1
|
Yoon H, Pirofski LA. Generating the Evidence Base for Convalescent Plasma Use for a New Infectious Disease. Curr Top Microbiol Immunol 2024. [PMID: 39117847 DOI: 10.1007/82_2024_275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) swept across the world in the waning months of 2019 and emerged as the cause of the coronavirus disease 19 (COVID-19) pandemic in early 2020. The use of convalescent plasma (CP) for prior respiratory pandemics provided a strong biological rationale for the rapid deployment of COVID-19 convalescent plasma (CCP) in early 2020 when no validated treatments or prior immunity existed. CCP is an antiviral agent, with its activity against SARS-CoV-2 stemming from specific antibodies elicited by the virus. Early efforts to investigate the efficacy of CCP in randomized clinical trials (RCTs) that targeted hospitalized patients with COVID-19 did not demonstrate the overall efficacy of CCP despite signals of benefit in certain subgroups, such as those treated earlier in disease. In contrast, studies adhering to the principles of antibody therapy in their study design, choice of patient population, and product qualification, i.e., those that administered high levels of specific antibody during the viral phase of disease in immunocompromised or very early in immunocompetent individuals, demonstrated benefits. In this chapter, we leverage the knowledge gained from clinical studies of CCP for COVID-19 to propose a framework for future studies of CP for a new infectious disease. This framework includes obtaining high-quality CP and designing clinical studies that adhere to the principles of antibody therapy to generate a robust evidence base for using CP.
Collapse
Affiliation(s)
- Hyunah Yoon
- Division of Infectious Diseases, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA
| | - Liise-Anne Pirofski
- Division of Infectious Diseases, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA.
- Department of Microbiology and Immunology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA.
| |
Collapse
|
2
|
Roubinian NH, Greene J, Liu VX, Lee C, Mark DG, Vinson DR, Spencer BR, Bruhn R, Bravo M, Stone M, Custer B, Kleinman S, Busch MP, Norris PJ. Clinical outcomes in hospitalized plasma and platelet transfusion recipients prior to and following widespread blood donor SARS-CoV-2 infection and vaccination. Transfusion 2024; 64:53-67. [PMID: 38054619 PMCID: PMC10842807 DOI: 10.1111/trf.17616] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 12/07/2023]
Abstract
BACKGROUND The safety of transfusion of SARS-CoV-2 antibodies in high plasma volume blood components to recipients without COVID-19 is not established. We assessed whether transfusion of plasma or platelet products during periods of increasing prevalence of blood donor SARS-CoV-2 infection and vaccination was associated with changes in outcomes in hospitalized patients without COVID-19. METHODS We conducted a retrospective cohort study of hospitalized adults who received plasma or platelet transfusions at 21 hospitals during pre-COVID-19 (3/1/2018-2/29/2020), COVID-19 pre-vaccine (3/1/2020-2/28/2021), and COVID-19 post-vaccine (3/1/2021-8/31/2022) study periods. We used multivariable logistic regression with generalized estimating equations to adjust for demographics and comorbidities to calculate odds ratios (ORs) and 95% confidence intervals (CIs). RESULTS Among 21,750 hospitalizations of 18,584 transfusion recipients without COVID-19, there were 697 post-transfusion thrombotic events, and oxygen requirements were increased in 1751 hospitalizations. Intensive care unit length of stay (n = 11,683) was 3 days (interquartile range 1-5), hospital mortality occurred in 3223 (14.8%), and 30-day rehospitalization in 4144 (23.7%). Comparing the pre-COVID, pre-vaccine and post-vaccine study periods, there were no trends in thromboses (OR 0.9 [95% CI 0.8, 1.1]; p = .22) or oxygen requirements (OR 1.0 [95% CI 0.9, 1.1]; p = .41). In parallel, there were no trends across study periods for ICU length of stay (p = .83), adjusted hospital mortality (OR 1.0 [95% CI 0.9-1.0]; p = .36), or 30-day rehospitalization (p = .29). DISCUSSION Transfusion of plasma and platelet blood components collected during the pre-vaccine and post-vaccine periods of the COVID-19 pandemic was not associated with increased adverse outcomes in transfusion recipients without COVID-19.
Collapse
Affiliation(s)
- Nareg H Roubinian
- Kaiser Permanente Northern California Division of Research, Oakland, California, USA
- Vitalant Research Institute, San Francisco, California, USA
- Department of Laboratory Medicine, UCSF, San Francisco, California, USA
| | - John Greene
- Kaiser Permanente Northern California Division of Research, Oakland, California, USA
| | - Vincent X Liu
- Kaiser Permanente Northern California Division of Research, Oakland, California, USA
| | - Catherine Lee
- Kaiser Permanente Northern California Division of Research, Oakland, California, USA
| | - Dustin G Mark
- Kaiser Permanente Northern California Division of Research, Oakland, California, USA
| | - David R Vinson
- Kaiser Permanente Northern California Division of Research, Oakland, California, USA
| | - Bryan R Spencer
- American Red Cross, Scientific Affairs, Dedham, Massachusetts, USA
| | - Roberta Bruhn
- Vitalant Research Institute, San Francisco, California, USA
- Department of Laboratory Medicine, UCSF, San Francisco, California, USA
| | | | - Mars Stone
- Vitalant Research Institute, San Francisco, California, USA
- Department of Laboratory Medicine, UCSF, San Francisco, California, USA
| | - Brian Custer
- Vitalant Research Institute, San Francisco, California, USA
- Department of Laboratory Medicine, UCSF, San Francisco, California, USA
| | - Steve Kleinman
- University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael P Busch
- Vitalant Research Institute, San Francisco, California, USA
- Department of Laboratory Medicine, UCSF, San Francisco, California, USA
| | - Philip J Norris
- Vitalant Research Institute, San Francisco, California, USA
- Department of Laboratory Medicine, UCSF, San Francisco, California, USA
| |
Collapse
|
3
|
Bloch EM, Focosi D, Shoham S, Senefeld J, Tobian AAR, Baden LR, Tiberghien P, Sullivan DJ, Cohn C, Dioverti V, Henderson JP, So-Osman C, Juskewitch JE, Razonable RR, Franchini M, Goel R, Grossman BJ, Casadevall A, Joyner MJ, Avery RK, Pirofski LA, Gebo KA. Guidance on the Use of Convalescent Plasma to Treat Immunocompromised Patients With Coronavirus Disease 2019. Clin Infect Dis 2023; 76:2018-2024. [PMID: 36740590 PMCID: PMC10249987 DOI: 10.1093/cid/ciad066] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/23/2023] [Accepted: 02/03/2023] [Indexed: 02/07/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) convalescent plasma (CCP) is a safe and effective treatment for COVID-19 in immunocompromised (IC) patients. IC patients have a higher risk of persistent infection, severe disease, and death from COVID-19. Despite the continued clinical use of CCP to treat IC patients, the optimal dose, frequency/schedule, and duration of CCP treatment has yet to be determined, and related best practices guidelines are lacking. A group of individuals with expertise spanning infectious diseases, virology and transfusion medicine was assembled to render an expert opinion statement pertaining to the use of CCP for IC patients. For optimal effect, CCP should be recently and locally collected to match circulating variant. CCP should be considered for the treatment of IC patients with acute and protracted COVID-19; dosage depends on clinical setting (acute vs protracted COVID-19). CCP containing high-titer severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies, retains activity against circulating SARS-CoV-2 variants, which have otherwise rendered monoclonal antibodies ineffective.
Collapse
Affiliation(s)
- Evan M Bloch
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, Pisa, Italy
| | - Shmuel Shoham
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jonathon Senefeld
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Aaron A R Tobian
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Lindsey R Baden
- Department of Infectious Diseases, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Pierre Tiberghien
- Etablissement Français du Sang, La Plaine-St-Denis and Université de Franche-Comté, Besançon, France
| | - David J Sullivan
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Claudia Cohn
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Veronica Dioverti
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jeffrey P Henderson
- Departments of Internal Medicine (Division of Infectious Diseases) and Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Cynthia So-Osman
- Department Transfusion Medicine, Division Blood Bank, Sanquin Blood Supply Foundation, Amsterdam, The Netherlands
- Department Haematology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Justin E Juskewitch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester campus, Minnesota, USA
| | - Raymund R Razonable
- Department of Internal Medicine, Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, USA
| | - Massimo Franchini
- Department of Hematology and Transfusion Medicine, Carlo Poma Hospital, Mantua, Italy
| | - Ruchika Goel
- Division of Hematology/Oncology, Simmons Cancer Institute at SIU School of Medicine and Mississippi Valley Regional Blood Center, Springfield, Illinois, USA
| | - Brenda J Grossman
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Michael J Joyner
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Robin K Avery
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Liise-anne Pirofski
- Department of Medicine, Infectious Diseases, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Kelly A Gebo
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Shoham S, Batista C, Ben Amor Y, Ergonul O, Hassanain M, Hotez P, Kang G, Kim JH, Lall B, Larson HJ, Naniche D, Sheahan T, Strub-Wourgaft N, Sow SO, Wilder-Smith A, Yadav P, Bottazzi ME. Vaccines and therapeutics for immunocompromised patients with COVID-19. EClinicalMedicine 2023; 59:101965. [PMID: 37070102 PMCID: PMC10091856 DOI: 10.1016/j.eclinm.2023.101965] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/19/2023] Open
Abstract
The COVID-19 pandemic has disproportionately impacted immunocompromised patients. This diverse group is at increased risk for impaired vaccine responses, progression to severe disease, prolonged hospitalizations and deaths. At particular risk are people with deficiencies in lymphocyte number or function such as transplant recipients and those with hematologic malignancies. Such patients' immune responses to vaccination and infection are frequently impaired leaving them more vulnerable to prolonged high viral loads and severe complications of COVID-19. Those in turn, have implications for disease progression and persistence, development of immune escape variants and transmission of infection. Data to guide vaccination and treatment approaches in immunocompromised people are generally lacking and extrapolated from other populations. The large clinical trials leading to authorisation and approval of SARS-CoV-2 vaccines and therapeutics included very few immunocompromised participants. While experience is accumulating, studies focused on the special circumstances of immunocompromised patients are needed to inform prevention and treatment approaches.
Collapse
Affiliation(s)
- Shmuel Shoham
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Carolina Batista
- Médecins Sans Frontières, Rio de Janeiro, Brazil
- Baraka Impact Finance, Geneva, Switzerland
| | - Yanis Ben Amor
- Center for Sustainable Development, Columbia University, New York, NY, USA
| | - Onder Ergonul
- Koc University Research Center for Infectious Diseases, Istanbul, Turkey
| | - Mazen Hassanain
- College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Peter Hotez
- Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, TX, USA
| | | | | | - Bhavna Lall
- University of Houston Tilman J. Fertitta Family College of Medicine, Houston, TX, USA
| | | | - Denise Naniche
- ISGlobal, Barcelona Institute for Global Health, Hospital Clinic, University of Barcelona, Spain
| | - Timothy Sheahan
- University of North Carolina, Gillings School of Global Public Health, Chapel Hill, NC, USA
| | - Nathalie Strub-Wourgaft
- ISGlobal, Barcelona Institute for Global Health, Hospital Clinic, University of Barcelona, Spain
- Drugs for Neglected Diseases Initiative, Geneva, Switzerland
| | - Samba O. Sow
- Center for Vaccine Development, Bamako, Mali
- University of Maryland, MD, USA
| | - Annelies Wilder-Smith
- London School of Hygiene & Tropical Medicine, London, UK
- Heidelberg Institute of Global Health, University of Heidelberg, Heidelberg, Germany
| | - Prashant Yadav
- Center for Global Development, Washington, DC, USA
- Harvard Medical School, Boston, MA, USA
- Technology and Operations Management, INSEAD, Fontainebleau, France
| | - Maria Elena Bottazzi
- Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, TX, USA
| | - Lancet Commission on COVID-19 Vaccines and Therapeutics Task Force
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Médecins Sans Frontières, Rio de Janeiro, Brazil
- Baraka Impact Finance, Geneva, Switzerland
- Center for Sustainable Development, Columbia University, New York, NY, USA
- Koc University Research Center for Infectious Diseases, Istanbul, Turkey
- College of Medicine, King Saud University, Riyadh, Saudi Arabia
- Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, TX, USA
- Christian Medical College, Vellore, India
- International Vaccine Institute, Seoul, South Korea
- University of Houston Tilman J. Fertitta Family College of Medicine, Houston, TX, USA
- London School of Hygiene & Tropical Medicine, London, UK
- ISGlobal, Barcelona Institute for Global Health, Hospital Clinic, University of Barcelona, Spain
- University of North Carolina, Gillings School of Global Public Health, Chapel Hill, NC, USA
- Drugs for Neglected Diseases Initiative, Geneva, Switzerland
- Center for Vaccine Development, Bamako, Mali
- University of Maryland, MD, USA
- Heidelberg Institute of Global Health, University of Heidelberg, Heidelberg, Germany
- Center for Global Development, Washington, DC, USA
- Harvard Medical School, Boston, MA, USA
- Technology and Operations Management, INSEAD, Fontainebleau, France
| |
Collapse
|
5
|
Cvetkovic-Vega A, Urrunaga-Pastor D, Soto-Becerra P, Figueroa-Montes LE, Fernandez-Bolivar L, Alvizuri-Pastor S, Oyanguren-Miranda M, Neyra-Vera I, Carrillo-Ramos E, Sagástegui A, Contreras-Macazana R, Lecca-Rengifo D, Grande-Castro N, Apolaya-Segura M, Maguina JL. Post-vaccination seropositivity against SARS-CoV-2 in peruvian health workers vaccinated with BBIBP-CorV (Sinopharm). Travel Med Infect Dis 2022; 52:102514. [PMID: 36462747 PMCID: PMC9710108 DOI: 10.1016/j.tmaid.2022.102514] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/23/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022]
Abstract
OBJECTIVE To estimate the prevalence of post-vaccination seropositivity against SARS-CoV-2 and identify its predictors in Peruvian Social Health Insurance (EsSalud) personnel in 2021. METHODS We conducted a cross-sectional study in a representative simple stratified sample of EsSalud workers. We evaluated IgG anti-SARS-CoV-2 antibodies response (seropositivity) by passive (previous infection) and active immunization (vaccination), and epidemiological and occupational variables obtained by direct interview and a data collection form. Descriptive and inferential statistics were used with correction of sample weights adjusted for non-response rate, and crude and adjusted odds ratio (OR) and geometric mean ratio (GMR) with their respective 95% confidence intervals (95%CI) were estimated. RESULTS We enrolled 1077 subjects. Seropositivity was 67.4% (95%CI: 63.4-71.1). Predictors of seropositivity were age (negative relation; p < 0.001), previous infection (aOR = 11.7; 95%CI: 7.81-17.5), working in COVID-19 area (aOR = 1.47; 95%CI: 1.02-2.11) and time since the second dose. In relation to antibody levels measured by geometric means, there was an association between male sex (aGMR = 0.77; 95%CI: 0.74-0.80), age (negative relation; p < 0.001), previous infection (aGMR = 13.1; 95%CI:4.99-34.40), non-face-to-face/licensed work modality (aGMR = 0.78; 95%CI: 0.73-0.84), being a nursing technician (aGMR = 1.30; 95%CI: 1.20-1.41), working in administrative areas (aGMR = 1.17; 95%CI: 1.10-1.25), diagnostic support (aGMR = 1.07; 95%CI: 1.01-1.15), critical care (aGMR = 0.85; 95%CI: 0.79-0.93), and in a COVID-19 area (aGMR = 1.30; 95%CI: 1.24-1.36) and time since receiving the second dose (negative relation; p < 0.001). CONCLUSIONS Seropositivity and antibody levels decrease as the time since receiving the second dose increases. Older age and no history of previous infection were associated with lower seropositivity and antibody values. These findings may be useful for sentinel antibody surveillance and the design of booster dose strategies.
Collapse
Affiliation(s)
| | - Diego Urrunaga-Pastor
- Instituto de Evaluación de Tecnologías en Salud e Investigación - IETSI, EsSalud, Lima, Peru; Facultad de Ciencias de la Salud, Universidad Científica del Sur, Lima, Peru
| | - Percy Soto-Becerra
- Instituto de Evaluación de Tecnologías en Salud e Investigación - IETSI, EsSalud, Lima, Peru; Universidad Continental, Huancayo, Peru
| | | | - Lizette Fernandez-Bolivar
- Departamento de Patología Clínica, Servicio de Inmunología y Bioquímica, Hospital Nacional Edgardo Rebagliati Martins, EsSalud, Lima, Peru
| | - Sergio Alvizuri-Pastor
- Unidad de Inmunología Especializada, Hospital Nacional Guillermo Almenara Irigoyen, EsSalud, Lima, Peru
| | - Martin Oyanguren-Miranda
- Unidad de Cuidados Intensivos, Hospital Nacional Edgardo Rebagliati Martins, EsSalud, Lima, Peru
| | - Ibeth Neyra-Vera
- Departamento de Patología Clínica, Servicio de Inmunología y Bioquímica, Hospital Nacional Edgardo Rebagliati Martins, EsSalud, Lima, Peru
| | - Elizabeth Carrillo-Ramos
- Departamento de Patología Clínica, Hospital Nacional Edgardo Rebagliati Martins, EsSalud, Lima, Peru
| | - Arturo Sagástegui
- Departamento de Patología Clínica, Hospital Nacional Edgardo Rebagliati Martins, EsSalud, Lima, Peru
| | - Roxana Contreras-Macazana
- Departamento de Patología Clínica, Servicio de Bioquímica e Inmunoquímica, Hospital Nacional Alberto Sabogal Sologuren, EsSalud, Lima, Peru
| | - Diana Lecca-Rengifo
- Subgerencia de Proyectos Especiales, Gerencia de Oferta Flexible, EsSalud, Lima, Peru
| | - Nikolai Grande-Castro
- Departamento de Patología Clínica, Unidad de Inmuno-diagnóstico, Hospital Nacional Guillermo Almenara Irigoyen, EsSalud, Lima, Peru
| | - Moises Apolaya-Segura
- Instituto de Evaluación de Tecnologías en Salud e Investigación - IETSI, EsSalud, Lima, Peru
| | - Jorge L Maguina
- Instituto de Evaluación de Tecnologías en Salud e Investigación - IETSI, EsSalud, Lima, Peru.
| |
Collapse
|
6
|
Sullivan DJ, Franchini M, Joyner MJ, Casadevall A, Focosi D. Analysis of anti-SARS-CoV-2 Omicron-neutralizing antibody titers in different vaccinated and unvaccinated convalescent plasma sources. Nat Commun 2022; 13:6478. [PMID: 36309490 PMCID: PMC9617541 DOI: 10.1038/s41467-022-33864-y] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 10/04/2022] [Indexed: 01/19/2023] Open
Abstract
The latest SARS-CoV-2 variant of concern Omicron, with its immune escape from therapeutic anti-Spike monoclonal antibodies and WA-1 vaccine-elicited sera, demonstrates the continued relevance of COVID-19 convalescent plasma (CCP) therapies. Lessons learnt from previous usage of CCP suggests focusing on early outpatients and immunocompromised recipients, with high neutralizing antibody titer units. Here, we systematically review Omicron-neutralizing plasma activity data, and report that approximately 47% (424/902) of CCP samples from unvaccinated pre-Omicron donors neutralizes Omicron BA.1 with a very low geometric mean of geometric mean titers for 50% neutralization GM(GMT50) of ~13, representing a > 20-fold reduction from WA-1 neutralization. Non-convalescent subjects who had received two doses of mRNA vaccines had a GM(GMT50) for Omicron BA.1 neutralization of ~27. However, plasma from vaccinees recovering from either previous pre-Omicron variants of concern infection, Omicron BA.1 infection, or third-dose uninfected vaccinees was nearly 100% neutralizing against Omicron BA.1, BA.2 and BA.4/5 with GM(GMT(50)) all over 189, 10 times higher than pre-Omicron CCP. Fully vaccinated and post-BA.1 plasma (Vax-CCP) had a GM(GMT50) > 450 for BA.4/5 and >1,500 for BA.1 and BA.2. These findings have implications for both CCP stocks collected in prior pandemic periods and for future plans to restart CCP collections. Thus, Vax-CCP provides an effective tool to combat ongoing variants that escape therapeutic monoclonal antibodies.
Collapse
Affiliation(s)
- David J Sullivan
- Johns Hopkins Bloomberg School of Public Health and School of Medicine, Baltimore, MD, 21218, USA
| | - Massimo Franchini
- Division of Transfusion Medicine, Carlo Poma Hospital, 46100, Mantua, Italy
| | - Michael J Joyner
- Department of Anesthesiology & Perioperative Medicine, Mayo Clinic, Rochester, MN, 55902, USA
| | - Arturo Casadevall
- Johns Hopkins Bloomberg School of Public Health and School of Medicine, Baltimore, MD, 21218, USA
| | - Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, 56124, Pisa, Italy.
| |
Collapse
|
7
|
Focosi D, Franchini M, Pirofski LA, Burnouf T, Paneth N, Joyner MJ, Casadevall A. COVID-19 Convalescent Plasma and Clinical Trials: Understanding Conflicting Outcomes. Clin Microbiol Rev 2022; 35:e0020021. [PMID: 35262370 PMCID: PMC9491201 DOI: 10.1128/cmr.00200-21] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Convalescent plasma (CP) recurs as a frontline treatment in epidemics because it is available as soon as there are survivors. The COVID-19 pandemic represented the first large-scale opportunity to shed light on the mechanisms of action, safety, and efficacy of CP using modern evidence-based medicine approaches. Studies ranging from observational case series to randomized controlled trials (RCTs) have reported highly variable efficacy results for COVID-19 CP (CCP), resulting in uncertainty. We analyzed variables associated with efficacy, such as clinical settings, disease severity, CCP SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) antibody levels and function, dose, timing of administration (variously defined as time from onset of symptoms, molecular diagnosis, diagnosis of pneumonia, or hospitalization, or by serostatus), outcomes (defined as hospitalization, requirement for ventilation, clinical improvement, or mortality), CCP provenance and time for collection, and criteria for efficacy. The conflicting trial results, along with both recent WHO guidelines discouraging CCP usage and the recent expansion of the FDA emergency use authorization (EUA) to include outpatient use of CCP, create confusion for both clinicians and patients about the appropriate use of CCP. A review of 30 available RCTs demonstrated that signals of efficacy (including reductions in mortality) were more likely if the CCP neutralizing titer was >160 and the time to randomization was less than 9 days. The emergence of the Omicron variant also reminds us of the benefits of polyclonal antibody therapies, especially as a bridge to the development and availability of more specific therapies.
Collapse
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, Pisa, Italy
| | - Massimo Franchini
- Division of Transfusion Medicine, Carlo Poma Hospital, Mantua, Italy
| | - Liise-anne Pirofski
- Division of Infectious Diseases, Albert Einstein College of Medicine and Montefiore Medical Center, New York, New York, USA
| | - Thierry Burnouf
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Nigel Paneth
- Department of Epidemiology & Biostatistics and Pediatrics & Human Development, College of Human Medicine, Michigan State University, East Lansing, Michigan, USA
- Department of Pediatrics & Human Development, College of Human Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Michael J. Joyner
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Arturo Casadevall
- Department of Medicine, Johns Hopkins School of Public Health and School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
8
|
Sullivan DJ, Franchini M, Joyner MJ, Casadevall A, Focosi D. Analysis of anti-Omicron neutralizing antibody titers in different vaccinated and unvaccinated convalescent plasma sources. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2021.12.24.21268317. [PMID: 35982681 PMCID: PMC9387146 DOI: 10.1101/2021.12.24.21268317] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The latest SARS-CoV-2 variant of concern Omicron, with its immune escape from therapeutic anti-Spike monoclonal antibodies and WA-1 vaccine-elicited sera, demonstrates the continued relevance of COVID-19 convalescent plasma (CCP) therapies. Lessons learnt from previous usage of CCP suggests focusing on early outpatients and immunocompromised recipients, with high neutralizing antibody (nAb) titer units. In this analysis we systematically reviewed Omicron-neutralizing plasma activity data, and found that approximately 47% (424/902) of CCP from unvaccinated pre-Omicron donors neutralizes Omicron BA.1 with a very low geomean of geometric mean titers for 50% neutralization GM(GMT50) of about 13, representing a more than 20-fold reduction from WA-1 neutralization. Two doses of mRNA vaccines in nonconvalescent subjects had a similar 50% percent neutralization with Omicron BA.1 neutralization GM(GMT(50)) of about 27. However, plasma from vaccinees recovered from either previous pre-Omicron variants of concern infection, Omicron BA.1 infection, or third-dose uninfected vaccinees was nearly 100% neutralizing against Omicron BA.1, BA.2 and BA.4/5 with GM(GMT(50)) all over 189, 10 times higher than pre-Omicron CCP. Fully vaccinated and post-BA.1 plasma (Vax-CCP) had GM(GMT50) over 450 for BA.4/5 and over 1500 for BA.1 and BA.2. These findings have implications for both CCP stocks collected in prior pandemic periods and plans to restart CCP collections. Thus, Vax-CCP provides an effective tool to combat ongoing variants that defeat therapeutic monoclonal antibodies.
Collapse
Affiliation(s)
- David J Sullivan
- Johns Hopkins Bloomberg School of Public Health and School of Medicine, Baltimore, MD 21218, USA
| | - Massimo Franchini
- Division of Transfusion Medicine, Carlo Poma Hospital, 46100 Mantua, Italy
| | - Michael J. Joyner
- Department of Anesthesiology & Perioperative Medicine, Mayo Clinic, Rochester, MN 55902, USA
| | - Arturo Casadevall
- Johns Hopkins Bloomberg School of Public Health and School of Medicine, Baltimore, MD 21218, USA
| | - Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, 56124 Pisa, Italy
| |
Collapse
|
9
|
Shen H, Chen X, Zeng L, Xu X, Tao Y, Kang S, Lu Y, Lian M, Yang C, Zhu Z. Magnetofluid-Integrated Multicolor Immunochip for Visual Analysis of Neutralizing Antibodies to SARS-CoV-2 Variants. Anal Chem 2022; 94:8458-8465. [PMID: 35658117 PMCID: PMC9211038 DOI: 10.1021/acs.analchem.2c01260] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/20/2022] [Indexed: 11/29/2022]
Abstract
The global spread of SARS-CoV-2 virus has severely affected human health, life, and work. Vaccine immunization is considered to be an effective means to protect the body from infection. Therefore, timely analysis of the antibody level is helpful to identify people with low immune response or attenuated antibodies so as to carry out targeted and precise vaccine booster immunization. Herein, we develop a magnetofluid-integrated multicolor immunochip, as a sample-to-answer system in a fully enclosed space, for visual analysis of neutralizing antibodies of SARS-CoV-2. Generally, this chip adopts an innovative three-dimensional two-phase system that utilizes mineral oil to block the connection between reagent wells in the vertical direction and provides a wide interface for rapid and nondestructive shuttle of magnetic beads during the immunoassay. In order to obtain visualized signal output, gold nanorods with a size-dependent color effect are used as the colorful chromogenic substrates for evaluation of the antibody level. Using this chip, the neutralizing antibodies were successfully detected in vaccine-immunized volunteers with 83.3% sensitivity and 100% specificity. Furthermore, changes in antibody levels of the same individual over time were also reflected by the multicolor assay. Overall, benefiting from simple operation, airtight safety, and nonrequirement of external equipment, this platform can provide a new point-of-care testing strategy for alleviating the shortage of medical resources and promoting epidemic control in underdeveloped areas.
Collapse
Affiliation(s)
- Haicong Shen
- MOE
Key Laboratory of Spectrochemical Analysis & Instrumentation,
Collaborative Innovation Center of Chemistry for Energy Materials,
Key Laboratory for Chemical Biology of Fujian Province, State Key
Laboratory of Physical Chemistry of Solid Surfaces, Department of
Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xinying Chen
- Clinical
Laboratory, Xiamen University Hospital, Xiamen 361005, China
| | - Liuqing Zeng
- MOE
Key Laboratory of Spectrochemical Analysis & Instrumentation,
Collaborative Innovation Center of Chemistry for Energy Materials,
Key Laboratory for Chemical Biology of Fujian Province, State Key
Laboratory of Physical Chemistry of Solid Surfaces, Department of
Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xing Xu
- MOE
Key Laboratory of Spectrochemical Analysis & Instrumentation,
Collaborative Innovation Center of Chemistry for Energy Materials,
Key Laboratory for Chemical Biology of Fujian Province, State Key
Laboratory of Physical Chemistry of Solid Surfaces, Department of
Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yingzhou Tao
- MOE
Key Laboratory of Spectrochemical Analysis & Instrumentation,
Collaborative Innovation Center of Chemistry for Energy Materials,
Key Laboratory for Chemical Biology of Fujian Province, State Key
Laboratory of Physical Chemistry of Solid Surfaces, Department of
Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Siyin Kang
- MOE
Key Laboratory of Spectrochemical Analysis & Instrumentation,
Collaborative Innovation Center of Chemistry for Energy Materials,
Key Laboratory for Chemical Biology of Fujian Province, State Key
Laboratory of Physical Chemistry of Solid Surfaces, Department of
Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yinzhu Lu
- MOE
Key Laboratory of Spectrochemical Analysis & Instrumentation,
Collaborative Innovation Center of Chemistry for Energy Materials,
Key Laboratory for Chemical Biology of Fujian Province, State Key
Laboratory of Physical Chemistry of Solid Surfaces, Department of
Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Mingjian Lian
- Clinical
Laboratory, The First Affiliated Hospital
of Xiamen University, Xiamen 361005, China
| | - Chaoyong Yang
- MOE
Key Laboratory of Spectrochemical Analysis & Instrumentation,
Collaborative Innovation Center of Chemistry for Energy Materials,
Key Laboratory for Chemical Biology of Fujian Province, State Key
Laboratory of Physical Chemistry of Solid Surfaces, Department of
Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Institute
of Molecular Medicine, Department of Gastrointestinal Surgery, Renji
Hospital, School of Medicine, Shanghai Jiao
Tong University Shanghai, Shanghai 200127, China
| | - Zhi Zhu
- MOE
Key Laboratory of Spectrochemical Analysis & Instrumentation,
Collaborative Innovation Center of Chemistry for Energy Materials,
Key Laboratory for Chemical Biology of Fujian Province, State Key
Laboratory of Physical Chemistry of Solid Surfaces, Department of
Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
10
|
Burnouf T, Gathof B, Bloch EM, Bazin R, de Angelis V, Patidar GK, Rastvorceva RMG, Oreh A, Goel R, Rahimi-Levene N, Hindawi S, Al-Riyami AZ, So-Osman C. Production and Quality Assurance of Human Polyclonal Hyperimmune Immunoglobulins against SARS-CoV-2. Transfus Med Rev 2022; 36:125-132. [PMID: 35879213 PMCID: PMC9183240 DOI: 10.1016/j.tmrv.2022.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 12/12/2022]
Affiliation(s)
- Thierry Burnouf
- College of Biomedical Engineering, Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei, Taiwan; International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan.
| | - Birgit Gathof
- Department of Transfusion Medicine, University Hospital of Cologne, Köln, Germany.
| | - Evan M Bloch
- Division of Transfusion Medicine, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Renée Bazin
- Héma-Québec, Medical Affairs and Innovation, Québec, Canada
| | | | - Gopal Kumar Patidar
- Department of Transfusion Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Rada M Grubovic Rastvorceva
- Institute for Transfusion Medicine of RNM, Skopje, North Macedonia; Faculty of Medical Sciences, University Goce Delcev, Štip, North Macedonia
| | - Adaeze Oreh
- Department of Planning, Research and Statistics, National Blood Service Commission, Federal Ministry of Health, Abuja, Nigeria
| | - Ruchika Goel
- Division of Transfusion Medicine, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Division of Hematology/Oncology, Simmons Cancer Institute at SIU School of Medicine and ImpactLife Blood Center, Springfield, IL, USA
| | | | - Salwa Hindawi
- Haematology Department, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Arwa Z Al-Riyami
- Department of Hematology, Sultan Qaboos University Hospital, Muscat, Sultanate of Oman
| | - Cynthia So-Osman
- Department of Haematology, Erasmus Medical Centre, Rotterdam, The Netherlands; Unit Transfusion Medicine, Sanquin Blood Supply Foundation, Amsterdam, The Netherlands
| |
Collapse
|
11
|
Patil R, Shanbhag S, Shankarkumar A, Madkaikar M. Antibody profile in post-vaccinated & SARS-CoV-2 infected individuals. Indian J Med Res 2022; 155:538-545. [PMID: 36124500 PMCID: PMC9807196 DOI: 10.4103/ijmr.ijmr_3330_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Indexed: 02/04/2023] Open
Abstract
Background & objectives During the COVID-19 pandemic it was important to assess the antibody profile in individuals vaccinated with Covaxin (BBV152) and Covishield (ChAdOx1 nCoV-19) with both 28 and 84 days gaps between two doses, those infected with SARS-CoV-2 and post-COVID-19-infected individuals vaccinated with only one dose of either of the vaccines. The present study was aimed to assess these objectives. Methods Fifty real time reverse transcription-polymerase chain reaction (qRT-PCR)-confirmed COVID-19-infected individuals, along with 90 COVID-19-naïve (BBV152 and ChAdOx1 nCov-19)-vaccinated individuals, were included in the study. Individuals who received a single dose of either vaccine with a confirmed past diagnosis of SARS-CoV-2 infection (n=15) were also included. Blood samples were collected strictly between the 4th and 5th wk after development of symptoms for SARS-CoV-2 infected individuals and after the first/second vaccination dose. Antibody profile assessment was done using whole-virus, spike-receptor binding domain (RBD) and nucleocapsid-specific ELISA kits along with neutralizing antibody kit. Results There was an overall 97.7 per cent seropositivity rate in vaccinated individuals, and a strong correlation (R2=0.8, P<0.001) between neutralizing and spike-RBD antibodies. Among individuals who received two standard doses of ChAdOx1 nCoV-19 vaccine, the spike antibody levels developed were of higher titre with a longer prime boost interval than in those with shorter intervals (P<0.01). Individuals vaccinated with two doses as well as only one dose post-SARS-CoV-2 infection had high neutralizing and spike-specific antibodies. Interpretation & conclusions High neutralizing and spike-specific antibodies were developed in individuals vaccinated only with one dose of either vaccine post-SARS-CoV-2 infection. With the main priority being vaccinating majority of the population in our country, single-dose administration to such individuals would be a sensible way to make the most of the limited supplies. Furthermore, neutralizing antibody levels observed in COVID-19-naïve vaccinees imply the need for booster vaccination.
Collapse
Affiliation(s)
- Rucha Patil
- Department of Haemostasis and Thrombosis, ICMR-National Institute of Immunohaematology, Mumbai, Maharashtra, India
| | - Sharda Shanbhag
- Department of Haemostasis and Thrombosis, ICMR-National Institute of Immunohaematology, Mumbai, Maharashtra, India
| | - Aruna Shankarkumar
- Department of Haemostasis and Thrombosis, ICMR-National Institute of Immunohaematology, Mumbai, Maharashtra, India
| | - Manisha Madkaikar
- Department of Haemostasis and Thrombosis, ICMR-National Institute of Immunohaematology, Mumbai, Maharashtra, India
| |
Collapse
|
12
|
Leon J, Merrill AE, Rogers K, Kurt J, Dempewolf S, Ehlers A, Jackson JB, Knudson CM. SARS-CoV-2 antibody changes in patients receiving COVID-19 convalescent plasma from normal and vaccinated donors. Transfus Apher Sci 2022; 61:103326. [PMID: 34862140 PMCID: PMC8608660 DOI: 10.1016/j.transci.2021.103326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/18/2021] [Accepted: 11/21/2021] [Indexed: 01/25/2023]
Abstract
Vaccination has been shown to stimulate remarkably high antibody levels in donors who have recovered from COVID-19. Our objective was to measure patient antibody levels before and after transfusion with COVID-19 Convalescent Plasma (CCP) and compare the antibody levels following transfusion of CCP from vaccinated and nonvaccinated donors. Plasma samples before and after transfusion were obtained from 25 recipients of CCP and COVID-19 antibody levels measured. Factors that effect changes in antibody levels were examined. In the 21 patients who received CCP from nonvaccinated donors, modest increases in antibody levels were observed. Patients who received two units were more likely to seroconvert than those receiving just one unit. The strongest predictor of changes in patient antibody level was the CCP dose, calculated by the unit volume multiplied by the donor antibody level. Using patient plasma volume and donor antibody level, the post-transfusion antibody level could be predicted with reasonable accuracy(R2> 0.90). In contrast, the 4 patients who received CCP from vaccinated donors all had dramatic increases in antibody levels following transfusion of a single unit. In this subset of recipients, antibody levels observed after transfusion of CCP were comparable to those seen in donors who had fully recovered from COVID-19. If available, CCP from vaccinated donors with very high antibody levels should be used. One unit of CCP from vaccinated donors increases patient antibody levels much more than 1 or 2 units of CCP from unvaccinated donors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - C. Michael Knudson
- Corresponding author at: Department of Pathology, University of Iowa Hospitals and Clinics, 200 Hawkins Dr., C250 GH, United States
| |
Collapse
|
13
|
Van Rompay KKA, Olstad KJ, Sammak RL, Dutra J, Watanabe JK, Usachenko JL, Immareddy R, Roh JW, Verma A, Shaan Lakshmanappa Y, Schmidt BA, Di Germanio C, Rizvi N, Liu H, Ma ZM, Stone M, Simmons G, Dumont LJ, Allen AM, Lockwood S, Pollard RE, Ramiro de Assis R, Yee JL, Nham PB, Ardeshir A, Deere JD, Jain A, Felgner PL, Coffey LL, Iyer SS, Hartigan-O’Connor DJ, Busch MP, Reader JR. Early post-infection treatment of SARS-CoV-2 infected macaques with human convalescent plasma with high neutralizing activity had no antiviral effects but moderately reduced lung inflammation. PLoS Pathog 2022; 18:e1009925. [PMID: 35443018 PMCID: PMC9060337 DOI: 10.1371/journal.ppat.1009925] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 05/02/2022] [Accepted: 03/24/2022] [Indexed: 11/24/2022] Open
Abstract
Early in the SARS-CoV-2 pandemic, there was a high level of optimism based on observational studies and small controlled trials that treating hospitalized patients with convalescent plasma from COVID-19 survivors (CCP) would be an important immunotherapy. However, as more data from controlled trials became available, the results became disappointing, with at best moderate evidence of efficacy when CCP with high titers of neutralizing antibodies was used early in infection. To better understand the potential therapeutic efficacy of CCP, and to further validate SARS-CoV-2 infection of macaques as a reliable animal model for testing such strategies, we inoculated 12 adult rhesus macaques with SARS-CoV-2 by intratracheal and intranasal routes. One day later, 8 animals were infused with pooled human CCP with a high titer of neutralizing antibodies (RVPN NT50 value of 3,003), while 4 control animals received normal human plasma. Animals were monitored for 7 days. Animals treated with CCP had detectable but low levels of antiviral antibodies after infusion. In comparison to the control animals, CCP-treated animals had similar levels of viral RNA in upper and lower respiratory tract secretions, similar detection of viral RNA in lung tissues by in situ hybridization, but lower amounts of infectious virus in the lungs. CCP-treated animals had a moderate, but statistically significant reduction in interstitial pneumonia, as measured by comprehensive lung histology. Thus overall, therapeutic benefits of CCP were marginal and inferior to results obtained earlier with monoclonal antibodies in this animal model. By highlighting strengths and weaknesses, data of this study can help to further optimize nonhuman primate models to provide proof-of-concept of intervention strategies, and guide the future use of convalescent plasma against SARS-CoV-2 and potentially other newly emerging respiratory viruses.
Collapse
Affiliation(s)
- Koen K. A. Van Rompay
- California National Primate Research Center, University of California, Davis, California, United States of America
- Department of Pathology, Microbiology and Immunology, University of California, Davis, California, United States of America
| | - Katherine J. Olstad
- California National Primate Research Center, University of California, Davis, California, United States of America
- Department of Pathology, Microbiology and Immunology, University of California, Davis, California, United States of America
| | - Rebecca L. Sammak
- California National Primate Research Center, University of California, Davis, California, United States of America
| | - Joseph Dutra
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, California, United States of America
| | - Jennifer K. Watanabe
- California National Primate Research Center, University of California, Davis, California, United States of America
| | - Jodie L. Usachenko
- California National Primate Research Center, University of California, Davis, California, United States of America
| | - Ramya Immareddy
- California National Primate Research Center, University of California, Davis, California, United States of America
| | - Jamin W. Roh
- Center for Immunology and Infectious Diseases, University of California, Davis, California, United States of America
- Graduate Group in Immunology, University of California, Davis, California, United States of America
| | - Anil Verma
- Center for Immunology and Infectious Diseases, University of California, Davis, California, United States of America
| | - Yashavanth Shaan Lakshmanappa
- Center for Immunology and Infectious Diseases, University of California, Davis, California, United States of America
| | - Brian A. Schmidt
- Center for Immunology and Infectious Diseases, University of California, Davis, California, United States of America
| | - Clara Di Germanio
- Vitalant Research Institute, San Francisco, California, United States of America
| | - Nabeela Rizvi
- Vitalant Research Institute, San Francisco, California, United States of America
| | - Hongwei Liu
- Department of Pathology, Microbiology and Immunology, University of California, Davis, California, United States of America
| | - Zhong-Min Ma
- California National Primate Research Center, University of California, Davis, California, United States of America
| | - Mars Stone
- Vitalant Research Institute, San Francisco, California, United States of America
| | - Graham Simmons
- Vitalant Research Institute, San Francisco, California, United States of America
| | - Larry J. Dumont
- Vitalant Research Institute, Denver, Colorado; University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - A. Mark Allen
- California National Primate Research Center, University of California, Davis, California, United States of America
| | - Sarah Lockwood
- California National Primate Research Center, University of California, Davis, California, United States of America
| | - Rachel E. Pollard
- School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - Rafael Ramiro de Assis
- Vaccine Research and Development Center, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California, United States of America
| | - JoAnn L. Yee
- California National Primate Research Center, University of California, Davis, California, United States of America
| | - Peter B. Nham
- California National Primate Research Center, University of California, Davis, California, United States of America
| | - Amir Ardeshir
- California National Primate Research Center, University of California, Davis, California, United States of America
| | - Jesse D. Deere
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, California, United States of America
| | - Aarti Jain
- Vaccine Research and Development Center, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California, United States of America
| | - Philip L. Felgner
- Vaccine Research and Development Center, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California, United States of America
| | - Lark L. Coffey
- Department of Pathology, Microbiology and Immunology, University of California, Davis, California, United States of America
| | - Smita S. Iyer
- California National Primate Research Center, University of California, Davis, California, United States of America
- Department of Pathology, Microbiology and Immunology, University of California, Davis, California, United States of America
- Center for Immunology and Infectious Diseases, University of California, Davis, California, United States of America
| | - Dennis J. Hartigan-O’Connor
- California National Primate Research Center, University of California, Davis, California, United States of America
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, California, United States of America
| | - Michael P. Busch
- Vitalant Research Institute, San Francisco, California, United States of America
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - J. Rachel Reader
- California National Primate Research Center, University of California, Davis, California, United States of America
- Department of Pathology, Microbiology and Immunology, University of California, Davis, California, United States of America
| |
Collapse
|
14
|
Hamady A, Lee J, Loboda ZA. Waning antibody responses in COVID-19: what can we learn from the analysis of other coronaviruses? Infection 2022; 50:11-25. [PMID: 34324165 PMCID: PMC8319587 DOI: 10.1007/s15010-021-01664-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 07/08/2021] [Indexed: 12/16/2022]
Abstract
OBJECTIVES The coronavirus disease 2019 (COVID-19), caused by the novel betacoronavirus severe acute respiratory syndrome 2 (SARS-CoV-2), was declared a pandemic in March 2020. Due to the continuing surge in incidence and mortality globally, determining whether protective, long-term immunity develops after initial infection or vaccination has become critical. METHODS/RESULTS In this narrative review, we evaluate the latest understanding of antibody-mediated immunity to SARS-CoV-2 and to other coronaviruses (SARS-CoV, Middle East respiratory syndrome coronavirus and the four endemic human coronaviruses) in order to predict the consequences of antibody waning on long-term immunity against SARS-CoV-2. We summarise their antibody dynamics, including the potential effects of cross-reactivity and antibody waning on vaccination and other public health strategies. At present, based on our comparison with other coronaviruses we estimate that natural antibody-mediated protection for SARS-CoV-2 is likely to last for 1-2 years and therefore, if vaccine-induced antibodies follow a similar course, booster doses may be required. However, other factors such as memory B- and T-cells and new viral strains will also affect the duration of both natural and vaccine-mediated immunity. CONCLUSION Overall, antibody titres required for protection are yet to be established and inaccuracies of serological methods may be affecting this. We expect that with standardisation of serological testing and studies with longer follow-up, the implications of antibody waning will become clearer.
Collapse
Affiliation(s)
- Ali Hamady
- Department of Immunology and Inflammation, Imperial College London, London, UK
| | - JinJu Lee
- Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Zuzanna A Loboda
- Department of Immunology and Inflammation, Imperial College London, London, UK.
| |
Collapse
|
15
|
Focosi D, Franchini M, Joyner MJ, Casadevall A. Are convalescent plasma stocks collected during former COVID-19 waves still effective against current SARS-CoV-2 variants? Vox Sang 2022; 117:641-646. [PMID: 35023163 DOI: 10.1111/vox.13239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/06/2021] [Accepted: 12/06/2021] [Indexed: 12/01/2022]
Abstract
COVID-19 convalescent plasma (CCP) was among the few frontline therapies used to treat COVID-19. After large randomized controlled trials (RCTs) relying on late use in hospitalized patients and/or low antibody titres failed to meet their predefined primary endpoint, the infectious disease community reduced usage of CCP in favour of monoclonal antibodies. Consequently, there are CCP stocks at most transfusion centres worldwide, although scattered usage continues. Further, better designed RCTs are also being launched. The urgent question here is: should we use CCP units collected months before given the largely changed viral variant landscape? We review here in vitro evidence that discourages usage of such CCP units against Delta and other variants of concern. CCP collections should be continued in order to update the armamentarium of therapeutics against vaccine breakthrough infections or in unvaccinated patients and is especially relevant in next-generation RCTs.
Collapse
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, Pisa, Italy
| | - Massimo Franchini
- Division of Transfusion Medicine, Carlo Poma Hospital, Mantua, Italy
| | - Michael J Joyner
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Arturo Casadevall
- Department of Medicine, Johns Hopkins School of Public Health and School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
16
|
Volk A, Covini-Souris C, Kuehnel D, De Mey C, Römisch J, Schmidt T. SARS-CoV-2 Neutralization in Convalescent Plasma and Commercial Lots of Plasma-Derived Immunoglobulin. BioDrugs 2022; 36:41-53. [PMID: 34843105 PMCID: PMC8628143 DOI: 10.1007/s40259-021-00511-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2021] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Patients with primary or secondary immunodeficiency (PID or SID) face increased insecurity and discomfort in the light of the COVID-19 pandemic, not knowing if and to what extent their comorbidities may impact the course of a potential SARS-CoV-2 infection. Furthermore, recently available vaccination options might not be amenable or effective for all patients in this heterogeneous population. Therefore, these patients often rely on passive immunization with plasma-derived, intravenous or subcutaneous immunoglobulin (IVIG/SCIG). Whether the ongoing COVID-19 pandemic and/or the progress in vaccination programs lead to increased and potentially protective titers in plasma-derived immunoglobulins (Ig) indicated (e.g., for humoral immunodeficiency) remains a pressing question for this patient population. PURPOSE We investigated SARS-CoV-2 reactivity of US plasma-derived IVIG/SCIG products from the end of 2020 until June 2021 as well as in convalescent plasma (CP) from May 2020 to August 2020 to determine whether potentially neutralizing antibody titers may be present. METHODS Final containers of IVIG/SCIG and CP donations were analyzed by commercial ELISA for anti-SARS-CoV-2 S1-receptor binding domain (RBD) IgG as well as microneutralization assay using a patient-derived SARS-CoV-2 (D614G) isolate. Neutralization capacities of 313 single plasma donations and 119 plasma-derived IVIG/SCIG lots were determined. Results obtained from both analytical methods were normalized against the WHO International Standard. Finally, based on dense pharmacokinetic profiles of an IVIG preparation from previously published investigations, possible steady-state plasma levels of SARS-CoV-2 neutralization capacities were approximated based on currently measured anti-SARS-CoV-2 potencies in IVIG/SCIG preparations. RESULTS CP donations presented with high variability with regards to anti-SARS-CoV-2 reactivity in ELISA as well as in neutralization testing. While approximately 50% of convalescent donations were not/low neutralizing, approximately 10% were at or above 600 IU/mL. IVIG/SCIG lots derived from pre-pandemic plasma donations did not show neutralizing capacities for SARS-CoV-2. Lots produced between December 2020 and June 2021 entailing plasma donations after the emergence of SARS-CoV-2 showed a rapid and constant increase in anti-SARS-CoV-2 reactivity and neutralization capacity over time. While lot-to-lot variability was substantial, neutralization capacity increased from a mean of 21 IU/mL in December 2020 to 506 IU/mL in June 2021 with a maximum of 864 IU/mL for the most recent lots. Pharmacokinetic extrapolations, based on non-compartmental superposition principles using steady-state reference profiles from previously published pharmacokinetic investigations on IVIG in PID, yielded potential steady-state trough plasma levels of 16 IU/mL of neutralizing SARS-CoV-2 IgG based on the average final container concentration from May 2021 of 216 IU/mL. Maximum extrapolated trough levels could reach 64 IU/mL based on the latest maximal final container potency tested in June 2021. CONCLUSIONS SARS-CoV-2 reactivity and neutralization capacity in IVIG/SCIG produced from US plasma rapidly and in part exponentially increased in the first half of 2021. The observed increase of final container potencies is likely trailing the serological status of the US donor population in terms of COVID-19 convalescence and vaccination by at least 5 months due to production lead times and should in principle continue at least until Fall 2021. In summary, the data support rapidly increasing levels of anti-SARS-CoV-2 antibodies in IVIG/SCIG products, implicating that a certain level of protection could be possible against COVID-19 for regularly substituted PID/SID patients. Nevertheless, more research is still needed to confirm which plasma levels are needed to provide protection against SARS-CoV-2 infection in immune-compromised patients.
Collapse
Affiliation(s)
- Andreas Volk
- Virus and Prion Validation, Octapharma Biopharmaceuticals GmbH, Frankfurt, Germany.
| | | | - Denis Kuehnel
- Virus and Prion Validation, Octapharma Biopharmaceuticals GmbH, Frankfurt, Germany
| | | | - Jürgen Römisch
- R&D Plasma, Octapharma Pharmazeutika Produktionsgesellschaft m.b.H., Vienna, Austria
| | - Torben Schmidt
- Virus and Prion Validation, Octapharma Biopharmaceuticals GmbH, Frankfurt, Germany
| |
Collapse
|
17
|
Van Rompay KKA, Olstad KJ, Sammak RL, Dutra J, Watanabe JK, Usachenko JL, Immareddy R, Roh JW, Verma A, Shaan Lakshmanappa Y, Schmidt BA, Di Germanio C, Rizvi N, Stone M, Simmons G, Dumont LJ, Allen AM, Lockwood S, Pollard RE, de Assis RR, Yee JL, Nham PB, Ardeshir A, Deere JD, Patterson J, Jain A, Felgner PL, Iyer SS, Hartigan-O'Connor DJ, Busch MP, Reader JR. Early post-infection treatment of SARS-CoV-2 infected macaques with human convalescent plasma with high neutralizing activity reduces lung inflammation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.09.01.458520. [PMID: 34494025 DOI: 10.1101/2021.08.06.455491] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
UNLABELLED Early in the SARS-CoV-2 pandemic, there was a high level of optimism based on observational studies and small controlled trials that treating hospitalized patients with convalescent plasma from COVID-19 survivors (CCP) would be an important immunotherapy. However, as more data from controlled trials became available, the results became disappointing, with at best moderate evidence of efficacy when CCP with high titers of neutralizing antibodies was used early in infection. To better understand the potential therapeutic efficacy of CCP, and to further validate SARS-CoV-2 infection of macaques as a reliable animal model for testing such strategies, we inoculated 12 adult rhesus macaques with SARS-CoV-2 by intratracheal and intranasal routes. One day later, 8 animals were infused with pooled human CCP with a high titer of neutralizing antibodies (RVPN NT 50 value of 3,003), while 4 control animals received normal human plasma. Animals were monitored for 7 days. Animals treated with CCP had detectable levels of antiviral antibodies after infusion. In comparison to the control animals, they had similar levels of virus replication in the upper and lower respiratory tract, but had significantly reduced interstitial pneumonia, as measured by comprehensive lung histology. By highlighting strengths and weaknesses, data of this study can help to further optimize nonhuman primate models to provide proof-of-concept of intervention strategies, and guide the future use of convalescent plasma against SARS-CoV-2 and potentially other newly emerging respiratory viruses. AUTHOR SUMMARY The results of treating SARS-CoV-2 infected hospitalized patients with COVID-19 convalescent plasma (CCP), collected from survivors of natural infection, have been disappointing. The available data from various studies indicate at best moderate clinical benefits only when CCP with high titer of neutralizing antibodies was infused early in infection. The macaque model of SARS-CoV-2 infection can be useful to gain further insights in the value of CCP therapy. In this study, animals were infected with SARS-CoV-2 and the next day, were infused with pooled human convalescent plasma, selected to have a very high titer of neutralizing antibodies. While administration of CCP did not result in a detectable reduction in virus replication in the respiratory tract, it significantly reduced lung inflammation. These data, combined with the results of monoclonal antibody studies, emphasize the need to use products with high titers of neutralizing antibodies, and guide the future development of CCP-based therapies.
Collapse
Affiliation(s)
- Koen K A Van Rompay
- California National Primate Research Center, University of California, Davis, CA 95616
- Department of Pathology, Microbiology and Immunology, University of California, Davis, CA 95616
| | - Katherine J Olstad
- California National Primate Research Center, University of California, Davis, CA 95616
- Department of Pathology, Microbiology and Immunology, University of California, Davis, CA 95616
| | - Rebecca L Sammak
- California National Primate Research Center, University of California, Davis, CA 95616
| | - Joseph Dutra
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA 95616
| | - Jennifer K Watanabe
- California National Primate Research Center, University of California, Davis, CA 95616
| | - Jodie L Usachenko
- California National Primate Research Center, University of California, Davis, CA 95616
| | - Ramya Immareddy
- California National Primate Research Center, University of California, Davis, CA 95616
| | - Jamin W Roh
- Center for Immunology and Infectious Diseases, University of California, Davis, CA 95616
- Graduate Group in Immunology, University of California, Davis, CA 95616
| | - Anil Verma
- Center for Immunology and Infectious Diseases, University of California, Davis, CA 95616
| | | | - Brian A Schmidt
- Center for Immunology and Infectious Diseases, University of California, Davis, CA 95616
| | | | - Nabeela Rizvi
- Vitalant Research Institute, San Francisco, CA 94118
| | - Mars Stone
- Vitalant Research Institute, San Francisco, CA 94118
| | | | - Larry J Dumont
- Vitalant Research Institute, Denver, CO 80230; University of Colorado School of Medicine, Aurora, CO 80045
| | - A Mark Allen
- California National Primate Research Center, University of California, Davis, CA 95616
| | - Sarah Lockwood
- California National Primate Research Center, University of California, Davis, CA 95616
| | - Rachel E Pollard
- School of Veterinary Medicine, University of California, Davis, CA 95616
| | - Rafael Ramiro de Assis
- Vaccine Research and Development Center, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA 92697
| | - JoAnn L Yee
- California National Primate Research Center, University of California, Davis, CA 95616
| | - Peter B Nham
- California National Primate Research Center, University of California, Davis, CA 95616
| | - Amir Ardeshir
- California National Primate Research Center, University of California, Davis, CA 95616
| | - Jesse D Deere
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA 95616
| | - Jean Patterson
- Translational Research Section, Virology Branch, DMID/NIAID/NIH, MD 20852
| | - Aarti Jain
- Vaccine Research and Development Center, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA 92697
| | - Philip L Felgner
- Vaccine Research and Development Center, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA 92697
| | - Smita S Iyer
- California National Primate Research Center, University of California, Davis, CA 95616
- Department of Pathology, Microbiology and Immunology, University of California, Davis, CA 95616
- Center for Immunology and Infectious Diseases, University of California, Davis, CA 95616
| | - Dennis J Hartigan-O'Connor
- California National Primate Research Center, University of California, Davis, CA 95616
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA 95616
| | - Michael P Busch
- Vitalant Research Institute, San Francisco, CA 94118
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, 94118
| | - J Rachel Reader
- California National Primate Research Center, University of California, Davis, CA 95616
- Department of Pathology, Microbiology and Immunology, University of California, Davis, CA 95616
| |
Collapse
|
18
|
Van Rompay KK, Olstad KJ, Sammak RL, Dutra J, Watanabe JK, Usachenko JL, Immareddy R, Roh JW, Verma A, Shaan Lakshmanappa Y, Schmidt BA, Di Germanio C, Rizvi N, Stone M, Simmons G, Dumont LJ, Allen AM, Lockwood S, Pollard RE, de Assis RR, Yee JL, Nham PB, Ardeshir A, Deere JD, Patterson J, Jain A, Felgner PL, Iyer SS, Hartigan-O’Connor DJ, Busch MP, Reader JR. Early post-infection treatment of SARS-CoV-2 infected macaques with human convalescent plasma with high neutralizing activity reduces lung inflammation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.09.01.458520. [PMID: 34494025 PMCID: PMC8423222 DOI: 10.1101/2021.09.01.458520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Early in the SARS-CoV-2 pandemic, there was a high level of optimism based on observational studies and small controlled trials that treating hospitalized patients with convalescent plasma from COVID-19 survivors (CCP) would be an important immunotherapy. However, as more data from controlled trials became available, the results became disappointing, with at best moderate evidence of efficacy when CCP with high titers of neutralizing antibodies was used early in infection. To better understand the potential therapeutic efficacy of CCP, and to further validate SARS-CoV-2 infection of macaques as a reliable animal model for testing such strategies, we inoculated 12 adult rhesus macaques with SARS-CoV-2 by intratracheal and intranasal routes. One day later, 8 animals were infused with pooled human CCP with a high titer of neutralizing antibodies (RVPN NT 50 value of 3,003), while 4 control animals received normal human plasma. Animals were monitored for 7 days. Animals treated with CCP had detectable levels of antiviral antibodies after infusion. In comparison to the control animals, they had similar levels of virus replication in the upper and lower respiratory tract, but had significantly reduced interstitial pneumonia, as measured by comprehensive lung histology. By highlighting strengths and weaknesses, data of this study can help to further optimize nonhuman primate models to provide proof-of-concept of intervention strategies, and guide the future use of convalescent plasma against SARS-CoV-2 and potentially other newly emerging respiratory viruses. AUTHOR SUMMARY The results of treating SARS-CoV-2 infected hospitalized patients with COVID-19 convalescent plasma (CCP), collected from survivors of natural infection, have been disappointing. The available data from various studies indicate at best moderate clinical benefits only when CCP with high titer of neutralizing antibodies was infused early in infection. The macaque model of SARS-CoV-2 infection can be useful to gain further insights in the value of CCP therapy. In this study, animals were infected with SARS-CoV-2 and the next day, were infused with pooled human convalescent plasma, selected to have a very high titer of neutralizing antibodies. While administration of CCP did not result in a detectable reduction in virus replication in the respiratory tract, it significantly reduced lung inflammation. These data, combined with the results of monoclonal antibody studies, emphasize the need to use products with high titers of neutralizing antibodies, and guide the future development of CCP-based therapies.
Collapse
Affiliation(s)
- Koen K.A. Van Rompay
- California National Primate Research Center, University of California, Davis, CA 95616
- Department of Pathology, Microbiology and Immunology, University of California, Davis, CA 95616
| | - Katherine J. Olstad
- California National Primate Research Center, University of California, Davis, CA 95616
- Department of Pathology, Microbiology and Immunology, University of California, Davis, CA 95616
| | - Rebecca L. Sammak
- California National Primate Research Center, University of California, Davis, CA 95616
| | - Joseph Dutra
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA 95616
| | - Jennifer K. Watanabe
- California National Primate Research Center, University of California, Davis, CA 95616
| | - Jodie L. Usachenko
- California National Primate Research Center, University of California, Davis, CA 95616
| | - Ramya Immareddy
- California National Primate Research Center, University of California, Davis, CA 95616
| | - Jamin W. Roh
- Center for Immunology and Infectious Diseases, University of California, Davis, CA 95616
- Graduate Group in Immunology, University of California, Davis, CA 95616
| | - Anil Verma
- Center for Immunology and Infectious Diseases, University of California, Davis, CA 95616
| | | | - Brian A. Schmidt
- Center for Immunology and Infectious Diseases, University of California, Davis, CA 95616
| | | | - Nabeela Rizvi
- Vitalant Research Institute, San Francisco, CA 94118
| | - Mars Stone
- Vitalant Research Institute, San Francisco, CA 94118
| | | | - Larry J. Dumont
- Vitalant Research Institute, Denver, CO 80230; University of Colorado School of Medicine, Aurora, CO 80045
| | - A. Mark Allen
- California National Primate Research Center, University of California, Davis, CA 95616
| | - Sarah Lockwood
- California National Primate Research Center, University of California, Davis, CA 95616
| | - Rachel E. Pollard
- School of Veterinary Medicine, University of California, Davis, CA 95616
| | - Rafael Ramiro de Assis
- Vaccine Research and Development Center, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA 92697
| | - JoAnn L. Yee
- California National Primate Research Center, University of California, Davis, CA 95616
| | - Peter B. Nham
- California National Primate Research Center, University of California, Davis, CA 95616
| | - Amir Ardeshir
- California National Primate Research Center, University of California, Davis, CA 95616
| | - Jesse D. Deere
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA 95616
| | - Jean Patterson
- Translational Research Section, Virology Branch, DMID/NIAID/NIH, MD 20852
| | - Aarti Jain
- Vaccine Research and Development Center, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA 92697
| | - Philip L. Felgner
- Vaccine Research and Development Center, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA 92697
| | - Smita S. Iyer
- California National Primate Research Center, University of California, Davis, CA 95616
- Department of Pathology, Microbiology and Immunology, University of California, Davis, CA 95616
- Center for Immunology and Infectious Diseases, University of California, Davis, CA 95616
| | - Dennis J. Hartigan-O’Connor
- California National Primate Research Center, University of California, Davis, CA 95616
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA 95616
| | - Michael P. Busch
- Vitalant Research Institute, San Francisco, CA 94118
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, 94118
| | - J. Rachel Reader
- California National Primate Research Center, University of California, Davis, CA 95616
- Department of Pathology, Microbiology and Immunology, University of California, Davis, CA 95616
| |
Collapse
|
19
|
Pang NYL, Pang ASR, Chow VT, Wang DY. Understanding neutralising antibodies against SARS-CoV-2 and their implications in clinical practice. Mil Med Res 2021; 8:47. [PMID: 34465396 PMCID: PMC8405719 DOI: 10.1186/s40779-021-00342-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 08/25/2021] [Indexed: 12/23/2022] Open
Abstract
SARS-CoV-2 is a newly identified member of the coronavirus family that has caused the Coronavirus disease 2019 (COVID-19) pandemic. This rapidly evolving and unrelenting SARS-CoV-2 has disrupted the lives and livelihoods of millions worldwide. As of 23 August 2021, a total of 211,373,303 COVID-19 cases have been confirmed globally with a death toll of 4,424,341. A strong understanding of the infection pathway of SARS-CoV-2, and how our immune system responds to the virus is highly pertinent for guiding the development and improvement of effective treatments. In this review, we discuss the current understanding of neutralising antibodies (NAbs) and their implications in clinical practice. The aspects include the pathophysiology of the immune response, particularly humoral adaptive immunity and the roles of NAbs from B cells in infection clearance. We summarise the onset and persistence of IgA, IgM and IgG antibodies, and we explore their roles in neutralising SARS-CoV-2, their persistence in convalescent individuals, and in reinfection. Furthermore, we also review the applications of neutralising antibodies in the clinical setting-from predictors of disease severity to serological testing to vaccinations, and finally in therapeutics such as convalescent plasma infusion.
Collapse
Affiliation(s)
- Natalie Yan-Lin Pang
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | | | - Vincent T Chow
- Department of Microbiology and Immunology, National University of Singapore, Science Drive 2, Singapore, 117545, Singapore. .,Infectious Diseases Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore.
| | - De-Yun Wang
- Infectious Diseases Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore. .,Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore, 119228, Singapore.
| |
Collapse
|
20
|
de Candia P, Prattichizzo F, Garavelli S, La Grotta R, De Rosa A, Pontarelli A, Parrella R, Ceriello A, Matarese G. Effect of time and titer in convalescent plasma therapy for COVID-19. iScience 2021; 24:102898. [PMID: 34316549 PMCID: PMC8297982 DOI: 10.1016/j.isci.2021.102898] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/18/2021] [Accepted: 07/19/2021] [Indexed: 12/15/2022] Open
Abstract
The clinical benefit of convalescent plasma (CP) for patients with coronavirus disease (COVID)-19 is still debated. In this systematic review and meta-analysis, we selected 10 randomized clinical trials (RCTs) and 15 non-randomized studies (total number of patients = 22,591) of CP treatment and evaluated two different scenarios: (1) disease stage of plasma recipients and (2) donated plasma antibody titer, considering all-cause mortality at the latest follow-up. Our results show that, when provided at early stages of the disease, CP significantly reduced mortality: risk ratio (RR) 0.72 (0.68, 0.77), p < 0.00001, while provided in severe or critical conditions, it did not (RR: 0.94 [0.86, 1.04], p = 0.22). On the other hand, the benefit on mortality was not increased by using plasma with a high-antibody titer compared with unselected plasma. This meta-analysis might promote CP usage in patients with early-stage COVID-19 in further RCTs to maximize its benefit in decreasing mortality, especially in less affluent countries. The benefit of convalescent plasma (CP) for patients with COVID-19 is still debated Only when provided at early disease stages, CP reduced COVID-19 mortality CP benefit on mortality does not increase when selecting high-antibody titers Early treatment with CP may maximize its clinical benefit
Collapse
Affiliation(s)
| | | | - Silvia Garavelli
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), 80131 Naples, Italy
| | | | - Annunziata De Rosa
- Dipartimento di Malattie Infettive ed Emergenze Infettive, Divisione di Malattie Infettive Respiratorie, Ospedale Cotugno, AORN dei Colli, 80131 Naples, Italy
| | - Agostina Pontarelli
- Dipartimento di Malattie Infettive ed Emergenze Infettive, Divisione di Malattie Infettive Respiratorie, Ospedale Cotugno, AORN dei Colli, 80131 Naples, Italy
| | - Roberto Parrella
- Dipartimento di Malattie Infettive ed Emergenze Infettive, Divisione di Malattie Infettive Respiratorie, Ospedale Cotugno, AORN dei Colli, 80131 Naples, Italy
| | | | - Giuseppe Matarese
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), 80131 Naples, Italy.,Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80131 Naples, Italy
| |
Collapse
|
21
|
Focosi D, Franchini M. COVID19 immune plasma donation after vaccination: pros and cons. Transfus Apher Sci 2021; 60:103151. [PMID: 33931359 PMCID: PMC8074491 DOI: 10.1016/j.transci.2021.103151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 04/24/2021] [Indexed: 11/29/2022]
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, Pisa, Italy.
| | - Massimo Franchini
- Department of Hematology and Transfusion Medicine, Carlo Poma Hospital, Mantua, Italy
| |
Collapse
|