1
|
Ranasinghe RW, Seneviratne SS, Irwin D. Cryptic Hybridization Dynamics in a Three-Way Hybrid Zone of Dinopium Flamebacks on a Tropical Island. Ecol Evol 2024; 14:e70716. [PMID: 39717648 PMCID: PMC11664123 DOI: 10.1002/ece3.70716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/25/2024] Open
Abstract
Island ecosystems have emerged as vital model systems for evolutionary and speciation studies due to their unique environmental conditions and biodiversity. This study investigates the population divergence, hybridization dynamics, and evolutionary history of hybridizing golden-backed and red-backed Dinopium flameback woodpeckers on the island of Sri Lanka, providing insights into speciation processes within an island biogeographic context. Utilizing genomic analysis based on next-generation sequencing, we revealed that the Dinopium hybrid zone on this island is a complex three-way hybrid zone involving three genetically distinct populations: two cryptic populations of golden-backed D. benghalense in the north and one island-endemic red-backed population of D. psarodes in the south of Sri Lanka. Our findings indicate asymmetric introgressive hybridization, where alleles from the southern D. psarodes introgress into the northern D. benghalense genome while phenotype remains adapted to their respective northern arid and southern wet habitats. The discovery of two genetically distinct but phenotypically similar D. benghalense populations in northern Sri Lanka highlights the process of cryptic population differentiation within island ecosystems. These populations trace their ancestry back to a common ancestor, similar to the Indian form D. b. tehminae, which colonized Sri Lanka from mainland India during the late Pleistocene. Subsequent divergence within the island, driven by selection, isolation by distance, and genetic drift, led to the current three populations. Our findings provide evidence of cryptic diversification and within-island population divergence, highlighting the complexity of hybridization and speciation processes. These findings further emphasize the intricate nature of evolutionary dynamics in island ecosystems.
Collapse
Affiliation(s)
- Rashika W. Ranasinghe
- Department of Zoology, Biodiversity Research CentreUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Sampath S. Seneviratne
- Department of Zoology & Environment Sciences, Faculty of Science, Avian Sciences & ConservationUniversity of ColomboColomboSri Lanka
| | - Darren Irwin
- Department of Zoology, Biodiversity Research CentreUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| |
Collapse
|
2
|
Gosai KR, Zhou L, Liu Y, Braun EL, Kimball RT, Robinson SK, Jiang A, Goodale E. Investigating flock-associated mimicry: examining the evidence for, and drivers of, plumage mimicry in the greater and lesser necklaced laughingthrush. ROYAL SOCIETY OPEN SCIENCE 2024; 11:230976. [PMID: 38601036 PMCID: PMC11004677 DOI: 10.1098/rsos.230976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 01/29/2024] [Accepted: 02/16/2024] [Indexed: 04/12/2024]
Abstract
Visual mimicry is less understood in birds than in other taxa. The interspecific social dominance mimicry (ISDM) hypothesis asserts that subordinate species resemble dominant ones to reduce aggression. Plumage mimicry has also been consistently noted in mixed-species flocks (MSFs), suggesting a connection to grouping behaviour, although it is unclear whether this is linked to ISDM. We studied greater necklaced laughingthrush (GNLT, Pterorhinus pectoralis) and lesser necklaced laughingthrush (LNLT, Garrulax monileger), which were recently placed in different genera. Measurements of 162 museum specimens showed LNLT converging in sympatry with GNLT in necklace colour, but diverging in necklace to body ratio, with proportionally smaller necklaces. The species were closely associated in six of seven MSF systems from Nepal to China. In a study of foraging behaviour in Nepal, aggression was rare between the species, LNLT followed GNLT and had lower foraging rates when further from GNLT. Our data suggest a link between this MSF-associated mimicry and ISDM, and that the subordinate LNLT may be the mimic and gain more from the resemblance. The species spend much time together in dense and poorly lit vegetation, where the LNLTs resemblance to GNLTs potentially allows them to forage closer to GNLTs than would be otherwise possible.
Collapse
Affiliation(s)
- Kamal Raj Gosai
- Guangxi Key Laboratory of Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi530004, People's Republic of China
- Department of Environmental Science, Tri-Chandra Multiple Campus, Tribhuvan University, Kirtipur, Kathmandu44600, Nepal
| | - Liping Zhou
- Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan650223, People's Republic of China
| | - Yang Liu
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, Guangdong518107, People's Republic of China
| | - Edward L. Braun
- Department of Biology, University of Florida, Gainesville, FL32611, USA
| | | | - Scott K. Robinson
- Florida Museum of Natural History, University of Florida, Gainesville, FL32611, USA
| | - Aiwu Jiang
- Guangxi Key Laboratory of Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi530004, People's Republic of China
| | - Eben Goodale
- Department of Health and Environmental Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu215123, People's Republic of China
| |
Collapse
|
3
|
Zhou L, Mammides C, Chen Y, Zhou W, Dai W, Braun EL, Kimball RT, Liu Y, Robinson SK, Goodale E. High association strengths are linked to phenotypic similarity, including plumage color and patterns, of participants in mixed-species bird flocks of southwestern China. Curr Zool 2024; 70:34-44. [PMID: 38476134 PMCID: PMC10926261 DOI: 10.1093/cz/zoac096] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 11/24/2022] [Indexed: 03/14/2024] Open
Abstract
Participants in mixed-species bird flocks (MSFs) have been shown to associate with species that are similar in body size, diet, and evolutionary history, suggesting that facilitation structures these assemblages. In addition, several studies have suggested that species in MSFs resemble each other in their plumage, but this question has not been systematically investigated for any MSF system. During the nonbreeding season of 2020 and 2021, we sampled 585 MSFs on 14 transects in 2 habitats of Tongbiguang Nature Reserve in western Yunnan Province, China. We performed social network analysis and the Multiple Regression Quadratic Assignment Procedure to evaluate the effect of 4 species traits (body size, overall plumage color, distinctive plumage patterns, and diet) and evolutionary history on species association strength at the whole-MSF and within-MSF levels. All 41 significant relationships showed that species with stronger associations were more similar in their various traits. Body size had the strongest effect on association strength, followed by phylogeny, plumage patterns, and plumage color; diet had the weakest effect. Our results are consistent with the hypotheses that the benefits of associating with phenotypically similar species outweigh the potential costs of interspecific competition, and that trait matching can occur in plumage characteristics, albeit more weakly than in other traits. Several explanations exist as to why similarities in plumage may occur in MSFs, including that they could reduce predators' ability to target phenotypically "odd" individuals. Whether trait matching in plumage occurs through assortative processes in ecological time or is influenced by co-evolution requires further study.
Collapse
Affiliation(s)
- Liping Zhou
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
- Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Christos Mammides
- Nature Conservation Unit, Frederick University, 7, Yianni Frederickou Street, Pallouriotissa, Nicosia 1036, Cyprus
| | - Youfang Chen
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Wenyi Zhou
- Florida Museum of Natural History, University of Florida, Gainesville, FL 34201, USA
- Department of Biology, University of Florida, Gainesville, FL 34201, USA
| | - Wenzhang Dai
- School of Life Science and Institute of Wetland Ecology, Nanjing University, Nanjing 210000, China
| | - Edward L Braun
- Department of Biology, University of Florida, Gainesville, FL 34201, USA
| | - Rebecca T Kimball
- Department of Biology, University of Florida, Gainesville, FL 34201, USA
| | - Yang Liu
- State Key Laboratory of Biocontrol, School of Ecology, Sun-Yatsen University, Guangzhou 510275, China
| | - Scott K Robinson
- Florida Museum of Natural History, University of Florida, Gainesville, FL 34201, USA
| | - Eben Goodale
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
- Department of Health and Environmental Science, Xi’an Jiaotong Liverpool University, Suzhou 215123, China
| |
Collapse
|
4
|
Kimball RT, Braun EL, Liu Y, Zhou L, Goodale E, Zhou W, Robinson SK. Can convergence in mixed-species flocks lead to evolutionary divergence? Evidence for and methods to test this hypothesis. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220112. [PMID: 37066651 PMCID: PMC10107229 DOI: 10.1098/rstb.2022.0112] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 01/31/2023] [Indexed: 04/18/2023] Open
Abstract
One of the most fundamental goals of modern biology is to achieve a deep understanding of the origin and maintenance of biodiversity. It has been observed that in some mixed-species animal societies, there appears to be a drive towards some degree of phenotypic trait matching, such as similar coloration or patterning. Here we build on these observations and hypothesize that selection in mixed-species animal societies, such as mixed-species bird flocks, may drive diversification, potentially leading to speciation. We review evidence for possible convergent evolution and even outright mimicry in flocks from southwestern China, where we have observed several cases in which species and subspecies differ from their closest relatives in traits that match particular flock types. However, understanding whether this is phenotypic matching driven by convergence, and whether this divergence has promoted biodiversity, requires testing multiple facets of this hypothesis. We propose a series of steps that can be used to tease apart alternative hypotheses to build our understanding of the potential role of convergence in diversification in participants of mixed-species societies. Even if our social convergence/divergence hypothesis is not supported, the testing at each step should help highlight alternative processes that may affect mixed-species flocks, trait evolution and possible convergence. This article is part of the theme issue 'Mixed-species groups and aggregations: shaping ecological and behavioural patterns and processes'.
Collapse
Affiliation(s)
- Rebecca T. Kimball
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Edward L. Braun
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Yang Liu
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Liping Zhou
- Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, People's Republic of China
| | - Eben Goodale
- Department of Health and Environmental Science, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, People's Republic of China
| | - Wenyi Zhou
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - Scott K. Robinson
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
5
|
Velde MF, Besozzi EM, Krochuk BA, Henderson KM, Tsuru BR, Restrepo SV, Garrod HM, Cooper JC. What constitutes a community? A co-occurrence exploration of the Costa Rican avifauna. NEOTROPICAL BIODIVERSITY 2023; 9:64-75. [PMID: 37275476 PMCID: PMC10237366 DOI: 10.1080/23766808.2023.2204549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 03/11/2023] [Indexed: 06/07/2023] Open
Abstract
The concept of a "community" as a form of organization for natural biological systems is both widespread and widely accepted within the ecological and biological sciences. Communities have been defined as groups of organisms that interact in ways that denote interdependence between individuals and taxa (e.g. as defined by "food webs") but they have also been defined as groups of co-occurring organisms that are assumed to interact by virtue of their shared spatiotemporal existence. The latter definition has been debated and challenged in the literature, with mounting evidence for co-occurrence being more indicative of coincident ecological niches in space and time rather than being evidence of ecological interaction or dependency. Using a dataset of 460 Costa Rican bird species divided into breeding and non-breeding season datasets, we empirically demonstrate the ways in which co-occurrence can create illusory communities based on similar occupied ecological niches and similar patterns of co-occurrence at different times of year. We discuss the importance of discerning coincidental co-occurrence from true ecological interactions that would manifest a true community, and further address the importance of differentiating communities of co-occurrence from communities of demonstrable ecological interaction. While co-occurrence is a necessary aspect of interspecific interactions, we discuss and demonstrate here that such co-occurrence does not make a community, nor should explicit patterns of co-occurrence be seen as evidence for evolutionarily important ecological interactions.
Collapse
Affiliation(s)
- Mélusine F. Velde
- Division of Birds, Negaunee Integrative Research Center, Chicago, IL, USA
- Faculty of Natural Sciences, Imperial College London Silwood Park, Ascot, UK
- Biological Sciences Division, The College at University of Chicago, Chicago, IL, USA
| | | | - Billi A. Krochuk
- Biodiversity Research Centre and Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Kate M. Henderson
- Department of Environmental Biology, State University of New York College of Environmental Science and Forestry, Syracuse, NY, USA
| | - Brian R. Tsuru
- School of Environment and Natural Resources, Ohio State University, Columbus, OH, USA
| | | | - Holly M. Garrod
- BirdsCaribbean, Natick, MA, USA
- Department of Biology, Villanova University, Villanova, PA, USA
| | - Jacob C. Cooper
- Division of Birds, Negaunee Integrative Research Center, Chicago, IL, USA
- Biodiversity Institute & Natural History Museum, University of Kansas, Lawrence, KS, USA
- Committee on Evolutionary Biology, University of Chicago, Chicago, IL, USA
| |
Collapse
|
6
|
Terrill RS, Shultz AJ. Feather function and the evolution of birds. Biol Rev Camb Philos Soc 2023; 98:540-566. [PMID: 36424880 DOI: 10.1111/brv.12918] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 11/26/2022]
Abstract
The ability of feathers to perform many functions either simultaneously or at different times throughout the year or life of a bird is integral to the evolutionary history of birds. Many studies focus on single functions of feathers, but any given feather performs many functions over its lifetime. These functions necessarily interact with each other throughout the evolution and development of birds, so our knowledge of avian evolution is incomplete without understanding the multifunctionality of feathers, and how different functions may act synergistically or antagonistically during natural selection. Here, we review how feather functions interact with avian evolution, with a focus on recent technological and discovery-based advances. By synthesising research into feather functions over hierarchical scales (pattern, arrangement, macrostructure, microstructure, nanostructure, molecules), we aim to provide a broad context for how the adaptability and multifunctionality of feathers have allowed birds to diversify into an astounding array of environments and life-history strategies. We suggest that future research into avian evolution involving feather function should consider multiple aspects of a feather, including multiple functions, seasonal wear and renewal, and ecological or mechanical interactions. With this more holistic view, processes such as the evolution of avian coloration and flight can be understood in a broader and more nuanced context.
Collapse
Affiliation(s)
- Ryan S Terrill
- Moore Laboratory of Zoology, Occidental College, 1600 Campus rd., Los Angeles, CA, 90042, USA
- Department of Biological Sciences, California State University, Stanislaus, Turlock, CA, 95382, USA
| | - Allison J Shultz
- Ornithology Department, Natural History Museum of Los Angeles County, 900 Exposition Blvd., Los Angeles, CA, 90007, USA
| |
Collapse
|
7
|
Heo S, Cho S, Dinh PTN, Park J, Jin DH, Cha J, Kim YK, Koh YJ, Lee SH, Lee JH. A genome-wide association study for eumelanin pigmentation in chicken plumage using a computer vision approach. Anim Genet 2023; 54:355-362. [PMID: 36855963 DOI: 10.1111/age.13303] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/28/2022] [Accepted: 01/26/2023] [Indexed: 03/02/2023]
Abstract
Chicken plumage colouration is an important trait related to productivity in poultry industry. Therefore, the genetic basis for pigmentation in chicken plumage is an area of great interest. However, the colour trait is generally regarded as a qualitative trait and representing colour variations is difficult. In this study, we developed a method to quantify and classify colour using an F2 population crossed from two pure lines: White Leghorn and the Korean indigenous breed Yeonsan Ogye. Using red, green, and blue values in the cropped body region, we identified significant genomic regions on chromosomes 33:3 160 480-7 447 197 and Z:78 748 287-79 173 793. Furthermore, we identified two potential candidate genes (PMEL and MTAP) that might have significant effects on melanin-based plumage pigmentation. Our study presents a new phenotyping method using a computer vision approach and provides new insights into the genetic basis of melanin-based feather colouration in chickens.
Collapse
Affiliation(s)
- Seonyeong Heo
- Department of Bio-AI Convergence, Chungnam National University, Daejeon, South Korea
| | - Sunghyun Cho
- Research and Development Center, Insilicogen Inc., Yongin, South Korea
| | | | - Jongho Park
- Department of Bio-AI Convergence, Chungnam National University, Daejeon, South Korea
| | - Dae-Hyeok Jin
- Animal Genetic Resources Research Center, National Institute of Animal Science, Rural Development Administration, Hamyang, South Korea
| | - Jihye Cha
- Animal Genome & Bioinformatics, National Institute of Animal Science, Rural Development Administration, Wanju, South Korea
| | - Young-Kuk Kim
- Department of Bio-AI Convergence, Chungnam National University, Daejeon, South Korea.,Department of Computer Science & Engineering, Chungnam National University, Daejeon, South Korea
| | - Yeong Jun Koh
- Department of Bio-AI Convergence, Chungnam National University, Daejeon, South Korea.,Department of Computer Science & Engineering, Chungnam National University, Daejeon, South Korea
| | - Seung Hwan Lee
- Department of Bio-AI Convergence, Chungnam National University, Daejeon, South Korea.,Division of Animal and Dairy Science, Chungnam National University, Daejeon, South Korea
| | - Jun Heon Lee
- Department of Bio-AI Convergence, Chungnam National University, Daejeon, South Korea.,Division of Animal and Dairy Science, Chungnam National University, Daejeon, South Korea
| |
Collapse
|
8
|
Suh YH, Ligon RA, Rohwer VG. Revisiting the Baltimore-Bullock's Oriole hybrid zone reveals changing plumage colour in Bullock's Orioles. ROYAL SOCIETY OPEN SCIENCE 2022; 9:221211. [PMID: 36533198 PMCID: PMC9748506 DOI: 10.1098/rsos.221211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
Hybrid zones are dynamic areas where populations of two or more interbreeding species may change through an influx of novel genetic material resulting from hybridization or selection on standing genetic variation. Documenting changes in populations through time, however, is challenging because repeated samples are often missing or because long-term storage can affect trait morphologies, especially colour traits that may fade through time. We document a change in carotenoid-based orange breast feathers of Bullock's Orioles (Icterus bullockii) from the Great Plains hybrid zone, USA. Contemporary Bullock's Orioles are more orange than historic individuals from the same location sampled approximately 60 years ago. Spectrophotometry revealed that contemporary Bullock's Orioles resemble orange colour profiles of Baltimore Orioles (I. galbula), the species with which they hybridize. Fading or changes in diet hypotheses do not appear to explain the shift in colour we report for Bullock's Orioles. We propose that these changes in colour are facilitated through introgression with Baltimore Orioles, and favoured by females that choose brighter, more orange males. Our study highlights the long memory of natural history collections and how they offer new insights to the dynamic roll of hybrid zones in trait evolution between interacting species.
Collapse
Affiliation(s)
- Young Ha Suh
- Department of Ecology and Evolutionary Biology, Cornell University Museum of Vertebrates, Ithaca, NY 14853, USA
- Cornell Lab of Ornithology, Ithaca, NY 14850, USA
| | | | - Vanya G. Rohwer
- Department of Ecology and Evolutionary Biology, Cornell University Museum of Vertebrates, Ithaca, NY 14853, USA
| |
Collapse
|
9
|
Youngflesh C, Saracco JF, Siegel RB, Tingley MW. Abiotic conditions shape spatial and temporal morphological variation in North American birds. Nat Ecol Evol 2022; 6:1860-1870. [PMID: 36302998 DOI: 10.1038/s41559-022-01893-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 08/30/2022] [Indexed: 12/15/2022]
Abstract
Quantifying environment-morphology relationships is important not only for understanding the fundamental processes driving phenotypic diversity within and among species but also for predicting how species will respond to ongoing global change. Despite a clear set of expectations motivated by ecological theory, broad evidence in support of generalizable effects of abiotic conditions on spatial and temporal intraspecific morphological variation has been limited. Using standardized data from >250,000 captures of 105 landbird species, we assessed intraspecific shifts in the morphology of adult male birds since 1989 while simultaneously measuring spatial morphological gradients across the North American continent. We found strong spatial and temporal trends in average body size, with warmer temperatures associated with smaller body sizes both at more equatorial latitudes and in more recent years. The magnitude of these thermal effects varied both across and within species, with results suggesting it is the warmest, rather than the coldest, temperatures that drive both spatial and temporal trends. Stronger responses to spatial-rather than temporal-variation in temperature suggest that morphological change may not be keeping up with the pace of climate change. Additionally, as elevation increases, we found that body size declines as relative wing length increases, probably due to the benefits that longer wings confer for flight in thin air environments. Our results provide support for both existing and new large-scale ecomorphological 'rules' and highlight how the response of functional trade-offs to abiotic variation drives morphological change.
Collapse
Affiliation(s)
- Casey Youngflesh
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, USA.
| | | | | | - Morgan W Tingley
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
10
|
Falk JJ, Rubenstein DR, Rico-Guevara A, Webster MS. Intersexual social dominance mimicry drives female hummingbird polymorphism. Proc Biol Sci 2022; 289:20220332. [PMID: 36069013 PMCID: PMC9449474 DOI: 10.1098/rspb.2022.0332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 08/11/2022] [Indexed: 11/12/2022] Open
Abstract
Female-limited polymorphisms, where females have multiple forms but males have only one, have been described in a variety of animals, yet are difficult to explain because selection typically is expected to decrease rather than maintain diversity. In the white-necked jacobin (Florisuga mellivora), all males and approximately 20% of females express an ornamented plumage type (androchromic), while other females are non-ornamented (heterochromic). Androchrome females benefit from reduced social harassment, but it remains unclear why both morphs persist. Female morphs may represent balanced alternative behavioural strategies, but an alternative hypothesis is that androchrome females are mimicking males. Here, we test a critical prediction of these hypotheses by measuring morphological, physiological and behavioural traits that relate to resource-holding potential (RHP), or competitive ability. In all these traits, we find little difference between female types, but higher RHP in males. These results, together with previous findings in this species, indicate that androchrome females increase access to food resources through mimicry of more aggressive males. Importantly, the mimicry hypothesis provides a clear theoretical pathway for polymorphism maintenance through frequency-dependent selection. Social dominance mimicry, long suspected to operate between species, can therefore also operate within species, leading to polymorphism and perhaps similarities between sexes more generally.
Collapse
Affiliation(s)
- Jay J. Falk
- Department of Neurobiology and Behavior, Cornell University, 215 Tower Road, Ithaca, NY 14853, USA
- Cornell Lab of Ornithology, 159 Sapsucker Woods Road, Ithaca, NY 14850, USA
- Smithsonian Tropical Research Institute, Balboa, Ancón, República de Panamá
- Department of Biology, University of Washington, Life Sciences Building, Box 351800, Seattle, WA 98105, USA
| | - Dustin R. Rubenstein
- Department of Ecology, Evolution and Environmental Biology and Center for Integrative Animal Behavior, Columbia University, 1200 Amsterdam Avenue, New York, NY 10027, USA
| | - Alejandro Rico-Guevara
- Department of Biology, University of Washington, Life Sciences Building, Box 351800, Seattle, WA 98105, USA
- Burke Museum of Natural History and Culture, Ornithology Division, 4300 15th Avenue NE, Seattle, WA 98105, USA
| | - Michael S. Webster
- Department of Neurobiology and Behavior, Cornell University, 215 Tower Road, Ithaca, NY 14853, USA
- Cornell Lab of Ornithology, 159 Sapsucker Woods Road, Ithaca, NY 14850, USA
| |
Collapse
|
11
|
|
12
|
Kleyn T, Cruz Kaizer M, Passos LF. Sharing sound: Avian acoustic niches in the Brazilian Atlantic Forest. Biotropica 2021. [DOI: 10.1111/btp.12907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tristan Kleyn
- Department of Natural Sciences & Psychology Liverpool John Moores University Liverpool UK
| | - Mariane Cruz Kaizer
- School of Science, Engineering and Environment University of Salford‐Manchester Salford UK
| | - Luiza F. Passos
- Department of Natural Sciences & Psychology Liverpool John Moores University Liverpool UK
| |
Collapse
|
13
|
Weeks BC, Naeem S, Winger BM, Cracraft J. The relationship between morphology and behavior in mixed-species flocks of island birds. Ecol Evol 2020; 10:10593-10606. [PMID: 33072282 PMCID: PMC7548193 DOI: 10.1002/ece3.6714] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/15/2020] [Accepted: 07/29/2020] [Indexed: 12/28/2022] Open
Abstract
Understanding how co‐occurring species divide ecological space is a central issue in ecology. Functional traits have the potential to serve as a means for quantitatively assessing niche partitioning by different species based on their ecological attributes, such as morphology, behavior, or trophic habit. This enables testing ecological and evolutionary questions using functional traits at spatio‐temporal scales that are not feasible using traditional field methods. Both rapid evolutionary change and inter‐ and intraspecific competition, however, may limit the utility of morphological functional traits as indicators of how niches are partitioned. To address how behavior and morphology interact, we quantified foraging behavior of mixed‐species flocks of birds in the Solomon Islands to test whether behavior and morphology are correlated in these flocks. We find that foraging behavior is significantly correlated with morphological traits (p = .05), but this correlation breaks down after correcting for phylogenetic relatedness (p = .66). These results suggest that there are consistent correlations between aspects of behavior and morphology at large taxonomic scales (e.g., across genera), but the relationship between behavior and morphology depends largely on among‐clade differences and may be idiosyncratic at shallower scales (e.g., within genera). As a result, general relationships between behaviors and morphology may not be applicable when comparing close relatives.
Collapse
Affiliation(s)
- Brian C Weeks
- School for Environment and Sustainability University of Michigan Ann Arbor MI USA.,Department of Ecology, Evolution and Environmental Biology Columbia University New York NY USA.,Department of Ornithology American Museum of Natural History New York NY USA
| | - Shahid Naeem
- Department of Ecology, Evolution and Environmental Biology Columbia University New York NY USA
| | - Benjamin M Winger
- Museum of Zoology and Department of Ecology and Evolutionary Biology University of Michigan Ann Arbor MI USA
| | - Joel Cracraft
- Department of Ornithology American Museum of Natural History New York NY USA
| |
Collapse
|
14
|
Drury JP, Cowen MC, Grether GF. Competition and hybridization drive interspecific territoriality in birds. Proc Natl Acad Sci U S A 2020; 117:12923-12930. [PMID: 32457140 PMCID: PMC7293658 DOI: 10.1073/pnas.1921380117] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Costly interactions between species that arise as a by-product of ancestral similarities in communication signals are expected to persist only under specific evolutionary circumstances. Territorial aggression between species, for instance, is widely assumed to persist only when extrinsic barriers prevent niche divergence or selection in sympatry is too weak to overcome gene flow from allopatry. However, recent theoretical and comparative studies have challenged this view. Here we present a large-scale, phylogenetic analysis of the distribution and determinants of interspecific territoriality. We find that interspecific territoriality is widespread in birds and strongly associated with hybridization and resource overlap during the breeding season. Contrary to the view that territoriality only persists between species that rarely breed in the same areas or where niche divergence is constrained by habitat structure, we find that interspecific territoriality is positively associated with breeding habitat overlap and unrelated to habitat structure. Furthermore, our results provide compelling evidence that ancestral similarities in territorial signals are maintained and reinforced by selection when interspecific territoriality is adaptive. The territorial signals linked to interspecific territoriality in birds depend on the evolutionary age of interacting species, plumage at shallow (within-family) timescales, and song at deeper (between-family) timescales. Evidently, territorial interactions between species have persisted and shaped phenotypic diversity on a macroevolutionary timescale.
Collapse
Affiliation(s)
- Jonathan P Drury
- Department of Biosciences, Durham University, DH1 3LE Durham, United Kingdom;
| | - Madeline C Cowen
- Department of Ecology & Evolutionary Biology, University of California, Los Angeles, CA 90095
| | - Gregory F Grether
- Department of Ecology & Evolutionary Biology, University of California, Los Angeles, CA 90095
| |
Collapse
|
15
|
Convergent and divergent selection drive plumage evolution in woodpeckers. Nat Commun 2020; 11:144. [PMID: 31919363 PMCID: PMC6952420 DOI: 10.1038/s41467-019-14006-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 12/12/2019] [Indexed: 11/09/2022] Open
|
16
|
Weeks BC, Willard DE, Zimova M, Ellis AA, Witynski ML, Hennen M, Winger BM. Shared morphological consequences of global warming in North American migratory birds. Ecol Lett 2019; 23:316-325. [PMID: 31800170 DOI: 10.1111/ele.13434] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 10/30/2019] [Indexed: 12/23/2022]
Abstract
Increasing temperatures associated with climate change are predicted to cause reductions in body size, a key determinant of animal physiology and ecology. Using a four-decade specimen series of 70 716 individuals of 52 North American migratory bird species, we demonstrate that increasing annual summer temperature over the 40-year period predicts consistent reductions in body size across these diverse taxa. Concurrently, wing length - an index of body shape that impacts numerous aspects of avian ecology and behaviour - has consistently increased across species. Our findings suggest that warming-induced body size reduction is a general response to climate change, and reveal a similarly consistent and unexpected shift in body shape. We hypothesise that increasing wing length represents a compensatory adaptation to maintain migration as reductions in body size have increased the metabolic cost of flight. An improved understanding of warming-induced morphological changes is important for predicting biotic responses to global change.
Collapse
Affiliation(s)
- Brian C Weeks
- School for Environment and Sustainability, University of Michigan, Dana Natural Resources Building, 440 Church St, Ann Arbor, MI, 49109, USA.,Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, Biological Sciences Building, 1105 N. University Avenue, Ann Arbor, MI, 48109, USA
| | - David E Willard
- Gantz Family Collection Center, The Field Museum, 1400 S. Lake Shore Dr, Chicago, IL, 60605, USA
| | - Marketa Zimova
- School for Environment and Sustainability, University of Michigan, Dana Natural Resources Building, 440 Church St, Ann Arbor, MI, 49109, USA
| | - Aspen A Ellis
- Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, Biological Sciences Building, 1105 N. University Avenue, Ann Arbor, MI, 48109, USA
| | - Max L Witynski
- Gantz Family Collection Center, The Field Museum, 1400 S. Lake Shore Dr, Chicago, IL, 60605, USA
| | - Mary Hennen
- Gantz Family Collection Center, The Field Museum, 1400 S. Lake Shore Dr, Chicago, IL, 60605, USA
| | - Benjamin M Winger
- Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, Biological Sciences Building, 1105 N. University Avenue, Ann Arbor, MI, 48109, USA
| |
Collapse
|
17
|
Avigliano E, Rosso JJ, Lijtmaer D, Ondarza P, Piacentini L, Izquierdo M, Cirigliano A, Romano G, Nuñez Bustos E, Porta A, Mabragaña E, Grassi E, Palermo J, Bukowski B, Tubaro P, Schenone N. Biodiversity and threats in non-protected areas: A multidisciplinary and multi-taxa approach focused on the Atlantic Forest. Heliyon 2019; 5:e02292. [PMID: 31497670 PMCID: PMC6722266 DOI: 10.1016/j.heliyon.2019.e02292] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/04/2019] [Accepted: 08/08/2019] [Indexed: 01/15/2023] Open
Abstract
Along many decades, protected environments were targeted by the scientific community for ecological research and for the collection of scientific information related to environmental aspects and biodiversity. However, most of the territory in hotspot regions with weak or even non legal protection has been left aside. These non-protected areas (NPA) could host high biodiversity values. This paper addresses how scientific effort on a NPA (CIAR) of 700 ha from the Atlantic Rain Forest, generates new information and tools for large-scale environmental and biodiversity management in NPAs. Information published during the last decade was summarized and complemented with subsequent novel data about biodiversity (new species, first records, DNA and chemical analyses, etc.). The results showed: 1 new genus (arachnid), 6 new species and several putative new species (fish and arthropod), 6 vulnerable species (bird and mammal) and 36 first records for Argentina (fish, arthropod, platyhelminth and fungi). When compared with protected natural areas of the same biome, the CIAR showed highly valuable aspects for fauna and environment conservation, positioning this NPA as a worldwide hotspot for some taxa. Indeed, when compared to international hotspots in a coordinated Malaise trap program, the CIAR showed 8,651 different barcode index numbers (∼species) of arthropods, 80% of which had not been previously barcoded. Molecules like Inoscavin A, with antifungal activity against phytopathogens, was isolated for the first time in Phellinus merrillii fungi. The study of major threats derived from anthropic activities measured 20 trace elements, 18 pesticides (i.e. endosulfans, chlorpyrifos, DDTs, HCHs) and 27 pharmaceuticals and drugs (i.e. benzoylecgonine and norfluoxetine) in different biotic and abiotic matrices (water, sediment, fish and air biomonitors). This integrated data analysis shows that biodiversity research in NPA is being undervalued and how multidisciplinary and multi-taxa surveys creates a new arena for research and a pathway towards sustainable development in emerging countries with biodiversity hotspots.
Collapse
Affiliation(s)
- Esteban Avigliano
- Centro de Investigaciones Antonia Ramos (CIAR), Fundación Bosques Nativos Argentinos, Camino Balneario s/n, Villa Bonita, Misiones, Argentina
- Instituto de Investigaciones en Producción Animal (INPA-CONICET-UBA), Universidad de Buenos Aires, Av. Chorroarín 280, (C1427CWO), Buenos Aires, Argentina
| | - Juan Jose Rosso
- Grupo de Biotaxonomía Morfológica y Molecular de Peces (BIMOPE), Instituto de Investigaciones Marinas y Costeras, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (CONICET), Dean Funes 3350, (B7600), Mar del Plata, Argentina
| | - Dario Lijtmaer
- Museo Argentino de Ciencias Naturales “Bernardino Rivadavia” (MACN-CONICET), Av. Angel Gallardo 470, (C1405DJR), Buenos Aires, Argentina
| | - Paola Ondarza
- Laboratorio de Ecotoxicología y Contaminación Ambiental, Instituto de Investigaciones Marinas y Costeras, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (CONICET), Dean Funes 3350, (B7600), Mar del Plata, Argentina
| | - Luis Piacentini
- Museo Argentino de Ciencias Naturales “Bernardino Rivadavia” (MACN-CONICET), Av. Angel Gallardo 470, (C1405DJR), Buenos Aires, Argentina
| | - Matías Izquierdo
- Laboratorio de Biología Reproductiva y Evolución, Instituto de Diversidad y Ecología Animal (IDEA-UNC-CONICET), Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de Córdoba. Av. Velez Sarsfield 299 (X5000 JJC), Córdoba, Argentina
| | - Adriana Cirigliano
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, (1428), Buenos Aires, Argentina
| | - Gonzalo Romano
- Departamento de Biología, Facultad de Ciencias Naturales, Universidad Nacional de la Patagonia San Juan Bosco (CONICET), Ruta 259 km 16.4, (9000), Esquel, Chubut, Argentina
| | - Ezequiel Nuñez Bustos
- Museo Argentino de Ciencias Naturales “Bernardino Rivadavia” (MACN-CONICET), Av. Angel Gallardo 470, (C1405DJR), Buenos Aires, Argentina
| | - Andres Porta
- Museo Argentino de Ciencias Naturales “Bernardino Rivadavia” (MACN-CONICET), Av. Angel Gallardo 470, (C1405DJR), Buenos Aires, Argentina
| | - Ezequiel Mabragaña
- Grupo de Biotaxonomía Morfológica y Molecular de Peces (BIMOPE), Instituto de Investigaciones Marinas y Costeras, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (CONICET), Dean Funes 3350, (B7600), Mar del Plata, Argentina
| | - Emanuel Grassi
- Instituto Misionero de Biodiversidad (IMiBio), Ruta N12 km 5, (N3370), Puerto Iguazú, Misiones, Argentina
| | - Jorge Palermo
- Departamento de Biología, Facultad de Ciencias Naturales, Universidad Nacional de la Patagonia San Juan Bosco (CONICET), Ruta 259 km 16.4, (9000), Esquel, Chubut, Argentina
- Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR-CONICET), Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, (1428), Buenos Aires, Argentina
| | - Belen Bukowski
- Museo Argentino de Ciencias Naturales “Bernardino Rivadavia” (MACN-CONICET), Av. Angel Gallardo 470, (C1405DJR), Buenos Aires, Argentina
| | - Pablo Tubaro
- Museo Argentino de Ciencias Naturales “Bernardino Rivadavia” (MACN-CONICET), Av. Angel Gallardo 470, (C1405DJR), Buenos Aires, Argentina
| | - Nahuel Schenone
- Centro de Investigaciones Antonia Ramos (CIAR), Fundación Bosques Nativos Argentinos, Camino Balneario s/n, Villa Bonita, Misiones, Argentina
| |
Collapse
|
18
|
Jønsson KA, Blom MP, Marki PZ, Joseph L, Sangster G, Ericson PG, Irestedt M. Complete subspecies-level phylogeny of the Oriolidae (Aves: Passeriformes): Out of Australasia and return. Mol Phylogenet Evol 2019; 137:200-209. [DOI: 10.1016/j.ympev.2019.03.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 03/05/2019] [Accepted: 03/22/2019] [Indexed: 12/01/2022]
|
19
|
Marki PZ, Kennedy JD, Cooney CR, Rahbek C, Fjeldså J. Adaptive radiation and the evolution of nectarivory in a large songbird clade. Evolution 2019; 73:1226-1240. [DOI: 10.1111/evo.13734] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 03/14/2019] [Accepted: 03/22/2019] [Indexed: 01/22/2023]
Affiliation(s)
- Petter Z. Marki
- Center for Macroecology, Evolution and Climate, Natural History Museum of DenmarkUniversity of Copenhagen Copenhagen DK‐2100 Denmark
- Natural History MuseumUniversity of Oslo Oslo 0318 Norway
| | - Jonathan D. Kennedy
- Center for Macroecology, Evolution and Climate, Natural History Museum of DenmarkUniversity of Copenhagen Copenhagen DK‐2100 Denmark
- Department of Animal and Plant SciencesUniversity of Sheffield Sheffield S10 2TN United Kingdom
| | - Christopher R. Cooney
- Department of Animal and Plant SciencesUniversity of Sheffield Sheffield S10 2TN United Kingdom
| | - Carsten Rahbek
- Center for Macroecology, Evolution and Climate, Natural History Museum of DenmarkUniversity of Copenhagen Copenhagen DK‐2100 Denmark
- Department of Life SciencesImperial College London Ascot SL5 7PY United Kingdom
| | - Jon Fjeldså
- Center for Macroecology, Evolution and Climate, Natural History Museum of DenmarkUniversity of Copenhagen Copenhagen DK‐2100 Denmark
| |
Collapse
|
20
|
McCullough JM, Joseph L, Moyle RG, Andersen MJ. Ultraconserved elements put the final nail in the coffin of traditional use of the genus
Meliphaga
(Aves: Meliphagidae). ZOOL SCR 2019. [DOI: 10.1111/zsc.12350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Jenna M. McCullough
- Department of Biology and Museum of Southwestern Biology University of New Mexico Albuquerque New Mexico
| | - Leo Joseph
- Australian National Wildlife Collection CSIRO National Research Collections Australia Australian Capital Territory Canberra Australia
| | - Robert G. Moyle
- Biodiversity Institute, Department of Ecology and Evolutionary Biology University of Kansas Lawrence Kansas
| | - Michael J. Andersen
- Department of Biology and Museum of Southwestern Biology University of New Mexico Albuquerque New Mexico
| |
Collapse
|
21
|
Miller ET, Leighton GM, Freeman BG, Lees AC, Ligon RA. Ecological and geographical overlap drive plumage evolution and mimicry in woodpeckers. Nat Commun 2019; 10:1602. [PMID: 30962513 PMCID: PMC6453948 DOI: 10.1038/s41467-019-09721-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 03/22/2019] [Indexed: 01/07/2023] Open
Abstract
Organismal appearances are shaped by selection from both biotic and abiotic drivers. For example, Gloger's rule describes the pervasive pattern that more pigmented populations are found in more humid areas. However, species may also converge on nearly identical colours and patterns in sympatry, often to avoid predation by mimicking noxious species. Here we leverage a massive global citizen-science database to determine how biotic and abiotic factors act in concert to shape plumage in the world's 230 species of woodpeckers. We find that habitat and climate profoundly influence woodpecker plumage, and we recover support for the generality of Gloger's rule. However, many species exhibit remarkable convergence explained neither by these factors nor by shared ancestry. Instead, this convergence is associated with geographic overlap between species, suggesting occasional strong selection for interspecific mimicry.
Collapse
Affiliation(s)
- Eliot T Miller
- Cornell Lab of Ornithology, 159 Sapsucker Woods Rd., Ithaca, NY, 14850, USA.
| | - Gavin M Leighton
- Cornell Lab of Ornithology, 159 Sapsucker Woods Rd., Ithaca, NY, 14850, USA
- Department of Biology, SUNY Buffalo State College, Buffalo, NY, 14213, USA
| | - Benjamin G Freeman
- Department of Zoology, University of British Columbia, #4200-6270 University Blvd, Vancouver, BC, V6T1Z4, Canada
| | - Alexander C Lees
- Cornell Lab of Ornithology, 159 Sapsucker Woods Rd., Ithaca, NY, 14850, USA
- School of Science and the Environment, Manchester Metropolitan University, Manchester, M1 5GD, UK
| | - Russell A Ligon
- Cornell Lab of Ornithology, 159 Sapsucker Woods Rd., Ithaca, NY, 14850, USA
| |
Collapse
|
22
|
Delhey K. A review of Gloger's rule, an ecogeographical rule of colour: definitions, interpretations and evidence. Biol Rev Camb Philos Soc 2019; 94:1294-1316. [DOI: 10.1111/brv.12503] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 01/31/2019] [Accepted: 02/04/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Kaspar Delhey
- School of Biological SciencesMonash University 25 Rainforest Walk, 3800 Clayton Victoria Australia
| |
Collapse
|
23
|
Caro T, Allen WL. Interspecific visual signalling in animals and plants: a functional classification. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0344. [PMID: 28533461 DOI: 10.1098/rstb.2016.0344] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2017] [Indexed: 11/12/2022] Open
Abstract
Organisms frequently gain advantages when they engage in signalling with individuals of other species. Here, we provide a functionally structured framework of the great variety of interspecific visual signals seen in nature, and then describe the different signalling mechanisms that have evolved in response to each of these functional requirements. We propose that interspecific visual signalling can be divided into six major functional categories: anti-predator, food acquisition, anti-parasite, host acquisition, reproductive and agonistic signalling, with each function enabled by several distinct mechanisms. We support our classification by reviewing the ecological and behavioural drivers of interspecific signalling in animals and plants, principally focusing on comparative studies that address large-scale patterns of diversity. Collating diverse examples of interspecific signalling into an organized set of functional and mechanistic categories places anachronistic behavioural and morphological labels in fresh context, clarifies terminology and redirects research effort towards understanding environmental influences driving interspecific signalling in nature.This article is part of the themed issue 'Animal coloration: production, perception, function and application'.
Collapse
Affiliation(s)
- Tim Caro
- Department of Wildlife, Fish and Conservation Biology and Center for Population Biology, University of California, Davis, CA 95616, USA
| | - William L Allen
- Department of Biosciences, Swansea University, Singleton Park, Swansea SA2 8PP, Wales, UK
| |
Collapse
|
24
|
Leighton GM, Lees AC, Miller ET. The hairy–downy game revisited: an empirical test of the interspecific social dominance mimicry hypothesis. Anim Behav 2018. [DOI: 10.1016/j.anbehav.2018.01.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Musher LJ, Cracraft J. Phylogenomics and species delimitation of a complex radiation of Neotropical suboscine birds (Pachyramphus). Mol Phylogenet Evol 2018; 118:204-221. [DOI: 10.1016/j.ympev.2017.09.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 08/16/2017] [Accepted: 09/18/2017] [Indexed: 11/24/2022]
|
26
|
Jønsson KA, Delhey K, Sangster G, Ericson PGP, Irestedt M. The evolution of mimicry of friarbirds by orioles (Aves: Passeriformes) in Australo-Pacific archipelagos. Proc Biol Sci 2017; 283:rspb.2016.0409. [PMID: 27335418 DOI: 10.1098/rspb.2016.0409] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 05/25/2016] [Indexed: 11/12/2022] Open
Abstract
Observations by Alfred Wallace and Jared Diamond of plumage similarities between co-occurring orioles (Oriolus) and friarbirds (Philemon) in the Malay archipelago led them to conclude that the former represent visual mimics of the latter. Here, we use molecular phylogenies and plumage reflectance measurements to test several key predictions of the mimicry hypothesis. We show that friarbirds originated before brown orioles, that the two groups did not co-speciate, although there is one plausible instance of co-speciation among species on the neighbouring Moluccan islands of Buru and Seram. Furthermore, we show that greater size disparity between model and mimic and a longer history of co-occurrence have resulted in a stronger plumage similarity (mimicry). This suggests that resemblance between orioles and friarbirds represents mimicry and that colonization of islands by brown orioles has been facilitated by their ability to mimic the aggressive friarbirds.
Collapse
Affiliation(s)
- Knud Andreas Jønsson
- Center for Macroecology, Evolution and Climate, Natural History Museum of Denmark, University of Copenhagen, 2100 Copenhagen Ø, Denmark Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot SL5 7PY, UK
| | - Kaspar Delhey
- School of Biological Sciences, Monash University, Clayton Campus, Clayton, 3800 Victoria, Australia Max Planck Institute for Ornithology, Radolfzell 78315, Germany
| | - George Sangster
- Department of Zoology, Swedish Museum of Natural History, PO Box 50007, Stockholm 10405, Sweden Department of Bioinformatics and Genetics, Swedish Museum of Natural History, PO Box 50007, Stockholm 10405, Sweden
| | - Per G P Ericson
- Department of Zoology, Swedish Museum of Natural History, PO Box 50007, Stockholm 10405, Sweden
| | - Martin Irestedt
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, PO Box 50007, Stockholm 10405, Sweden
| |
Collapse
|
27
|
Lopes LE, Chaves AV, de Aquino MM, Silveira LF, dos Santos FR. The striking polyphyly ofSuiriri: Convergent evolution and social mimicry in two cryptic Neotropical birds. J ZOOL SYST EVOL RES 2017. [DOI: 10.1111/jzs.12200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Leonardo Esteves Lopes
- Laboratório de Biologia Animal; IBF; Universidade Federal de Viçosa - Campus Florestal; Florestal Minas Gerais Brazil
| | - Anderson Vieira Chaves
- Laboratório de Biologia Animal; IBF; Universidade Federal de Viçosa - Campus Florestal; Florestal Minas Gerais Brazil
- Departamento de Biologia Geral; ICB; Universidade Federal de Minas Gerais; Belo Horizonte Minas Gerais Brazil
| | - Marla Mendes de Aquino
- Laboratório de Biologia Animal; IBF; Universidade Federal de Viçosa - Campus Florestal; Florestal Minas Gerais Brazil
| | | | | |
Collapse
|
28
|
Tapping the woodpecker tree for evolutionary insight. Mol Phylogenet Evol 2017; 116:182-191. [PMID: 28890006 DOI: 10.1016/j.ympev.2017.09.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 09/04/2017] [Accepted: 09/06/2017] [Indexed: 11/22/2022]
Abstract
Molecular phylogenetic studies of woodpeckers (Picidae) have generally focused on relationships within specific clades or have sampled sparsely across the family. We compared DNA sequences of six loci from 203 of the 217 recognized species of woodpeckers to construct a comprehensive tree of intrafamilial relationships. We recovered many known, but also numerous unknown, relationships among clades and species. We found, for example, that the three picine tribes are related as follows (Picini, (Campephilini, Melanerpini)) and that the genus Dinopium is paraphyletic. We used the tree to analyze rates of diversification and biogeographic patterns within the family. Diversification rate increased on two occasions during woodpecker history. We also tested diversification rates between temperate and tropical species but found no significant difference. Biogeographic analysis supported an Old World origin of the family and identified at least six independent cases of New World-Old World sister relationships. In light of the tree, we discuss how convergence, mimicry, and potential cases of hybridization have complicated woodpecker taxonomy.
Collapse
|
29
|
Grether GF, Peiman KS, Tobias JA, Robinson BW. Causes and Consequences of Behavioral Interference between Species. Trends Ecol Evol 2017; 32:760-772. [PMID: 28797610 DOI: 10.1016/j.tree.2017.07.004] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 07/10/2017] [Accepted: 07/18/2017] [Indexed: 11/18/2022]
Abstract
Behavioral interference between species, such as territorial aggression, courtship, and mating, is widespread in animals. While aggressive and reproductive forms of interspecific interference have generally been studied separately, their many parallels and connections warrant a unified conceptual approach. Substantial evidence exists that aggressive and reproductive interference have pervasive effects on species coexistence, range limits, and evolutionary processes, including divergent and convergent forms of character displacement. Alien species invasions and climate change-induced range shifts result in novel interspecific interactions, heightening the importance of predicting the consequences of species interactions, and behavioral interference is a fundamental but neglected part of the equation. Here, we outline priorities for further theoretical and empirical research on the ecological and evolutionary consequences of behavioral interference.
Collapse
Affiliation(s)
- Gregory F Grether
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, CA 90095, USA.
| | - Kathryn S Peiman
- Department of Biology, Carleton University, Ottawa, ONT, K1S 5B6, Canada
| | - Joseph A Tobias
- Department of Life Sciences, Imperial College London, Silwood Park, Buckhurst Road, Ascot, SL5 7PY, UK
| | - Beren W Robinson
- Department of Integrative Biology, University of Guelph, ONT, N1G 2W1, Canada
| |
Collapse
|
30
|
Navarro-Sigüenza AG, Vázquez-Miranda H, Hernández-Alonso G, García-Trejo EA, Sánchez-González LA. Complex biogeographic scenarios revealed in the diversification of the largest woodpecker radiation in the New World. Mol Phylogenet Evol 2017; 112:53-67. [DOI: 10.1016/j.ympev.2017.04.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 04/08/2017] [Accepted: 04/10/2017] [Indexed: 01/05/2023]
|
31
|
Laiolo P. Phenotypic similarity in sympatric crow species: Evidence of social convergence? Evolution 2017; 71:1051-1060. [PMID: 28145581 DOI: 10.1111/evo.13195] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 01/23/2017] [Accepted: 01/24/2017] [Indexed: 11/30/2022]
Abstract
Crows, rooks, and ravens (Corvus spp.) display marked morphological and voice similarities that have been hypothesized to stem from competitive interactions, as a case of nonaposematic mimicry. Here, I test predictions of the mimicry hypothesis at the macrovolutionary scale, examining whether species morphological and acoustic traits covary with those of coexisting congeners, and whether phenotypic similarity has facilitated the coexistence of related species after secondary contact. Body size and the temporal patterns of the commonest call display high levels of similarity among sympatric species, even after controlling for the effect of shared climate and habitat, and phylogenetic constraints in the production of variation. When sister species differed in these acoustic and morphological traits, their transition to secondary sympatry was delayed relative to those with more similar traits. No similarity was found in the sexual call of crows, suggesting that convergence occurs only when function does not favour maintenance of species-specific traits. Crow similarities in morphological and acoustic features may therefore be associated with coevolving interactions with congeners, in line with a broad array of studies documenting convergence among species that interact aggressively or forage communally.
Collapse
Affiliation(s)
- Paola Laiolo
- Research Unit of Biodiversity (UO, CSIC, PA), Oviedo University, Campus de Mieres, 33600, Mieres, Spain
| |
Collapse
|
32
|
Martin PR, Freshwater C, Ghalambor CK. The outcomes of most aggressive interactions among closely related bird species are asymmetric. PeerJ 2017; 5:e2847. [PMID: 28070465 PMCID: PMC5217525 DOI: 10.7717/peerj.2847] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 11/30/2016] [Indexed: 11/20/2022] Open
Abstract
Aggressive interactions among closely related species are common, and can play an important role as a selective pressure shaping species traits and assemblages. The nature of this selective pressure depends on whether the outcomes of aggressive contests are asymmetric between species (i.e., one species is consistently dominant), yet few studies have estimated the prevalence of asymmetric versus symmetric outcomes to aggressive contests. Here we use previously published data involving 26,212 interactions between 270 species pairs of birds from 26 taxonomic families to address the question: How often are aggressive interactions among closely related bird species asymmetric? We define asymmetry using (i) the proportion of contests won by one species, and (ii) statistical tests for asymmetric outcomes of aggressive contests. We calculate these asymmetries using data summed across different sites for each species pair, and compare results to asymmetries calculated using data separated by location. We find that 80% of species pairs had aggressive outcomes where one species won 80% or more of aggressive contests. We also find that the majority of aggressive interactions among closely related species show statistically significant asymmetries, and above a sample size of 52 interactions, all outcomes are asymmetric following binomial tests. Species pairs with dominance data from multiple sites showed the same dominance relationship across locations in 93% of the species pairs. Overall, our results suggest that the outcome of aggressive interactions among closely related species are usually consistent and asymmetric, and should thus favor ecological and evolutionary strategies specific to the position of a species within a dominance hierarchy.
Collapse
Affiliation(s)
- Paul R Martin
- Department of Biology, Queen's University , Kingston , Ontario , Canada
| | - Cameron Freshwater
- Department of Biology, University of Victoria , Victoria , British Columbia , Canada
| | - Cameron K Ghalambor
- Department of Biology and Graduate Degree Program in Ecology, Colorado State University , Fort Collins , Colorado , United States
| |
Collapse
|
33
|
Prum RO, Samuelson L. Mimicry Cycles, Traps, and Chains: The Coevolution of Toucan and Kiskadee Mimicry. Am Nat 2016; 187:753-64. [PMID: 27172594 DOI: 10.1086/686093] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Interspecific social dominance mimicry (ISDM) is a form of social parasitism in which a subordinate species evolves to mimic and deceive a dominant interference competitor in order to avoid attack by the dominant species. ISDM has been proposed to result in (1) antagonistic coevolutionary arms races in appearance between the model and the mimic (e.g., Ramphastos toucans) and (2) the evolution of complexes of multiple species converging on a common visual appearance (e.g., kiskadee flycatchers). We present evolutionary games of antagonistic coevolution in appearance between pairs and triplets of sympatric species under interference competition. We identify conditions for the existence and stability of (1) coevolutionary mimicry cycles in appearance between evader and pursuer strategies of models and mimics, (2) mimicry chains in which three or more species are coevolutionarily entrained to evolve a single common appearance despite differences in their costs and benefits, and (3) mimicry traps in which a subdominant species is evolutionarily constrained from evading mimicry by a third, subordinate mimic species. Mimicry cycles will result in the evolutionary divergence of models and mimics from their ancestral phenotypes. The hierarchical evolutionary dynamics of ISDM traps and chains resemble Müllerian mimicry with variable costs to toxicity.
Collapse
|
34
|
Dufort MJ. An augmented supermatrix phylogeny of the avian family Picidae reveals uncertainty deep in the family tree. Mol Phylogenet Evol 2016; 94:313-26. [DOI: 10.1016/j.ympev.2015.08.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 08/22/2015] [Accepted: 08/28/2015] [Indexed: 10/23/2022]
|
35
|
Trnka A, Trnka M, Grim T. Do rufous common cuckoo females indeed mimic a predator? An experimental test. Biol J Linn Soc Lond 2015. [DOI: 10.1111/bij.12570] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Alfréd Trnka
- Department of Biology; University of Trnava; Priemyselná 4 SK-918 43 Trnava Slovakia
| | - Michal Trnka
- Department of Biology; University of Trnava; Priemyselná 4 SK-918 43 Trnava Slovakia
| | - Tomáš Grim
- Department of Zoology and Laboratory of Ornithology; Palacký University; 17. listopadu 50 77146 Olomouc Czech Republic
| |
Collapse
|