1
|
Clause AG, Luna-Reyes R, Mendoza-Velázquez OM, Nieto-Montes de Oca A, Solano-Zavaleta I. Bridging the gap: A new species of arboreal Abronia (Squamata: Anguidae) from the Northern Highlands of Chiapas, Mexico. PLoS One 2024; 19:e0295230. [PMID: 38170723 PMCID: PMC10763973 DOI: 10.1371/journal.pone.0295230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 11/19/2023] [Indexed: 01/05/2024] Open
Abstract
The mountain forests of Middle America are renowned for their endemic biodiversity, and arboreal alligator lizards (genus Abronia) are high-profile vertebrates endemic to this region. In this work, we describe a new species of arboreal Abronia that is known only from the type locality in the Northern Highlands of Chiapas, Mexico. The new species is diagnosed from all other members of the genus Abronia by the following combination of characters: lack of protuberant or spine-like supra-auricular scales, lack of protuberant or casque-like posterolateral head scales, dorsum of head pale yellow with distinct dark markings, 35-39 transverse dorsal scale rows, lateralmost row of ventral scales enlarged relative to adjacent medial row, and dorsum brown with darker crossbands that are sometimes reduced to rows of spots. We provisionally include the new species in the subgenus Lissabronia based on genomic and morphological evidence, but our results also suggest a close relationship to the subgenus Abaculabronia. The new species is geographically separated from the nearest Lissabronia and Abaculabronia species by the lowland Central Depression of Chiapas. Ongoing habitat loss and other factors imperil the new species, leading us to propose its listing under multiple threatened species frameworks. Because the Northern Highlands have poor coverage of protected areas, we briefly comment on the potential of this new species for stimulating conservation in the region.
Collapse
Affiliation(s)
- Adam G. Clause
- Department of Herpetology, San Diego Natural History Museum, San Diego, California, United States of America
| | - Roberto Luna-Reyes
- Dirección de Áreas Naturales y Vida Silvestre, Secretaría de Medio Ambiente e Historia Natural, Tuxtla Gutiérrez, Chiapas, México
| | - Oscar M. Mendoza-Velázquez
- Instituto de Ciencias Biológicas, Universidad de Ciencias y Artes de Chiapas, Tuxtla Gutiérrez, Chiapas, México
| | - Adrián Nieto-Montes de Oca
- Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Israel Solano-Zavaleta
- Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
2
|
Platania L, Gómez-Zurita J. Analysis of intrinsic evolutionary factors leading to microendemic distributions in New Caledonian leaf beetles. Sci Rep 2023; 13:6909. [PMID: 37106022 PMCID: PMC10140066 DOI: 10.1038/s41598-023-34104-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 04/24/2023] [Indexed: 04/29/2023] Open
Abstract
Microendemicity, or the condition of some species having local ranges, is a relatively common pattern in nature. However, the factors that lead to this pattern are still largely unknown. Most studies addressing this issue tend to focus on extrinsic factors associated with microendemic distributions, such as environmental conditions, hypothesising a posteriori about underlying potential speciation mechanisms, linked or not to these conditions. Here, we use a multi-faceted approach mostly focusing on intrinsic factors instead, namely diversification dynamics and speciation modes in two endemic sibling genera of leaf beetles with microendemic distributions, Taophila and Tricholapita, in a microendemicity hotspot, New Caledonia. Results suggest that the diversification rate in this lineage slowed down through most of the Neogene and consistently with a protracted speciation model possibly combined with several ecological and environmental factors potentially adding rate-slowing effects through time. In turn, species accumulated following successive allopatric speciation cycles, possibly powered by marked geological and climatic changes in the region in the last 25 million years, with daughter species ranges uncorrelated with the time of speciation. In this case, microendemicity seems to reflect a mature state for the system, rather than a temporary condition for recent species, as suggested for many microendemic organisms.
Collapse
Affiliation(s)
- Leonardo Platania
- Botanical Institute of Barcelona (CSIC-Ajuntament Barcelona), Pg. del Migdia S/N, 08038, Barcelona, Spain
- Universitat Pompeu Fabra, 08003, Barcelona, Spain
| | - Jesús Gómez-Zurita
- Botanical Institute of Barcelona (CSIC-Ajuntament Barcelona), Pg. del Migdia S/N, 08038, Barcelona, Spain.
| |
Collapse
|
3
|
Gutiérrez-Rodríguez J, Zaldívar-Riverón A, Weissman DB, Vandergast AG. Extensive species diversification and marked geographic phylogenetic structure in the Mesoamerican genus Stenopelmatus (Orthoptera: Stenopelmatidae: Stenopelmatinae) revealed by mitochondrial and nuclear 3RAD data. INVERTEBR SYST 2022. [DOI: 10.1071/is21022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The Jerusalem cricket subfamily Stenopelmatinae is distributed from south-western Canada through the western half of the United States to as far south as Ecuador. Recently, the generic classification of this subfamily was updated to contain two genera, the western North American Ammopelmatus, and the Mexican, and central and northern South American Stenopelmatus. The taxonomy of the latter genus was also revised, with 5, 13 and 14 species being respectively validated, declared as nomen dubium and described as new. Despite this effort, the systematics of Stenopelmatus is still far from complete. Here, we generated sequences of the mitochondrial DNA barcoding locus and performed two distinct DNA sequence-based approaches to assess the species’ limits among several populations of Stenopelmatus, with emphasis on populations from central and south-east Mexico. We reconstructed the phylogenetic relationships among representative species of the main clades within the genus using nuclear 3RAD data and carried out a molecular clock analysis to investigate its biogeographic history. The two DNA sequence-based approaches consistently recovered 34 putative species, several of which are apparently undescribed. Our estimates of phylogeny confirmed the recent generic update of Stenopelmatinae and revealed a marked phylogeographic structure within Stenopelmatus. Based on our results, we propose the existence of four species-groups within the genus (the faulkneri, talpa, Central America and piceiventris species-groups). The geographic distribution of these species-groups and our molecular clock estimates are congruent with the geological processes that took place in mountain ranges along central and southern Mexico, particularly since the Neogene. Our study emphasises the necessity to continue performing more taxonomic and phylogenetic studies on Stenopelmatus to clarify its actual species richness and evolutionary history in Mesoamerica.
Collapse
|
4
|
García‐Rodríguez A, Basanta MD, García‐Castillo MG, Zumbado‐Ulate H, Neam K, Rovito S, Searle CL, Parra‐Olea G. Anticipating the potential impacts of
Batrachochytrium salamandrivorans
on Neotropical salamander diversity. Biotropica 2021. [DOI: 10.1111/btp.13042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Adrián García‐Rodríguez
- Departamento de Zoología Instituto de Biología Universidad Nacional Autónoma de México Ciudad de México México
- BioInvasions, Global Change, Macroecology‐Group Department of Botany and Biodiversity Research University of Vienna Vienna Austria
| | - M. Delia Basanta
- Departamento de Zoología Instituto de Biología Universidad Nacional Autónoma de México Ciudad de México México
- Centro de Ciencias Genómicas Universidad Nacional Autónoma de México Cuernavaca Morelos México
| | - Mirna G. García‐Castillo
- Universidad Politécnica de Huatusco Huatusco Veracruz México
- Facultad de Ciencias Biológicas y Agropecuarias Región: Orizaba–Córdoba Universidad Veracruzana Amatlán de los Reyes Veracruz México
| | | | - Kelsey Neam
- Global Wildlife Conservation Austin Texas USA
- Amphibian Specialist Group IUCN Species Survival Commission USA
| | - Sean Rovito
- Unidad de Genómica Avanzada (Langebio) CINVESTAV Irapuato México
| | - Catherine L. Searle
- Department of Biological Sciences Purdue University West Lafayette Indiana USA
| | - Gabriela Parra‐Olea
- Departamento de Zoología Instituto de Biología Universidad Nacional Autónoma de México Ciudad de México México
- Amphibian Specialist Group IUCN Species Survival Commission USA
| |
Collapse
|
5
|
García-Rodríguez A, Martínez PA, Oliveira BF, Velasco JA, Pyron RA, Costa GC. Amphibian Speciation Rates Support a General Role of Mountains as Biodiversity Pumps. Am Nat 2021; 198:E68-E79. [PMID: 34403310 DOI: 10.1086/715500] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractContinental mountain areas cover <15% of global land surface, yet these regions concentrate >80% of global terrestrial diversity. One prominent hypothesis to explain this pattern proposes that high mountain diversities could be explained by higher diversification rates in regions of high topographic complexity (HTC). While high speciation in mountains has been detected for particular clades and regions, the global extent to which lineages experience faster speciation in mountains remains unknown. Here we addressed this issue using amphibians as a model system (>7,000 species), and we found that families showing high speciation rates contain a high proportion of species distributed in mountains. Moreover, we found that lineages inhabiting areas of HTC speciate faster than lineages occupying areas that are topographically less complex. When comparing across regions, we identified the same pattern in five biogeographical realms where higher speciation rates are associated with higher levels of complex topography. Low-magnitude differences in speciation rates between some low and high complex topographies suggest that high mountain diversity is also affected by low extinction and/or high colonization rates. Nevertheless, our results bolster the importance of mountains as engines of speciation at different geographical scales and highlight their importance for the conservation of global biodiversity.
Collapse
|
6
|
Firneno TJ, O'Neill JR, Portik DM, Emery AH, Townsend JH, Fujita MK. Finding complexity in complexes: Assessing the causes of mitonuclear discordance in a problematic species complex of Mesoamerican toads. Mol Ecol 2020; 29:3543-3559. [PMID: 32500624 DOI: 10.1111/mec.15496] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 04/18/2020] [Accepted: 05/26/2020] [Indexed: 12/22/2022]
Abstract
Mitonuclear discordance is a frequently encountered pattern in phylogeographic studies and occurs when mitochondrial and nuclear DNA display conflicting signals. Discordance among these genetic markers can be caused by several factors including confounded taxonomies, gene flow, and incomplete lineage sorting. In this study, we present a strong case of mitonuclear discordance in a species complex of toads (Bufonidae: Incilius coccifer complex) found in the Chortís Block of Central America. To determine the cause of mitonuclear discordance in this complex, we used spatially explicit genetic data to test species limits and relationships, characterize demographic history, and quantify gene flow. We found extensive mitonuclear discordance among the three recognized species within this group, especially in populations within the Chortís Highlands of Honduras. Our data reveal nuclear introgression within the Chortís Highlands populations that was most probably driven by cyclical range expansions due to climatic fluctuations. Though we determined introgression occurred within the nuclear genome, our data suggest that it is not the key factor in driving mitonuclear discordance in the entire species complex. Rather, due to a lack of discernible geographic pattern between mitochondrial and nuclear DNA, as well as a relatively recent divergence time of this complex, we concluded that mitonuclear discordance has been caused by incomplete lineage sorting. Our study provides a framework to test sources of mitonuclear discordance and highlights the importance of using multiple marker types to test species boundaries in cryptic species.
Collapse
Affiliation(s)
- Thomas J Firneno
- Department of Biology, University of Texas at Arlington, Arlington, TX, USA.,Amphibian and Reptile Diversity Research Center, Department of Biology, University of Texas at Arlington, Arlington, TX, USA
| | - Justin R O'Neill
- Department of Biology, Indiana University of Pennsylvania, Indiana, PA, USA
| | | | - Alyson H Emery
- Department of Biology, University of Texas at Arlington, Arlington, TX, USA
| | - Josiah H Townsend
- Department of Biology, Indiana University of Pennsylvania, Indiana, PA, USA.,Centro Zamorano de Biodiversidad, Departamento de Ambiente y Desarrollo, Escuela Agrícola Panamericana Zamorano, Municipalidad de San Antonio de Oriente, Francisco Morazán, Honduras
| | - Matthew K Fujita
- Department of Biology, University of Texas at Arlington, Arlington, TX, USA.,Amphibian and Reptile Diversity Research Center, Department of Biology, University of Texas at Arlington, Arlington, TX, USA
| |
Collapse
|
7
|
Parra Olea G, Garcia-Castillo MG, Rovito SM, Maisano JA, Hanken J, Wake DB. Descriptions of five new species of the salamander genus Chiropterotriton (Caudata: Plethodontidae) from eastern Mexico and the status of three currently recognized taxa. PeerJ 2020; 8:e8800. [PMID: 32518712 PMCID: PMC7258950 DOI: 10.7717/peerj.8800] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/25/2020] [Indexed: 11/20/2022] Open
Abstract
The genus Chiropterotriton is endemic to Mexico with a geographical distribution along the Sierra Madre Oriental, the Trans Mexican Volcanic Belt and the Sierra de Juárez. The recent use of molecular tools has shown that Mexico's amphibian diversity is highly underestimated, including a large number of cryptic, unnamed species. Chiropterotriton has 18 described species including terrestrial, arboreal and cave-dwelling species. In previous molecular studies, the presence of multiple undescribed species was evident. We present a phylogenetic hypothesis based on mitochondrial data, which includes all described species and six undescribed taxa. Based on the morphological analyses and, when available, combined with molecular data, we describe five new species of the genus; Chiropterotriton casasi sp. nov., C. ceronorum sp. nov., C. melipona sp. nov., C. perotensis sp. nov. and C. totonacus sp. nov. In addition, we redescribe two others: Chiropterotriton chiropterus and C. orculus, and provide a comparable account of one additional sympatric congener. This increases the number of species in the genus to 23, which represent a considerable component of Mexican plethodontid richness.
Collapse
Affiliation(s)
- Gabriela Parra Olea
- Zoology, Instituto de Biología, Universidad Nacional Autonoma de México, Mexico city, México
| | - Mirna G Garcia-Castillo
- Zoology, Instituto de Biología, Universidad Nacional Autonoma de México, Mexico city, México.,Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Sean M Rovito
- Unidad de Genómica Avanzada (Langebio), CINVESTAV, Irapuato, Guanajuato, México
| | - Jessica A Maisano
- Jackson School of Geosciences, University of Texas at Austin, Austin, TX, USA
| | - James Hanken
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | - David B Wake
- Department of Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, CA, USA
| |
Collapse
|
8
|
Lemos-Espinal JA, Smith GR, Rorabaugh JC. A conservation checklist of the amphibians and reptiles of Sonora, Mexico, with updated species lists. Zookeys 2019; 829:131-160. [PMID: 30914839 PMCID: PMC6422993 DOI: 10.3897/zookeys.829.32146] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 01/28/2019] [Indexed: 11/12/2022] Open
Abstract
Sonora has a rich natural diversity, including reptiles and amphibians. Sonora's location on the United States-Mexico border creates some unique conservation challenges for its wildlife. We compiled a list of the amphibian and reptile species currently known for Sonora, summarized the conservation status of these species, and compared our list of species with known species lists for adjacent states. The herpetofauna of Sonora comprises 200 species of amphibians and reptiles (38 amphibians and 162 reptiles). Overall, Sonora shares the most species with Chihuahua, Sinaloa, and Arizona. Approximately 11% of the amphibian and reptile species are IUCN listed, but 35.5% are placed in a protected category by SEMARNAT, and 32.6% are categorized as high risk by the Environmental Vulnerability Score.
Collapse
Affiliation(s)
- Julio A Lemos-Espinal
- Laboratorio de Ecología-UBIPRO, FES Iztacala UNAM, Avenida los Barrios 1, Los Reyes Iztacala, Tlalnepantla, edo. de Mexico, 54090, Mexico Universidad Nacional Autónoma de México Tlalnepantla Mexico
| | - Geoffrey R Smith
- Department of Biology, Denison University, Granville, Ohio 43023, USA Denison University Granville United States of America
| | - James C Rorabaugh
- P.O. Box 31, Saint David, Arizona 85630, USA Unaffilaited Phoenix United States of America
| |
Collapse
|
9
|
Mendoza AM, Bolívar-García W, Vázquez-Domínguez E, Ibáñez R, Parra Olea G. The role of Central American barriers in shaping the evolutionary history of the northernmost glassfrog, Hyalinobatrachium fleischmanni (Anura: Centrolenidae). PeerJ 2019; 7:e6115. [PMID: 30627486 PMCID: PMC6321759 DOI: 10.7717/peerj.6115] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/15/2018] [Indexed: 12/02/2022] Open
Abstract
The complex geological history of Central America has been useful for understanding the processes influencing the distribution and diversity of multiple groups of organisms. Anurans are an excellent choice for such studies because they typically exhibit site fidelity and reduced movement. The objective of this work was to identify the impact of recognized geographic barriers on the genetic structure, phylogeographic patterns and divergence times of a wide-ranging amphibian species, Hyalinobatrachium fleischmanni. We amplified three mitochondrial regions, two coding (COI and ND1) and one ribosomal (16S), in samples collected from the coasts of Veracruz and Guerrero in Mexico to the humid forests of Chocó in Ecuador. We examined the biogeographic history of the species through spatial clustering analyses (Geneland and sPCA), Bayesian and maximum likelihood reconstructions, and spatiotemporal diffusion analysis. Our data suggest a Central American origin of H. fleischmanni and two posterior independent dispersals towards North and South American regions. The first clade comprises individuals from Colombia, Ecuador, Panama and the sister species Hyalinobatrachium tatayoi; this clade shows little structure, despite the presence of the Andes mountain range and the long distances between sampling sites. The second clade consists of individuals from Costa Rica, Nicaragua, and eastern Honduras with no apparent structure. The third clade includes individuals from western Honduras, Guatemala, and Mexico and displays deep population structure. Herein, we synthesize the impact of known geographic areas that act as barriers to glassfrog dispersal and demonstrated their effect of differentiating H. fleischmanni into three markedly isolated clades. The observed genetic structure is associated with an initial dispersal event from Central America followed by vicariance that likely occurred during the Pliocene. The southern samples are characterized by a very recent population expansion, likely related to sea-level and climatic oscillations during the Pleistocene, whereas the structure of the northern clade has probably been driven by dispersal through the Isthmus of Tehuantepec and isolation by the Motagua–Polochic–Jocotán fault system and the Mexican highlands.
Collapse
Affiliation(s)
- Angela M Mendoza
- Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico city, México.,Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Wilmar Bolívar-García
- Departamento de Biología, Grupo de Investigación en Ecología Animal, Universidad del Valle, Cali, Colombia
| | - Ella Vázquez-Domínguez
- Departamento de Ecología de la Biodiversidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, México
| | - Roberto Ibáñez
- Departamento de Zoología, Smithsonian Tropical Research Institute, Balboa, Panamá.,Universidad de Panamá, Panamá.,Sistema Nacional de Investigación, Panamá
| | - Gabriela Parra Olea
- Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico city, México
| |
Collapse
|
10
|
Venkatraman MX, Deraad DA, Tsai WLE, Zarza E, Zellmer AJ, Maley JM, Mccormack JE. Cloudy with a chance of speciation: integrative taxonomy reveals extraordinary divergence within a Mesoamerican cloud forest bird. Biol J Linn Soc Lond 2018. [DOI: 10.1093/biolinnean/bly156] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Madhvi X Venkatraman
- Moore Laboratory of Zoology, Occidental College, Los Angeles, CA, USA
- Biology Department, Occidental College, Los Angeles, CA, USA
| | - Devon A Deraad
- Moore Laboratory of Zoology, Occidental College, Los Angeles, CA, USA
- Biology Department, Occidental College, Los Angeles, CA, USA
| | - Whitney L E Tsai
- Moore Laboratory of Zoology, Occidental College, Los Angeles, CA, USA
| | - Eugenia Zarza
- Moore Laboratory of Zoology, Occidental College, Los Angeles, CA, USA
| | | | - James M Maley
- Moore Laboratory of Zoology, Occidental College, Los Angeles, CA, USA
| | - John E Mccormack
- Moore Laboratory of Zoology, Occidental College, Los Angeles, CA, USA
- Biology Department, Occidental College, Los Angeles, CA, USA
| |
Collapse
|
11
|
Cano EB, Schuster JC, Morrone JJ. Phylogenetics of Ogyges Kaup and the biogeography of Nuclear Central America (Coleoptera, Passalidae). Zookeys 2018; 737:81-111. [PMID: 29674874 PMCID: PMC5904369 DOI: 10.3897/zookeys.737.20741] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 01/18/2018] [Indexed: 11/18/2022] Open
Abstract
A phylogenetic morphological analysis of the genus Ogyges Kaup, distributed in Nuclear Central America, from Chiapas, Mexico, to northwestern Nicaragua was undertaken. Five species of Proculejus Kaup, distributed north of the Isthmus of Tehuantepec in Mexico, were selected as outgroup. Ogyges was recovered as monophyletic with three species groups: championi, laevissimus, and crassulus. Each species group shows a distinct, generally allopatric distribution. The O. championi species group, with ten species, is distributed in the Maya block, more specifically in the mountainous system north of the Motozintla-Comaltitlán fault in Chiapas, and north of the dry valleys of the Cuilco and Motagua rivers in Guatemala. The two remaining species groups are distributed in the Chortis block. The O. laevissimus species group, including seven species, ranges mostly along the Pacific Volcanic Chain from Guatemala to El Salvador, and from southeastern Honduras to the northwestern area of Nicaragua. The O. crassulus species group, with ten species, is distributed from northeastern Guatemala (Merendón) to northern Honduras. The Isthmus of Tehuantepec in Mexico, the Motagua-Cuilco and Motozintla-Comaltitlán sutures zones in Chiapas and Guatemala, the lowland valleys of Colón and Comalí rivers between Nicaragua and Honduras (or, perhaps, the northern suture of the Siuna Terrane in Nicaragua), the Guayape fault system in Honduras, and the intricate dry valleys of Ulúa-Chamelecón-Olancho in Honduras, are hypothesized to have acted as barriers that affected the geographical distribution of Ogyges, as well as probably other montane organisms.
Collapse
Affiliation(s)
- Enio B. Cano
- Museo de Zoología "Alfonso L. Herrera", Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México (UNAM), Apdo. postal 70-399, 04510 Mexico City, Mexico
- Universidad del Valle de Guatemala, Apartado Postal 82, 01901 Guatemala, Guatemala
- Museo de Historia Natural, Escuela de Biología, Universidad de San Carlos de Guatemala, Calle Mariscal Cruz, 1-56, zona 10, Guatemala, Guatemala
| | - Jack C. Schuster
- Universidad del Valle de Guatemala, Apartado Postal 82, 01901 Guatemala, Guatemala
| | - Juan J. Morrone
- Museo de Zoología "Alfonso L. Herrera", Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México (UNAM), Apdo. postal 70-399, 04510 Mexico City, Mexico
| |
Collapse
|
12
|
Hofmann EP, Townsend JH. Origins and biogeography of the Anolis crassulus subgroup (Squamata: Dactyloidae) in the highlands of Nuclear Central America. BMC Evol Biol 2017; 17:267. [PMID: 29268694 PMCID: PMC5740896 DOI: 10.1186/s12862-017-1115-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 12/14/2017] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Recent studies have begun to reveal the complex evolutionary and biogeographic histories of mainland anoles in Central America, but the origins and relationships of many taxa remain poorly understood. One such group is the Anolis (Norops) crassulus species subgroup, which contains ten morphologically similar highland taxa, the majority of which have restricted distributions. The nominal taxon A. crassulus has a disjunct distribution from Chiapas, Mexico, through Guatemala, in the highlands of El Salvador, and in the Chortís Highlands of Honduras. We test the relationships of these species using multiple mitochondrial and nuclear loci in concatenated and multispecies coalescent frameworks, in an effort to both resolve long-standing taxonomic confusion and present new insights into the evolution and biogeography of these taxa. RESULTS Sequences of multiple mitochondrial and nuclear loci were generated for eight of the ten species of the Anolis crassulus species subgroup. We analyzed phylogenetic relationships and estimated divergence times and ancestral ranges of the subgroup, recovering a monophyletic subgroup within Anolis. Within the nominal taxon Anolis crassulus, we recovered multiple genetically distinct lineages corresponding to allopatric populations, and show that the Chortís Highland lineage split from the others over 13 MYA. Additionally, distinct mitochondrial lineages are present within the taxa A. heteropholidotus and A. morazani, and importantly, samples of A. crassulus and A. sminthus previously used in major anole phylogenetic analyses are not recovered as conspecific with those taxa. We infer a Chortís Highland origin for the ancestor of this subgroup, and estimate cladogenesis of this subgroup began approximately 22 MYA. CONCLUSIONS Our results provide new insights into the evolution, biogeography, and timing of diversification of the Anolis crassulus species subgroup. The disjunctly distributed Anolis crassulus sensu lato represents several morphologically conserved, molecularly distinct anoles, and several other species in the subgroup contain multiple isolated lineages.
Collapse
Affiliation(s)
- Erich P. Hofmann
- Department of Biology, Indiana University of Pennsylvania, Indiana, PA 15705-1081 USA
- Present Address: Department of Biological Sciences, Clemson University, Clemson, SC 29634 USA
| | - Josiah H. Townsend
- Department of Biology, Indiana University of Pennsylvania, Indiana, PA 15705-1081 USA
| |
Collapse
|
13
|
Affiliation(s)
- Sean M. Rovito
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, km 9.6 Libramiento Norte Carretera Irapuato-León, Irapuato, Gto CP36821, México
| |
Collapse
|
14
|
Jiménez RA, Ornelas JF. Historical and current introgression in a Mesoamerican hummingbird species complex: a biogeographic perspective. PeerJ 2016; 4:e1556. [PMID: 26788433 PMCID: PMC4715438 DOI: 10.7717/peerj.1556] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 12/11/2015] [Indexed: 11/20/2022] Open
Abstract
The influence of geologic and Pleistocene glacial cycles might result in morphological and genetic complex scenarios in the biota of the Mesoamerican region. We tested whether berylline, blue-tailed and steely-blue hummingbirds, Amazilia beryllina, Amazilia cyanura and Amazilia saucerottei, show evidence of historical or current introgression as their plumage colour variation might suggest. We also analysed the role of past and present climatic events in promoting genetic introgression and species diversification. We collected mitochondrial DNA (mtDNA) sequence data and microsatellite loci scores for populations throughout the range of the three Amazilia species, as well as morphological and ecological data. Haplotype network, Bayesian phylogenetic and divergence time inference, historical demography, palaeodistribution modelling, and niche divergence tests were used to reconstruct the evolutionary history of this Amazilia species complex. An isolation-with-migration coalescent model and Bayesian assignment analysis were assessed to determine historical introgression and current genetic admixture. mtDNA haplotypes were geographically unstructured, with haplotypes from disparate areas interdispersed on a shallow tree and an unresolved haplotype network. Assignment analysis of the nuclear genome (nuDNA) supported three genetic groups with signs of genetic admixture, corresponding to: (1) A. beryllina populations located west of the Isthmus of Tehuantepec; (2) A. cyanura populations between the Isthmus of Tehuantepec and the Nicaraguan Depression (Nuclear Central America); and (3) A. saucerottei populations southeast of the Nicaraguan Depression. Gene flow and divergence time estimates, and demographic and palaeodistribution patterns suggest an evolutionary history of introgression mediated by Quaternary climatic fluctuations. High levels of gene flow were indicated by mtDNA and asymmetrical isolation-with-migration, whereas the microsatellite analyses found evidence for three genetic clusters with distributions corresponding to isolation by the Isthmus of Tehuantepec and the Nicaraguan Depression and signs of admixture. Historical levels of migration between genetically distinct groups estimated using microsatellites were higher than contemporary levels of migration. These results support the scenario of secondary contact and range contact during the glacial periods of the Pleistocene and strongly imply that the high levels of structure currently observed are a consequence of the limited dispersal of these hummingbirds across the isthmus and depression barriers.
Collapse
Affiliation(s)
- Rosa Alicia Jiménez
- Departamento de Biología Evolutiva, Instituto de Ecología A.C. , Xalapa , Veracruz , Mexico
| | - Juan Francisco Ornelas
- Departamento de Biología Evolutiva, Instituto de Ecología A.C. , Xalapa , Veracruz , Mexico
| |
Collapse
|