This study investigated the relationship between pY and the storage lesions. To do so, RBCs were treated (in the absence of calcium) with a protein tyrosine phosphatase inhibitor (orthovanadate [OV]) to stimulate phosphorylation and with 3 selective kinase inhibitors (KIs). Erythrocyte membrane proteins were studied by western blot analyses and phosphoproteomics (data are available via ProteomeXchange with identifier PXD039914) and cell morphology by digital holographic microscopy. The increase of pY triggered by OV treatment (inducing a global downregulation of pS and pT) disappeared during the storage. Phosphoproteomic analysis identified 609 phosphoproteins containing 1752 phosphosites, of which 41 pY were upregulated and 2 downregulated by OV. After these phosphorylation processes, the shape of RBCs shifted from discocytes to spherocytes, and the addition of KIs partially inhibited this transition. The KIs modulated either pY or pS and pT via diverse mechanisms related to cell shape, thereby affecting RBC morphology. The capacity of RBCs to maintain their function is central in transfusion medicine, and the presented results contribute to a better understanding of RBC biology.
Collapse
Affiliation(s)
- Manon Bardyn
- Laboratoire de Recherche sur les Produits Sanguins, Transfusion Interrégionale CRS, Epalinges, Switzerland
| | - David Crettaz
- Laboratoire de Recherche sur les Produits Sanguins, Transfusion Interrégionale CRS, Epalinges, Switzerland
| | - Benjamin Rappaz
- Biomolecular Screening Facility, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Romain Hamelin
- Proteomics Core Facility, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Florence Armand
- Proteomics Core Facility, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Jean-Daniel Tissot
- Laboratoire de Recherche sur les Produits Sanguins, Transfusion Interrégionale CRS, Epalinges, Switzerland
| | - Gerardo Turcatti
- Biomolecular Screening Facility, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Michel Prudent
- Laboratoire de Recherche sur les Produits Sanguins, Transfusion Interrégionale CRS, Epalinges, Switzerland
- Center for Research and Innovation in Clinical Pharmaceutical Sciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| |
Collapse
|
17
|
Biagiotti S, Perla E, Magnani M. Drug transport by red blood cells. Front Physiol 2023; 14:1308632. [PMID: 38148901 PMCID: PMC10750411 DOI: 10.3389/fphys.2023.1308632] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/27/2023] [Indexed: 12/28/2023] Open
Abstract
This review focuses on the role of human red blood cells (RBCs) as drug carriers. First, a general introduction about RBC physiology is provided, followed by the presentation of several cases in which RBCs act as natural carriers of drugs. This is due to the presence of several binding sites within the same RBCs and is regulated by the diffusion of selected compounds through the RBC membrane and by the presence of influx and efflux transporters. The balance between the influx/efflux and the affinity for these binding sites will finally affect drug partitioning. Thereafter, a brief mention of the pharmacokinetic profile of drugs with such a partitioning is given. Finally, some examples in which these natural features of human RBCs can be further exploited to engineer RBCs by the encapsulation of drugs, metabolites, or target proteins are reported. For instance, metabolic pathways can be powered by increasing key metabolites (i.e., 2,3-bisphosphoglycerate) that affect oxygen release potentially useful in transfusion medicine. On the other hand, the RBC pre-loading of recombinant immunophilins permits increasing the binding and transport of immunosuppressive drugs. In conclusion, RBCs are natural carriers for different kinds of metabolites and several drugs. However, they can be opportunely further modified to optimize and improve their ability to perform as drug vehicles.
Collapse
Affiliation(s)
| | | | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino, Urbino, Italy
| |
Collapse
|
18
|
Key A, Haiman Z, Palsson BO, D’Alessandro A. Modeling Red Blood Cell Metabolism in the Omics Era. Metabolites 2023; 13:1145. [PMID: 37999241 PMCID: PMC10673375 DOI: 10.3390/metabo13111145] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/23/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023] Open
Abstract
Red blood cells (RBCs) are abundant (more than 80% of the total cells in the human body), yet relatively simple, as they lack nuclei and organelles, including mitochondria. Since the earliest days of biochemistry, the accessibility of blood and RBCs made them an ideal matrix for the characterization of metabolism. Because of this, investigations into RBC metabolism are of extreme relevance for research and diagnostic purposes in scientific and clinical endeavors. The relative simplicity of RBCs has made them an eligible model for the development of reconstruction maps of eukaryotic cell metabolism since the early days of systems biology. Computational models hold the potential to deepen knowledge of RBC metabolism, but also and foremost to predict in silico RBC metabolic behaviors in response to environmental stimuli. Here, we review now classic concepts on RBC metabolism, prior work in systems biology of unicellular organisms, and how this work paved the way for the development of reconstruction models of RBC metabolism. Translationally, we discuss how the fields of metabolomics and systems biology have generated evidence to advance our understanding of the RBC storage lesion, a process of decline in storage quality that impacts over a hundred million blood units transfused every year.
Collapse
Affiliation(s)
- Alicia Key
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Zachary Haiman
- Department of Bioengineering, University of California, San Diego, CA 92093, USA (B.O.P.)
- Bioinformatics and Systems Biology Program, University of California, San Diego, CA 92093, USA
- Department of Pediatrics, University of California, San Diego, CA 92161, USA
| | - Bernhard O. Palsson
- Department of Bioengineering, University of California, San Diego, CA 92093, USA (B.O.P.)
- Bioinformatics and Systems Biology Program, University of California, San Diego, CA 92093, USA
- Department of Pediatrics, University of California, San Diego, CA 92161, USA
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA;
| |
Collapse
|
19
|
D'Alessandro A, Lukens JR, Zimring JC. The role of PIMT in Alzheimer's disease pathogenesis: A novel hypothesis. Alzheimers Dement 2023; 19:5296-5302. [PMID: 37157118 DOI: 10.1002/alz.13115] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/11/2023] [Indexed: 05/10/2023]
Abstract
There are multiple theories of Alzheimer's disease pathogenesis. One major theory is that oxidation of amyloid beta (Aβ) promotes plaque deposition that directly contributes to pathology. A competing theory is that hypomethylation of DNA (due to altered one carbon metabolism) results in pathology through altered gene regulation. Herein, we propose a novel hypothesis involving L-isoaspartyl methyltransferase (PIMT) that unifies the Aβ and DNA hypomethylation hypotheses into a single model. Importantly, the proposed model allows bidirectional regulation of Aβ oxidation and DNA hypomethylation. The proposed hypothesis does not exclude simultaneous contributions by other mechanisms (e.g., neurofibrillary tangles). The new hypothesis is formulated to encompass oxidative stress, fibrillation, DNA hypomethylation, and metabolic perturbations in one carbon metabolism (i.e., methionine and folate cycles). In addition, deductive predictions of the hypothesis are presented both to guide empirical testing of the hypothesis and to provide candidate strategies for therapeutic intervention and/or nutritional modification. HIGHLIGHTS: PIMT repairs L-isoaspartyl groups on amyloid beta and decreases fibrillation. SAM is a common methyl donor for PIMT and DNA methyltransferases. Increased PIMT activity competes with DNA methylation and vice versa. The PIMT hypothesis bridges a gap between plaque and DNA methylation hypotheses.
Collapse
Affiliation(s)
- Angelo D'Alessandro
- University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado, USA
| | - John R Lukens
- Carter Immunology Center and Center for Brain Immunology and Glia, University of Virginia Departments of Pathology and Neuroscience, Charlottesville, Virginia, USA
| | - James C Zimring
- Carter Immunology Center and Center for Brain Immunology and Glia, University of Virginia Departments of Pathology and Neuroscience, Charlottesville, Virginia, USA
| |
Collapse
|
20
|
D'Alessandro A, Hod EA. Red Blood Cell Storage: From Genome to Exposome Towards Personalized Transfusion Medicine. Transfus Med Rev 2023; 37:150750. [PMID: 37574398 PMCID: PMC10834861 DOI: 10.1016/j.tmrv.2023.150750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/02/2023] [Accepted: 06/04/2023] [Indexed: 08/15/2023]
Abstract
Over the last decade, the introduction of omics technologies-especially high-throughput genomics and metabolomics-has contributed significantly to our understanding of the role of donor genetics and nongenetic determinants of red blood cell storage biology. Here we briefly review the main advances in these areas, to the extent these contributed to the appreciation of the impact of donor sex, age, ethnicity, but also processing strategies and donor environmental, dietary or other exposures - the so-called exposome-to the onset and severity of the storage lesion. We review recent advances on the role of genetically encoded polymorphisms on red cell storage biology, and relate these findings with parameters of storage quality and post-transfusion efficacy, such as hemolysis, post-transfusion intra- and extravascular hemolysis and hemoglobin increments. Finally, we suggest that the combination of these novel technologies have the potential to drive further developments towards personalized (or precision) transfusion medicine approaches.
Collapse
Affiliation(s)
- Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Eldad A Hod
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
21
|
Palha MS, Legenzov EA, Lamb DR, Zimring JC, Buehler PW, Kao JPY. Superoxide measurement as a novel probe of red blood cell storage quality. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2023; 21:422-427. [PMID: 36580028 PMCID: PMC10497384 DOI: 10.2450/2022.0246-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/30/2022] [Indexed: 12/30/2022]
Affiliation(s)
- Mitasha S. Palha
- Center for Biomedical Engineering and Technology, and Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Eric A. Legenzov
- Center for Biomedical Engineering and Technology, and Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Derek R. Lamb
- University of Maryland, School of Medicine, Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, Baltimore, MD, United States of America
| | - James C. Zimring
- University of Virginia School of Medicine, Department of Pathology and Carter Immunology Center, Charlottesville, VA, United States of America
| | - Paul W. Buehler
- University of Maryland, School of Medicine, Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, Baltimore, MD, United States of America
- University of Maryland, School of Medicine, Department of Pathology, Baltimore, MD, United States of America
| | - Joseph P. Y. Kao
- Center for Biomedical Engineering and Technology, and Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, United States of America
| |
Collapse
|
22
|
D’Alessandro A, Anastasiadi AT, Tzounakas VL, Nemkov T, Reisz JA, Kriebardis AG, Zimring JC, Spitalnik SL, Busch MP. Red Blood Cell Metabolism In Vivo and In Vitro. Metabolites 2023; 13:793. [PMID: 37512500 PMCID: PMC10386156 DOI: 10.3390/metabo13070793] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 06/23/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
Red blood cells (RBC) are the most abundant cell in the human body, with a central role in oxygen transport and its delivery to tissues. However, omics technologies recently revealed the unanticipated complexity of the RBC proteome and metabolome, paving the way for a reinterpretation of the mechanisms by which RBC metabolism regulates systems biology beyond oxygen transport. The new data and analytical tools also informed the dissection of the changes that RBCs undergo during refrigerated storage under blood bank conditions, a logistic necessity that makes >100 million units available for life-saving transfusions every year worldwide. In this narrative review, we summarize the last decade of advances in the field of RBC metabolism in vivo and in the blood bank in vitro, a narrative largely influenced by the authors' own journeys in this field. We hope that this review will stimulate further research in this interesting and medically important area or, at least, serve as a testament to our fascination with this simple, yet complex, cell.
Collapse
Affiliation(s)
- Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (T.N.); (J.A.R.)
| | - Alkmini T. Anastasiadi
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Caring Sciences, University of West Attica (UniWA), 12243 Egaleo, Greece; (A.T.A.); (A.G.K.)
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece;
| | - Vassilis L. Tzounakas
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece;
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (T.N.); (J.A.R.)
| | - Julie A. Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (T.N.); (J.A.R.)
| | - Anastsios G. Kriebardis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Caring Sciences, University of West Attica (UniWA), 12243 Egaleo, Greece; (A.T.A.); (A.G.K.)
| | - James C. Zimring
- Department of Pathology, University of Virginia, Charlottesville, VA 22903, USA;
| | | | | |
Collapse
|
23
|
D'Alessandro A. Red Blood Cell Omics and Machine Learning in Transfusion Medicine: Singularity Is Near. Transfus Med Hemother 2023; 50:174-183. [PMID: 37434999 PMCID: PMC10331163 DOI: 10.1159/000529744] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/14/2023] [Indexed: 07/30/2023] Open
Abstract
Background Blood transfusion is a life-saving intervention for millions of recipients worldwide. Over the last 15 years, the advent of high-throughput, affordable omics technologies - including genomics, proteomics, lipidomics, and metabolomics - has allowed transfusion medicine to revisit the biology of blood donors, stored blood products, and transfusion recipients. Summary Omics approaches have shed light on the genetic and non-genetic factors (environmental or other exposures) impacting the quality of stored blood products and efficacy of transfusion events, based on the current Food and Drug Administration guidelines (e.g., hemolysis and post-transfusion recovery for stored red blood cells). As a treasure trove of data accumulates, the implementation of machine learning approaches promises to revolutionize the field of transfusion medicine, not only by advancing basic science. Indeed, computational strategies have already been used to perform high-content screenings of red blood cell morphology in microfluidic devices, generate in silico models of erythrocyte membrane to predict deformability and bending rigidity, or design systems biology maps of the red blood cell metabolome to drive the development of novel storage additives. Key Message In the near future, high-throughput testing of donor genomes via precision transfusion medicine arrays and metabolomics of all donated products will be able to inform the development and implementation of machine learning strategies that match, from vein to vein, donors, optimal processing strategies (additives, shelf life), and recipients, realizing the promise of personalized transfusion medicine.
Collapse
Affiliation(s)
- Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
24
|
Hay A, Nemkov T, Gamboni F, Dzieciatkowska M, Key A, Galbraith M, Bartsch K, Sun K, Xia Y, Stone M, Busch MP, Norris PJ, Zimring JC, D’Alessandro A. Sphingosine 1-phosphate has a negative effect on RBC storage quality. Blood Adv 2023; 7:1379-1393. [PMID: 36469038 PMCID: PMC10139937 DOI: 10.1182/bloodadvances.2022008936] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/26/2022] [Accepted: 11/12/2022] [Indexed: 12/12/2022] Open
Abstract
Blood storage promotes the rapid depletion of red blood cell (RBC) high-energy adenosine triphosphate (ATP) and 2,3-diphosphoglycerate (DPG), which are critical regulators of erythrocyte physiology and function, as well as oxygen kinetics and posttransfusion survival. Sphingosine-1-phosphate (S1P) promotes fluxes through glycolysis. We hypothesized that S1P supplementation to stored RBC units would improve energy metabolism and posttransfusion recovery. We quantified S1P in 1929 samples (n = 643, storage days 10, 23, and 42) from the REDS RBC Omics study. We then supplemented human and murine RBCs from good storer (C57BL6/J) and poor storer strains (FVB) with S1P (1, 5, and 10 μM) before measurements of metabolism and posttransfusion recovery. Similar experiments were repeated for mice with genetic ablation of the S1P biosynthetic pathway (sphingosine kinase 1 [Sphk1] knockout [KO]). Sample analyses included metabolomics at steady state, tracing experiments with 1,2,3-13C3-glucose, proteomics, and analysis of end-of-storage posttransfusion recovery, under normoxic and hypoxic storage conditions. Storage promoted decreases in S1P levels, which were the highest in units donated by female or older donors. Supplementation of S1P to human and murine RBCs boosted the steady-state levels of glycolytic metabolites and glycolytic fluxes, ie the generation of ATP and DPG, at the expense of the pentose phosphate pathway. Lower posttransfusion recovery was observed upon S1P supplementation. All these phenomena were reversed in Sphk1 KO mice or with hypoxic storage. S1P is a positive regulator of energy metabolism and a negative regulator of antioxidant metabolism in stored RBCs, resulting in lower posttransfusion recoveries in murine models.
Collapse
Affiliation(s)
- Ariel Hay
- Department of Pathology, University of Virginia, Charlottesville, VA
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, Aurora, CO
| | - Fabia Gamboni
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, Aurora, CO
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, Aurora, CO
| | - Alicia Key
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, Aurora, CO
| | - Matthew Galbraith
- Linda Crnic Institute for Down Syndrome, Anschutz Medical Campus, University of Colorado, Aurora, CO
| | - Kyle Bartsch
- Linda Crnic Institute for Down Syndrome, Anschutz Medical Campus, University of Colorado, Aurora, CO
| | | | - Yang Xia
- University of Changsha, Changsha, China
| | - Mars Stone
- Vitalant Research Institute, San Francisco, CA
- Department of Laboratory Medicine, University of California, San Francisco, CA
| | - Michael P. Busch
- Vitalant Research Institute, San Francisco, CA
- Department of Laboratory Medicine, University of California, San Francisco, CA
| | - Philip J. Norris
- Vitalant Research Institute, San Francisco, CA
- Department of Laboratory Medicine, University of California, San Francisco, CA
| | - James C. Zimring
- Department of Pathology, University of Virginia, Charlottesville, VA
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
25
|
Induction of Drug-Resistance and Production of a Culture Medium Able to Induce Drug-Resistance in Vinblastine Untreated Murine Myeloma Cells. Molecules 2023; 28:molecules28052051. [PMID: 36903299 PMCID: PMC10004247 DOI: 10.3390/molecules28052051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/08/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Cancer therapies use different compounds of synthetic and natural origin. However, despite some positive results, relapses are common, as standard chemotherapy regimens are not fully capable of completely eradicating cancer stem cells. While vinblastine is a common chemotherapeutic agent in the treatment of blood cancers, the development of vinblastine resistance is often observed. Here, we performed cell biology and metabolomics studies to investigate the mechanisms of vinblastine resistance in P3X63Ag8.653 murine myeloma cells. Treatment with low doses of vinblastine in cell media led to the selection of vinblastine-resistant cells and the acquisition of such resistance in previously untreated, murine myeloma cells in culture. To determine the mechanistic basis of this observation, we performed metabolomic analyses of resistant cells and resistant drug-induced cells in a steady state, or incubation with stable isotope-labeled tracers, namely, 13C 15N-amino acids. Taken together, these results indicate that altered amino acid uptake and metabolism could contribute to the acquisition of vinblastine resistance in blood cancer cells. These results will be useful for further research on human cell models.
Collapse
|
26
|
Karafin MS, Field JJ, Ilich A, Li L, Qaquish BF, Shevkoplyas SS, Yoshida T. Hypoxic storage of donor red cells preserves deformability after exposure to plasma from adults with sickle cell disease. Transfusion 2023; 63:193-202. [PMID: 36310401 DOI: 10.1111/trf.17163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/10/2022] [Accepted: 09/14/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Red cell (RBC) transfusions are beneficial for patients with sickle cell disease (SCD), but ex vivo studies suggest that inflamed plasma from patients with SCD during crises may damage these RBCs, diminishing their potential efficacy. The hypoxic storage of RBCs may improve transfusion efficacy by minimizing the storage lesion. We tested the hypotheses that (1) The donor RBCs exposed to the plasma of patients in crisis would have lower deformability and higher hemolysis than those exposed to non-crisis plasma, and (2) hypoxic storage, compared to standard storage, of donor RBCs could preserve deformability and reduce hemolysis. STUDY DESIGN AND METHODS 18 SCD plasma samples from patients who had severe acute-phase symptoms (A-plasma; n = 9) or were at a steady-state (S = plasma; n = 9) were incubated with 16 RBC samples from eight units that were stored either under conventional(CRBC) or hypoxic(HRBC) conditions. Hemolysis and microcapillary deformability assays of these RBCs were analyzed using linear mixed-effect models after each sample was incubated in patient plasma overnight at 37°C RESULTS: Relative deformability was 0.036 higher (p < 0.0001) in HRBC pairs compared to CRBC pairs regardless of plasma type. Mean donor RBC hemolysis was 0.33% higher after incubation with A-plasma compared to S-plasma either with HRBC or CRBC (p = 0.04). HRBCs incubated with steady-state patient plasma demonstrated the highest deformability and lowest hemolysis. CONCLUSION Hypoxic storage significantly influenced RBC deformability. Patient condition significantly influenced post-incubation hemolysis. Together, HRBCs in steady-state plasma maximized donor red cell ex vivo function and survival.
Collapse
Affiliation(s)
- Matthew S Karafin
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Joshua J Field
- Division of Hematology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Versiti, Medical Sciences Institute, Milwaukee, Wisconsin, USA
| | - Anton Ilich
- Blood Research Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Lang Li
- Department of Biostatistics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Bahjat F Qaquish
- Department of Biostatistics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Sergey S Shevkoplyas
- Department of Biomedical Engineering, University of Houston, Houston, Texas, USA
| | | |
Collapse
|
27
|
Hypoxic storage of murine red blood cells improves energy metabolism and post-transfusion recoveries. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2023; 21:50-61. [PMID: 36346885 PMCID: PMC9918384 DOI: 10.2450/2022.0172-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/09/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND The Red blood cell (RBC) storage lesion results in decreased circulation and function of transfused RBCs. Elevated oxidant stress and impaired energy metabolism are a hallmark of the storage lesion in both human and murine RBCs. Although human studies don't suffer concerns that findings may not translate, they do suffer from genetic and environmental variability amongst subjects. Murine models can control for genetics, environment, and much interventional experimentation can be carried out in mice that is neither technically feasible nor ethical in humans. However, murine models are only useful to the extent that they have similar biology to humans. Hypoxic storage has been shown to mitigate the storage lesion in human RBCs, but has not been investigated in mice. MATERIALS AND METHODS RBCs from a C57BL6/J mouse strain were stored under normoxic (untreated) or hypoxic conditions (SO2 ~ 26%) for 1h, 7 and 12 days. Samples were tested for metabolomics at steady state, tracing experiments with 1,2,3-13C3-glucose, proteomics and end of storage post transfusion recovery. RESULTS Hypoxic storage improved post-transfusion recovery and energy metabolism, including increased steady state and 13C3-labeled metabolites from glycolysis, high energy purines (adenosine triphosphate) and 2,3-diphospholgycerate. Hypoxic storage promoted glutaminolysis, increased glutathione pools, and was accompanied by elevation in the levels of free fatty acids and acyl-carnitines. DISCUSSION This study isolates hypoxia, as a single independent variable, and shows similar effects as seen in human studies. These findings also demonstrate the translatability of murine models for hypoxic RBC storage and provide a pre-clinical platform for ongoing study.
Collapse
|
28
|
Benefits of hypoxic storage of red blood cells. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2023; 21:1-2. [PMID: 36763908 PMCID: PMC9918386 DOI: 10.2450/2023.0229-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
29
|
Matrix from urine stem cells boosts tissue-specific stem cell mediated functional cartilage reconstruction. Bioact Mater 2022; 23:353-367. [PMID: 36474659 PMCID: PMC9709166 DOI: 10.1016/j.bioactmat.2022.11.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/27/2022] Open
Abstract
Articular cartilage has a limited capacity to self-heal once damaged. Tissue-specific stem cells are a solution for cartilage regeneration; however, ex vivo expansion resulting in cell senescence remains a challenge as a large quantity of high-quality tissue-specific stem cells are needed for cartilage regeneration. Our previous report demonstrated that decellularized extracellular matrix (dECM) deposited by human synovium-derived stem cells (SDSCs), adipose-derived stem cells (ADSCs), urine-derived stem cells (UDSCs), or dermal fibroblasts (DFs) provided an ex vivo solution to rejuvenate human SDSCs in proliferation and chondrogenic potential, particularly for dECM deposited by UDSCs. To make the cell-derived dECM (C-dECM) approach applicable clinically, in this study, we evaluated ex vivo rejuvenation of rabbit infrapatellar fat pad-derived stem cells (IPFSCs), an easily accessible alternative for SDSCs, by the abovementioned C-dECMs, in vivo application for functional cartilage repair in a rabbit osteochondral defect model, and potential cellular and molecular mechanisms underlying this rejuvenation. We found that C-dECM rejuvenation promoted rabbit IPFSCs' cartilage engineering and functional regeneration in both ex vivo and in vivo models, particularly for the dECM deposited by UDSCs, which was further confirmed by proteomics data. RNA-Seq analysis indicated that both mesenchymal-epithelial transition (MET) and inflammation-mediated macrophage activation and polarization are potentially involved in the C-dECM-mediated promotion of IPFSCs' chondrogenic capacity, which needs further investigation.
Collapse
|
30
|
Moore A, Busch MP, Dziewulska K, Francis RO, Hod EA, Zimring JC, D’Alessandro A, Page GP. Genome-wide metabolite quantitative trait loci analysis (mQTL) in red blood cells from volunteer blood donors. J Biol Chem 2022; 298:102706. [PMID: 36395887 PMCID: PMC9763692 DOI: 10.1016/j.jbc.2022.102706] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
The red blood cell (RBC)-Omics study, part of the larger NHLBI-funded Recipient Epidemiology and Donor Evaluation Study (REDS-III), aims to understand the genetic contribution to blood donor RBC characteristics. Previous work identified donor demographic, behavioral, genetic, and metabolic underpinnings to blood donation, storage, and (to a lesser extent) transfusion outcomes, but none have yet linked the genetic and metabolic bodies of work. We performed a genome-wide association (GWA) analysis using RBC-Omics study participants with generated untargeted metabolomics data to identify metabolite quantitative trait loci in RBCs. We performed GWA analyses of 382 metabolites in 243 individuals imputed using the 1000 Genomes Project phase 3 all-ancestry reference panel. Analyses were conducted using ProbABEL and adjusted for sex, age, donation center, number of whole blood donations in the past 2 years, and first 10 principal components of ancestry. Our results identified 423 independent genetic loci associated with 132 metabolites (p < 5×10-8). Potentially novel locus-metabolite associations were identified for the region encoding heme transporter FLVCR1 and choline and for lysophosphatidylcholine acetyltransferase LPCAT3 and lysophosphatidylserine 16.0, 18.0, 18.1, and 18.2; these associations are supported by published rare disease and mouse studies. We also confirmed previous metabolite GWA results for associations, including N(6)-methyl-L-lysine and protein PYROXD2 and various carnitines and transporter SLC22A16. Association between pyruvate levels and G6PD polymorphisms was validated in an independent cohort and novel murine models of G6PD deficiency (African and Mediterranean variants). We demonstrate that it is possible to perform metabolomics-scale GWA analyses with a modest, trans-ancestry sample size.
Collapse
Affiliation(s)
- Amy Moore
- Division of Biostatistics and Epidemiology, RTI International, Atlanta, Georgia, USA
| | | | - Karolina Dziewulska
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Richard O. Francis
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, USA
| | - Eldad A. Hod
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, USA
| | - James C. Zimring
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Angelo D’Alessandro
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, USA,Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, Aurora, CO, USA,For correspondence: Grier P. Page; Angelo D’Alessandro
| | - Grier P. Page
- Division of Biostatistics and Epidemiology, RTI International, Atlanta, Georgia, USA,For correspondence: Grier P. Page; Angelo D’Alessandro
| |
Collapse
|
31
|
Metabolic reprogramming under hypoxic storage preserves faster oxygen unloading from stored red blood cells. Blood Adv 2022; 6:5415-5428. [PMID: 35736672 DOI: 10.1182/bloodadvances.2022007774] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/11/2022] [Indexed: 11/20/2022] Open
Abstract
Stored red blood cells (RBCs) incur biochemical and morphological changes, collectively termed the storage lesion. Functionally, the storage lesion manifests as slower oxygen unloading from RBCs, which may compromise the efficacy of transfusions where the clinical imperative is to rapidly boost oxygen delivery to tissues. Recent analysis of large real-world data linked longer storage with increased recipient mortality. Biochemical rejuvenation with a formulation of adenosine, inosine, and pyruvate can restore gas-handling properties, but its implementation is impractical for most clinical scenarios. We tested whether storage under hypoxia, previously shown to slow biochemical degradation, also preserves gas-handling properties of RBCs. A microfluidic chamber, designed to rapidly switch between oxygenated and anoxic superfusates, was used for single-cell oxygen saturation imaging on samples stored for up to 49 days. Aliquots were also analyzed flow-cytometrically for side-scatter (a proposed proxy of O2 unloading kinetics), metabolomics, lipidomics and redox proteomics. For benchmarking, units were biochemically rejuvenated at four weeks of standard storage. Hypoxic storage hastened O2 unloading in units stored to 35 days, an effect that correlated with side-scatter but was not linked to post-translational modifications of hemoglobin. Although hypoxic storage and rejuvenation produced distinct biochemical changes, a subset of metabolites including pyruvate, sedoheptulose 1-phosphate, and 2/3 phospho-D-glycerate, was a common signature that correlated with changes in O2 unloading. Correlations between gas-handling and lipidomic changes were modest. Thus, hypoxic storage of RBCs preserves key metabolic pathways and O2 exchange properties, thereby improving the functional quality of blood products and potentially influencing transfusion outcomes.
Collapse
|
32
|
Nemkov T, Yoshida T, Nikulina M, D’Alessandro A. High-Throughput Metabolomics Platform for the Rapid Data-Driven Development of Novel Additive Solutions for Blood Storage. Front Physiol 2022; 13:833242. [PMID: 35360223 PMCID: PMC8964052 DOI: 10.3389/fphys.2022.833242] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/23/2022] [Indexed: 02/04/2023] Open
Abstract
Red blood cell transfusion is a life-saving intervention, and storage is a logistic necessity to make ~110 million units available for transfusion every year worldwide. However, storage in the blood bank is associated with a progressive metabolic decline, which correlates with the accumulation of morphological lesions, increased intra- and extra-vascular hemolysis upon transfusion, and altered oxygen binding/off-loading kinetics. Prior to storage, red blood cells are suspended in nutrient formulations known as additive solutions to prolong cellular viability. Despite a thorough expansion of knowledge regarding red blood cell biology over the past few decades, only a single new additive solution has been approved by the Food and Drug Administration this century, owing in part to the limited capacity for development of novel formulations. As a proof of principle, we leveraged a novel high-throughput metabolomics technology as a platform for rapid data-driven development and screening of novel additive solutions for blood storage under both normoxic and hypoxic conditions. To this end, we obtained leukocyte-filtered red blood cells (RBCs) and stored them under normoxic or hypoxic conditions in 96 well plates (containing polyvinylchloride plasticized with diethylhexylphthalate to concentrations comparable to full size storage units) in the presence of an additive solution supplemented with six different compounds. To inform this data-driven strategy, we relied on previously identified metabolic markers of the RBC storage lesion that associates with measures of hemolysis and post-transfusion recovery, which are the FDA gold standards to predict stored blood quality, as well as and metabolic predictors of oxygen binding/off-loading parameters. Direct quantitation of these predictors of RBC storage quality were used here-along with detailed pathway analysis of central energy and redox metabolism-as a decision-making tool to screen novel additive formulations in a multiplexed fashion. Candidate supplements are shown here that boost-specific pathways. These metabolic effects are only in part dependent on the SO2 storage conditions. Through this platform, we anticipate testing thousands of novel additives and combinations thereof in the upcoming months.
Collapse
Affiliation(s)
- Travis Nemkov
- Omix Technologies Inc., Denver, CO, United States
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, Aurora, CO, United States
| | | | | | - Angelo D’Alessandro
- Omix Technologies Inc., Denver, CO, United States
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
33
|
Stotts MJ, Risbano MG, Gorham JD, D'Alessandro A. Red blood transfusion as a potential source for false-positive phosphatidylethanol levels. Transfusion 2022; 62:506-508. [PMID: 35146766 DOI: 10.1111/trf.16787] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/01/2021] [Accepted: 12/06/2021] [Indexed: 01/23/2023]
Affiliation(s)
- Matthew J Stotts
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Virginia, Charlottesville, USA
| | - Michael G Risbano
- Division of Pulmonary, Allergy and Critical Medicine, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, USA
| | - James D Gorham
- Blood Bank & Transfusion Medicine Service, Division of Laboratory Medicine, University of Virginia, Charlottesville, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, USA
| |
Collapse
|
34
|
Roy MK, La Carpia F, Cendali F, Fernando S, Moriconi C, Wojczyk BS, Wang L, Nemkov T, Hod EA, D’Alessandro A. Irradiation Causes Alterations of Polyamine, Purine, and Sulfur Metabolism in Red Blood Cells and Multiple Organs. J Proteome Res 2022; 21:519-534. [PMID: 35043621 PMCID: PMC8855667 DOI: 10.1021/acs.jproteome.1c00912] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Investigating the metabolic effects of radiation is critical to understand the impact of radiotherapy, space travel, and exposure to environmental radiation. In patients undergoing hemopoietic stem cell transplantation, iron overload is a common risk factor for poor outcomes. However, no studies have interrogated the multiorgan effects of these treatments concurrently. Herein, we use a model that recapitulates transfusional iron overload, a condition often observed in chronically transfused patients. We applied an omics approach to investigate the impact of both the iron load and irradiation on the host metabolome. The results revealed dose-dependent effects of irradiation in the red blood cells, plasma, spleen, and liver energy and redox metabolism. Increases in polyamines and purine salvage metabolites were observed in organs with high oxygen consumption including the heart, kidneys, and brain. Irradiation also impacted the metabolism of the duodenum, colon, and stool, suggesting a potential effect on the microbiome. Iron infusion affected the response to radiation in the organs and blood, especially in erythrocyte polyamines and spleen antioxidant metabolism, and affected glucose, methionine, and glutathione systems and tryptophan metabolism in the liver, stool, and the brain. Together, the results suggest that radiation impacts metabolism on a multiorgan level with a significant interaction of the host iron status.
Collapse
Affiliation(s)
- Micaela Kalani Roy
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, Aurora, CO, USA 80045
| | | | - Francesca Cendali
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, Aurora, CO, USA 80045
| | | | - Chiara Moriconi
- Columbia University Irving Medical Center, New York, NY, USA 10032
| | | | - Lin Wang
- Columbia University Irving Medical Center, New York, NY, USA 10032
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, Aurora, CO, USA 80045
| | - Eldad A Hod
- Columbia University Irving Medical Center, New York, NY, USA 10032
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, Aurora, CO, USA 80045,Corresponding authors: Angelo D’Alessandro, PhD, Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, 12801 East 17th Ave., Aurora, CO 80045, Phone # 303-724-0096,
| |
Collapse
|
35
|
Erythrocyte transglutaminase-2 combats hypoxia and chronic kidney disease by promoting oxygen delivery and carnitine homeostasis. Cell Metab 2022; 34:299-316.e6. [PMID: 35108516 PMCID: PMC9380699 DOI: 10.1016/j.cmet.2021.12.019] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 09/29/2021] [Accepted: 12/21/2021] [Indexed: 02/03/2023]
Abstract
Due to lack of nuclei and de novo protein synthesis, post-translational modification (PTM) is imperative for erythrocytes to regulate oxygen (O2) delivery and combat tissue hypoxia. Here, we report that erythrocyte transglutminase-2 (eTG2)-mediated PTM is essential to trigger O2 delivery by promoting bisphosphoglycerate mutase proteostasis and the Rapoport-Luebering glycolytic shunt for adaptation to hypoxia, in healthy humans ascending to high altitude and in two distinct murine models of hypoxia. In a pathological hypoxia model with chronic kidney disease (CKD), eTG2 is critical to combat renal hypoxia-induced reduction of Slc22a5 transcription and OCNT2 protein levels via HIF-1α-PPARα signaling to maintain carnitine homeostasis. Carnitine supplementation is an effective and safe therapeutic approach to counteract hypertension and progression of CKD by enhancing erythrocyte O2 delivery. Altogether, we reveal eTG2 as an erythrocyte protein stabilizer orchestrating O2 delivery and tissue adaptive metabolic reprogramming and identify carnitine-based therapy to mitigate hypoxia and CKD progression.
Collapse
|
36
|
Bertolone L, Shin HKH, Baek JH, Gao Y, Spitalnik SL, Buehler PW, D'Alessandro A. ZOOMICS: Comparative Metabolomics of Red Blood Cells From Guinea Pigs, Humans, and Non-human Primates During Refrigerated Storage for Up to 42 Days. Front Physiol 2022; 13:845347. [PMID: 35388289 PMCID: PMC8977988 DOI: 10.3389/fphys.2022.845347] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/10/2022] [Indexed: 01/07/2023] Open
Abstract
Unlike other rodents, guinea pigs (Cavia porcellus) have evolutionarily lost their capacity to synthesize vitamin C (ascorbate) de novo and, like several non-human primates and humans, rely on dietary intake and glutathione-dependent recycling to cope with oxidant stress. This is particularly relevant in red blood cell physiology, and especially when modeling blood storage, which exacerbates erythrocyte oxidant stress. Herein we provide a comprehensive metabolomics analysis of fresh and stored guinea pig red blood cell concentrates (n = 20), with weekly sampling from storage day 0 through 42. Results were compared to previously published ZOOMICS studies on red blood cells from three additional species with genetic loss of L-gulonolactone oxidase function, including humans (n = 21), olive baboons (n = 20), and rhesus macaques (n = 20). While metabolic trends were comparable across all species, guinea pig red blood cells demonstrated accelerated alterations of the metabolic markers of the storage lesion that are consistent with oxidative stress. Compared to the other species, guinea pig red blood cells showed aberrant glycolysis, pentose phosphate pathway end product metabolites, purine breakdown products, methylation, glutaminolysis, and markers of membrane lipid remodeling. Consistently, guinea pig red blood cells demonstrated higher end storage hemolysis, and scanning electron microscopy confirmed a higher degree of morphological alterations of their red blood cells, as compared to the other species. Despite a genetic inability to produce ascorbate that is common to the species evaluated, guinea pig red blood cells demonstrate accelerated oxidant stress under standard storage conditions. These data may offer relevant insights into the basal and cold storage metabolism of red blood cells from species that cannot synthesize endogenous ascorbate.
Collapse
Affiliation(s)
- Lorenzo Bertolone
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, United States
| | - Hye Kyung H Shin
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Jin Hyen Baek
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Yamei Gao
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Steven L Spitalnik
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States
| | - Paul W Buehler
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, United States.,Department of Pediatrics, Center for Blood Oxygen Transport and Hemostasis, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, United States.,Department of Medicine, Division of Hematology, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
37
|
Yoshida T, McMahon E, Croxon H, Dunham A, Gaccione P, Abbasi B, Beckman N, Omert L, Field S, Waters A. The oxygen saturation of red blood cell concentrates: The basis for a novel index of red cell oxidative stress. Transfusion 2021; 62:183-193. [PMID: 34761414 DOI: 10.1111/trf.16715] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/10/2021] [Accepted: 10/14/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND Oxidative stress is a major driving force in the development of storage lesions in red cell concentrates (RCCs). Unlike manufactured pharmaceuticals, differences in component preparation methods and genetic/physiological status of donors result in nonuniform biochemical characteristics of RCCs. Various characteristics of donated blood on oxygen saturation (SO2 ) distribution were investigated, and a model to estimate potential oxidative stress burden of stored RCC at transfusion is proposed. STUDY DESIGN AND METHODS The oxygen content of freshly prepared RCCs (770) was quantified noninvasively as fractional hemoglobin saturation (SO2 ) with visible reflectance spectrometry. Using separate RCCs and mimicking typical handling of RCCs during routine storage, evolution of SO2 was followed for construction of an empirical model. Based on this model, the oxygen exposure index (OEI) was formulated to estimate the accumulated oxygen exposure burden of RCC at the time of transfusion. RESULTS The SO2 of RCCs varied widely at donation (mean 43% ± 1.3%; range 20%-93%). Multivariate regression model showed that sex and processing method had small effects on SO2 (R2 = 0.12), indicating that variability was mainly attributed to other individual donor characteristics. Storage simulation model indicated that median SO2 increased gradually over 6 weeks (approx. 1.3 fold), while OEI increased at a faster rate (approx. eight-fold). CONCLUSION In addition to storage age, the OEI provides a potential new metric to assess the quality of RCCs at the time of transfusion in terms of their oxidative stress. In future studies, a single noninvasive measurement during storage could link OEI to clinical outcomes in transfusion recipients.
Collapse
Affiliation(s)
| | - Emma McMahon
- Irish Blood Transfusion Service, Dublin, Ireland
| | - Harry Croxon
- Irish Blood Transfusion Service, Dublin, Ireland
| | | | | | - Babak Abbasi
- Information Systems and Supply Chain, RMIT University, Melbourne, Victoria, Australia
| | | | | | - Stephen Field
- Irish Blood Transfusion Service, Dublin, Ireland.,School of Medicine, Trinity College Dublin, Dublin, Ireland
| | | |
Collapse
|
38
|
Roy MK, Cendali F, Ooyama G, Gamboni F, Morton H, D'Alessandro A. Red Blood Cell Metabolism in Pyruvate Kinase Deficient Patients. Front Physiol 2021; 12:735543. [PMID: 34744776 PMCID: PMC8567077 DOI: 10.3389/fphys.2021.735543] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/30/2021] [Indexed: 01/19/2023] Open
Abstract
Background: Pyruvate kinase deficiency (PKD) is the most frequent congenital enzymatic defect of glycolysis, and one of the most common causes of hereditary non spherocytic hemolytic anemia. Therapeutic interventions are limited, in part because of the incomplete understanding of the molecular mechanisms that compensate for the metabolic defect. Methods: Mass spectrometry-based metabolomics analyses were performed on red blood cells (RBCs) from healthy controls (n=10) and PKD patients (n=5). Results: In PKD patients, decreases in late glycolysis were accompanied by accumulation of pentose phosphate pathway (PPP) metabolites, as a function of oxidant stress to purines (increased breakdown and deamination). Markers of oxidant stress included increased levels of sulfur-containing compounds (methionine and taurine), polyamines (spermidine and spermine). Markers of hypoxia such as succinate, sphingosine 1-phosphate (S1P), and hypoxanthine were all elevated in PKD subjects. Membrane lipid oxidation and remodeling was observed in RBCs from PKD patients, as determined by increases in the levels of free (poly-/highly-unsaturated) fatty acids and acyl-carnitines. Conclusion: In conclusion, in the present study, we provide the first overview of RBC metabolism in patients with PKD. Though limited in scope, the study addresses the need for basic science to investigate pathologies targeting underrepresented minorities (Amish population in this study), with the ultimate goal to target treatments to health disparities.
Collapse
Affiliation(s)
- Micaela K Roy
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, United States
| | - Francesca Cendali
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, United States
| | - Gabrielle Ooyama
- Central Pennsylvania Clinic, A Medical Home for Special Children and Adults, Belleville, PA, United States
| | - Fabia Gamboni
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, United States
| | - Holmes Morton
- Central Pennsylvania Clinic, A Medical Home for Special Children and Adults, Belleville, PA, United States
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
39
|
D'Alessandro A, Hay A, Dzieciatkowska M, Brown BC, Morrison EJ, Hansen KC, Zimring JC. Protein-L-isoaspartate O-methyltransferase is required for <i>in vivo</i> control of oxidative damage in red blood cells. Haematologica 2021; 106:2726-2739. [PMID: 33054131 PMCID: PMC8485689 DOI: 10.3324/haematol.2020.266676] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Indexed: 12/13/2022] Open
Abstract
Red blood cells (RBC) have the special challenge of a large amount of reactive oxygen species (from their substantial iron load and Fenton reactions) combined with the inability to synthesize new gene products. Considerable progress has been made in elucidating the multiple pathways by which RBC neutralize reactive oxygen species via NADPH driven redox reactions. However, far less is known about how RBC repair the inevitable damage that does occur when reactive oxygen species break through anti-oxidant defenses. When structural and functional proteins become oxidized, the only remedy available to RBC is direct repair of the damaged molecules, as RBC cannot synthesize new proteins. Amongst the most common amino acid targets of oxidative damage is the conversion of asparagine and aspartate side chains into a succinimidyl group through deamidation or dehydration, respectively. RBC express an L-isoaspartyl methyltransferase (PIMT, gene name PCMT1) that can convert succinimidyl groups back to an aspartate. Herein, we report that deletion of PCMT1 significantly alters RBC metabolism in a healthy state, but does not impair the circulatory lifespan of RBC. Through a combination of genetic ablation, bone marrow transplantation and oxidant stimulation with phenylhydrazine in vivo or blood storage ex vivo, we use omics approaches to show that, when animals are exposed to oxidative stress, RBC from PCMT1 knockout undergo significant metabolic reprogramming and increased hemolysis. This is the first report of an essential role of PCMT1 for normal RBC circulation during oxidative stress.
Collapse
Affiliation(s)
- Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO.
| | - Ariel Hay
- University of Virginia, Charlotesville, VA
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO
| | - Benjamin C Brown
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO
| | - Evan J Morrison
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO
| | | |
Collapse
|
40
|
Red Blood Cell Metabolism in Patients with Propionic Acidemia. SEPARATIONS 2021. [DOI: 10.3390/separations8090142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Propionic acidemia (PA) is a rare autosomal recessive disorder with an estimated incidence of 1:100,000 live births in the general population. Due in part to an insufficient understanding of the disease’s pathophysiology, PA is often associated with complications, and in severe cases can cause coma and death. Despite its association with hematologic disorders, PA’s effect on red blood cell metabolism has not been described. Mass spectrometry-based metabolomics analyses were performed on RBCs from healthy controls (n = 10) and PKD patients (n = 3). PA was associated with a significant decrease in the steady state level of glycolytic products and the apparent activation of the PPP. The PA samples showed decreases in succinate and increases in the downstream dicarboxylates of the TCA cycle. BCAAs were lowered in the PA samples and C3 carnitine, a direct metabolite of propionic acid, was increased. Trends in the markers of oxidative stress including hypoxanthine, allantoate and spermidine were the opposite of those associated with elevated ROS burden. The alteration of short chain fatty acids, the accumulation of some medium chain and long chain fatty acids, and decreased markers of lipid peroxidation in the PA samples contrasted with previous research. Despite limitations from a small cohort, this study provides the first investigation of RBC metabolism in PA, paving the way for targeted investigations of the critical pathways found to be dysregulated in the context of this disease.
Collapse
|
41
|
Barzegar S, Asri Kojabad A, Manafi Shabestari R, Barati M, Rezvany MR, Safa M, Amani A, Pourfathollah A, Abbaspour A, Rahgoshay M, Hashemi J, Mohammadi Najafabadi M, Zaker F. Use of antioxidant nanoparticles to reduce oxidative stress in blood storage. Biotechnol Appl Biochem 2021; 69:1712-1722. [PMID: 34415072 DOI: 10.1002/bab.2240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 08/02/2021] [Indexed: 11/09/2022]
Abstract
Oxidative damage by free radicals has a negative effect on blood quality during storage. Antioxidant nanoparticles can prevent oxidative stress. We use SOD-CAT-Alb-PEG-PLGA- nanoparticles to reduce the effects of oxidative stress in blood storage. Electrospray was employed to prepare nanoparticles. Nanoparticles entered the test bags and were kept for 35 days from the time of donation under standard conditions. On target days, experiments were performed on the samples taken. The examination included blood smear, red blood cells count, hemoglobin, hematocrit, K, Fe, glutathione peroxidase, glutathion reductase, glucose-6-phosphate dehydrogenase, prooxidant-antioxidant balance, malondialdehyde, and flow cytometric assay for phosphatidylserine. The repeated measures analysis was performed on samples every week. Morphological changes were less in the test group compared to the control. The quantitative hemolysis profile test showed significant changes in the test and control groups (p < 0.05) in consecutive weeks except for K and Fe. Oxidative stress parameters too showed a significant change during the target days of the examination (p < 0.05). Also, the phosphatidylserine expression was increased in control groups more than test in consecutive weeks (p < 0.05). It seems that the use of antioxidant nanoparticles improves the quality of stored red blood cells and can prevent posttransfusion complications and blood loss by reducing oxidative stress.
Collapse
Affiliation(s)
- Saeid Barzegar
- Department of Pathobiology and laboratory sciences, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran.,Department of Hematology, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Asri Kojabad
- Department of Hematology, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Rima Manafi Shabestari
- Department of Hematology, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Barati
- Department of Immunology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Rezvany
- Department of Hematology, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran.,Pediatric Growth and Development Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran.,Department of Oncology-Pathology, Immune and Gene Therapy Lab, Cancer Center Karolinska, Karolinska University Hospital Solna and Karolinska Institute, Stockholm, Sweden
| | - Majid Safa
- Department of Hematology, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Amani
- Department of Biotechnology, School of Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Aliakbar Pourfathollah
- Department of Immunology, School of Medicine, Tarbiat Modares University, Iranian Blood Transfusion Research Center, Tehran, Iran
| | - Alireza Abbaspour
- Department of Pathobiology and laboratory sciences, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mahsa Rahgoshay
- Department of Hematology, School of Allied Medical Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Javad Hashemi
- Department of Pathobiology and laboratory sciences, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | | | - Farhad Zaker
- Department of Hematology, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
42
|
DeSimone RA, Vinchi F. Screening out the Exposome to Improve Transfusion Quality. Hemasphere 2021; 5:e605. [PMID: 34235402 PMCID: PMC8232066 DOI: 10.1097/hs9.0000000000000605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 05/18/2021] [Indexed: 11/26/2022] Open
Affiliation(s)
- Robert A. DeSimone
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, USA
- Lindsley Kimball Research Institute, New York Blood Center, New York, USA
| | - Francesca Vinchi
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, USA
- Lindsley Kimball Research Institute, New York Blood Center, New York, USA
| |
Collapse
|
43
|
Thomas T, Cendali F, Fu X, Gamboni F, Morrison EJ, Beirne J, Nemkov T, Antonelou MH, Kriebardis A, Welsby I, Hay A, Dziewulska KH, Busch MP, Kleinman S, Buehler PW, Spitalnik SL, Zimring JC, D'Alessandro A. Fatty acid desaturase activity in mature red blood cells and implications for blood storage quality. Transfusion 2021; 61:1867-1883. [PMID: 33904180 DOI: 10.1111/trf.16402] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/24/2021] [Accepted: 03/30/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Increases in the red blood cell (RBC) degree of fatty acid desaturation are reported in response to exercise, aging, or diseases associated with systemic oxidant stress. However, no studies have focused on the presence and activity of fatty acid desaturases (FADS) in the mature RBC. STUDY DESIGN AND METHODS Steady state metabolomics and isotope-labeled tracing experiments, immunofluorescence approaches, and pharmacological interventions were used to determine the degree of fatty acid unsaturation, FADS activity as a function of storage, oxidant stress, and G6PD deficiency in human and mouse RBCs. RESULTS In 250 blood units from the REDS III RBC Omics recalled donor population, we report a storage-dependent accumulation of free mono-, poly-(PUFAs), and highly unsaturated fatty acids (HUFAs), which occur at a faster rate than saturated fatty acid accumulation. Through a combination of immunofluorescence, pharmacological inhibition, tracing experiments with stable isotope-labeled fatty acids, and oxidant challenge with hydrogen peroxide, we demonstrate the presence and redox-sensitive activity of FADS2, FADS1, and FADS5 in the mature RBC. Increases in PUFAs and HUFAs in human and mouse RBCs correlate negatively with storage hemolysis and positively with posttransfusion recovery. Inhibition of these enzymes decreases accumulation of free PUFAs and HUFAs in stored RBCs, concomitant to increases in pyruvate/lactate ratios. Alterations of this ratio in G6PD deficient patients or units supplemented with pyruvate-rich rejuvenation solutions corresponded to decreased PUFA and HUFA accumulation. CONCLUSION Fatty acid desaturases are present and active in mature RBCs. Their activity is sensitive to oxidant stress, storage duration, and alterations of the pyruvate/lactate ratio.
Collapse
Affiliation(s)
| | - Francesca Cendali
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado, USA
| | - Xiaoyun Fu
- BloodWorks Northwest, Seattle, Washington, USA
| | - Fabia Gamboni
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado, USA
| | - Evan J Morrison
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jonathan Beirne
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado, USA
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado, USA
| | - Marianna H Antonelou
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | | | - Ian Welsby
- Duke University, Durham, North Carolina, USA
| | - Ariel Hay
- Department of Pathology, University of Virginia, Charloteseville, Virginia, USA
| | | | | | | | | | | | - James C Zimring
- Department of Pathology, University of Virginia, Charloteseville, Virginia, USA
| | | |
Collapse
|
44
|
Nemkov T, Stefanoni D, Bordbar A, Issaian A, Palsson BO, Dumont LJ, Hay A, Song A, Xia Y, Redzic JS, Eisenmesser EZ, Zimring JC, Kleinman S, Hansen KC, Busch MP, D'Alessandro A. Blood donor exposome and impact of common drugs on red blood cell metabolism. JCI Insight 2021; 6:146175. [PMID: 33351786 PMCID: PMC7934844 DOI: 10.1172/jci.insight.146175] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 12/18/2020] [Indexed: 12/12/2022] Open
Abstract
Computational models based on recent maps of the RBC proteome suggest that mature erythrocytes may harbor targets for common drugs. This prediction is relevant to RBC storage in the blood bank, in which the impact of small molecule drugs or other xenometabolites deriving from dietary, iatrogenic, or environmental exposures (“exposome”) may alter erythrocyte energy and redox metabolism and, in so doing, affect red cell storage quality and posttransfusion efficacy. To test this prediction, here we provide a comprehensive characterization of the blood donor exposome, including the detection of common prescription and over-the-counter drugs in blood units donated by 250 healthy volunteers in the Recipient Epidemiology and Donor Evaluation Study III Red Blood Cell–Omics (REDS-III RBC-Omics) Study. Based on high-throughput drug screenings of 1366 FDA-approved drugs, we report that approximately 65% of the tested drugs had an impact on erythrocyte metabolism. Machine learning models built using metabolites as predictors were able to accurately predict drugs for several drug classes/targets (bisphosphonates, anticholinergics, calcium channel blockers, adrenergics, proton pump inhibitors, antimetabolites, selective serotonin reuptake inhibitors, and mTOR), suggesting that these drugs have a direct, conserved, and substantial impact on erythrocyte metabolism. As a proof of principle, here we show that the antacid ranitidine — though rarely detected in the blood donor population — has a strong effect on RBC markers of storage quality in vitro. We thus show that supplementation of blood units stored in bags with ranitidine could — through mechanisms involving sphingosine 1–phosphate–dependent modulation of erythrocyte glycolysis and/or direct binding to hemoglobin — improve erythrocyte metabolism and storage quality.
Collapse
Affiliation(s)
- Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, Colorado, USA.,Omix Technologies Inc., Aurora, Colorado, USA
| | - Davide Stefanoni
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, Colorado, USA
| | | | - Aaron Issaian
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, Colorado, USA
| | | | | | - Ariel Hay
- University of Virginia, Charlottesville, Virginia, USA
| | - Anren Song
- University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Yang Xia
- University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Jasmina S Redzic
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, Colorado, USA
| | - Elan Z Eisenmesser
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, Colorado, USA
| | | | - Steve Kleinman
- University of British Columbia, Victoria, British Columbia, Canada
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, Colorado, USA.,Omix Technologies Inc., Aurora, Colorado, USA
| | | | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, Colorado, USA.,Omix Technologies Inc., Aurora, Colorado, USA
| | | |
Collapse
|
45
|
Hazegh K, Fang F, Bravo MD, Tran JQ, Muench MO, Jackman RP, Roubinian N, Bertolone L, D’Alessandro A, Dumont L, Page GP, Kanias T. Blood donor obesity is associated with changes in red blood cell metabolism and susceptibility to hemolysis in cold storage and in response to osmotic and oxidative stress. Transfusion 2021; 61:435-448. [PMID: 33146433 PMCID: PMC7902376 DOI: 10.1111/trf.16168] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Obesity is a global pandemic characterized by multiple comorbidities, including cardiovascular and metabolic diseases. The aim of this study was to define the associations between blood donor body mass index (BMI) and RBC measurements of metabolic stress and hemolysis. STUDY DESIGN AND METHODS The associations between donor BMI (<25 kg/m2 , normal weight; 25-29.9 kg/m2 , overweight; and ≥30 kg/m2 , obese) and hemolysis (storage, osmotic, and oxidative; n = 18 donors) or posttransfusion recovery (n = 14 donors) in immunodeficient mice were determined in stored leukocyte-reduced RBC units. Further evaluations were conducted using the National Heart, Lung, and Blood Institute RBC-Omics blood donor databases of hemolysis (n = 13 317) and metabolomics (n = 203). RESULTS Evaluations in 18 donors revealed that BMI was significantly (P < 0.05) and positively associated with storage and osmotic hemolysis. A BMI of 30 kg/m2 or greater was also associated with lower posttransfusion recovery in mice 10 minutes after transfusion (P = 0.026). Multivariable linear regression analyses in RBC-Omics revealed that BMI was a significant modifier for all hemolysis measurements, explaining 4.5%, 4.2%, and 0.2% of the variance in osmotic, oxidative, and storage hemolysis, respectively. In this cohort, obesity was positively associated (P < 0.001) with plasma ferritin (inflammation marker). Metabolomic analyses on RBCs from obese donors (44.1 ± 5.1 kg/m2 ) had altered membrane lipid composition, dysregulation of antioxidant pathways (eg, increased oxidized lipids, methionine sulfoxide, and xanthine), and dysregulation of nitric oxide metabolism, as compared to RBCs from nonobese (20.5 ± 1.0 kg/m2 ) donors. CONCLUSIONS Obesity is associated with significant changes in RBC metabolism and increased susceptibility to hemolysis under routine storage of RBC units. The impact on transfusion efficacy warrants further evaluation.
Collapse
Affiliation(s)
| | - Fang Fang
- RTI International, Research Triangle Park, North Carolina
| | | | | | - Marcus O. Muench
- Vitalant Research Institute, San Francisco, California
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California
| | - Rachael P. Jackman
- Vitalant Research Institute, San Francisco, California
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California
| | - Nareg Roubinian
- Vitalant Research Institute, San Francisco, California
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California
- Kaiser Permanente Northern California, Division of Research, Oakland, California
| | - Lorenzo Bertolone
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - Angelo D’Alessandro
- Vitalant Research Institute, Denver, Colorado
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
- Department of Medicine Division of Hematology, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - Larry Dumont
- Vitalant Research Institute, Denver, Colorado
- Department of Pathology, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
- Department of Pathology and Laboratory Medicine, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | | | - Tamir Kanias
- Vitalant Research Institute, Denver, Colorado
- Department of Pathology, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
46
|
Acute Cycling Exercise Induces Changes in Red Blood Cell Deformability and Membrane Lipid Remodeling. Int J Mol Sci 2021; 22:ijms22020896. [PMID: 33477427 PMCID: PMC7831009 DOI: 10.3390/ijms22020896] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/31/2020] [Accepted: 01/11/2021] [Indexed: 12/15/2022] Open
Abstract
Here we describe the effects of a controlled, 30 min, high-intensity cycling test on blood rheology and the metabolic profiles of red blood cells (RBCs) and plasma from well-trained males. RBCs demonstrated decreased deformability and trended toward increased generation of microparticles after the test. Meanwhile, metabolomics and lipidomics highlighted oxidative stress and activation of membrane lipid remodeling mechanisms in order to cope with altered properties of circulation resulting from physical exertion during the cycling test. Of note, intermediates from coenzyme A (CoA) synthesis for conjugation to fatty acyl chains, in parallel with reversible conversion of carnitine and acylcarnitines, emerged as metabolites that significantly correlate with RBC deformability and the generation of microparticles during exercise. Taken together, we propose that RBC membrane remodeling and repair plays an active role in the physiologic response to exercise by altering RBC properties.
Collapse
|
47
|
Wang Y, Hu G, Hill RC, Dzieciatkowska M, Hansen KC, Zhang XB, Yan Z, Pei M. Matrix reverses immortalization-mediated stem cell fate determination. Biomaterials 2021; 265:120387. [PMID: 32987274 PMCID: PMC7944411 DOI: 10.1016/j.biomaterials.2020.120387] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/24/2020] [Accepted: 09/14/2020] [Indexed: 12/15/2022]
Abstract
Primary cell culture in vitro suffers from cellular senescence. We hypothesized that expansion on decellularized extracellular matrix (dECM) deposited by simian virus 40 large T antigen (SV40LT) transduced autologous infrapatellar fat pad stem cells (IPFSCs) could rejuvenate high-passage IPFSCs in both proliferation and chondrogenic differentiation. In the study, we found that SV40LT transduced IPFSCs exhibited increased proliferation and adipogenic potential but decreased chondrogenic potential. Expansion on dECMs deposited by passage 5 IPFSCs yielded IPFSCs with dramatically increased proliferation and chondrogenic differentiation capacity; however, this enhanced capacity diminished if IPFSCs were grown on dECM deposited by passage 15 IPFSCs. Interestingly, expansion on dECM deposited by SV40LT transduced IPFSCs yielded IPFSCs with enhanced proliferation and chondrogenic capacity but decreased adipogenic potential, particularly for the dECM group derived from SV40LT transduced passage 15 cells. Our immunofluorescence staining and proteomics data identify matrix components such as basement membrane proteins as top candidates for matrix mediated IPFSC rejuvenation. Both cell proliferation and differentiation were endorsed by transcripts measured by RNASeq during the process. This study provides a promising model for in-depth investigation of the matrix protein influence on surrounding stem cell differentiation.
Collapse
Affiliation(s)
- Yiming Wang
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV, USA; Department of Orthopaedics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Gangqing Hu
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, USA; Bioinformatics Core, West Virginia University, Morgantown, WV, USA
| | - Ryan C Hill
- Department of Biochemistry & Molecular Genetics, University of Colorado Denver, Aurora, CO, USA
| | - Monika Dzieciatkowska
- Department of Biochemistry & Molecular Genetics, University of Colorado Denver, Aurora, CO, USA
| | - Kirk C Hansen
- Department of Biochemistry & Molecular Genetics, University of Colorado Denver, Aurora, CO, USA
| | - Xiao-Bing Zhang
- State Key Laboratory of Experimental Hematology, Tianjin, China; Department of Medicine, Loma Linda University, Loma Linda, CA, USA.
| | - Zuoqin Yan
- Department of Orthopaedics, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Ming Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV, USA; WVU Cancer Institute, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, USA.
| |
Collapse
|
48
|
Alexander K, Hazegh K, Fang F, Sinchar D, Kiss JE, Page GP, D’Alessandro A, Kanias T. Testosterone replacement therapy in blood donors modulates erythrocyte metabolism and susceptibility to hemolysis in cold storage. Transfusion 2021; 61:108-123. [PMID: 33073382 PMCID: PMC7902463 DOI: 10.1111/trf.16141] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 08/05/2020] [Accepted: 08/11/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Red blood cells (RBCs) derived from patients who receive testosterone replacement therapy (TRT) may be considered eligible for component production and transfusion. The aim of this study was to identify testosterone-dependent changes in RBC metabolism and to evaluate its impact on susceptibility to hemolysis during cold storage. STUDY DESIGN AND METHODS We characterized stored RBCs from two cohorts of TRT patients who were matched with control donors (no TRT) based upon sex, age, and ethnicity. We further evaluated the impact of testosterone deficiency (orchiectomy) on RBC metabolism in FVB/NJ mice. RBC metabolites were quantified by ultra-high-pressure liquid chromatography-mass spectrometry. RBC storage stability was determined in RBC units from TRT and controls by quantifying storage, osmotic, and oxidative hemolysis. RESULTS Orchiectomy in mice was associated with significant (P < 0.05) changes in RBC metabolism as compared with intact males including increased levels of acyl-carnitines, long-chain fatty acids (eg, docosapentaenoic acids), arginine, and dopamine. Stored RBCs from TRT patients exhibited higher levels of pentose phosphate pathway metabolites, glutathione, and oxidized purines (eg, hypoxanthine), suggestive of increased activation of antioxidant pathways in this group. Further analyses indicated significant changes in free fatty acids and acyl-carnitines in response to testosterone therapies. With regard to hemolysis, TRT was associated with enhanced susceptibility to osmotic hemolysis. Correlation analyses identified acyl-carnitines as significant modifiers of RBC predisposition to osmotic and oxidative hemolysis. CONCLUSIONS These observations provide new insights into testosterone-mediated changes in RBC metabolome and biology that may impact the storage capacity and posttransfusion efficacy of RBCs from TRT donors.
Collapse
Affiliation(s)
- Keisha Alexander
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | | | - Fang Fang
- RTI International, Research Triangle Park, North Carolina
| | - Derek Sinchar
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Joseph E. Kiss
- Vitalant, Pittsburgh, Pennsylvania
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
- Vitalant Research Institute, Denver, Colorado
- Division of Hematology, Department of Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - Tamir Kanias
- Vitalant Research Institute, Denver, Colorado
- Department of Pathology, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
49
|
Marin M, Roussel C, Dussiot M, Ndour PA, Hermine O, Colin Y, Gray A, Landrigan M, Le Van Kim C, Buffet PA, Amireault P. Metabolic rejuvenation upgrades circulatory functions of red blood cells stored under blood bank conditions. Transfusion 2020; 61:903-918. [PMID: 33381865 DOI: 10.1111/trf.16245] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 11/13/2020] [Accepted: 11/15/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Red blood cells (RBC) change upon hypothermic conservation, and storage for 6 weeks is associated with the short-term clearance of 15% to 20% of transfused RBCs. Metabolic rejuvenation applied to RBCs before transfusion replenishes energetic sources and reverses most storage-related alterations, but how it impacts RBC circulatory functions has not been fully elucidated. STUDY DESIGN AND METHODS Six RBC units stored under blood bank conditions were analyzed weekly for 6 weeks and rejuvenated on Day 42 with an adenine-inosine-rich solution. Impact of storage and rejuvenation on adenosine triphosphate (ATP) levels, morphology, accumulation of storage-induced microerythrocytes (SMEs), elongation under an osmotic gradient (by LORRCA), hemolysis, and phosphatidylserine (PS) exposure was evaluated. The impact of rejuvenation on filterability and adhesive properties of stored RBCs was also assessed. RESULTS Rejuvenation of RBCs restored intracellular ATP to almost normal levels and decreased the PS exposure from 2.78% to 0.41%. Upon rejuvenation, the proportion of SME dropped from 28.2% to 9.5%, while the proportion of normal-shaped RBCs (discocytes and echinocytes 1) increased from 47.7% to 67.1%. In LORCCA experiments, rejuvenation did not modify the capacity of RBCs to elongate and induced a reduction in cell volume. In functional tests, rejuvenation increased RBC filterability in a biomimetic splenic filter (+16%) and prevented their adhesion to endothelial cells (-87%). CONCLUSION Rejuvenation reduces the proportion of morphologically altered and adhesive RBCs that accumulate during storage. Along with the improvement in their filterability, these data show that rejuvenation improves RBC properties related to their capacity to persist in circulation after transfusion.
Collapse
Affiliation(s)
- Mickaël Marin
- Université de Paris, UMR_S1134, BIGR, INSERM, Paris, France.,Institut National de la Transfusion Sanguine, Paris, France.,Laboratoire d'Excellence GR-Ex, Paris, France
| | - Camille Roussel
- Université de Paris, UMR_S1134, BIGR, INSERM, Paris, France.,Institut National de la Transfusion Sanguine, Paris, France.,Laboratoire d'Excellence GR-Ex, Paris, France.,Université de Paris, U1163, Laboratory of cellular and molecular mechanisms of hematological disorders and therapeutic implications, INSERM, Paris, France
| | - Michael Dussiot
- Laboratoire d'Excellence GR-Ex, Paris, France.,Université de Paris, U1163, Laboratory of cellular and molecular mechanisms of hematological disorders and therapeutic implications, INSERM, Paris, France
| | - Papa A Ndour
- Université de Paris, UMR_S1134, BIGR, INSERM, Paris, France.,Institut National de la Transfusion Sanguine, Paris, France.,Laboratoire d'Excellence GR-Ex, Paris, France
| | - Olivier Hermine
- Laboratoire d'Excellence GR-Ex, Paris, France.,Université de Paris, U1163, Laboratory of cellular and molecular mechanisms of hematological disorders and therapeutic implications, INSERM, Paris, France.,Assistance publique des hôpitaux de Paris, Paris, France
| | - Yves Colin
- Université de Paris, UMR_S1134, BIGR, INSERM, Paris, France.,Institut National de la Transfusion Sanguine, Paris, France.,Laboratoire d'Excellence GR-Ex, Paris, France
| | - Alan Gray
- Citra labs, a Zimmer Biomet company, Braintree, Massachusetts, USA
| | - Matt Landrigan
- Zimmer Biomet Southwest Ohio, Braintree, Massachusetts, USA
| | - Caroline Le Van Kim
- Université de Paris, UMR_S1134, BIGR, INSERM, Paris, France.,Institut National de la Transfusion Sanguine, Paris, France.,Laboratoire d'Excellence GR-Ex, Paris, France
| | - Pierre A Buffet
- Université de Paris, UMR_S1134, BIGR, INSERM, Paris, France.,Institut National de la Transfusion Sanguine, Paris, France.,Laboratoire d'Excellence GR-Ex, Paris, France.,Assistance publique des hôpitaux de Paris, Paris, France
| | - Pascal Amireault
- Université de Paris, UMR_S1134, BIGR, INSERM, Paris, France.,Institut National de la Transfusion Sanguine, Paris, France.,Laboratoire d'Excellence GR-Ex, Paris, France.,Université de Paris, U1163, Laboratory of cellular and molecular mechanisms of hematological disorders and therapeutic implications, INSERM, Paris, France
| |
Collapse
|
50
|
Abstract
The Newcomb-Benford law - also known as the "law of anomalous numbers" or, more commonly, Benford's law - predicts that the distribution of the first significant digit of random numbers obtained from mixed probability distributions follows a predictable pattern and reveals some universal behavior. Specifically, given a dataset of empirical measures, the likelihood of the first digit of any number being 1 is ∼30 %, ∼18 % for 2, 12.5 % for 3 and so on, with a decreasing probability all the way to number 9. If the digits were distributed uniformly, all the numbers 1 through 9 would have the same probability to appear as the first digit in any given empirical random measurement. However, this is not the case, as this law defies common sense and seems to apply seamlessly to large data. The use of omics technologies and, in particular, metabolomics has generated a wealth of big data in the field of transfusion medicine. In the present meta-analysis, we focused on previous big data from metabolomics studies of relevance to transfusion medicine: one on the quality of stored red blood cells, one on the phenotypes of transfusion recipients, i.e. trauma patients suffering from trauma and hemorrhage, and one of relevance to the 2020 SARS-COV-2 global pandemic. We show that metabolomics data follow a Benford's law distribution, an observation that could be relevant for future application of the "law of anomalous numbers" in the field of quality control processes in transfusion medicine.
Collapse
Affiliation(s)
- Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, 80045 USA.
| |
Collapse
|