1
|
Butova X, Myachina T, Simonova R, Kochurova A, Bozhko Y, Arkhipov M, Solovyova O, Kopylova G, Shchepkin D, Khokhlova A. Peculiarities of the Acetylcholine Action on the Contractile Function of Cardiomyocytes from the Left and Right Atria in Rats. Cells 2022; 11:cells11233809. [PMID: 36497067 PMCID: PMC9737865 DOI: 10.3390/cells11233809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/18/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022] Open
Abstract
Acetylcholine (ACh) is the neurotransmitter of the parasympathetic nervous system that modulates cardiac function, and its high concentrations may induce atrial fibrillation. We compared the ACh action on the mechanical function of single cardiomyocytes from the left atria (LA) and the right atria (RA). We exposed single rat LA and RA cardiomyocytes to 1, 10, and 100 µM ACh for 10-15 min and measured the parameters of sarcomere shortening-relengthening and cytosolic calcium ([Ca2+]i) transients during cell contractions. We also studied the effects of ACh on cardiac myosin function using an in vitro motility assay and analyzed the phosphorylation level of sarcomeric proteins. In LA cardiomyocytes, ACh decreased the time to peak sarcomere shortening, time to 50% relengthening, and time to peak [Ca2+]i transients. In RA cardiomyocytes, ACh affected the time of shortening and relengthening only at 10 µM. In the in vitro motility assay, ACh reduced to a greater extent the sliding velocity of F-actin over myosin from LA cardiomyocytes, which was accompanied by a more pronounced decrease in phosphorylation of the myosin regulatory light chain (RLC) in LA cardiomyocytes than in RA cardiomyocytes. Our findings indicate that ACh plays an important role in modulating the contractile function of LA and RA, provoking more pronounced changes in the time course of sarcomere shortening-relengthening and the kinetics of actin-myosin interaction in LA cardiomyocytes.
Collapse
Affiliation(s)
- Xenia Butova
- Institute of Immunology and Physiology, Russian Academy of Sciences, Pervomajskaya Str. 106, 620049 Yekaterinburg, Russia
| | - Tatiana Myachina
- Institute of Immunology and Physiology, Russian Academy of Sciences, Pervomajskaya Str. 106, 620049 Yekaterinburg, Russia
| | - Raisa Simonova
- Institute of Immunology and Physiology, Russian Academy of Sciences, Pervomajskaya Str. 106, 620049 Yekaterinburg, Russia
| | - Anastasia Kochurova
- Institute of Immunology and Physiology, Russian Academy of Sciences, Pervomajskaya Str. 106, 620049 Yekaterinburg, Russia
| | - Yakov Bozhko
- Department of Therapy, Ural State Medical University, Repina Str. 3, 620028 Yekaterinburg, Russia
| | - Michael Arkhipov
- Department of Therapy, Ural State Medical University, Repina Str. 3, 620028 Yekaterinburg, Russia
| | - Olga Solovyova
- Institute of Immunology and Physiology, Russian Academy of Sciences, Pervomajskaya Str. 106, 620049 Yekaterinburg, Russia
- Institute of Natural Sciences and Mathematics, Ural Federal University, Mira 19, 620002 Yekaterinburg, Russia
| | - Galina Kopylova
- Institute of Immunology and Physiology, Russian Academy of Sciences, Pervomajskaya Str. 106, 620049 Yekaterinburg, Russia
| | - Daniil Shchepkin
- Institute of Immunology and Physiology, Russian Academy of Sciences, Pervomajskaya Str. 106, 620049 Yekaterinburg, Russia
| | - Anastasia Khokhlova
- Institute of Immunology and Physiology, Russian Academy of Sciences, Pervomajskaya Str. 106, 620049 Yekaterinburg, Russia
- Institute of Natural Sciences and Mathematics, Ural Federal University, Mira 19, 620002 Yekaterinburg, Russia
- Correspondence:
| |
Collapse
|
2
|
Wang Y, Sun Y, Zhang Q, Zhang C, Liu P, Wang Y, Tang C, Jin H, Du J. Baseline Corrected QT Interval Dispersion Is Useful to Predict Effectiveness of Metoprolol on Pediatric Postural Tachycardia Syndrome. Front Cardiovasc Med 2022; 8:808512. [PMID: 35127870 PMCID: PMC8812810 DOI: 10.3389/fcvm.2021.808512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/16/2021] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES The study was designed to explore the role of baseline-corrected QT interval dispersion (QTcd) in predicting the effectiveness of metoprolol on pediatric postural tachycardia syndrome (POTS). METHODS There were two groups in the study, the discovery group and the validation group. The children with POTS in the discovery group were treated with oral metoprolol, with the completed necessary medical records, head-up tilt test (HUTT), blood chemistry, and 12-lead ECG before treatment at the pediatrics of Peking University First Hospital, China. According to whether the symptom score (SS) was reduced by more than 2 points after administration with oral metoprolol as compared with that before treatment, the children with POTS were separated into responders and non-responders. The demographic characteristics, hemodynamic indicators, and the QTcd of the two groups were compared, and the estimate of the baseline QTcd in predicting the treatment response to metoprolol was tested through a receiver operating characteristic (ROC) analysis. Other 24 children suffering from POTS who were, administrated with metoprolol at the pediatrics of Peking University First Hospital were included in the validation group. The sensitivity, specificity, and accuracy of the baseline QTcd in the prediction of the effectiveness of metoprolol on POTS were validated in children. RESULTS The pre-treatment baseline QTcd in responders treated with metoprolol was longer than that of the non-responders in the discovery group [(66.3 ± 20.3) ms vs. (45.7 ± 19.9) ms, p = 0.001]. The baseline QTcd was negatively correlated with SS after metoprolol treatment (r = -0.406, p = 0.003). The cut-off value of baseline QTcd for the prediction of the effectiveness of metoprolol on pediatric POTS was 47.9 ms, yielding a sensitivity of 78.9% and a specificity of 83.3%, respectively. The validation group showed that the sensitivity, specificity, and accuracy of the baseline QTcd ≥ 47.9 ms before treatment for estimating the effectiveness of metoprolol on POTS in children were 73.7, 80.0, and 75.0%, respectively. CONCLUSION Baseline QTcd is effective for predicting the effectiveness of metoprolol on pediatric POTS.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yan Sun
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Qingyou Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Chunyu Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Ping Liu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yuli Wang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Chaoshu Tang
- Key Lab of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
- Department of Physiology and Pathophysiology, Health Science Centre, Peking University, Beijing, China
| | - Hongfang Jin
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Junbao Du
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- Key Lab of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| |
Collapse
|
3
|
Fei YD, Chen M, Guo S, Ueoka A, Chen Z, Rubart-von der Lohe M, Everett TH, Qu Z, Weiss JN, Chen PS. Simultaneous activation of the small conductance calcium-activated potassium current by acetylcholine and inhibition of sodium current by ajmaline cause J-wave syndrome in Langendorff-perfused rabbit ventricles. Heart Rhythm 2021; 18:98-108. [PMID: 32763429 PMCID: PMC7796982 DOI: 10.1016/j.hrthm.2020.07.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 07/24/2020] [Accepted: 07/30/2020] [Indexed: 01/06/2023]
Abstract
BACKGROUND Concomitant apamin-sensitive small conductance calcium-activated potassium current (IKAS) activation and sodium current inhibition induce J-wave syndrome (JWS) in rabbit hearts. Sudden death in JWS occurs predominantly in men at night when parasympathetic tone is strong. OBJECTIVE The purpose of this study was to test the hypotheses that acetylcholine (ACh), the parasympathetic transmitter, activates IKAS and causes JWS in the presence of ajmaline. METHODS We performed optical mapping in Langendorff-perfused rabbit hearts and whole-cell voltage clamp to determine IKAS in isolated ventricular cardiomyocytes. RESULTS ACh (1 μM) + ajmaline (2 μM) induced J-point elevations in all (6 male and 6 female) hearts from 0.01± 0.01 to 0.31 ± 0.05 mV (P<.001), which were reduced by apamin (specific IKAS inhibitor, 100 nM) to 0.14 ± 0.02 mV (P<.001). More J-point elevation was noted in male than in female hearts (P=.037). Patch clamp studies showed that ACh significantly (P<.001) activated IKAS in isolated male but not in female ventricular myocytes (n=8). Optical mapping studies showed that ACh induced action potential duration (APD) heterogeneity, which was more significant in right than in left ventricles. Apamin in the presence of ACh prolonged both APD at the level of 25% (P<.001) and APD at the level of 80% (P<.001) and attenuated APD heterogeneity. Ajmaline further increased APD heterogeneity induced by ACh. Ventricular arrhythmias were induced in 6 of 6 male and 1 of 6 female hearts (P=.015) in the presence of ACh and ajmaline, which was significantly suppressed by apamin in the former. CONCLUSION ACh activates ventricular IKAS. ACh and ajmaline induce JWS and facilitate the induction of ventricular arrhythmias more in male than in female ventricles.
Collapse
Affiliation(s)
- Yu-Dong Fei
- Krannert Institute of Cardiology, Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Department of Cardiology, XinHua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mu Chen
- Krannert Institute of Cardiology, Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Department of Cardiology, XinHua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuai Guo
- Krannert Institute of Cardiology, Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Akira Ueoka
- Krannert Institute of Cardiology, Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Zhenhui Chen
- Krannert Institute of Cardiology, Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Michael Rubart-von der Lohe
- Department of Pediatrics, Riley Heart Research Center, Indiana University School of Medicine, Indianapolis, Indiana
| | - Thomas H Everett
- Krannert Institute of Cardiology, Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Zhilin Qu
- Department of Medicine (Cardiology) and Physiology, University of California, Los Angeles, California
| | - James N Weiss
- Department of Medicine (Cardiology) and Physiology, University of California, Los Angeles, California
| | - Peng-Sheng Chen
- Krannert Institute of Cardiology, Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Cedars-Sinai Medical Center, Los Angeles, California.
| |
Collapse
|
4
|
Zhao Y, Rafatian N, Feric NT, Cox BJ, Aschar-Sobbi R, Wang EY, Aggarwal P, Zhang B, Conant G, Ronaldson-Bouchard K, Pahnke A, Protze S, Lee JH, Davenport Huyer L, Jekic D, Wickeler A, Naguib HE, Keller GM, Vunjak-Novakovic G, Broeckel U, Backx PH, Radisic M. A Platform for Generation of Chamber-Specific Cardiac Tissues and Disease Modeling. Cell 2019; 176:913-927.e18. [PMID: 30686581 PMCID: PMC6456036 DOI: 10.1016/j.cell.2018.11.042] [Citation(s) in RCA: 392] [Impact Index Per Article: 65.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/19/2018] [Accepted: 11/28/2018] [Indexed: 12/12/2022]
Abstract
Tissue engineering using cardiomyocytes derived from human pluripotent stem cells holds a promise to revolutionize drug discovery, but only if limitations related to cardiac chamber specification and platform versatility can be overcome. We describe here a scalable tissue-cultivation platform that is cell source agnostic and enables drug testing under electrical pacing. The plastic platform enabled on-line noninvasive recording of passive tension, active force, contractile dynamics, and Ca2+ transients, as well as endpoint assessments of action potentials and conduction velocity. By combining directed cell differentiation with electrical field conditioning, we engineered electrophysiologically distinct atrial and ventricular tissues with chamber-specific drug responses and gene expression. We report, for the first time, engineering of heteropolar cardiac tissues containing distinct atrial and ventricular ends, and we demonstrate their spatially confined responses to serotonin and ranolazine. Uniquely, electrical conditioning for up to 8 months enabled modeling of polygenic left ventricular hypertrophy starting from patient cells.
Collapse
Affiliation(s)
- Yimu Zhao
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada
| | - Naimeh Rafatian
- Division of Cardiology and Peter Munk Cardiac Center, University of Health Network; Toronto, ON M5G 2N2, Canada
| | - Nicole T Feric
- TARA Biosystems, Inc., New York, NY 10016, USA; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Brian J Cox
- Department of Physiology, Faculty of Medicine; University of Toronto; Toronto; Ontario, M5S 1A8, Canada; Department of Obstetrics and Gynaecology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Roozbeh Aschar-Sobbi
- Division of Cardiology and Peter Munk Cardiac Center, University of Health Network; Toronto, ON M5G 2N2, Canada; TARA Biosystems, Inc., New York, NY 10016, USA
| | - Erika Yan Wang
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Praful Aggarwal
- Section of Genomic Pediatrics, Department of Pediatrics and Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Boyang Zhang
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Genevieve Conant
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Kacey Ronaldson-Bouchard
- TARA Biosystems, Inc., New York, NY 10016, USA; Department of Biomedical Engineering and Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Aric Pahnke
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Stephanie Protze
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1A8, Canada; McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Jee Hoon Lee
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada; BlueRock Therapeutics, MaRS Discovery District, Toronto, ON M5G 1L7, Canada
| | - Locke Davenport Huyer
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Danica Jekic
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada; Department of Anatomy and Cell Biology, Faculty of Science, McGill University, Montreal, QC H3A 2K6, Canada
| | - Anastasia Wickeler
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
| | - Hani E Naguib
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
| | - Gordon M Keller
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering and Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Ulrich Broeckel
- Section of Genomic Pediatrics, Department of Pediatrics and Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Peter H Backx
- Division of Cardiology and Peter Munk Cardiac Center, University of Health Network; Toronto, ON M5G 2N2, Canada; Department of Physiology, Faculty of Medicine; University of Toronto; Toronto; Ontario, M5S 1A8, Canada; Department of Biology; York University, Toronto, ON M3J 1P3, Canada; Toronto General Hospital Research Institute, Toronto, ON M5G 2C4, Canada.
| | - Milica Radisic
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada; Toronto General Hospital Research Institute, Toronto, ON M5G 2C4, Canada.
| |
Collapse
|
5
|
Abramochkin DV, Karimova VM, Filatova TS, Kamkin A. Diadenosine pentaphosphate affects electrical activity in guinea pig atrium via activation of potassium acetylcholine-dependent inward rectifier. J Physiol Sci 2017; 67:523-529. [PMID: 27942993 PMCID: PMC10717602 DOI: 10.1007/s12576-016-0510-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 11/30/2016] [Indexed: 11/25/2022]
Abstract
Diadenosine pentaphosphate (Ap5A) belongs to the family of diadenosine polyphosphates, endogenously produced compounds that affect vascular tone and cardiac performance when released from platelets. The previous findings indicate that Ap5A shortens action potentials (APs) in rat myocardium via activation of purine P2 receptors. The present study demonstrates alternative mechanism of Ap5A electrophysiological effects found in guinea pig myocardium. Ap5A (10-4 M) shortens APs in guinea pig working atrial myocardium and slows down pacemaker activity in the sinoatrial node. P1 receptors antagonist DPCPX (10-7 M) or selective GIRK channels blocker tertiapin (10-6 M) completely abolished all Ap5A effects, while P2 blocker PPADS (10-4 M) was ineffective. Patch-clamp experiments revealed potassium inward rectifier current activated by Ap5A in guinea pig atrial myocytes. The current was abolished by DPCPX or tertiapin and therefore was considered as potassium acetylcholine-dependent inward rectifier (I KACh). Thus, unlike rat, in guinea pig atrium Ap5A produces activation of P1 receptors and subsequent opening of KACh channels leading to negative effects on cardiac electrical activity.
Collapse
Affiliation(s)
- Denis V Abramochkin
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye Gory, 1, 12, Moscow, Russia.
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow, Russia.
| | - Viktoria M Karimova
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye Gory, 1, 12, Moscow, Russia
| | - Tatiana S Filatova
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye Gory, 1, 12, Moscow, Russia
| | - Andre Kamkin
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
6
|
Machhada A, Marina N, Korsak A, Stuckey DJ, Lythgoe MF, Gourine AV. Origins of the vagal drive controlling left ventricular contractility. J Physiol 2016; 594:4017-30. [PMID: 26940639 PMCID: PMC4945717 DOI: 10.1113/jp270984] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Accepted: 03/01/2016] [Indexed: 01/22/2023] Open
Abstract
Key points The strength, functional significance and origins of parasympathetic innervation of the left ventricle remain controversial. This study tested the hypothesis that parasympathetic control of left ventricular contractility is provided by vagal preganglionic neurones of the dorsal motor nucleus (DVMN). Under β‐adrenoceptor blockade combined with spinal cord (C1) transection (to remove sympathetic influences), systemic administration of atropine increased left ventricular contractility in rats anaesthetized with urethane, confirming the existence of a tonic inhibitory muscarinic influence on cardiac inotropy. Increased left ventricular contractility in anaesthetized rats was observed when DVMN neurones were silenced. Functional neuroanatomical mapping revealed that vagal preganglionic neurones that have an impact on left ventricular contractility are located in the caudal region of the left DVMN. These neurones provide functionally significant parasympathetic control of left ventricular inotropy.
Abstract The strength, functional significance and origins of direct parasympathetic innervation of the left ventricle (LV) remain controversial. In the present study we used an anaesthetized rat model to first confirm the presence of tonic inhibitory vagal influence on LV inotropy. Using genetic neuronal targeting and functional neuroanatomical mapping we tested the hypothesis that parasympathetic control of LV contractility is provided by vagal preganglionic neurones located in the dorsal motor nucleus (DVMN). It was found that under systemic β‐adrenoceptor blockade (atenolol) combined with spinal cord (C1) transection (to remove sympathetic influences), intravenous administration of atropine increases LV contractility in rats anaesthetized with urethane, but not in animals anaesthetized with pentobarbital. Increased LV contractility in rats anaesthetized with urethane was also observed when DVMN neurones targeted bilaterally to express an inhibitory Drosophila allatostatin receptor were silenced by application of an insect peptide allatostatin. Microinjections of glutamate and muscimol to activate or inhibit neuronal cell bodies in distinct locations along the rostro‐caudal extent of the left and right DVMN revealed that vagal preganglionic neurones, which have an impact on LV contractility, are located in the caudal region of the left DVMN. Changes in LV contractility were only observed when this subpopulation of DVMN neurones was activated or inhibited. These data confirm the existence of a tonic inhibitory muscarinic influence on LV contractility. Activity of a subpopulation of DVMN neurones provides functionally significant parasympathetic control of LV contractile function. The strength, functional significance and origins of parasympathetic innervation of the left ventricle remain controversial. This study tested the hypothesis that parasympathetic control of left ventricular contractility is provided by vagal preganglionic neurones of the dorsal motor nucleus (DVMN). Under β‐adrenoceptor blockade combined with spinal cord (C1) transection (to remove sympathetic influences), systemic administration of atropine increased left ventricular contractility in rats anaesthetized with urethane, confirming the existence of a tonic inhibitory muscarinic influence on cardiac inotropy. Increased left ventricular contractility in anaesthetized rats was observed when DVMN neurones were silenced. Functional neuroanatomical mapping revealed that vagal preganglionic neurones that have an impact on left ventricular contractility are located in the caudal region of the left DVMN. These neurones provide functionally significant parasympathetic control of left ventricular inotropy.
Collapse
Affiliation(s)
- Asif Machhada
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London, London, WC1E 6BT, UK.,UCL Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, WC1E 6DD, UK
| | - Nephtali Marina
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London, London, WC1E 6BT, UK
| | - Alla Korsak
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London, London, WC1E 6BT, UK
| | - Daniel J Stuckey
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, WC1E 6DD, UK
| | - Mark F Lythgoe
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, WC1E 6DD, UK
| | - Alexander V Gourine
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London, London, WC1E 6BT, UK
| |
Collapse
|
7
|
Vagal control of cardiac electrical activity and wall motion during ventricular fibrillation in large animals. Auton Neurosci 2014; 183:12-22. [DOI: 10.1016/j.autneu.2014.01.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 01/13/2014] [Accepted: 01/27/2014] [Indexed: 11/22/2022]
|
8
|
Ng J, Villuendas R, Cokic I, Schliamser JE, Gordon D, Koduri H, Benefield B, Simon J, Murthy SNP, Lomasney JW, Wasserstrom JA, Goldberger JJ, Aistrup GL, Arora R. Autonomic remodeling in the left atrium and pulmonary veins in heart failure: creation of a dynamic substrate for atrial fibrillation. Circ Arrhythm Electrophysiol 2011; 4:388-96. [PMID: 21421805 DOI: 10.1161/circep.110.959650] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND Atrial fibrillation (AF) is commonly associated with congestive heart failure (CHF). The autonomic nervous system is involved in the pathogenesis of both AF and CHF. We examined the role of autonomic remodeling in contributing to AF substrate in CHF. METHODS AND RESULTS Electrophysiological mapping was performed in the pulmonary veins and left atrium in 38 rapid ventricular-paced dogs (CHF group) and 39 control dogs under the following conditions: vagal stimulation, isoproterenol infusion, β-adrenergic blockade, acetylcholinesterase (AChE) inhibition (physostigmine), parasympathetic blockade, and double autonomic blockade. Explanted atria were examined for nerve density/distribution, muscarinic receptor and β-adrenergic receptor densities, and AChE activity. In CHF dogs, there was an increase in nerve bundle size, parasympathetic fibers/bundle, and density of sympathetic fibrils and cardiac ganglia, all preferentially in the posterior left atrium/pulmonary veins. Sympathetic hyperinnervation was accompanied by increases in β(1)-adrenergic receptor R density and in sympathetic effect on effective refractory periods and activation direction. β-Adrenergic blockade slowed AF dominant frequency. Parasympathetic remodeling was more complex, resulting in increased AChE activity, unchanged muscarinic receptor density, unchanged parasympathetic effect on activation direction and decreased effect of vagal stimulation on effective refractory period (restored by AChE inhibition). Parasympathetic blockade markedly decreased AF duration. CONCLUSIONS In this heart failure model, autonomic and electrophysiological remodeling occurs, involving the posterior left atrium and pulmonary veins. Despite synaptic compensation, parasympathetic hyperinnervation contributes significantly to AF maintenance. Parasympathetic and/or sympathetic signaling may be possible therapeutic targets for AF in CHF.
Collapse
Affiliation(s)
- Jason Ng
- Feinberg Cardiovascular Research Institute, Northwestern University-Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Chinushi M, Furushima H, Hosaka Y, Komura S, Sato A, Iijima K, Aizawa Y. Endocardial arrhythmogenic mechanisms of torsades de pointes in patients with the congenital long QT syndrome. Intern Med 2011; 50:1695-702. [PMID: 21841328 DOI: 10.2169/internalmedicine.50.5114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We injected acetylcholine (Ach) into the coronary artery to ascertain whether coronary vasospasm contributed to the syncopal events or chest oppression suffered by 3 patients with long QT syndrome (LQTS). During the test, a quadripolar electrode catheter was placed in the right ventricle and the activation-recovery interval was reanalyzed from the stored data. Intracoronary Ach transiently prolonged the QT intervals in all 3 patients without inducing coronary vasospasm. The Ach-induced QT prolongation was associated with enhanced spatial and temporal dispersion of intra-ventricular repolarization. The electrophysiological abnormalities were consistent with the putative arrhythmogenic mechanisms identified in experimental studies of LQTS.
Collapse
|
10
|
Li DL, Liu BH, Sun L, Zhao M, He X, Yu XJ, Zang WJ. Alterations of muscarinic acetylcholine receptors-2, 4 and α7-nicotinic acetylcholine receptor expression after ischaemia / reperfusion in the rat isolated heart. Clin Exp Pharmacol Physiol 2010; 37:1114-9. [DOI: 10.1111/j.1440-1681.2010.05448.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
|
12
|
Salehi S, Long SR, Proteau PJ, Filtz TM. Hawthorn (Crataegus monogyna Jacq.) extract exhibits atropine-sensitive activity in a cultured cardiomyocyte assay. J Nat Med 2008; 63:1-8. [PMID: 18696181 DOI: 10.1007/s11418-008-0278-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Accepted: 05/26/2008] [Indexed: 11/30/2022]
Abstract
Hawthorn (Crataegus spp.) plant extract is used as a herbal alternative medicine for the prevention and treatment of various cardiovascular diseases. Recently, it was shown that hawthorn extract preparations caused negative chronotropic effects in a cultured neonatal murine cardiomyocyte assay, independent of beta-adrenergic receptor blockade. The aim of this study was to further characterize the effect of hawthorn extract to decrease the contraction rate of cultured cardiomyocytes. To test the hypothesis that hawthorn is acting via muscarinic receptors, the effect of hawthorn extract on atrial versus ventricular cardiomyocytes in culture was evaluated. As would be expected for activation of muscarinic receptors, hawthorn extract had a greater effect in atrial cells. Atrial and/or ventricular cardiomyocytes were then treated with hawthorn extract in the presence of atropine or himbacine. Changes in the contraction rate of cultured cardiomyocytes revealed that both muscarinic antagonists significantly attenuated the negative chronotropic activity of hawthorn extract. Using quinuclidinyl benzilate, L-[benzylic-4,4'-(3)H] ([(3)H]-QNB) as a radioligand antagonist, the effect of a partially purified hawthorn extract fraction to inhibit muscarinic receptor binding was quantified. Hawthorn extract fraction 3 dose-dependently inhibited [(3)H]-QNB binding to mouse heart membranes. Taken together, these findings suggest that decreased contraction frequency by hawthorn extracts in neonatal murine cardiomyocytes may be mediated via muscarinic receptor activation.
Collapse
Affiliation(s)
- Satin Salehi
- Department of Pharmaceutical Sciences, Oregon State University College of Pharmacy, 203 Pharmacy Bldg., Corvallis, OR 97331, USA
| | | | | | | |
Collapse
|
13
|
Farkas A, Dempster J, Coker SJ. Importance of vagally mediated bradycardia for the induction of torsade de pointes in an in vivo model. Br J Pharmacol 2008; 154:958-70. [PMID: 18587444 DOI: 10.1038/bjp.2008.154] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND AND PURPOSE Bradycardia is a risk factor for the development of torsade de pointes (TdP). The aim of this work was to compare the importance of changes in heart rate and arterial blood pressure in the development of drug-induced TdP and to investigate the role of vagal influences. EXPERIMENTAL APPROACH Experiments were performed in open-chest, pentobarbital-anaesthetized, male rabbits which were given clofilium (20, 60 and 200 nmol kg(-1) min(-1)) with rising doses of either phenylephrine (75, 150, 225 and 300 nmol kg(-1) min(-1)), angiotensin II (0.25, 0.5, 0.75 and 1 nmol kg(-1) min(-1)) or saline. A fourth group received phenylephrine and cloflium after bilateral vagotomy. ECGs, haemodynamics and epicardial monophasic action potentials were recorded. KEY RESULTS TdP occurred in 57% of rabbits given phenylephrine and clofilium. Replacement of phenylephrine with saline or angiotensin II reduced the incidence of TdP to 0 and 17%, respectively. Vagotomy prevented TdP in rabbits given phenylephrine and clofilium. Increases in blood pressure induced by phenylephrine and angiotensin II were similar. Bradycardia only occurred with phenylephrine and was reduced but not abolished by vagotomy. Neither short-term variability of repolarization nor action potential triangulation could predict TdP. CONCLUSIONS AND IMPLICATIONS These results indicate that reflex activation of vagal nerve activity is essential for the induction of drug-induced TdP in alpha1-adrenoceptor-stimulated anaesthetized rabbits. This implies that alterations in vagal activity may also precipitate episodes of drug-induced TdP in man and that this should be considered in selecting models used in drug development.
Collapse
Affiliation(s)
- A Farkas
- Department of Pharmacology and Therapeutics, The University of Liverpool, Liverpool, UK
| | | | | |
Collapse
|
14
|
Heffernan KS, Jae SY, Fernhall B. Heart rate recovery after exercise is associated with resting QTc interval in young men. Clin Auton Res 2007; 17:356-63. [DOI: 10.1007/s10286-007-0450-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Accepted: 10/19/2007] [Indexed: 11/30/2022]
|
15
|
Lu J, Zhu SM, Zang WJ, Xu XL, Luo HL, Yu XJ, Wang SP, Kong SS, Wu J, Horie M, Sun L. Protective mechanism of adenosine to the rat arterial endothelial dysfunction induced by hydrogen peroxide. Biol Pharm Bull 2007; 30:1206-1211. [PMID: 17603154 DOI: 10.1248/bpb.30.1206] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study was designed to examine the in vitro effects of adenosine (Ado) on hydrogen peroxide-induced endothelial dysfunction in rats. Endothelial dysfunction was induced by exposing isolated rat mesenteric arteries to hydrogen peroxide (0.5 mM) for 12 h using an organ culture system. The protective effects of adenosine were tested by exposing isolated mesenteric arteries to adenosine (3 x 10(-7) mol/l, 10(-6) mol/l, 3 x 10(-6) mol/l)+hydrogen peroxide (0.5 mM) for 12 h. This exposure to hydrogen peroxide induced a significant concentration-dependent inhibition of endothelium-dependent relaxation (EDR). Coculture of segments of mesenteric artery with adenosine (3 x 10(-7), 10(-6), and 3 x 10(-6) mol/l) attenuated the hydrogen peroxide-induced impairment of vasorelaxation. This impairment was accompanied by a reduction in nitrite/nitrate, nitric oxide (NO) synthase (NOS), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities and an increasing in malondislehyde (MDA) and lactate dehydrogenase (LDH) activities in the aorta. These results indicate that adenosine can be used to attenuate hydrogen peroxide-induced endothelial dysfunction, an effect that may be related to antioxidation, thus enhancing NO production by preventing the decrease in NOS.
Collapse
Affiliation(s)
- Jun Lu
- Department of Pharmacology, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Xu XL, Zang WJ, Lu J, Kang XQ, Li M, Yu XJ. Effects of carvedilol on M2 receptors and cholinesterase-positive nerves in adriamycin-induced rat failing heart. Auton Neurosci 2006; 130:6-16. [PMID: 16798104 DOI: 10.1016/j.autneu.2006.04.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2006] [Revised: 04/10/2006] [Accepted: 04/19/2006] [Indexed: 11/26/2022]
Abstract
Heart failure is correlated with attenuation of parasympathetic nervous function and enhanced sympathetic activity. Carvedilol, a third-generation beta-blocker, may improve the prognosis of heart failure better than selective beta(1)-blockers. Not all of its effects, however, can be explained by direct actions on the sympathetic nervous system. This study was therefore performed to investigate the possible alterations of muscarinic cholinergic (M)(2) receptors and cholinesterase-positive nerves in different regions of the adriamycin-induced failing rat heart, and the potential effects of carvedilol on these M(2) receptors and cholinesterase-positive nerves. Karnovsky-Roots histochemical staining combined with point counting methods, and immunochemical streptavidin-biotin complex staining and image analysis were used to test the distribution of cholinesterase-positive nerves and the expression of M(2) receptors, respectively. Our results show that the cholinesterase-positive nerve system was downregulated in the adriamycin-induced failing heart group, while the density of M(2) receptors was increased in the carvedilol 3- and 10-mg/kg body weight groups, especially in the endocardial tissues of the left-ventricular free wall. It is concluded that upregulation of M(2) receptors may be one of the potential mechanisms by which carvedilol exert its action on heart failure.
Collapse
Affiliation(s)
- Xiao-Li Xu
- Division of Cardiovascular Physiology and Pharmacology, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | | | | | | | | | | |
Collapse
|
17
|
Dössel O, Reumann M, Seemann G, Weiss D. The missing link between cardiovascular rhythm control and myocardial cell modeling. BIOMED ENG-BIOMED TE 2006; 51:205-9. [PMID: 17061940 DOI: 10.1515/bmt.2006.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Cardiac arrhythmia is currently investigated from two different points of view. One considers ECG bio-signal analysis and investigates heart rate variability, baroreflex control, heart rate turbulence, alternans phenomena, etc. The other involves building computer models of the heart based on ion channels, bio-domain models and forward calculations to finally reach ECG and body surface potential maps. Both approaches aim to support the cardiologist in better understanding of arrhythmia, improving diagnosis and reliable risk stratification, and optimizing therapy. This article summarizes recent results and aims to trigger new research to bridge the different views.
Collapse
Affiliation(s)
- Olaf Dössel
- Institute of Biomedical Engineering, Universität Karlsruhe (TH), Karlsruhe, Germany.
| | | | | | | |
Collapse
|
18
|
Lu J, Zang WJ, Yu XJ, Jia B, Chorvatova A, Sun L. Effects of postconditioning of adenosine and acetylcholine on the ischemic isolated rat ventricular myocytes. Eur J Pharmacol 2006; 549:133-139. [PMID: 16982051 DOI: 10.1016/j.ejphar.2006.08.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Revised: 08/05/2006] [Accepted: 08/14/2006] [Indexed: 10/24/2022]
Abstract
UNLABELLED In this study, protective effects of adenosine and acetylcholine-induced postconditioning were investigated on the contractile function of the ischemic isolated rat ventricular myocytes. A video-based edge-detection system was used to monitor single ventricular myocytes contraction. Adenosine and acetylcholine were administrated for 6 min before ischemia as preconditioning, or 15 min after ischemia as postconditioning. Adenosine and acetylcholine receptor antagonists and mitoKATP inhibitor were used to analyze pathways underlying the effects on postconditioning. RESULTS (1) The peak shortening of ischemic heart cells was improved by both adenosine and acetylcholine during preconditioning (84.72+/-5.34% and 68.61+/-8.10% vs. control: 8.43+/-5.35% of the pre-ischemia value), as well as postconditioning (76.47+/-7.87% and 57.48+/-6.97% vs. control: 8.43+/-5.35% of the pre-ischemia value) and the effects of preconditioning and postconditioning were comparable. More datum in the normal text. (2) Observed effects of adenosine and acetylcholine postconditioning were missing in the presence of adenosine A1 receptor and muscarinic M2 receptor antagonists, respectively. (3) Adenosine and acetylcholine-induced postconditioning was also blocked by mitoKATP antagonist. These results suggest that both adenosine and acetylcholine protect the contractile function of ischemic heart cells to a similar extent during preconditioning and postconditioning. The postconditioning of adenosine and acetylcholine is relative to the adenosine A1 and muscarinic M2 receptors, respectively. MitoKATP is implicated in the postconditioning of both acetylcholine and adenosine.
Collapse
Affiliation(s)
- Jun Lu
- Department of Pharmacology, School of Medicine, Xi'an Jiaotong University, Xi'an, 710061, PR China, and Research Centre, Sainte-Justine Hospital, Montreal, Canada
| | | | | | | | | | | |
Collapse
|
19
|
Luo HL, Zang WJ, Lu J, Yu XJ, Lin YX, Cao YX. The protective effect of captopril on nicotine-induced endothelial dysfunction in rat. Basic Clin Pharmacol Toxicol 2006; 99:237-245. [PMID: 16930297 DOI: 10.1111/j.1742-7843.2006.pto_494.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
This study was designed to examine the in vivo and in vitro effects of captopril, an angiotensin-converting enzyme inhibitor, on nicotine-induced endothelial dysfunction in rats. Endothelial dysfunction was induced by exposing isolated rat mesenteric arteries to nicotine (0.01, 0.1, or 1 mM) for 24 hr using an organ culture system, or by treating rats with nicotine (2 mg/kg/day, intraperitoneally) for 4 weeks. The protective effects of captopril were tested by exposing isolated mesenteric arteries to captopril (0.01, 0.03, or 0.1 mM) + nicotine (0.1 mM) for 24 hr, or by treating rats with captopril (3 mg/kg/day, intravenously) + nicotine (2 mg/kg/day, intraperitoneally) for 4 weeks. Exposure of the isolated mesenteric arteries to nicotine induced a significant concentration -dependent inhibition of endothelium-dependent relaxation. Co-culture of segments of mesenteric artery with captopril (0.03 or 0.1 mM) attenuated the nicotine-induced impairment of vasorelaxation in a dose-dependent manner. Administration of nicotine to rats for 4 weeks significantly impaired endothelium-dependent relaxation compared with control rats. This impairment was accompanied by a reduction in nitrite/nitrate, nitric oxide (NO) synthase (NOS), and superoxide dismutase (SOD) activities in the serum and aorta. Chronic captopril treatment not only improved the impairment of endothelium-dependent relaxation, but also prevented the reduction of nitrite/nitrate contents and of NOS and SOD activities in the serum and aorta. However, there were no significant differences in serum angiotensin-converting enzyme activity among the three groups. These results indicate that captopril can be used to attenuate nicotine-induced endothelial dysfunction, an effect that may be related not only to antioxidation, but also to enhancing NO production by preventing the decrease in NOS.
Collapse
Affiliation(s)
- Hong-Li Luo
- Department of Pharmacology, School of Medicine, Xi'an Jiaotong University, Xi'an 710061, China
| | | | | | | | | | | |
Collapse
|
20
|
Abramochkin DV, Sukhova GS, Rozenshtraukh LV. Effect of acetylcholine on the action potential in the bat atrium and ventricle. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2006; 407:121-2. [PMID: 16739471 DOI: 10.1134/s0012496606020025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
|
21
|
Wang X, Guan XM, Li GP, Ren Y, Drzewiecki G, Li JKJ, Kedem J. Characteristic dysfunction of stunned myocardium induced by 2,3-butanedione monoxime without ischaemia. Clin Exp Pharmacol Physiol 2006; 32:968-74. [PMID: 16405454 DOI: 10.1111/j.1440-1681.2005.04292.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
1. In the present study, we tested the hypothesis that, even in the absence of prior ischaemia, 2,3-butanedione monoxime (BDM), an inhibitor of contraction at the actin-myosin level, could produce the postischaemic dysfunction characteristic of stunned myocardium. 2,3-Butanedione monoxime was injected directly into the left anterior descending coronary artery (LAD) before and again after myocardial stunning produced by 15 min occlusion of the LAD followed by 30 min reperfusion. 2. Regional myocardial force, segment shortening and regional work were measured in both the LAD-perfused area and the area perfused by the circumflex coronary artery, which served as a control area. Regional dysfunction produced by BDM injection or ischaemia-reperfusion was assessed quantitatively by five parameters: end-diastolic length (EDL), shortening onset delay (delay), systolic bulge (bulge), end-shortening time delay (EST) and tail work ratio (TWR). 3. It was found that injection of BDM into the LAD caused dyskinesis similar to that caused by occlusion-reperfusion. Both displayed elevated EDL and marked increases in delay, bulge, EST and TWR; these parameters were significantly higher in the dyskinesis caused by BDM injection. Despite dysfunctional fibre shortening, intracoronary BDM injection did not reduce regional force. 4. Thus, BDM can elicit changes similar to those characteristic of postischaemic dysfunction. Because contractility was not impaired, dysfunction was apparently caused by disrupting the association between contractile force and muscle motion.
Collapse
Affiliation(s)
- X Wang
- Department of Physiology and Biophysics, UMDNJ-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854-5635, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Lu J, Zang WJ, Yu XJ, Chen LN, Zhang CH, Jia B. Effects of ischaemia-mimetic factors on isolated rat ventricular myocytes. Exp Physiol 2005; 90:497-505. [PMID: 15708876 DOI: 10.1113/expphysiol.2004.029421] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Conventional ischaemia-mimetic solutions contain several key components for inducing hypoxia, glucose deficiency, acidosis, lactate accumulation and hyperosmosis. The effect of each component on myocyte contractility during cardiac ischaemia was investigated in this study. A video-based edge-detection system was used to monitor single ventricular myocytes isolated from the rat. The effect of each factor was compared by preparing the following ischaemia-mimetic solutions: solution A, containing all of the above-mentioned factors; and solutions B, C, D, E and F, each with one of the factors excluded. The solutions that contained lactate severely reduced the contractility of the cardiomyocytes, but cell contraction did not differ significantly between the cardiomyocytes in these solutions. The effect of the solution without the acidosis-inducing component was weaker than that of the conventional ischaemia-mimetic solution. The solution lacking lactate produced the least depression of cell contractility. Lactate impaired cardiomyocyte contractility in a concentration-dependent manner. Our observations suggest that lactate is the main contributor to cardiac ischaemic injury and that its effects are attributable to acidosis and are concentration dependent. Imposition of hypoxia, glucose deficiency and hyperosmosis had little impact on the cardiomyocytes.
Collapse
Affiliation(s)
- Jun Lu
- Department of Pharmacology, School of Medicine, Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | | | | | | | | | | |
Collapse
|