1
|
Morris PD, Anderton RA, Marshall-Goebel K, Britton JK, Lee SMC, Smith NP, van de Vosse FN, Ong KM, Newman TA, Taylor DJ, Chico T, Gunn JP, Narracott AJ, Hose DR, Halliday I. Computational modelling of cardiovascular pathophysiology to risk stratify commercial spaceflight. Nat Rev Cardiol 2024; 21:667-681. [PMID: 39030270 DOI: 10.1038/s41569-024-01047-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/30/2024] [Indexed: 07/21/2024]
Abstract
For more than 60 years, humans have travelled into space. Until now, the majority of astronauts have been professional, government agency astronauts selected, in part, for their superlative physical fitness and the absence of disease. Commercial spaceflight is now becoming accessible to members of the public, many of whom would previously have been excluded owing to unsatisfactory fitness or the presence of cardiorespiratory diseases. While data exist on the effects of gravitational and acceleration (G) forces on human physiology, data on the effects of the aerospace environment in unselected members of the public, and particularly in those with clinically significant pathology, are limited. Although short in duration, these high acceleration forces can potentially either impair the experience or, more seriously, pose a risk to health in some individuals. Rather than expose individuals with existing pathology to G forces to collect data, computational modelling might be useful to predict the nature and severity of cardiovascular diseases that are of sufficient risk to restrict access, require modification, or suggest further investigation or training before flight. In this Review, we explore state-of-the-art, zero-dimensional, compartmentalized models of human cardiovascular pathophysiology that can be used to simulate the effects of acceleration forces, homeostatic regulation and ventilation-perfusion matching, using data generated by long-arm centrifuge facilities of the US National Aeronautics and Space Administration and the European Space Agency to risk stratify individuals and help to improve safety in commercial suborbital spaceflight.
Collapse
Affiliation(s)
- Paul D Morris
- Division of Clinical Medicine, University of Sheffield, Sheffield, UK.
- Department of Cardiology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK.
| | - Ryan A Anderton
- Medical Department, Spaceflight, UK Civil Aviation Authority, Gatwick, UK
| | - Karina Marshall-Goebel
- The National Aeronautics and Space Administration (NASA) Johnson Space Center, Houston, TX, USA
| | - Joseph K Britton
- Aerospace Medicine Specialist Wing, Royal Air Force (RAF) Centre of Aerospace Medicine, Henlow, UK
| | - Stuart M C Lee
- KBR, Human Health Countermeasures Element, NASA Johnson Space Center, Houston, TX, USA
| | - Nicolas P Smith
- Victoria University of Wellington, Wellington, New Zealand
- Auckland Bioengineering Institute, Auckland, New Zealand
| | - Frans N van de Vosse
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Karen M Ong
- Virgin Galactic Medical, Truth or Consequences, NM, USA
| | - Tom A Newman
- Division of Clinical Medicine, University of Sheffield, Sheffield, UK
- Department of Cardiology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Daniel J Taylor
- Division of Clinical Medicine, University of Sheffield, Sheffield, UK
| | - Tim Chico
- Division of Clinical Medicine, University of Sheffield, Sheffield, UK
- Department of Cardiology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Julian P Gunn
- Division of Clinical Medicine, University of Sheffield, Sheffield, UK
- Department of Cardiology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Andrew J Narracott
- Division of Clinical Medicine, University of Sheffield, Sheffield, UK
- Insigneo Institute, University of Sheffield, Sheffield, UK
| | - D Rod Hose
- Division of Clinical Medicine, University of Sheffield, Sheffield, UK
- Insigneo Institute, University of Sheffield, Sheffield, UK
| | - Ian Halliday
- Division of Clinical Medicine, University of Sheffield, Sheffield, UK
- Insigneo Institute, University of Sheffield, Sheffield, UK
| |
Collapse
|
2
|
King SA, Kutz CJ, Chough NG. Spaceflight Environment. Emerg Med Clin North Am 2024; 42:695-709. [PMID: 38925783 DOI: 10.1016/j.emc.2024.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
The safety and health of individuals who may be exposed to the spaceflight environment are first and foremost cared for through prevention. This environment, which encompasses microgravity, radiation, and alternobaric factors, can have physiologic impacts on every human system. Available medical care and resources in the spaceflight environment are currently limited by mass and volume constraints, with available medical resources thereby focusing on a patient's stabilization and evacuation. An understanding of the spaceflight environment and its possible effects is crucial for the treatment of individuals prior to, during, and after spaceflight.
Collapse
Affiliation(s)
- Samantha A King
- University of Texas Medical Branch (UTMB), Division of Aerospace Medicine, Department of Global and Emerging Diseases, School of Public and Population Health, 301 University Boulevard, Health Clinics, 4.208, Galveston, TX 77555-1150, USA.
| | - Craig J Kutz
- University of Texas Medical Branch (UTMB), Division of Aerospace Medicine, Department of Global and Emerging Diseases, School of Public and Population Health, 301 University Boulevard, Health Clinics, 4.208, Galveston, TX 77555-1150, USA
| | - Natacha G Chough
- University of Texas Medical Branch (UTMB), Division of Aerospace Medicine, Department of Global and Emerging Diseases, School of Public and Population Health, 301 University Boulevard, Health Clinics, 4.208, Galveston, TX 77555-1150, USA
| |
Collapse
|
3
|
Jin M, Wang J, Zhou Q, Guo P, Zhang J, Wang Y. Effects of different seat inclination angles on lumbar dynamic response and injury during lunar-earth reentry. Front Bioeng Biotechnol 2024; 12:1395114. [PMID: 38919380 PMCID: PMC11196601 DOI: 10.3389/fbioe.2024.1395114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024] Open
Abstract
The inclination angle of the spacecraft seat is related to the astronaut's reentry angle, which in turn affects the safety of the astronauts. This study quantitatively analyzed the effects of different seat inclination angles on astronauts' lumbar spine injuries using the finite element method during the Lunar-Earth reentry. Firstly, a finite element model of the astronaut's lumbar spine was constructed based on reverse engineering technology, and the effectiveness of the model was verified through mesh sensitivity, vertebral range of motion, and spinal impact experiments. Then, simulation calculations were carried out for different seat inclination angles (0°, 10°, 20°, and 30°) under the typical reentry return loads of Chang'e 5T1 (CE-5T1) and Apollo 10, and the prediction and evaluation of lumbar spine injuries were conducted in conjunction with the biological tissue injury criteria. The results indicated that the stress on the vertebrae and annulus fibrosus increased under both reentry loads with the rise of the seat inclination angle, but the increasing rates decreased. When the acceleration peak of CE-5T1 approached 9G, the risk of tissue injury was higher under the seat angle exceeded 20°. According to the Multi-Axis Dynamic Response Criteria for spinal injury, neither of the two load conditions would directly cause injury to the astronauts' lumbar spine when the seat inclination angle was below 30°. The study findings provide a numerical basis for designing and improving the spacecraft's inclination angle in crewed lunar missions, ensuring the safety of astronauts.
Collapse
Affiliation(s)
- Mengmeng Jin
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou, China
| | - Jiatao Wang
- Key Laboratory for Biomechanics and Mechanobiology of the Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Qianxiang Zhou
- Key Laboratory for Biomechanics and Mechanobiology of the Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Pan Guo
- National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, China
| | - Jingfei Zhang
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou, China
| | - Yi Wang
- Department of Physical Education, Renmin University of China, Beijing, China
| |
Collapse
|
4
|
Keramidas ME, Kölegård R, Elia A, Sköldefors H, Eiken O. Repetitive high-sustained gravitoinertial stress does not modulate pressure responsiveness to peripheral sympathetic stimulation. Eur J Appl Physiol 2024; 124:1253-1258. [PMID: 37991551 PMCID: PMC10954908 DOI: 10.1007/s00421-023-05354-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/28/2023] [Indexed: 11/23/2023]
Abstract
PURPOSE We evaluated the hypothesis that repetitive gravitoinertial stress would augment the arterial-pressure response to peripheral sympathetic stimulation. METHODS Before and after a 5-weeks G-training regimen conducted in a human-use centrifuge, twenty healthy men performed a hand cold-pressor test, and nine of them also a foot cold-pressor test (4 min; 4 °C water). Arterial pressures and total peripheral resistance were monitored. RESULTS The cold-induced elevation (P ≤ 0.002) in arterial pressures and total peripheral resistance did not vary between testing periods, either in the hand [mean arterial pressure: Before = + 16% vs. After = + 17% and total peripheral resistance: Before = + 13% vs. After = + 15%], or in the foot [mean arterial pressure: Before = + 19% vs. After = + 21% and total peripheral resistance: Before = + 16% vs. After = + 16%] cold-pressor tests (P > 0.05). CONCLUSION Present results demonstrate that 5 weeks of prolonged iterative exposure to hypergravity does not alter the responsiveness of sympathetically mediated circulatory reflexes.
Collapse
Affiliation(s)
- Michail E Keramidas
- Division of Environmental Physiology, Swedish Aerospace Physiology Center, KTH Royal Institute of Technology, Berzelius väg 13, Solna, 171 65, Stockholm, Sweden.
| | - Roger Kölegård
- Division of Environmental Physiology, Swedish Aerospace Physiology Center, KTH Royal Institute of Technology, Berzelius väg 13, Solna, 171 65, Stockholm, Sweden
| | - Antonis Elia
- Division of Environmental Physiology, Swedish Aerospace Physiology Center, KTH Royal Institute of Technology, Berzelius väg 13, Solna, 171 65, Stockholm, Sweden
| | | | - Ola Eiken
- Division of Environmental Physiology, Swedish Aerospace Physiology Center, KTH Royal Institute of Technology, Berzelius väg 13, Solna, 171 65, Stockholm, Sweden
| |
Collapse
|
5
|
Roumengous T, Boutwell RC, Strohmaier J, Allen J, Goldbach B, Marotta N, Songkakul T, Critcher S, Morse BG, Beer JMA, Sherman PM. Cerebral oxygenation and perfusion kinetics monitoring of military aircrew at high G using novel fNIRS wearable system. FRONTIERS IN NEUROERGONOMICS 2024; 5:1357905. [PMID: 38464394 PMCID: PMC10922194 DOI: 10.3389/fnrgo.2024.1357905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/02/2024] [Indexed: 03/12/2024]
Abstract
Introduction Real-time physiological episode (PE) detection and management in aircrew operating high-performance aircraft (HPA) is crucial for the US Military. This paper addresses the unique challenges posed by high acceleration (G-force) in HPA aircrew and explores the potential of a novel wearable functional near-infrared spectroscopy (fNIRS) system, named NIRSense Aerie, to continuously monitor cerebral oxygenation during high G-force exposure. Methods The NIRSense Aerie system is a flight-optimized, wearable fNIRS device designed to monitor tissue oxygenation 13-20 mm below the skin's surface. The system includes an optical frontend adhered to the forehead, an electronics module behind the earcup of aircrew helmets, and a custom adhesive for secure attachment. The fNIRS optical layout incorporates near-distance, middle-distance, and far-distance infrared emitters, a photodetector, and an accelerometer for motion measurements. Data processing involves the modified Beer-Lambert law for computing relative chromophore concentration changes. A human evaluation of the NIRSense Aerie was conducted on six subjects exposed to G-forces up to +9 Gz in an Aerospace Environmental Protection Laboratory centrifuge. fNIRS data, pulse oximetry, and electrocardiography (HR) were collected to analyze cerebral and superficial tissue oxygenation kinetics during G-loading and recovery. Results The NIRSense Aerie successfully captured cerebral deoxygenation responses during high G-force exposure, demonstrating its potential for continuous monitoring in challenging operational environments. Pulse oximetry was compromised during G-loading, emphasizing the system's advantage in uninterrupted cerebrovascular monitoring. Significant changes in oxygenation metrics were observed across G-loading levels, with distinct responses in Deoxy-Hb and Oxy-Hb concentrations. HR increased during G-loading, reflecting physiological stress and the anti-G straining maneuver. Discussion The NIRSense Aerie shows promise for real-time monitoring of aircrew physiological responses during high G-force exposure. Despite challenges, the system provides valuable insights into cerebral oxygenation kinetics. Future developments aim for miniaturization and optimization for enhanced aircrew comfort and wearability. This technology has potential for improving anti-G straining maneuver learning and retention through real-time cerebral oxygenation feedback during centrifuge training.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Bria G. Morse
- Aerospace Environment Protection Lab, KBR Science and Space Government Solutions Group, San Antonio, TX, United States
| | - Jeremy M. A. Beer
- Aerospace Environment Protection Lab, KBR Science and Space Government Solutions Group, San Antonio, TX, United States
| | - Paul M. Sherman
- USAF 59th Medical Wing Science and Technology, San Antonio, TX, United States
| |
Collapse
|
6
|
Wernlé K, Thiel CS, Ullrich O. Increased H3K9me3 and F-Actin Reorganization in the Rapid Adaptive Response to Hypergravity in Human T Lymphocytes. Int J Mol Sci 2023; 24:17232. [PMID: 38139061 PMCID: PMC10743231 DOI: 10.3390/ijms242417232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/27/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Our study explored the impact of hypergravity on human T cells, which experience additional acceleration forces beyond Earth's gravity due to various factors, such as pulsatile blood flow, and technology, such as high-performance aircraft flights or spaceflights. We investigated the histone modifications Histone 3 lysine 4 and 9 trimethylation (H3K4me3 and H3K9me3, respectively), as well as the structural and cytoskeletal organization of Jurkat T cells in response to hypergravity. Histone modifications play a crucial role in gene regulation, chromatin organization and DNA repair. In response to hypergravity, we found only minimal changes of H3K4me3 and a rapid increase in H3K9me3, which was sustained for up to 15 min and then returned to control levels after 1 h. Furthermore, rapid changes in F-actin fluorescence were observed within seconds of hypergravity exposure, indicating filament depolymerization and cytoskeletal restructuring, which subsequently recovered after 1 h of hypergravity. Our study demonstrated the rapid, dynamic and adaptive cellular response to hypergravity, particularly in terms of histone modifications and cytoskeletal changes. These responses are likely necessary for maintaining genome stability and structural integrity under hypergravity conditions as they are constantly occurring in the human body during blood cell circulation.
Collapse
Affiliation(s)
- Kendra Wernlé
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland;
- Faculty of Medical Sciences, Private University of the Principality of Liechtenstein (UFL), Dorfstrasse 24, 9495 Triesen, Liechtenstein
| | - Cora S. Thiel
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland;
- Institute of Machine Design, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
- Space Life Sciences Laboratory (SLSL), Kennedy Space Center, 505 Odyssey Way, Exploration Park, Merritt Island, FL 32953, USA
- UZH Space Hub, Air Force Center, Air Base Dübendorf, Überlandstrasse 270, 8600 Dubendorf, Switzerland
| | - Oliver Ullrich
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland;
- Institute of Machine Design, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
- Space Life Sciences Laboratory (SLSL), Kennedy Space Center, 505 Odyssey Way, Exploration Park, Merritt Island, FL 32953, USA
- UZH Space Hub, Air Force Center, Air Base Dübendorf, Überlandstrasse 270, 8600 Dubendorf, Switzerland
- Department of Industrial Engineering, Ernst-Abbe-Hochschule (EAH) Jena, Carl-Zeiss-Promenade 2, 07745 Jena, Germany
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
7
|
Shaw DM, Harrell JW. Integrating physiological monitoring systems in military aviation: a brief narrative review of its importance, opportunities, and risks. ERGONOMICS 2023; 66:2242-2254. [PMID: 36946542 DOI: 10.1080/00140139.2023.2194592] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 03/18/2023] [Indexed: 06/18/2023]
Abstract
Military pilots risk their lives during training and operations. Advancements in aerospace engineering, flight profiles, and mission demands may require the pilot to test the safe limits of their physiology. Monitoring pilot physiology (e.g. heart rate, oximetry, and respiration) inflight is in consideration by several nations to inform pilots of reduced performance capacity and guide future developments in aircraft and life-support system design. Numerous challenges, however, prevent the immediate operationalisation of physiological monitoring sensors, particularly their unreliability in the aerospace environment and incompatibility with pilot clothing and protective equipment. Human performance and behaviour are also highly variable and measuring these in controlled laboratory settings do not mirror the real-world conditions pilots must endure. Misleading or erroneous predictive models are unacceptable as these could compromise mission success and lose operator trust. This narrative review provides an overview of considerations for integrating physiological monitoring systems within the military aviation environment.Practitioner summary: Advancements in military technology can conflictingly enhance and compromise pilot safety and performance. We summarise some of the opportunities, limitations, and risks of integrating physiological monitoring systems within military aviation. Our intent is to catalyse further research and technological development.Abbreviations: AGS: anti-gravity suit; AGSM: anti-gravity straining manoeuvre; A-LOC: almost loss of consciousness; CBF: cerebral blood flow; ECG: electrocardiogram; EEG: electroencephalogram; fNIRS: functional near-infrared spectroscopy; G-forces: gravitational forces; G-LOC: gravity-induced loss of consciousness; HR: heart rate; HRV: heart rate variability; LSS: life-support system; NATO: North Atlantic Treaty Organisation; PE: Physiological Episode; PCO2: partial pressure of carbon dioxide; PO2: partial pressure of oxygen; OBOGS: on board oxygen generating systems; SpO2: peripheral blood haemoglobin-oxygen saturation; STANAG: North Atlantic Treaty Organisation Standardisation Agreement; UPE: Unexplained Physiological Episode; WBV: whole body vibration.
Collapse
Affiliation(s)
- David M Shaw
- Aviation Medicine Unit, Royal New Zealand Air Force Base Auckland, Auckland, New Zealand
- School of Sport, Exercise and Nutrition, Massey University, Auckland, New Zealand
| | - John W Harrell
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH, USA
| |
Collapse
|
8
|
Vahlensieck C, Thiel CS, Mosimann M, Bradley T, Caldana F, Polzer J, Lauber BA, Ullrich O. Transcriptional Response in Human Jurkat T Lymphocytes to a near Physiological Hypergravity Environment and to One Common in Routine Cell Culture Protocols. Int J Mol Sci 2023; 24:ijms24021351. [PMID: 36674869 PMCID: PMC9863927 DOI: 10.3390/ijms24021351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/06/2023] [Accepted: 01/06/2023] [Indexed: 01/13/2023] Open
Abstract
Cellular effects of hypergravity have been described in many studies. We investigated the transcriptional dynamics in Jurkat T cells between 20 s and 60 min of 9 g hypergravity and characterized a highly dynamic biphasic time course of gene expression response with a transition point between rapid adaptation and long-term response at approximately 7 min. Upregulated genes were shifted towards the center of the nuclei, whereby downregulated genes were shifted towards the periphery. Upregulated gene expression was mostly located on chromosomes 16-22. Protein-coding transcripts formed the majority with more than 90% of all differentially expressed genes and followed a continuous trend of downregulation, whereas retained introns demonstrated a biphasic time-course. The gene expression pattern of hypergravity response was not comparable with other stress factors such as oxidative stress, heat shock or inflammation. Furthermore, we tested a routine centrifugation protocol that is widely used to harvest cells for subsequent RNA analysis and detected a huge impact on the transcriptome compared to non-centrifuged samples, which did not return to baseline within 15 min. Thus, we recommend carefully studying the response of any cell types used for any experiments regarding the hypergravity time and levels applied during cell culture procedures and analysis.
Collapse
Affiliation(s)
- Christian Vahlensieck
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Cora Sandra Thiel
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Department of Machine Design, Engineering Design and Product Development, Institute of Mechanical Engineering, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
- Space Life Sciences Laboratory (SLSL), Kennedy Space Center, 505 Odyssey Way, Exploration Park, FL 32953, USA
- UZH Space Hub, Air Force Center, Air Base Dübendorf, Überlandstrasse 270, 8600 Dübendorf, Switzerland
- Correspondence: (C.S.T.); (O.U.)
| | - Meret Mosimann
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Timothy Bradley
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Fabienne Caldana
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Jennifer Polzer
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Beatrice Astrid Lauber
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Oliver Ullrich
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Department of Machine Design, Engineering Design and Product Development, Institute of Mechanical Engineering, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
- Space Life Sciences Laboratory (SLSL), Kennedy Space Center, 505 Odyssey Way, Exploration Park, FL 32953, USA
- UZH Space Hub, Air Force Center, Air Base Dübendorf, Überlandstrasse 270, 8600 Dübendorf, Switzerland
- Ernst-Abbe-Hochschule (EAH) Jena, Department of Industrial Engineering, Carl-Zeiss-Promenade 2, 07745 Jena, Germany
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Correspondence: (C.S.T.); (O.U.)
| |
Collapse
|
9
|
Storey HM, Austin J, Davies-White NL, Ransley DG, Hodkinson PD. Navigating Pregnancy for Employees in Civilian Rotary-Wing Aeromedicine. Aerosp Med Hum Perform 2022; 93:866-876. [PMID: 36757253 DOI: 10.3357/amhp.6115.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION: Women of child-bearing age make up an ever-increasing element of the aeromedical workforce in Australia and the UK. However, policy relating to the management of risk for pregnant employees in this sector is often missing or inadequate, with many women facing detrimental impacts on their career progression and financial well-being. For women who choose to continue flying, there is a lack of transparent guidance about the risks of flying within a helicopter in an aeromedical role. While grounding pregnant employees removes some risks, it is at the cost of autonomy and brings other adverse effects for the employee and employer. Updated reflections on this important topic will empower the audience to make informed discussions around pregnancy in aeromedical roles.TOPIC: Applying principles from literature surrounding commercial, military, and medical aviation, the risks to pregnant employees and the fetus are reviewed. These risks are complex and dynamic depending on gestation and underlying medical problems; thus, individualization of risk management is of key importance. In low-risk pregnancies, incapacitation risk is below the usual threshold adopted for safety-sensitive aviation activities. Based on available evidence we have quantified risks where possible and provide guidance on the relevant factors to consider in creating a holistic risk-management framework. The greatest unknown surrounds the risk from vibration, noise, and winching. These are reviewed and suggestions given for discussing this risk. We also highlight the need for policy providing acceptable nonflying options to remove the pressure to continue flying in pregnancy.APPLICATION: Based on a literature review we have generated a framework for understanding and assessing risk relating to pregnant employees in the aeromedical sector. This is intended for use by aeromedical organizations, pregnant employees, and their treating medical practitioners to provide rational and sensible policy and guidance.Storey HM, Austin J, Davies-White NL, Ransley DG, Hodkinson PD. Navigating pregnancy for employees in civilian rotary-wing aeromedicine. Aerosp Med Hum Perform. 2022; 93(12):866-876.
Collapse
|
10
|
Smith TG, Pollock RD, Britton JK, Green NDC, Hodkinson PD, Mitchell SJ, Stevenson AT. Physiological Effects of Centrifuge-Simulated Suborbital Spaceflight. Aerosp Med Hum Perform 2022; 93:830-839. [PMID: 36757241 DOI: 10.3357/amhp.6153.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND: High-G acceleration experienced during launch and re-entry of suborbital spaceflights may present challenges for older or medically susceptible participants. A detailed understanding of the associated physiological responses would support the development of an evidence-based medical approach to commercial suborbital spaceflight.METHODS: There were 24 healthy subjects recruited into 'younger' (18-44 yr), 'intermediate' (45-64 yr) and 'older' (65-80 yr) age groups. Cardiovascular and respiratory variables were measured continuously during dynamic combinations of +Gx (chest-to-back) and +Gz (head-to-foot) acceleration that simulated suborbital G profiles for spaceplane and rocket/capsule platforms. Measurements were conducted breathing air and breathing 15% oxygen to simulate a cabin pressure altitude of 8000 ft.RESULTS: Suborbital G profiles generated highly dynamic changes in heart rate, blood pressure, and cardiac output. G-induced hypoxemia was observed, with minimum arterial oxygen saturation < 80% in a quarter of subjects. Increased age was associated with greater hypoxemia and reduced cardiac output responses but did not have detrimental cardiovascular effects. ECG changes included recurrent G-induced trigeminy in one individual. Respiratory and visual symptoms were common, with 88% of subjects reporting greyout and 29% reporting blackout. There was one episode of G-induced loss of consciousness (G-LOC).DISCUSSION: Suborbital acceleration profiles are generally well tolerated but are not physiologically inconsequential. Marked hemodynamic effects and transient respiratory compromise could interact with predisposing factors to precipitate adverse cardiopulmonary effects in a minority of participants. Medically susceptible individuals may benefit from expanded preflight centrifuge familiarization that includes targeted physiological evaluation in the form of a 'G challenge test'.Smith TG, Pollock RD, Britton JK, Green NDC, Hodkinson PD, Mitchell SJ, Stevenson AT. Physiological effects of centrifuge-simulated suborbital spaceflight. Aerosp Med Hum Perform. 2022; 93(12):830-839.
Collapse
|