1
|
Meier RPH, Pierson RN, Fishman JA, Buhler LH, Bottino R, Ladowski JM, Ekser B, Wolf E, Brenner P, Ierino F, Mohiuddin M, Cooper DKC, Hawthorne WJ. International Xenotransplantation Association (IXA) Position Paper on Kidney Xenotransplantation. Transplantation 2025:00007890-990000000-01051. [PMID: 40197435 DOI: 10.1097/tp.0000000000005372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Porcine kidney xenotransplantation for end-stage renal disease (ESRD) has reached the stage of clinical testing following major advances in donor pig genetic modifications and effective immunosuppressive strategies through decades of rigorous translational research. Reports of pig kidney xenograft survival beyond 1 year post-transplant in nonhuman primate (NHP) models justify optimism for its potential as an alternative to allotransplantation. In the United States, experimental transplantations of genetically engineered (GE) porcine kidneys into brain-dead subjects and a small number of ESRD patients have shown no evidence of hyperacute rejection and adequate pig kidney function for up to several months. Here we discuss pre-clinical/clinical results, infectious disease, ethical, and regulatory considerations, and propose evidence-based recommendations. For initial clinical trials in kidney xenotransplantation, we make the following recommendations: (i) transplantation with organs from a triple knockout (TKO) donor pig, preferably with added human transgenes, (ii) an immunosuppressive regimen with induction therapy to deplete T (and possibly B) cells, and maintenance therapy based on a cluster of differentiation (CD)40/CD154 co-stimulation pathway blockade, (iii) the patient should be fully acceptable as a candidate for allotransplantation but should be unlikely ever to receive an allograft. Patients aged 60-69 years (extendable to 40-75 years, if one of the criteria mentioned below is present), of blood group B or O, and with diabetes are most at risk in this regard. Other patients who could be considered are (i) those who have lost two or more previous kidney allografts from recurrent disease in the graft, (ii) those with broad human leukocyte antigen (HLA)-reactivity but no evidence of anti-pig antibodies, including swine leukocyte antigen (SLA), and (iii) those with failing vascular access. Clinical pilot studies in carefully and highly selected patients with no alternative therapy will provide the foundation upon which to base subsequent formal expanded clinical trials.
Collapse
Affiliation(s)
- Raphael P H Meier
- Department of Surgery, University of Maryland School of, Medicine, Baltimore, MD
| | - Richard N Pierson
- Division of Cardiac Surgery and Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, MA
| | - Jay A Fishman
- Transplantation Infectious Disease Program and Massachusetts General Hospital Transplant Center, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Leo H Buhler
- Cantonal Hospital Fribourg, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Rita Bottino
- Allegheny Health Network, Carnegie Mellon University, Pittsburgh, PA
| | - Joseph M Ladowski
- Department of Surgery, Duke University School of Medicine, Durham, NC
| | - Burcin Ekser
- Division of Abdominal Transplant Surgery, Stritch School of Medicine, Loyola University Chicago, Maywood, IL
| | | | - Paolo Brenner
- Department of Cardiac Surgery, University Hospital, LMU Munich, Munich, Germany
| | - Francesco Ierino
- Department of Nephrology and Transplantation, St Vincent's Hospital, University of Melbourne, Fitzroy, VIC, Australia
| | - Muhammad Mohiuddin
- Cardiac Xenotransplantation Program, University of Maryland School of Medicine, Baltimore, MD
| | - David K C Cooper
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, MA
| | - Wayne J Hawthorne
- The Department of Surgery, University of Sydney, Westmead Hospital, Westmead, NSW, Australia
- The Centre for Transplant & Renal Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
| |
Collapse
|
2
|
Meier RPH, Pierson RN, Fishman JA, Buhler LH, Bottino R, Ladowski JM, Ekser B, Wolf E, Brenner P, Ierino F, Mohiuddin M, Cooper DKC, Hawthorne WJ. International Xenotransplantation Association (IXA) Position Paper on Kidney Xenotransplantation. Xenotransplantation 2025; 32:e70003. [PMID: 40198240 DOI: 10.1111/xen.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 04/10/2025]
Abstract
Porcine kidney xenotransplantation for end-stage renal disease (ESRD) has reached the stage of clinical testing following major advances in donor pig genetic modifications and effective immunosuppressive strategies through decades of rigorous translational research. Reports of pig kidney xenograft survival beyond 1 year posttranplant in nonhuman primate (NHP) models justify optimism for its potential as an alternative to allotransplantation. In the United States, experimental transplantations of genetically engineered (GE) porcine kidneys into brain-dead subjects and a small number of ESRD patients have shown no evidence of hyperacute rejection and adequate pig kidney function for up to several months. Here we discuss pre-clinical/clinical results, infectious disease, ethical, and regulatory considerations, and propose evidence-based recommendations. For initial clinical trials in kidney xenotransplantation, we make the following recommendations: (i) transplantation with organs from a triple knockout (TKO) donor pig, preferably with added human transgenes, (ii) an immunosuppressive regimen with induction therapy to deplete T (and possibly B) cells, and maintenance therapy based on a cluster of differentiation (CD)40/CD154 co-stimulation pathway blockade, (iii) the patient should be fully acceptable as a candidate for allotransplantation but should be unlikely ever to receive an allograft. Patients aged 60-69 years (extendable to 40-75 years, if one of the criteria mentioned below is present), of blood group B or O, and with diabetes are most at risk in this regard. Other patients who could be considered are (i) those who have lost two or more previous kidney allografts from recurrent disease in the graft, (ii) those with broad human leukocyte antigen (HLA)-reactivity but no evidence of anti-pig antibodies, including swine leukocyte antigen (SLA), and (iii) those with failing vascular access. Clinical pilot studies in carefully and highly selected patients with no alternative therapy will provide the foundation upon which to base subsequent formal expanded clinical trials.
Collapse
Affiliation(s)
- Raphael P H Meier
- Department of Surgery, University of Maryland School of, Medicine, Baltimore, Maryland, USA
| | - Richard N Pierson
- Division of Cardiac Surgery and Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jay A Fishman
- Transplantation Infectious Disease Program and Massachusetts General Hospital Transplant Center, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Leo H Buhler
- Cantonal Hospital Fribourg, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Rita Bottino
- Allegheny Health Network, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Joseph M Ladowski
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Burcin Ekser
- Division of Abdominal Transplant Surgery, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA
| | | | - Paolo Brenner
- Department of Cardiac Surgery, University Hospital, LMU Munich, Munich, Germany
| | - Francesco Ierino
- Department of Nephrology and Transplantation, St Vincent's Hospital, University of Melbourne, Fitzroy, VIC, Australia
| | - Muhammad Mohiuddin
- Cardiac Xenotransplantation Program, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - David K C Cooper
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Wayne J Hawthorne
- The Department of Surgery, University of Sydney, Westmead Hospital, Westmead, NSW, Australia
- The Centre for Transplant & Renal Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
| |
Collapse
|
3
|
Deng S, Zhang Y, Shen S, Li C, Qin C. Immunometabolism of Liver Xenotransplantation and Prospective Solutions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2407610. [PMID: 39912334 PMCID: PMC11884532 DOI: 10.1002/advs.202407610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/26/2024] [Indexed: 02/07/2025]
Abstract
End-stage liver diseases, such as hepatocellular carcinoma or acute liver failure, critically necessitate liver transplantation. However, the shortage of available organ donors fails to meet the rapidly growing transplantation demand. Due to the high similarity of liver tissue structure and metabolism between miniature pigs and humans, xenotransplantation of pig livers is considered as a potentially viable solution to organ scarcity. In the 2024, teams from China first time have successfully transplanted a genetically modified Bama miniature pig liver into a clinically brain-dead man lasting for 10 days. This milestone in human xenotransplantation research not only confirms the feasibility of clinical application of xenotransplantation, but also underscores the daunting and protracted nature of this pathway. Despite advanced gene-editing technologies theoretically circumventing the occurrence of most transplant rejection reactions, patients still face challenges such as chronic immune rejection, coagulation disorders, and thrombotic microangiopathy after receiving xenografts. Moreover, prolonged use of immunosuppressive drugs may induce irreversible immune dysfunction, leading to opportunistic infections and metabolic disorders. This article compares the similarities and differences in livers between humans and pigs, summarizes the immunometabolism of xenotransplantation based on current findings, and provides research perspectives on pre-transplantation and post-transplantation strategies for prolonging the survival time of xenografts.
Collapse
Affiliation(s)
- Shoulong Deng
- National Center of Technology Innovation for Animal Model, National Human Diseases Animal Model Resource Center, National Health Commission of China (NHC) Key Laboratory of Comparative Medicine, Institute of Laboratory Animal SciencesChinese Academy of Medical Sciences and Comparative Medicine CenterPeking Union Medical CollegeBeijing100021China
| | - Yi Zhang
- Department of MedicinePanzhihua UniversitySichuan61700China
| | - Shasha Shen
- Department of MedicinePanzhihua UniversitySichuan61700China
| | - Chongyang Li
- Institute of Animal SciencesChinese Academy of Agricultural SciencesBeijing100193China
| | - Chuan Qin
- National Center of Technology Innovation for Animal Model, National Human Diseases Animal Model Resource Center, National Health Commission of China (NHC) Key Laboratory of Comparative Medicine, Institute of Laboratory Animal SciencesChinese Academy of Medical Sciences and Comparative Medicine CenterPeking Union Medical CollegeBeijing100021China
| |
Collapse
|
4
|
Galdina V, Puga Yung GL, Seebach JD. Cytotoxic Responses Mediated by NK Cells and Cytotoxic T Lymphocytes in Xenotransplantation. Transpl Int 2025; 38:13867. [PMID: 40012743 PMCID: PMC11862997 DOI: 10.3389/ti.2025.13867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 01/09/2025] [Indexed: 02/28/2025]
Abstract
Xenotransplantation represents a potential solution to the shortage of organs for transplantation. The recent advancements in porcine genetic modification have addressed hyperacute and acute vascular rejection; however, challenges persist with regard to delayed xenograft rejection. Porcine endothelial cells (pECs) represent a crucial target in the context of xenograft rejection, which is mediated by cytotoxic lymphocytes. It is crucial to comprehend the manner in which human natural killer (NK) cells and cytotoxic CD8+ T lymphocytes (CTL) recognize and target pECs in order to develop efficacious prophylactic strategies against rejection. The objective of the present review is to synthesize the existing knowledge regarding the mechanisms and techniques employed to modulate xenogeneic responses mediated by human NK cells and CTL. We will elucidate recent methodological advancements, debate potential novel strategies, and emphasize the imperative necessity for further research and innovative approaches to enhance graft survival.
Collapse
|
5
|
Yang S, Zhang M, Wei H, Zhang B, Peng J, Shang P, Sun S. Research prospects for kidney xenotransplantation: a bibliometric analysis. Ren Fail 2024; 46:2301681. [PMID: 38391160 PMCID: PMC10916899 DOI: 10.1080/0886022x.2023.2301681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/30/2023] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Xenograft kidney transplantation has been receiving increasing attention. The purpose of this study is to use bibliometric analysis to identify papers in this research field and explore their current status and development trends. METHODS Using the data in the Web of Science core database from Clarivate Analytics as the object of study, we used 'TS = Kidney OR Renal AND xenotransplantation' as the search term to find all literature from 1980 to 2 November 2022. RESULTS In total, 1005 articles were included. The United States has the highest number of publications and has made significant contributions in this field. Harvard University was at the forefront of this study. Professor Cooper has published 114 articles in this field. Xenotransplantation has the largest number of relevant articles. Transplantation was the most cited journal. High-frequency keywords illustrated the current state of development and future trends in xenotransplantation. The use of transgenic pigs and the development of coordinated co-stimulatory blockers have greatly facilitated progress in xenotransplantation research. We found that 'co-stimulation blockade', 'xenograft survival', 'pluripotent stem cell', 'translational research', and 'genetic engineering' were likely to be the focus of attention in the coming years. CONCLUSIONS This study screened global publications related to xenogeneic kidney transplantation; analyzed their literature metrology characteristics; identified the most cited articles in the research field; understood the current situation, hot spots, and trends of global research; and provided future development directions for researchers and practitioners.
Collapse
Affiliation(s)
- Shujun Yang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China
| | - Mingtao Zhang
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China
| | - Hao Wei
- Department of Urology, Qingdao University Hospital, Qingdao, China
| | - Bin Zhang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China
| | - Jiang Peng
- Department of Orthopaedics, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China
| | - Panfeng Shang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China
| | - Shengkun Sun
- Department of Urology, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China
| |
Collapse
|
6
|
Yang T, Liu Z, Shu S, Chen Z, Hua X, Song J. Isolated Perfused Hearts for Cardiovascular Research: An Old Dog with New Tricks. J Cardiovasc Transl Res 2024; 17:1207-1217. [PMID: 38717725 PMCID: PMC11519150 DOI: 10.1007/s12265-024-10517-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/16/2024] [Indexed: 10/29/2024]
Abstract
In modern cardiovascular research, isolated perfused hearts have become cost-effective and highly reproducible tools to investigate the mechanisms of cardiovascular diseases (CVDs). Since they were first introduced in the nineteenth century, isolated perfused hearts have been extensively used for testing novel therapies, elucidating cardiac metabolic and electrophysiological activities, and modeling CVDs, including ischemic heart disease, arrhythmias, and hyperacute rejection. In recent years, ex vivo heart perfusion (EVHP) has shown potential in cardiac transplantation by allowing prolonged preservation and reconditioning of donor hearts. In this review, we summarize the evolution of the isolated perfused heart technique and its applications in cardiovascular research to help researchers comprehensively understand the capabilities of isolated heart models and provide guidance to use them to investigate various CVDs.
Collapse
Affiliation(s)
- Tianshuo Yang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Science, PUMC, 167 Beilishi Road, Xicheng District, Beijing, 100037, China
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Zirui Liu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Science, PUMC, 167 Beilishi Road, Xicheng District, Beijing, 100037, China
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Songren Shu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Science, PUMC, 167 Beilishi Road, Xicheng District, Beijing, 100037, China
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Zhice Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Science, PUMC, 167 Beilishi Road, Xicheng District, Beijing, 100037, China
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Xiumeng Hua
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Science, PUMC, 167 Beilishi Road, Xicheng District, Beijing, 100037, China
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
- Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Road, Xicheng District, Beijing, 100037, China
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, 518057, China
| | - Jiangping Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Science, PUMC, 167 Beilishi Road, Xicheng District, Beijing, 100037, China.
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
- Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Road, Xicheng District, Beijing, 100037, China.
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, 518057, China.
| |
Collapse
|
7
|
Jia H, Chang Y, Song J. The pig as an optimal animal model for cardiovascular research. Lab Anim (NY) 2024; 53:136-147. [PMID: 38773343 DOI: 10.1038/s41684-024-01377-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 04/22/2024] [Indexed: 05/23/2024]
Abstract
Cardiovascular disease is a worldwide health problem and a leading cause of morbidity and mortality. Preclinical cardiovascular research using animals is needed to explore potential targets and therapeutic options. Compared with rodents, pigs have many advantages, with their anatomy, physiology, metabolism and immune system being more similar to humans. Here we present an overview of the available pig models for cardiovascular diseases, discuss their advantages over other models and propose the concept of standardized models to improve translation to the clinical setting and control research costs.
Collapse
Affiliation(s)
- Hao Jia
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuan Chang
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiangping Song
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Sanya Institute of China Agricultural University, Sanya, China.
| |
Collapse
|
8
|
Ando A, Matsubara T, Suzuki S, Imaeda N, Takasu M, Shigenari A, Miyamoto A, Ohshima S, Kametani Y, Shiina T, Kulski JK, Kitagawa H. Genetic Association between Farrowing Rates and Swine Leukocyte Antigen Alleles or Haplotypes in Microminipigs. Cells 2022; 11:3138. [PMID: 36231100 PMCID: PMC9563624 DOI: 10.3390/cells11193138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/29/2022] [Accepted: 10/01/2022] [Indexed: 11/16/2022] Open
Abstract
We have previously reported specific swine leukocyte antigen (SLA) haplotype associations with significant effects on several reproduction performance traits in a highly inbred miniature pig population of Microminipigs (MMPs). In this study, to clarify the effects on farrowing rates of SLA similarity between mating partners in the MMP population, we compared the farrowing rates as a measure of reproductive success after 1063-cumulative matings among the following three groups of mating partners: (1) completely sharing SLA class I or class II haplotypes or alleles between partners (CS), (2) only one sharing the haplotypes or alleles (OS), and (3) non-sharing the haplotypes or alleles (NS). Average farrowing rates in CS groups consisting of completely sharing SLA class II haplotypes or DRBI and DQB1 alleles were lowest in the three groups. Moreover, lower farrowing rates were indicated in mating pairs with smaller amino acid pairwise genetic distances of SLA-1, SLA-3, DRB1 and DQB1 alleles between the pairs. These results suggested that the dissimilarity of SLA class I and class II alleles between mating partners markedly improved reproductive performance; therefore, SLA alleles or haplotypes are potentially useful genetic markers for the selection of mating pairs in breeding programs and epistatic studies of reproductive traits of MMPs.
Collapse
Affiliation(s)
- Asako Ando
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara 259-1193, Japan
| | - Tatsuya Matsubara
- Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan
| | - Shingo Suzuki
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara 259-1193, Japan
| | - Noriaki Imaeda
- Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan
| | - Masaki Takasu
- Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan
| | - Atsuko Shigenari
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara 259-1193, Japan
| | - Asuka Miyamoto
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara 259-1193, Japan
| | - Shino Ohshima
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara 259-1193, Japan
| | - Yoshie Kametani
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara 259-1193, Japan
| | - Takashi Shiina
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara 259-1193, Japan
| | - Jerzy K. Kulski
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara 259-1193, Japan
| | - Hitoshi Kitagawa
- Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan
- Laboratory of Veterinary Internal Medicine, Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoino-oka, Imabari 794-8555, Japan
| |
Collapse
|
9
|
Lopez KJ, Cross-Najafi AA, Farag K, Obando B, Thadasina D, Isidan A, Park Y, Zhang W, Ekser B, Li P. Strategies to induce natural killer cell tolerance in xenotransplantation. Front Immunol 2022; 13:941880. [PMID: 36072599 PMCID: PMC9441937 DOI: 10.3389/fimmu.2022.941880] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/28/2022] [Indexed: 11/23/2022] Open
Abstract
Eliminating major xenoantigens in pig cells has drastically reduced human antibody-mediated hyperacute xenograft rejection (HXR). Despite these advancements, acute xenograft rejection (AXR) remains one of the major obstacles to clinical xenotransplantation, mediated by innate immune cells, including macrophages, neutrophils, and natural killer (NK) cells. NK cells play an 'effector' role by releasing cytotoxicity granules against xenogeneic cells and an 'affecter' role on other immune cells through cytokine secretion. We highlight the key receptor-ligand interactions that determine the NK cell response to target cells, focusing on the regulation of NK cell activating receptor (NKG2D, DNAM1) and inhibitory receptor (KIR2DL1-4, NKG2A, and LIR-1) signaling pathways. Inhibition of NK cell activity may protect xenografts from cytotoxicity. Recent successful approaches to reducing NK cell-mediated HXR and AXR are reviewed, including genetic modifications of porcine xenografts aimed at improving pig-to-human compatibility. Future directions to promote xenograft acceptance are discussed, including NK cell tolerance in pregnancy and NK cell evasion in viral infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Ping Li
- *Correspondence: Ping Li, ; Burcin Ekser,
| |
Collapse
|
10
|
Tong X, Ru Y, Fu J, Wang Y, Zhu J, Ding Y, Lv F, Yang M, Wei X, Liu C, Liu X, Lei L, Wu X, Guo L, Xu Y, Li J, Wu P, Gong H, Chen J, Wu D. Fucosylation Promotes Cytolytic Function and Accumulation of NK Cells in B Cell Lymphoma. Front Immunol 2022; 13:904693. [PMID: 35784355 PMCID: PMC9240281 DOI: 10.3389/fimmu.2022.904693] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/11/2022] [Indexed: 12/17/2022] Open
Abstract
Natural killer (NK) cells have been demonstrated as a promising cellular therapy as they exert potent anti-tumor immune responses. However, applications of NK cells to tumor immunotherapy, especially in the treatment of advanced hematopoietic and solid malignancies, are still limited due to the compromised survival and short persistence of the transferred NK cells in vivo. Here, we observed that fucosyltransferase (FUT) 7 and 8 were highly expressed on NK cells, and the expression of CLA was positively correlated with the accumulation of NK cells in clinical B cell lymphoma development. Via enzyme-mediated ex vivo cell-surface fucosylation, the cytolytic effect of NK cells against B cell lymphoma was significantly augmented. Fucosylation also promoted NK cell accumulation in B cell lymphoma-targeted tissues by enhancing their binding to E-selectin. Moreover, fucosylation of NK cells also facilitated stronger T cell anti-tumor immune responses. These findings suggest that ex vivo fucosylation contributes to enhancing the effector functions of NK cells and may serve as a novel strategy for tumor immunotherapy.
Collapse
Affiliation(s)
- Xing Tong
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, Suzhou, China
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuhua Ru
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, Suzhou, China
| | - Jianhong Fu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, Suzhou, China
| | - Ying Wang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, Suzhou, China
| | - Jinjin Zhu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, Suzhou, China
| | - Yiyang Ding
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, Suzhou, China
| | - Fulian Lv
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, Suzhou, China
| | - Menglu Yang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, Suzhou, China
| | - Xiya Wei
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, Suzhou, China
| | - Chenchen Liu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, Suzhou, China
| | - Xin Liu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, Suzhou, China
| | - Lei Lei
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, Suzhou, China
| | - Xiaojin Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, Suzhou, China
| | - Lingchuan Guo
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yang Xu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, Suzhou, China
| | - Jie Li
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - Peng Wu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
- *Correspondence: Peng Wu, ; Huanle Gong, ; Jia Chen, ; Depei Wu,
| | - Huanle Gong
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, Suzhou, China
- *Correspondence: Peng Wu, ; Huanle Gong, ; Jia Chen, ; Depei Wu,
| | - Jia Chen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, Suzhou, China
- *Correspondence: Peng Wu, ; Huanle Gong, ; Jia Chen, ; Depei Wu,
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, Suzhou, China
- *Correspondence: Peng Wu, ; Huanle Gong, ; Jia Chen, ; Depei Wu,
| |
Collapse
|
11
|
Xu K, Yu H, Chen S, Zhang Y, Guo J, Yang C, Jiao D, Nguyen TD, Zhao H, Wang J, Wei T, Li H, Jia B, Jamal MA, Zhao HY, Huang X, Wei HJ. Production of Triple-Gene (GGTA1, B2M and CIITA)-Modified Donor Pigs for Xenotransplantation. Front Vet Sci 2022; 9:848833. [PMID: 35573408 PMCID: PMC9097228 DOI: 10.3389/fvets.2022.848833] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Activation of human immune T-cells by swine leukocyte antigens class I (SLA-I) and class II (SLA-II) leads to xenograft destruction. Here, we generated the GGTA1, B2M, and CIITA (GBC) triple-gene-modified Diannan miniature pigs, analyzed the transcriptome of GBC-modified peripheral blood mononuclear cells (PBMCs) in the pig's spleen, and investigated their effectiveness in anti-immunological rejection. A total of six cloned piglets were successfully generated using somatic cell nuclear transfer, one of them carrying the heterozygous mutations in triple genes and the other five piglets carrying the homozygous mutations in GGTA1 and CIITA genes, but have the heterozygous mutation in the B2M gene. The autopsy of GBC-modified pigs revealed that a lot of spot bleeding in the kidney, severe suppuration and necrosis in the lungs, enlarged peripulmonary lymph nodes, and adhesion between the lungs and chest wall were found. Phenotyping data showed that the mRNA expressions of triple genes and protein expressions of B2M and CIITA genes were still detectable and comparable with wild-type (WT) pigs in multiple tissues, but α1,3-galactosyltransferase was eliminated, SLA-I was significantly decreased, and four subtypes of SLA-II were absent in GBC-modified pigs. In addition, even in swine umbilical vein endothelial cells (SUVEC) induced by recombinant porcine interferon gamma (IFN-γ), the expression of SLA-I in GBC-modified pig was lower than that in WT pigs. Similarly, the expression of SLA-II DR and DQ also cannot be induced by recombinant porcine IFN-γ. Through RNA sequencing (RNA-seq), 150 differentially expressed genes were identified in the PBMCs of the pig's spleen, and most of them were involved in immune- and infection-relevant pathways that include antigen processing and presentation and viral myocarditis, resulting in the pigs with GBC modification being susceptible to pathogenic microorganism. Furthermore, the numbers of human IgM binding to the fibroblast cells of GBC-modified pigs were obviously reduced. The GBC-modified porcine PBMCs triggered the weaker proliferation of human PBMCs than WT PBMCs. These findings indicated that the absence of the expression of α1,3-galactosyltransferase and SLA-II and the downregulation of SLA-I enhanced the ability of immunological tolerance in pig-to-human xenotransplantation.
Collapse
Affiliation(s)
- Kaixiang Xu
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China.,Yunnan Province Xenotransplantation Research Engineering Center, Yunnan Agricultural University, Kunming, China.,Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Honghao Yu
- College of Biotechnology, Guilin Medical University, Guilin, China
| | - Shuhan Chen
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China.,Yunnan Province Xenotransplantation Research Engineering Center, Yunnan Agricultural University, Kunming, China.,College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Yaxuan Zhang
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China.,Yunnan Province Xenotransplantation Research Engineering Center, Yunnan Agricultural University, Kunming, China.,College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Jianxiong Guo
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China.,Yunnan Province Xenotransplantation Research Engineering Center, Yunnan Agricultural University, Kunming, China
| | - Chang Yang
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China.,Yunnan Province Xenotransplantation Research Engineering Center, Yunnan Agricultural University, Kunming, China
| | - Deling Jiao
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China.,Yunnan Province Xenotransplantation Research Engineering Center, Yunnan Agricultural University, Kunming, China.,Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Tien Dat Nguyen
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China.,Yunnan Province Xenotransplantation Research Engineering Center, Yunnan Agricultural University, Kunming, China.,Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Heng Zhao
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China.,Yunnan Province Xenotransplantation Research Engineering Center, Yunnan Agricultural University, Kunming, China.,College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Jiaoxiang Wang
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China.,Yunnan Province Xenotransplantation Research Engineering Center, Yunnan Agricultural University, Kunming, China.,Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Taiyun Wei
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China.,Yunnan Province Xenotransplantation Research Engineering Center, Yunnan Agricultural University, Kunming, China
| | - Honghui Li
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China.,Yunnan Province Xenotransplantation Research Engineering Center, Yunnan Agricultural University, Kunming, China.,Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Baoyu Jia
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China.,Yunnan Province Xenotransplantation Research Engineering Center, Yunnan Agricultural University, Kunming, China.,College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Muhammad Ameen Jamal
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China.,Yunnan Province Xenotransplantation Research Engineering Center, Yunnan Agricultural University, Kunming, China.,Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Hong-Ye Zhao
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China.,Yunnan Province Xenotransplantation Research Engineering Center, Yunnan Agricultural University, Kunming, China
| | - Xingxu Huang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Hong-Jiang Wei
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China.,Yunnan Province Xenotransplantation Research Engineering Center, Yunnan Agricultural University, Kunming, China.,Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China.,College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
12
|
Yerly P, Rotman S, Regamey J, Aubert V, Aur S, Kirsch M, Hullin R, Pascual M. Complement blockade with eculizumab to treat acute symptomatic humoral rejection after heart transplantation. Xenotransplantation 2022; 29:e12726. [PMID: 35001433 PMCID: PMC9285545 DOI: 10.1111/xen.12726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/23/2021] [Accepted: 12/17/2021] [Indexed: 12/12/2022]
Abstract
Antibody‐mediated rejection (AMR) is a major barrier preventing successful discordant organ xenotransplantation, but it also occurs in allotransplantation due to anti‐HLA antibodies. Symptomatic acute AMR is rare after heart allograft but carries a high risk of mortality, especially >1 year after transplant. As complement activation may play a major role in mediating tissue injury in acute AMR, drugs blocking the terminal complement cascade like eculizumab may be useful, particularly since “standards of care” like plasmapheresis are not based on strong evidence. Eculizumab was successfully used to treat early acute kidney AMR, a typical condition of “active AMR,” but showed mitigated results in late AMR, where “chronic active” lesions are more prevalent. Here, we report the case of a heart recipient who presented with acute heart failure due to late acute AMR with eight de novo donor‐specific anti‐HLA antibodies (DSA), and who fully recovered allograft function and completely cleared DSA following plasmapheresis‐free upfront eculizumab administration in addition to thymoglobulin, intravenous immunoglobulins (IVIG), and rituximab. Several clinical (acute onset, abrupt and severe loss of graft function), biological (sudden high‐level production of DSA), and pathological features (microvascular injury, C4d deposits) of this cardiac recipient are shared with early kidney AMR and may indicate a strong role of complement in the pathogenesis of acute graft injury that may respond to drugs like eculizumab. Terminal complement blockade should be further explored to treat acute AMR in recipients of heart allografts and possibly also in recipients of discordant xenografts in the future.
Collapse
Affiliation(s)
- Patrick Yerly
- Service of Cardiology, Lausanne University Hospital (CHUV) and Lausanne University, Lausanne, Switzerland
| | - Samuel Rotman
- Service of Clinical Pathology, Lausanne University Hospital (CHUV) and Lausanne University, Lausanne, Switzerland
| | - Julien Regamey
- Service of Cardiology, Lausanne University Hospital (CHUV) and Lausanne University, Lausanne, Switzerland
| | - Vincent Aubert
- Service of Immunology and Allergology, Lausanne University Hospital (CHUV) and Lausanne University, Lausanne, Switzerland
| | - Stefania Aur
- Service of Cardiology, Lausanne University Hospital (CHUV) and Lausanne University, Lausanne, Switzerland
| | - Matthias Kirsch
- Service of Cardiac Surgery, Lausanne University Hospital (CHUV) and Lausanne University, Lausanne, Switzerland
| | - Roger Hullin
- Service of Cardiology, Lausanne University Hospital (CHUV) and Lausanne University, Lausanne, Switzerland
| | - Manuel Pascual
- Center for Organ Transplantation, Lausanne University Hospital (CHUV) and Lausanne University, Lausanne, Switzerland
| |
Collapse
|
13
|
Rao JS, Hosny N, Kumbha R, Naqvi RA, Singh A, Swanson Z, Levy H, Matson AW, Steinhoff M, Forneris N, Walters E, Hering BJ, Burlak C. HLA-G1 + Expression in GGTA1KO Pigs Suppresses Human and Monkey Anti-Pig T, B and NK Cell Responses. Front Immunol 2021; 12:730545. [PMID: 34566993 PMCID: PMC8459615 DOI: 10.3389/fimmu.2021.730545] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/23/2021] [Indexed: 12/04/2022] Open
Abstract
The human leukocyte antigen G1 (HLA-G1), a non-classical class I major histocompatibility complex (MHC-I) protein, is a potent immunomodulatory molecule at the maternal/fetal interface and other environments to regulate the cellular immune response. We created GGTA1-/HLAG1+ pigs to explore their use as organ and cell donors that may extend xenograft survival and function in both preclinical nonhuman primate (NHP) models and future clinical trials. In the present study, HLA-G1 was expressed from the porcine ROSA26 locus by homology directed repair (HDR) mediated knock-in (KI) with simultaneous deletion of α-1-3-galactotransferase gene (GGTA1; GTKO) using the clustered regularly interspersed palindromic repeats (CRISPR)/CRISPR associated protein 9 (Cas9) (CRISPR/Cas9) gene-editing system. GTKO/HLAG1+ pigs showing immune inhibitory functions were generated through somatic cell nuclear transfer (SCNT). The presence of HLA-G1 at the ROSA26 locus and the deletion of GGTA1 were confirmed by next generation sequencing (NGS) and Sanger's sequencing. Fibroblasts from piglets, biopsies from transplantable organs, and islets were positive for HLA-G1 expression by confocal microscopy, flow cytometry, or q-PCR. The expression of cell surface HLA-G1 molecule associated with endogenous β2-microglobulin (β2m) was confirmed by staining genetically engineered cells with fluorescently labeled recombinant ILT2 protein. Fibroblasts obtained from GTKO/HLAG1+ pigs were shown to modulate the immune response by lowering IFN-γ production by T cells and proliferation of CD4+ and CD8+ T cells, B cells and natural killer (NK) cells, as well as by augmenting phosphorylation of Src homology region 2 domain-containing phosphatase-2 (SHP-2), which plays a central role in immune suppression. Islets isolated from GTKO/HLA-G1+ genetically engineered pigs and transplanted into streptozotocin-diabetic nude mice restored normoglycemia, suggesting that the expression of HLA-G1 did not interfere with their ability to reverse diabetes. The findings presented here suggest that the HLA-G1+ transgene can be stably expressed from the ROSA26 locus of non-fetal maternal tissue at the cell surface. By providing an immunomodulatory signal, expression of HLA-G1+ may extend survival of porcine pancreatic islet and organ xenografts.
Collapse
Affiliation(s)
- Joseph Sushil Rao
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, United States
- Division of Solid Organ Transplantation, Department of Surgery, University of Minnesota, Minneapolis, MN, United States
| | - Nora Hosny
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, United States
- Medical Biochemistry and Molecular Biology Department, Suez Canal University, Faculty of Medicine, Ismailia, Egypt
| | - Ramesh Kumbha
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, United States
| | - Raza Ali Naqvi
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, United States
| | - Amar Singh
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, United States
| | - Zachary Swanson
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, United States
| | - Heather Levy
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, United States
| | - Anders W. Matson
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, United States
| | - Magie Steinhoff
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, United States
| | - Nicole Forneris
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, United States
| | - Eric Walters
- Independent Consultant, Centralia, MO, United States
| | - Bernhard J. Hering
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, United States
| | - Christopher Burlak
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
14
|
Profiling Human CD55 Transgene Performance Assist in Selecting Best Suited Specimens and Tissues for Swine Organ Xenotransplantation. BIOLOGY 2021; 10:biology10080747. [PMID: 34439979 PMCID: PMC8389641 DOI: 10.3390/biology10080747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 11/17/2022]
Abstract
Simple Summary The unbalance between availability and needs of human organs has drawn researchers’ attention to xenotransplantation as an option to cope with this shortage. Pig organs have received substantial attention for being comparable to human’s; nevertheless, compatibility constrains still block clinical applications. Transgenesis of human complement regulatory proteins, including the CD55 gene and its product the decay-accelerating factor (DAF), has been proposed to overcome xenorejection. This line of research has obtained interesting results along the years; however, most works assessing the impact of this strategy for xenotransplantation are limited to analyzing gene expression and assessing resistance to conventional serum challenge hemolysis assays, which provide somewhat reduced information prior to surgery. In this work, we tried to expand the analysis of the hCD55 transgene performance beyond common practice and into a better molecular understanding of its impact in xenotransplantation. We determined hCD55 gene expression, as well as hDAF protein presence, in different organs from five transgenic pigs, comparing readings from organs worthy for transplantation and other non-valuable organs and tissues. We also assessed the ability of transgenic cells, compared to non-transgenic, to withstand hemolysis and cytolysis. Finally, we made an effort to establish potential correlations between the hCD55 mRNA and hDAF protein levels detected. Abstract Xenotransplantation of pig organs receives substantial attention for being comparable to human’s. However, compatibility constraints involving hyper-acute rejection (HAR) still block clinical applications. Transgenesis of human complement regulatory proteins has been proposed to overcome xenorejection. Pigs expressing human-CD55 have been widely tested in experimental surgery. Still, no standardized method has been developed to determine tissue expression of human decay-accelerating factor (DAF), hCD55’s product, or to predict the ability to overpass HAR. Here we describe objective procedures addressing this need. Organs and tissues from five hCD55 transgenic pigs were collected and classified according to their xenotransplantation value. The ability to overcome HAR was assessed by classical complement pathway hemolysis assays. Quantitative PCR mRNA expression and Western blot protein level studies were performed. Real-time cytotoxicity assays (RTCA) on fibroblast cultures exposed to baboon and human sera informed on longer-term rejection dynamics. While greater hCD55/DAF expression correlated with better performance, the results obtained varied among specimens. Interestingly, the individual with highest mRNA and protein levels showed positive feedback for hCD55 transcript after challenge with human and baboon sera. Moreover, hCD55 expression correlated to DAF levels in the liver, lung and intestine, but not in the heart. Moreover, we found significant correlations among valuable and non-valuable tissues. In sum, the methodology proposed allows us to characterize the hCD55 transgene functioning and performance. Moreover, the correlations found could allow us to predict hCD55/DAF expression in surrogate tissues, thus eliminating the need for direct biopsies, resulting in preservation of organ integrity before xenotransplantation.
Collapse
|
15
|
Shu S, Ren J, Song J. Cardiac xenotransplantation: a promising way to treat advanced heart failure. Heart Fail Rev 2020; 27:71-91. [DOI: 10.1007/s10741-020-09989-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
16
|
Hryhorowicz M, Lipiński D, Hryhorowicz S, Nowak-Terpiłowska A, Ryczek N, Zeyland J. Application of Genetically Engineered Pigs in Biomedical Research. Genes (Basel) 2020; 11:genes11060670. [PMID: 32575461 PMCID: PMC7349405 DOI: 10.3390/genes11060670] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 02/07/2023] Open
Abstract
Progress in genetic engineering over the past few decades has made it possible to develop methods that have led to the production of transgenic animals. The development of transgenesis has created new directions in research and possibilities for its practical application. Generating transgenic animal species is not only aimed towards accelerating traditional breeding programs and improving animal health and the quality of animal products for consumption but can also be used in biomedicine. Animal studies are conducted to develop models used in gene function and regulation research and the genetic determinants of certain human diseases. Another direction of research, described in this review, focuses on the use of transgenic animals as a source of high-quality biopharmaceuticals, such as recombinant proteins. The further aspect discussed is the use of genetically modified animals as a source of cells, tissues, and organs for transplantation into human recipients, i.e., xenotransplantation. Numerous studies have shown that the pig (Sus scrofa domestica) is the most suitable species both as a research model for human diseases and as an optimal organ donor for xenotransplantation. Short pregnancy, short generation interval, and high litter size make the production of transgenic pigs less time-consuming in comparison with other livestock species This review describes genetically modified pigs used for biomedical research and the future challenges and perspectives for the use of the swine animal models.
Collapse
Affiliation(s)
- Magdalena Hryhorowicz
- Department of Biochemistry and Biotechnology, Poznan University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland; (D.L.); (A.N.-T.); (N.R.); (J.Z.)
- Correspondence:
| | - Daniel Lipiński
- Department of Biochemistry and Biotechnology, Poznan University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland; (D.L.); (A.N.-T.); (N.R.); (J.Z.)
| | - Szymon Hryhorowicz
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland;
| | - Agnieszka Nowak-Terpiłowska
- Department of Biochemistry and Biotechnology, Poznan University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland; (D.L.); (A.N.-T.); (N.R.); (J.Z.)
| | - Natalia Ryczek
- Department of Biochemistry and Biotechnology, Poznan University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland; (D.L.); (A.N.-T.); (N.R.); (J.Z.)
| | - Joanna Zeyland
- Department of Biochemistry and Biotechnology, Poznan University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland; (D.L.); (A.N.-T.); (N.R.); (J.Z.)
| |
Collapse
|
17
|
Improved production of GTKO/hCD55/hCD59 triple-gene-modified Diannan miniature pigs for xenotransplantation by recloning. Transgenic Res 2020; 29:369-379. [PMID: 32358721 DOI: 10.1007/s11248-020-00201-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 04/17/2020] [Indexed: 10/24/2022]
Abstract
Multiple genetic modification is necessary for successful xenotransplantation from pigs. However, multiple-genetically modified cells usually suffer from various drug selections and long-term in vitro culture, which have a poor performance for somatic cell nuclear transfer (SCNT) to produce genetically modified pigs. We used to generate GTKO/hCD55/hCD59 triple-gene modified pigs by using drug-selective cell lines for SCNT, but the majority of cloned pigs were transgenic-negative individuals. In this study, to improve the production efficiency of multiple genetically modified pigs, we performed the recloning process by using transgenic porcine fetal fibroblast cells. As a result, two fetuses expressing hCD55 and hCD59 were obtained from 12 live-cloned fetuses, and one carrying high transgene expression was selected as a source of donor cells for recloning. Then we obtained 12 cloned piglets, all GTKO and carrying hCD55 and hCD59. Both hCD55 and hCD59 were expressed in fibroblast cells, but the expression levels of hCD55 and hCD59 were different among these piglets. Furthermore, piglet P5# had the highest expression of hCD55 and hCD59 in fibroblast cells than other piglets. Correspondingly, fibroblast cells of piglet P5# had significantly higher resistance against human serum-mediated cytolysis than those of piglet P11#. In conclusion, our results firstly provide support for improving efficiency of generating multiple genetically modified pig by recloning.
Collapse
|
18
|
Moving the Margins: Updates on the Renaissance in Machine Perfusion for Organ Transplantation. CURRENT TRANSPLANTATION REPORTS 2020. [DOI: 10.1007/s40472-020-00277-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
19
|
Clauss S, Bleyer C, Schüttler D, Tomsits P, Renner S, Klymiuk N, Wakili R, Massberg S, Wolf E, Kääb S. Animal models of arrhythmia: classic electrophysiology to genetically modified large animals. Nat Rev Cardiol 2020; 16:457-475. [PMID: 30894679 DOI: 10.1038/s41569-019-0179-0] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Arrhythmias are common and contribute substantially to cardiovascular morbidity and mortality. The underlying pathophysiology of arrhythmias is complex and remains incompletely understood, which explains why mostly only symptomatic therapy is available. The evaluation of the complex interplay between various cell types in the heart, including cardiomyocytes from the conduction system and the working myocardium, fibroblasts and cardiac immune cells, remains a major challenge in arrhythmia research because it can be investigated only in vivo. Various animal species have been used, and several disease models have been developed to study arrhythmias. Although every species is useful and might be ideal to study a specific hypothesis, we suggest a practical trio of animal models for future use: mice for genetic investigations, mechanistic evaluations or early studies to identify potential drug targets; rabbits for studies on ion channel function, repolarization or re-entrant arrhythmias; and pigs for preclinical translational studies to validate previous findings. In this Review, we provide a comprehensive overview of different models and currently used species for arrhythmia research, discuss their advantages and disadvantages and provide guidance for researchers who are considering performing in vivo studies.
Collapse
Affiliation(s)
- Sebastian Clauss
- Department of Medicine I, University Hospital Munich, Campus Grosshadern, Ludwig-Maximilians University Munich (LMU), Munich, Germany. .,DZHK (German Centre for Cardiovascular Research), Partner Site Munich, Munich Heart Alliance (MHA), Munich, Germany.
| | - Christina Bleyer
- Department of Medicine I, University Hospital Munich, Campus Grosshadern, Ludwig-Maximilians University Munich (LMU), Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich, Munich Heart Alliance (MHA), Munich, Germany
| | - Dominik Schüttler
- Department of Medicine I, University Hospital Munich, Campus Grosshadern, Ludwig-Maximilians University Munich (LMU), Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich, Munich Heart Alliance (MHA), Munich, Germany
| | - Philipp Tomsits
- Department of Medicine I, University Hospital Munich, Campus Grosshadern, Ludwig-Maximilians University Munich (LMU), Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich, Munich Heart Alliance (MHA), Munich, Germany
| | - Simone Renner
- Institute of Molecular Animal Breeding and Biotechnology, Ludwig-Maximilians University Munich (LMU), Munich, Germany.,DZD (German Centre for Diabetes Research), Neuherberg, Germany
| | - Nikolai Klymiuk
- Institute of Molecular Animal Breeding and Biotechnology, Ludwig-Maximilians University Munich (LMU), Munich, Germany
| | - Reza Wakili
- Universitätsklinikum Essen, Westdeutsches Herz- und Gefäßzentrum Essen, Essen, Germany
| | - Steffen Massberg
- Department of Medicine I, University Hospital Munich, Campus Grosshadern, Ludwig-Maximilians University Munich (LMU), Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich, Munich Heart Alliance (MHA), Munich, Germany
| | - Eckhard Wolf
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich, Munich Heart Alliance (MHA), Munich, Germany.,Institute of Molecular Animal Breeding and Biotechnology, Ludwig-Maximilians University Munich (LMU), Munich, Germany.,DZD (German Centre for Diabetes Research), Neuherberg, Germany
| | - Stefan Kääb
- Department of Medicine I, University Hospital Munich, Campus Grosshadern, Ludwig-Maximilians University Munich (LMU), Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich, Munich Heart Alliance (MHA), Munich, Germany
| |
Collapse
|
20
|
Hammer SE, Ho CS, Ando A, Rogel-Gaillard C, Charles M, Tector M, Tector AJ, Lunney JK. Importance of the Major Histocompatibility Complex (Swine Leukocyte Antigen) in Swine Health and Biomedical Research. Annu Rev Anim Biosci 2019; 8:171-198. [PMID: 31846353 DOI: 10.1146/annurev-animal-020518-115014] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In pigs, the major histocompatibility complex (MHC), or swine leukocyte antigen (SLA) complex, maps to Sus scrofa chromosome 7. It consists of three regions, the class I and class III regions mapping to 7p1.1 and the class II region mapping to 7q1.1. The swine MHC is divided by the centromere, which is unique among mammals studied to date. The SLA complexspans between 2.4 and 2.7 Mb, depending on haplotype, and encodes approximately 150 loci, with at least 120 genes predicted to be functional. Here we update the whole SLA complex based on the Sscrofa11.1 build and annotate the organization for all recognized SLA genes and their allelic sequences. We present SLA nomenclature and typing methods and discuss the expression of SLA proteins, as well as their role in antigen presentation and immune, disease, and vaccine responses. Finally, we explore the role of SLA genes in transplantation and xenotransplantation and their importance in swine biomedical models.
Collapse
Affiliation(s)
- Sabine E Hammer
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, A-1210 Vienna, Austria
| | - Chak-Sum Ho
- Gift of Hope Organ & Tissue Donor Network, Itasca, Illinois 60143, USA
| | - Asako Ando
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara 259-1193, Japan
| | | | - Mathieu Charles
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Matthew Tector
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA.,Current address: Makana Therapeutics, Wilmington, Delaware 19801, USA
| | - A Joseph Tector
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA.,Current address: Department of Surgery, University of Miami, Miami, Florida 33136, USA
| | - Joan K Lunney
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, US Department of Agriculture, Beltsville, Maryland 20705, USA;
| |
Collapse
|
21
|
Kavanagh DPJ, Kalia N. Live Intravital Imaging of Cellular Trafficking in the Cardiac Microvasculature-Beating the Odds. Front Immunol 2019; 10:2782. [PMID: 31849965 PMCID: PMC6901937 DOI: 10.3389/fimmu.2019.02782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 11/13/2019] [Indexed: 12/11/2022] Open
Abstract
Although mortality rates from cardiovascular disease in the developed world are falling, the prevalence of cardiovascular disease (CVD) is not. Each year, the number of people either being diagnosed as suffering with CVD or undergoing a surgical procedure related to it, such as percutaneous coronary intervention, continues to increase. In order to ensure that we can effectively manage these diseases in the future, it is critical that we fully understand their basic physiology and their underlying causative factors. Over recent years, the important role of the cardiac microcirculation in both acute and chronic disorders of the heart has become clear. The recruitment of inflammatory cells into the cardiac microcirculation and their subsequent activation may contribute significantly to tissue damage, adverse remodeling, and poor outcomes during recovery. However, our basic understanding of the cardiac microcirculation is hampered by an historic inability to image the microvessels of the beating heart-something we have been able to achieve in other organs for over 100 years. This stems from a couple of clear and obvious difficulties related to imaging the heart-firstly, it has significant inherent contractile motion and is affected considerably by the movement of lungs. Secondly, it is located in an anatomically challenging position for microscopy. However, recent microscopic and technological developments have allowed us to overcome some of these challenges and to begin to answer some of the basic outstanding questions in cardiac microvascular physiology, particularly in relation to inflammatory cell recruitment. In this review, we will discuss some of the historic work that took place in the latter part of last century toward cardiac intravital, before moving onto the advanced work that has been performed since. This work, which has utilized technology such as spinning-disk confocal and multiphoton microscopy, has-along with some significant advancements in algorithms and software-unlocked our ability to image the "business end" of the cardiac vascular tree. This review will provide an overview of these techniques, as well as some practical pointers toward software and other tools that may be useful for other researchers who are considering utilizing this technique themselves.
Collapse
Affiliation(s)
- Dean Philip John Kavanagh
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Neena Kalia
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
22
|
Mardomi A, Mohammadi N, Khosroshahi HT, Abediankenari S. An update on potentials and promises of T cell co-signaling molecules in transplantation. J Cell Physiol 2019; 235:4183-4197. [PMID: 31696513 DOI: 10.1002/jcp.29369] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 10/07/2019] [Indexed: 02/06/2023]
Abstract
The promising outcomes of immune-checkpoint based immunotherapies in cancer have provided a proportional perspective ahead of exploiting similar approaches in allotransplantation. Belatacept (CTLA-4-Ig) is an example of costimulation blockers successfully exploited in renal transplantation. Due to the wide range of regulatory molecules characterized in the past decades, some of these molecules might be candidates as immunomodulators in the case of tolerance induction in transplantation. Although there are numerous attempts on the apprehension of the effects of co-signaling molecules on immune response, the necessity for a better understanding is evident. By increasing the knowledge on the biology of co-signaling pathways, some pitfalls are recognized and improved approaches are proposed. The blockage of CD80/CD28 axis is an instance of evolution toward more efficacy. It is now evident that anti-CD28 antibodies are more effective than CD80 blockers in animal models of transplantation. Other co-signaling axes such as PD-1/PD-L1, CD40/CD154, 2B4/CD48, and others discussed in the present review are examples of critical immunomodulatory molecules in allogeneic transplantation. We review here the outcomes of recent experiences with co-signaling molecules in preclinical studies of solid organ transplantation.
Collapse
Affiliation(s)
- Alireza Mardomi
- Department of Immunology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran.,Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Nabiallah Mohammadi
- Department of Immunology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Saeid Abediankenari
- Department of Immunology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
23
|
Li P, Zhang W, Smith LJ, Ayares D, Cooper DK, Ekser B. The potential role of 3D-bioprinting in xenotransplantation. Curr Opin Organ Transplant 2019; 24:547-554. [PMID: 31385888 PMCID: PMC6861853 DOI: 10.1097/mot.0000000000000684] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW To review the impact of a new technology, 3D-bioprinting, in xenotransplantation research. RECENT FINDINGS Genetically engineered pigs, beginning with human (h) CD55-transgenic and Gal-knockout pigs, have improved the outcomes of xenotransplantation research. Today, there are more than 30 different genetically engineered pigs either expressing human gene(s) or lacking pig gene(s). CRIPSR/cas9 technology has facilitated the production of multigene pigs (up to nine genes in a single pig), which lack multiple pig xenoantigens, and express human transgenes, such as hCD46, hCD55, hThrombomodulin, hCD39, etc. Although recent studies in nonhuman primates (NHPs) have demonstrated prolonged survival after life-supporting pig kidney, heart, and islet xenotransplantation, researchers have difficulty determining the best genetic combination to test in NHPs because of a potential greater than 100 000 genetic combinations. 3D-bioprinting of genetically engineered pig cells: is superior to 2D in-vitro testing, enables organ-specific testing, helps to understand differences in immunogenicity between organs, and is faster and cheaper than testing in NHPs. Moreover, 3D-bioprinted cells can be continuously perfused in a bioreactor, controlling for all variables, except the studied variable. SUMMARY 3D-bioprinting can help in the study of the impact of specific genes (human or pig) in xenotransplantation in a rapid, inexpensive, and reliable way.
Collapse
Affiliation(s)
- Ping Li
- Division of Transplant Surgery, Department of Surgery, Indiana University, School of Medicine, Indianapolis, IN, USA
| | - Wenjun Zhang
- Division of Transplant Surgery, Department of Surgery, Indiana University, School of Medicine, Indianapolis, IN, USA
| | - Lester J. Smith
- Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- 3D Bioprinting Core, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - David K.C. Cooper
- Xenotransplantation Program, Department of Surgery, University of Birmingham at Alabama, Birmingham, AL, USA
| | - Burcin Ekser
- Division of Transplant Surgery, Department of Surgery, Indiana University, School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
24
|
|
25
|
Noguchi Y, Maeda A, Lo PC, Takakura C, Haneda T, Kodama T, Yoneyama T, Toyama C, Tazuke Y, Okuyama H, Miyagawa S. Human TIGIT on porcine aortic endothelial cells suppresses xenogeneic macrophage-mediated cytotoxicity. Immunobiology 2019; 224:605-613. [PMID: 31402149 DOI: 10.1016/j.imbio.2019.07.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/03/2019] [Accepted: 07/30/2019] [Indexed: 11/19/2022]
Abstract
PURPOSE The delayed rejection caused by strong cell-mediated innate and adaptive xenogeneic immune responses continues to be a major obstacle. Therefore, suppressing macrophage function could be effective in avoiding this type of rejection. In this study, the suppression of T-cell immunoglobulin and ITIM domain (TIGIT) function against macrophage-mediated xenogeneic rejection was investigated. MATERIAL AND METHODS Naïve porcine aortic endothelial cell (PAEC) and PAEC transfectant with TIGIT (PAEC/TIGIT) were co-cultured with M1 macrophages, and the degree of cytotoxicity was determined by a counting beads assay. The anti/pro-inflammatory gene expression was determined by RT-PCR and the phosphorylated SHP-1 in the macrophages after co-culturing with PAEC or PAEC/TIGIT was evaluated by western blotting. RESULTS CD155 was expressed at essentially equal levels on both M1 and M2 macrophages, whereas TIGIT was highly expressed on M2 macrophages but not in M1 macrophages. TIGIT on PAEC significantly reduced the cytotoxicity of M1 macrophages but no significant suppression of phagocytosis was detected. TIGIT also caused a decrease in the expression of pro-inflammatory cytokines, namely TNFα, IL-1β and IL-12 in M1 macrophages. Furthermore, PAEC/TIGIT caused a significant increase in phosphorylated SHP-1 in M1 macrophages compared to PAEC. CONCLUSION The findings of this study indicate that TIGIT suppresses xenogeneic M1 macrophage-induced cytotoxicity, probably at least in part, via the phosphorylation of SHP-1. In addition, the reduced expression of some pro-inflammatory cytokines, namely TNFα, IL-1β and IL-12, was observed in M1 macrophages that had been cultured with PAEC/TIGIT.
Collapse
Affiliation(s)
- Yuki Noguchi
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Akira Maeda
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan.
| | - Pei-Chi Lo
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Chihiro Takakura
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tomoko Haneda
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tasuku Kodama
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tomohisa Yoneyama
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Chiyoshi Toyama
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yuko Tazuke
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hiroomi Okuyama
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shuji Miyagawa
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan; Meiji University International Institute for Bio-Resource Research, Kanagawa, Japan
| |
Collapse
|
26
|
Zhang X, Li X, Yang Z, Tao K, Wang Q, Dai B, Qu S, Peng W, Zhang H, Cooper DKC, Dou K. A review of pig liver xenotransplantation: Current problems and recent progress. Xenotransplantation 2019; 26:e12497. [PMID: 30767272 DOI: 10.1111/xen.12497] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/01/2019] [Accepted: 01/07/2019] [Indexed: 12/14/2022]
Abstract
Pig liver xenotransplantation appears to be more perplexing when compared to heart or kidney xenotransplantation, even though great progress has been achieved. The relevant molecular mechanisms involved in xenogeneic rejection, including coagulopathy, and particularly thrombocytopenia, are complex, and need to be systematically investigated. The deletion of expression of Gal antigens in the liver graft highlights the injurious impact of nonGal antigens, which continue to induce humoral rejection. Innate immunity, particularly mediated by macrophages and natural killer cells, interplays with inflammation and coagulation disorders. Kupffer cells and liver sinusoidal endothelial cells (LSECs) together mediate leukocyte, erythrocyte, and platelet sequestration and phagocytosis, which can be exacerbated by increased cytokine production, cell desialylation, and interspecies incompatibilities. The coagulation cascade is activated by release of tissue factor which can be dependent or independent of the xenoreactive immune response. Depletion of endothelial anticoagulants and anti-platelet capacity amplify coagulation activation, and interspecies incompatibilities of coagulation-regulatory proteins facilitate dysregulation. LSECs involved in platelet phagocytosis and transcytosis, coupled with hepatocyte-mediated degradation, are responsible for thrombocytopenia. Adaptive immunity could also be problematic in long-term liver graft survival. Currently, relevant evidence and study results of various genetic modifications to the pig donor need to be fully determined, with the aim of identifying the ideal transgene combination for pig liver xenotransplantation. We believe that clinical trials of pig liver xenotransplantation should initially be considered as a bridge to allotransplantation.
Collapse
Affiliation(s)
- Xuan Zhang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xiao Li
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Zhaoxu Yang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Kaishan Tao
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Quancheng Wang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Bin Dai
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Shibin Qu
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Wei Peng
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Hong Zhang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - David K C Cooper
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Kefeng Dou
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
27
|
Godehardt AW, Petkov S, Gulich B, Fischer N, Niemann H, Tönjes RR. Comparative gene expression profiling of pig-derived iPSC-like cells: Effects of induced pluripotency on expression of porcine endogenous retrovirus (PERV). Xenotransplantation 2019; 25:e12429. [PMID: 30264886 DOI: 10.1111/xen.12429] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/04/2018] [Accepted: 05/25/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Porcine induced pluripotent stem cells (piPSCs) offer an alternative strategy in xenotransplantation (XTx). As human endogenous retroviruses (HERV), particularly HERV-K, are highly expressed in natural human stem cells, we compared the expression of porcine endogenous retroviruses (PERV) and retrotransposon LINE-1 (L1) open reading frames 1 and 2 (pORF1 and pORF2) in different piPSC-like cell lines with their progenitors (porcine fetal fibroblasts, pFF). METHODS Cells reprogrammed via Sleeping Beauty-transposed transcription factors were cultured and analyzed on a custom-designed microarray representing the reference pig genome. Data were complemented by qRT-PCR and reverse transcriptase (RT) assay. RESULTS The expression profiles revealed that 8515 of 26 967 targets were differentially expressed. A total of 4443 targets showed log2 expression ratio >1, and 4072 targets showed log2 expression ratio less than -1 with 0.05 P-value threshold. Approximately ten percent of the targets showed highly significant expression ratios with log2 ≥4 or ≤-4. Besides this general switch in cellular gene expression that was accompanied by an altered morphology, expression of both PERV and L1 pORF1/pORF2 was significantly enhanced. piPSC-like cells revealed a 10-fold to 100-fold higher transcription of the viral PERV-A and PERV-B envelope genes (env), viral protease/polymerase (prt/pol), and L1 elements. No functional retrovirus could be detected under these conditions. CONCLUSION Epigenetic reprogramming has functional impact on retrotransposons. Thus, the induction of pig-derived pluripotent cells influences their PERV expression profile. Data emphasize the necessity to focus on animals, which show non-functional endogenous viral background to ensure virological safety.
Collapse
Affiliation(s)
| | | | - Barbara Gulich
- Division of Medical Biotechnology, Paul-Ehrlich-Institut, Langen, Germany
| | - Nicole Fischer
- Division of Medical Biotechnology, Paul-Ehrlich-Institut, Langen, Germany
| | - Heiner Niemann
- Institute for Farm Animal Genetics, Friedrich-Loeffler-Institut, Federal Research Institute of Animal Health, Neustadt, Germany
| | - Ralf R Tönjes
- Division of Medical Biotechnology, Paul-Ehrlich-Institut, Langen, Germany
| |
Collapse
|
28
|
Taylor TR, Levy H, Burlak C. Xenotransplantation literature update, September/October 2018. Xenotransplantation 2018; 25:e12475. [PMID: 30536839 DOI: 10.1111/xen.12475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 12/04/2018] [Indexed: 11/27/2022]
Affiliation(s)
- Travis R Taylor
- Department of Medical Microbiology and Immunology, University of Toledo Medical Center, Toledo, Ohio
| | - Heather Levy
- Department of Surgery, Schultz Diabetes Institute, University of Minnesota, Minneapolis, Minnesota
| | - Christopher Burlak
- Department of Surgery, Schultz Diabetes Institute, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|