1
|
Resch FJ, Heber S, Shahi F, Zauner M, Ciotu CI, Gleiss A, Sator S, Fischer MJM. Human cold pain: a randomized crossover trial. Pain 2024:00006396-990000000-00795. [PMID: 39693244 DOI: 10.1097/j.pain.0000000000003503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/08/2024] [Indexed: 12/20/2024]
Abstract
ABSTRACT The mechanism causing cold pain in humans is unresolved. Animal data suggest a nonredundant contribution to cold pain for transient receptor potential channels TRPM8 and TRPA1 for detection and voltage-gated sodium channels NaV1.7 and NaV1.8 for conduction at these temperatures. We established an intradermal injection-based cold pain model, which allows pharmacologically addressing molecular targets at the site of cooling. Lidocaine, added to the injection solution as positive control, largely reduced cold-induced pain in 36 volunteers. The 4 mentioned molecular targets were blocked by antagonists in a double-blinded crossover trial. Pain induced by 3°C intradermal fluid was not reduced to a relevant extent by any of the 4 antagonists alone or by the quadruple combination. However, the temperature threshold for cold pain appeared shifted by the inhibition of TRPA1, TRPM8, and NaV1.7 and to a lesser extent by NaV1.8 inhibition, 4-fold inhibition decreased the threshold by 5.8°C. Further mechanisms contributing to human cold pain need to be considered.
Collapse
Affiliation(s)
- Felix J Resch
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Stefan Heber
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Farzin Shahi
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Manuel Zauner
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Cosmin I Ciotu
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Andreas Gleiss
- Center for Medical Data Science, Medical University of Vienna, Vienna, Austria
| | - Sabine Sator
- Division of Special Anesthesia and Pain Medicine, Department of Anesthesia, Intensive Care and Pain Medicine, Medical University of Vienna, Vienna, Austria
| | - Michael J M Fischer
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
2
|
Nemes B, László S, Zsidó BZ, Hetényi C, Feher A, Papp F, Varga Z, Szőke É, Sándor Z, Pintér E. Elucidation of the binding mode of organic polysulfides on the human TRPA1 receptor. Front Physiol 2023; 14:1180896. [PMID: 37351262 PMCID: PMC10282659 DOI: 10.3389/fphys.2023.1180896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/22/2023] [Indexed: 06/24/2023] Open
Abstract
Introduction: Previous studies have established that endogenous inorganic polysulfides have significant biological actions activating the Transient Receptor Potential Ankyrin 1 (TRPA1) receptor. Organic polysulfides exert similar effects, but they are much more stable molecules, therefore these compounds are more suitable as drugs. In this study, we aimed to better understand the mechanism of action of organic polysulfides by identification of their binding site on the TRPA1 receptor. Methods: Polysulfides can readily interact with the thiol side chain of the cysteine residues of the protein. To investigate their role in the TRPA1 activation, we replaced several cysteine residues by alanine via site-directed mutagenesis. We searched for TRPA1 mutant variants with decreased or lost activating effect of the polysulfides, but with other functions remaining intact (such as the effects of non-electrophilic agonists and antagonists). The binding properties of the mutant receptors were analyzed by in silico molecular docking. Functional changes were tested by in vitro methods: calcium sensitive fluorescent flow cytometry, whole-cell patch-clamp and radioactive calcium-45 liquid scintillation counting. Results: The cysteines forming the conventional binding site of electrophilic agonists, namely C621, C641 and C665 also bind the organic polysulfides, with the key role of C621. However, only their combined mutation abolished completely the organic polysulfide-induced activation of the receptor. Discussion: Since previous papers provided evidence that organic polysulfides exert analgesic and anti-inflammatory actions in different in vivo animal models, we anticipate that the development of TRPA1-targeted, organic polysulfide-based drugs will be promoted by this identification of the binding site.
Collapse
Affiliation(s)
- Balázs Nemes
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Szabolcs László
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Budapest, Hungary
| | - Balázs Zoltán Zsidó
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Csaba Hetényi
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Adam Feher
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ferenc Papp
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zoltan Varga
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Éva Szőke
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Zoltán Sándor
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Erika Pintér
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| |
Collapse
|
3
|
Pyatigorskaya NV, Filippova OV, Nikolenko NS, Kravchenko AD. Transient receptor potential Ankyrin 1: structure, function and ligands. RESEARCH RESULTS IN PHARMACOLOGY 2022. [DOI: 10.3897/rrpharmacology.8.90214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Introduction: Transient receptor potential ankyrin 1 (TRPA1) is a protein expressed in many living organisms. During the study of TRPA1, its unique biological role as a universal and polymodal sensor of various altering agents was found. The aim of this study is to search and generalize information about structural features and molecular determinants, mechanisms of activation, action and modulation of TRPA1 as a universal pain and inflammation sensor, as well as the nature of activators and antagonists of this target and their therapeutic potential.
Materials and methods: This article presents an overview of the results of scientific research of TRPA1, its modulators, as well as an overview of their pharmacological potential over the period from the discovery of these channels to the present, with an emphasis on the last decade.
Results and discussion: The main collected data on expression, structural features and molecular determinants, mechanisms of activation and action of TRPA1 indicate its role as a universal and labile element of the primary response of the body to adverse exogenous and endogenous factors. Regardless of the nature of the stimulus, hyperstimulation of TRPA1 channels can lead to such phenomena as pain, inflammation, itching, edema and other manifestations of alteration, and therefore TRPA1 blockade can be used in the treatment of various diseases accompanied by these pathological conditions. Currently, TRPA1 antagonists are being actively searched for and studied, as evidenced by a high patent activity over the past 14 years; however, the molecular mechanisms of action and pharmacological properties of TRPA1 blockers remain understudied.
Conclusion: Acquire of new information about TRPA1 will help in the development of its modulators, which can become promising analgesics, anti-inflammatory drugs, bronchodilators, and agents for the treatment of cardiovascular diseases of new generations.
Collapse
|
4
|
Inhibition of TRPA1 Ameliorates Periodontitis by Reducing Periodontal Ligament Cell Oxidative Stress and Apoptosis via PERK/eIF2 α/ATF-4/CHOP Signal Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4107915. [PMID: 35720191 PMCID: PMC9205716 DOI: 10.1155/2022/4107915] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 04/27/2022] [Indexed: 02/05/2023]
Abstract
Objective In periodontitis, excessive oxidative stress combined with subsequent apoptosis and cell death further exacerbated periodontium destruction. TRPA1, an important transient receptor potential (TRP) cation channel, may participate in the process. This study is aimed at exploring the role and the novel therapeutic function of TRPA1 in periodontitis. Methods Periodontal ligament cells or tissues derived from healthy and periodontitis (PDLCs/Ts and P-PDLCs/Ts) were used to analyze the oxidative and apoptotic levels and TRPA1 expression. TRPA1 inhibitor (HC030031) was administrated in inflammation induced by P. gingivalis lipopolysaccharide (P.g.LPS) to investigate the oxidative and apoptotic levels of PDLCs. The morphology of the endoplasmic reticulum (ER) and mitochondria was identified by transmission electron microscope, and the PERK/eIF2α/ATF-4/CHOP signal pathways were detected. Finally, HC030031 was administered to periodontitis mice to evaluate its effect on apoptotic and oxidative levels in the periodontium and the relieving of periodontitis. Results The oxidative, apoptotic levels and TRPA1 expression were higher in P-PDLC/Ts from periodontitis patients and in P.g.LPS-induced inflammatory PDLCs. TRPA1 inhibitor significantly decreased the intracellular calcium, oxidative stress, and apoptosis of inflammatory PDLCs and decreased ER stress by downregulating PERK/eIF2α/ATF-4/CHOP pathways. Meanwhile, the overall calcium ion decrease induced by EGTA also exerted similar antiapoptosis and antioxidative stress functions. In vivo, HC030031 significantly reduced oxidative stress and apoptosis in the gingiva and periodontal ligament, and less periodontium destruction was observed. Conclusion TRPA1 was highly related to periodontitis, and TRPA1 inhibitor significantly reduced oxidative and apoptotic levels in inflammatory PDLCs via inhibiting ER stress by downregulating PERK/eIF2α/ATF-4/CHOP pathways. It also reduced the oxidative stress and apoptosis in periodontitis mice thus ameliorating the development of periodontitis.
Collapse
|
5
|
Ogawa Y, Zhou L, Kaneko S, Kusakabe Y. Agonistic/antagonistic properties of lactones in food flavors on the sensory ion channels TRPV1 and TRPA1. Chem Senses 2022; 47:6827387. [PMID: 36374622 DOI: 10.1093/chemse/bjac023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Flavor compounds provide aroma and sensations in the oral cavity. They are not present alone in the oral cavity, but rather in combination with several other food ingredients. This study aimed to clarify the relationship between the mixing of pungent flavor compounds and the response of pungent receptors, TRPV1 and TRPA1 channels. We focused on lactones that activate TRPV1 despite their presence in bland foods, such as dairy products and fruits, and analyzed their interaction with receptors using TRPV1- and TRPA1-expressing HEK293 cells. We found that γ-octalactone, γ-nonalactone, and δ-nonalactone activated TRPA1. When mixed with pungent components, some γ- and δ-lactones inhibited capsaicin-mediated TRPV1 responses, and δ-dodecalactone inhibited allyl isothiocyanate-mediated TRPA1 responses. Furthermore, the dose-response relationship of capsaicin and γ-nonalactone to TRPV1 suggests that γ-nonalactone acts as an agonist or antagonist of TRPV1, depending on its concentration. Conversely, γ-nonalactone and δ-dodecalactone were found to act only as agonists and antagonists, respectively, against TRPA1. These results suggest that lactones in foods may not only endow food with aroma, but also play a role in modulating food pungency by acting on TRPV1 and TRPA1. The dose-response relationships of a mixture of flavor compounds with TRPV1 and TRPA1 provide insights into the molecular physiological basis of pungency that may be the cornerstone for developing new spice mix recipes.
Collapse
Affiliation(s)
- Yukino Ogawa
- Food Research Institute, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Lanxi Zhou
- Ogawa & Co., Ltd., Material Research & Development Division, Ami, Ibaraki, Japan
| | - Shu Kaneko
- Ogawa & Co., Ltd., Material Research & Development Division, Ami, Ibaraki, Japan
| | - Yuko Kusakabe
- Food Research Institute, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| |
Collapse
|
6
|
Mahajan N, Khare P, Kondepudi KK, Bishnoi M. TRPA1: Pharmacology, natural activators and role in obesity prevention. Eur J Pharmacol 2021; 912:174553. [PMID: 34627805 DOI: 10.1016/j.ejphar.2021.174553] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 10/05/2021] [Accepted: 10/05/2021] [Indexed: 12/26/2022]
Abstract
Transient receptor potential ankyrin 1 (TRPA1) channel is a calcium permeable, non-selective cation channel, expressed in the sensory neurons and non-neuronal cells of different tissues. Initially studied for its role in pain and inflammation, TRPA1 has now functionally involved in multiple other physiological functions. TRPA1 channel has been extensively studied for modulation by pungent compounds present in the spices and herbs. In the last decade, the role of TRPA1 agonism in body weight reduction, secretion of hunger and satiety hormones, insulin secretion and thermogenesis, has unveiled the potential of the TRPA1 channel to be used as a preventive target to tackle obesity and associated comorbidities including insulin resistance in type 2 diabetes. In this review, we summarized the recent findings of TRPA1 based dietary/non-dietary modulation for its role in obesity prevention and therapeutics.
Collapse
Affiliation(s)
- Neha Mahajan
- Centre of Excellence in Functional Foods, Department of Food and Nutritional Biotechnology, National Agri-food Biotechnology Institute (NABI), Knowledge City-Sector-81, SAS Nagar, Punjab 140306, India; Regional Centre for Biotechnology, Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
| | - Pragyanshu Khare
- Centre of Excellence in Functional Foods, Department of Food and Nutritional Biotechnology, National Agri-food Biotechnology Institute (NABI), Knowledge City-Sector-81, SAS Nagar, Punjab 140306, India
| | - Kanthi Kiran Kondepudi
- Centre of Excellence in Functional Foods, Department of Food and Nutritional Biotechnology, National Agri-food Biotechnology Institute (NABI), Knowledge City-Sector-81, SAS Nagar, Punjab 140306, India
| | - Mahendra Bishnoi
- Centre of Excellence in Functional Foods, Department of Food and Nutritional Biotechnology, National Agri-food Biotechnology Institute (NABI), Knowledge City-Sector-81, SAS Nagar, Punjab 140306, India.
| |
Collapse
|
7
|
Le Cann K, Meents JE, Sudha Bhagavath Eswaran V, Dohrn MF, Bott R, Maier A, Bialer M, Hautvast P, Erickson A, Rolke R, Rothermel M, Körner J, Kurth I, Lampert A. Assessing the impact of pain-linked Nav1.7 variants: An example of two variants with no biophysical effect. Channels (Austin) 2021; 15:208-228. [PMID: 33487118 PMCID: PMC7833769 DOI: 10.1080/19336950.2020.1870087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 11/30/2022] Open
Abstract
Mutations in the voltage-gated sodium channel Nav1.7 are linked to human pain. The Nav1.7/N1245S variant was described before in several patients suffering from primary erythromelalgia and/or olfactory hypersensitivity. We have identified this variant in a pain patient and a patient suffering from severe and life-threatening orthostatic hypotension. In addition, we report a female patient suffering from muscle pain and carrying the Nav1.7/E1139K variant. We tested both Nav1.7 variants by whole-cell voltage-clamp recordings in HEK293 cells, revealing a slightly enhanced current density for the N1245S variant when co-expressed with the β1 subunit. This effect was counteracted by an enhanced slow inactivation. Both variants showed similar voltage dependence of activation and steady-state fast inactivation, as well as kinetics of fast inactivation, deactivation, and use-dependency compared to WT Nav1.7. Finally, homology modeling revealed that the N1245S substitution results in different intramolecular interaction partners. Taken together, these experiments do not point to a clear pathogenic effect of either the N1245S or E1139K variant and suggest they may not be solely responsible for the patients' pain symptoms. As discussed previously for other variants, investigations in heterologous expression systems may not sufficiently mimic the pathophysiological situation in pain patients, and single nucleotide variants in other genes or modulatory proteins are necessary for these specific variants to show their effect. Our findings stress that biophysical investigations of ion channel mutations need to be evaluated with care and should preferably be supplemented with studies investigating the mutations in their context, ideally in human sensory neurons.
Collapse
Affiliation(s)
- Kim Le Cann
- Institute of Physiology, RWTH Aachen University Hospital, Aachen, Germany
| | - Jannis E. Meents
- Institute of Physiology, RWTH Aachen University Hospital, Aachen, Germany
| | | | - Maike F. Dohrn
- Department of Neurology, Medical Faculty, RWTH Aachen University Hospital, Aachen, Germany
| | - Raya Bott
- Institute of Physiology, RWTH Aachen University Hospital, Aachen, Germany
| | - Andrea Maier
- Department of Neurology, Medical Faculty, RWTH Aachen University Hospital, Aachen, Germany
| | - Martin Bialer
- Division of Clinical Metabolism of Medical Genetics and Human Genomics at Northwell Health System, New-York, United States
| | - Petra Hautvast
- Institute of Physiology, RWTH Aachen University Hospital, Aachen, Germany
| | - Andelain Erickson
- Institute of Physiology, RWTH Aachen University Hospital, Aachen, Germany
| | - Roman Rolke
- Department for Palliative Care, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Markus Rothermel
- Department of Chemosensation, AG Neuromodulation, Institute for Biology II, RWTH Aachen University, Aachen, 52074, Germany
| | - Jannis Körner
- Institute of Physiology, RWTH Aachen University Hospital, Aachen, Germany
- Department of Anaesthesiology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Ingo Kurth
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University Hospital, Aachen, Germany
| | - Angelika Lampert
- Institute of Physiology, RWTH Aachen University Hospital, Aachen, Germany
| |
Collapse
|
8
|
Lajoso W, Flower G, Giacco V, Kaul A, La Mache C, Brăban A, Roxas A, Hamilton NB. Transient Receptor Potential Ankyrin-1 (TRPA1) Block Protects against Loss of White Matter Function during Ischaemia in the Mouse Optic Nerve. Pharmaceuticals (Basel) 2021; 14:ph14090909. [PMID: 34577609 PMCID: PMC8469017 DOI: 10.3390/ph14090909] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 11/28/2022] Open
Abstract
Oligodendrocytes produce myelin, which provides insulation to axons and speeds up neuronal transmission. In ischaemic conditions, myelin is damaged, resulting in mental and physical disabilities. Recent evidence suggests that oligodendrocyte damage during ischaemia can be mediated by Transient Receptor Potential Ankyrin-1 (TRPA1), whose activation raises intracellular Ca2+ concentrations and damages compact myelin. Here, we show that TRPA1 is constitutively active in oligodendrocytes and the optic nerve, as the specific TRPA1 antagonist, A-967079, decreases basal oligodendrocyte Ca2+ concentrations and increases the size of the compound action potential (CAP). Conversely, TRPA1 agonists reduce the size of the optic nerve CAP in an A-967079-sensitive manner. These results indicate that glial TRPA1 regulates neuronal excitability in the white matter under physiological as well as pathological conditions. Importantly, we find that inhibition of TRPA1 prevents loss of CAPs during oxygen and glucose deprivation (OGD) and improves the recovery. TRPA1 block was effective when applied before, during, or after OGD, indicating that the TRPA1-mediated damage is occurring during both ischaemia and recovery, but importantly, that therapeutic intervention is possible after the ischaemic insult. These results indicate that TRPA1 has an important role in the brain, and that its block may be effective in treating many white matter diseases.
Collapse
|
9
|
Hoebart C, Rojas‐Galvan NS, Ciotu CI, Aykac I, Reissig LF, Weninger WJ, Kiss A, Podesser BK, Fischer MJM, Heber S. No functional TRPA1 in cardiomyocytes. Acta Physiol (Oxf) 2021; 232:e13659. [PMID: 33819369 PMCID: PMC11478933 DOI: 10.1111/apha.13659] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 12/23/2022]
Abstract
AIM There is mounting evidence that TRPA1 has a role in cardiac physiology and pathophysiology. We aim to clarify the site of TRPA1 expression in the heart and in particular whether the channel is expressed in cardiomyocytes. METHODS Due to the high calcium conductance of TRPA1, and marginal calcium changes being detectable, microfluorimetry in primary mouse cardiomyocytes, and in the cardiomyocyte cell lines H9c2 and HL-1, was applied. TRPA1 mRNA in mouse and human hearts, primary cardiomyocytes, and the cardiac cell lines were quantified. Dorsal root ganglia served as control for both methods. RESULTS In addition to AITC, the more potent and specific TRPA1 agonists JT010 and PF-4840154 failed to elicit a TRPA1-mediated response in native and electrically paced primary cardiomyocytes, and the cardiomyocyte cell lines H9c2 and HL-1. There were only marginal levels of TRPA1 mRNA in cardiomyocytes and cardiac cell lines, also in conditions of cell differentiation or inflammation, which might occur in pathophysiological conditions. Similarly, TRPV1 agonist capsaicin did not activate primary mouse cardiomyocytes, did not alter electrically paced activity in these, and did not activate H9c2 cells or alter spontaneous activity of HL-1 cells. Human pluripotent stem cells differentiated to cardiomyocytes had no relevant TRPA1 mRNA levels. Also in human post-mortem heart samples, TRPA1 mRNA levels were substantially lower compared with the respective dorsal root ganglion. CONCLUSION The results do not question a role of TRPA1 in the heart but exclude a direct effect in cardiomyocytes.
Collapse
Affiliation(s)
- Clara Hoebart
- Center for Physiology and PharmacologyMedical University of ViennaViennaAustria
| | | | - Cosmin I. Ciotu
- Center for Physiology and PharmacologyMedical University of ViennaViennaAustria
| | - Ibrahim Aykac
- Center for Biomedical ResearchMedical University of ViennaViennaAustria
| | | | | | - Attila Kiss
- Center for Biomedical ResearchMedical University of ViennaViennaAustria
| | - Bruno K. Podesser
- Center for Biomedical ResearchMedical University of ViennaViennaAustria
| | | | - Stefan Heber
- Center for Physiology and PharmacologyMedical University of ViennaViennaAustria
| |
Collapse
|
10
|
Kanda H, Yang Y, Duan S, Kogure Y, Wang S, Iwaoka E, Ishikawa M, Takeda S, Sonoda H, Mizuta K, Aoki S, Yamamoto S, Noguchi K, Dai Y. Atractylodin Produces Antinociceptive Effect through a Long-Lasting TRPA1 Channel Activation. Int J Mol Sci 2021; 22:3614. [PMID: 33807167 PMCID: PMC8036394 DOI: 10.3390/ijms22073614] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/27/2021] [Accepted: 03/27/2021] [Indexed: 12/11/2022] Open
Abstract
Atractylodin (ATR) is a bioactive component found in dried rhizomes of Atractylodes lancea (AL) De Candolle. Although AL has accumulated empirical evidence for the treatment of pain, the molecular mechanism underlying the anti-pain effect of ATR remains unclear. In this study, we found that ATR increases transient receptor potential ankyrin-1 (TRPA1) single-channel activity in hTRPA1 expressing HEK293 cells. A bath application of ATR produced a long-lasting calcium response, and the response was completely diminished in the dorsal root ganglion neurons of TRPA1 knockout mice. Intraplantar injection of ATR evoked moderate and prolonged nociceptive behavior compared to the injection of allyl isothiocyanate (AITC). Systemic application of ATR inhibited AITC-induced nociceptive responses in a dose-dependent manner. Co-application of ATR and QX-314 increased the noxious heat threshold compared with AITC in vivo. Collectively, we concluded that ATR is a unique agonist of TRPA1 channels, which produces long-lasting channel activation. Our results indicated ATR-mediated anti-nociceptive effect through the desensitization of TRPA1-expressing nociceptors.
Collapse
Affiliation(s)
- Hirosato Kanda
- Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Kobe 650-8530, Japan; (H.K.); (Y.Y.); (S.D.); (Y.K.); (S.W.); (E.I.); (M.I.); (S.T.); (H.S.); (K.M.); (S.A.); (S.Y.)
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, Nishinomiya 663-8501, Japan;
- Traditional Medicine Research Center, Chinese Medicine Confucius Institute at Hyogo College of Medicine, Nishinomiya 663-8501, Japan
| | - Yanjing Yang
- Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Kobe 650-8530, Japan; (H.K.); (Y.Y.); (S.D.); (Y.K.); (S.W.); (E.I.); (M.I.); (S.T.); (H.S.); (K.M.); (S.A.); (S.Y.)
- Department of Pathophysiology, Shenyang Medical College, Shenyang 110034, China
| | - Shaoqi Duan
- Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Kobe 650-8530, Japan; (H.K.); (Y.Y.); (S.D.); (Y.K.); (S.W.); (E.I.); (M.I.); (S.T.); (H.S.); (K.M.); (S.A.); (S.Y.)
| | - Yoko Kogure
- Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Kobe 650-8530, Japan; (H.K.); (Y.Y.); (S.D.); (Y.K.); (S.W.); (E.I.); (M.I.); (S.T.); (H.S.); (K.M.); (S.A.); (S.Y.)
| | - Shenglan Wang
- Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Kobe 650-8530, Japan; (H.K.); (Y.Y.); (S.D.); (Y.K.); (S.W.); (E.I.); (M.I.); (S.T.); (H.S.); (K.M.); (S.A.); (S.Y.)
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Emiko Iwaoka
- Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Kobe 650-8530, Japan; (H.K.); (Y.Y.); (S.D.); (Y.K.); (S.W.); (E.I.); (M.I.); (S.T.); (H.S.); (K.M.); (S.A.); (S.Y.)
| | - Miku Ishikawa
- Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Kobe 650-8530, Japan; (H.K.); (Y.Y.); (S.D.); (Y.K.); (S.W.); (E.I.); (M.I.); (S.T.); (H.S.); (K.M.); (S.A.); (S.Y.)
| | - Saki Takeda
- Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Kobe 650-8530, Japan; (H.K.); (Y.Y.); (S.D.); (Y.K.); (S.W.); (E.I.); (M.I.); (S.T.); (H.S.); (K.M.); (S.A.); (S.Y.)
| | - Hidemi Sonoda
- Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Kobe 650-8530, Japan; (H.K.); (Y.Y.); (S.D.); (Y.K.); (S.W.); (E.I.); (M.I.); (S.T.); (H.S.); (K.M.); (S.A.); (S.Y.)
| | - Kyoka Mizuta
- Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Kobe 650-8530, Japan; (H.K.); (Y.Y.); (S.D.); (Y.K.); (S.W.); (E.I.); (M.I.); (S.T.); (H.S.); (K.M.); (S.A.); (S.Y.)
| | - Shunji Aoki
- Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Kobe 650-8530, Japan; (H.K.); (Y.Y.); (S.D.); (Y.K.); (S.W.); (E.I.); (M.I.); (S.T.); (H.S.); (K.M.); (S.A.); (S.Y.)
| | - Satoshi Yamamoto
- Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Kobe 650-8530, Japan; (H.K.); (Y.Y.); (S.D.); (Y.K.); (S.W.); (E.I.); (M.I.); (S.T.); (H.S.); (K.M.); (S.A.); (S.Y.)
| | - Koichi Noguchi
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, Nishinomiya 663-8501, Japan;
| | - Yi Dai
- Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Kobe 650-8530, Japan; (H.K.); (Y.Y.); (S.D.); (Y.K.); (S.W.); (E.I.); (M.I.); (S.T.); (H.S.); (K.M.); (S.A.); (S.Y.)
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, Nishinomiya 663-8501, Japan;
- Traditional Medicine Research Center, Chinese Medicine Confucius Institute at Hyogo College of Medicine, Nishinomiya 663-8501, Japan
| |
Collapse
|
11
|
Solinski HJ, Rukwied R. Electrically Evoked Itch in Human Subjects. Front Med (Lausanne) 2021; 7:627617. [PMID: 33553220 PMCID: PMC7855585 DOI: 10.3389/fmed.2020.627617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 12/23/2020] [Indexed: 11/13/2022] Open
Abstract
Administration of chemicals (pruritogens) into the skin evokes itch based on signal transduction mechanisms that generate action potentials mainly in mechanically sensitive and insensitive primary afferent C-fibers (pruriceptors). These signals from peripheral neurons are processed in spinal and supra-spinal centers of the central nervous system and finally generate the sensation of itch. Compared to chemical stimulation, electrical activation of pruriceptors would allow for better temporal control and thereby a more direct functional assessment of their activation. Here, we review the electrical stimulation paradigms which were used to evoke itch in humans in the past. We further evaluate recent attempts to explore electrically induced itch in atopic dermatitis patients. Possible mechanisms underlying successful pruritus generation in chronic itch patients by transdermal slowly depolarizing electrical stimulation are discussed.
Collapse
Affiliation(s)
- Hans Jürgen Solinski
- Department of Experimental Pain Research, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Roman Rukwied
- Department of Experimental Pain Research, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
12
|
Correia-Álvarez E, Keating JE, Glish G, Tarran R, Sassano MF. Reactive Oxygen Species, Mitochondrial Membrane Potential, and Cellular Membrane Potential Are Predictors of E-Liquid Induced Cellular Toxicity. Nicotine Tob Res 2020; 22:S4-S13. [PMID: 33320253 PMCID: PMC8493666 DOI: 10.1093/ntr/ntaa177] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 09/08/2020] [Indexed: 12/22/2022]
Abstract
Introduction The use of flavors in electronic cigarettes appeals to adults and
never-smoking youth. Consumption has rapidly increased over the last decade,
and in the U.S. market alone, there are over 8000 unique flavors. The U.S.
Food and Drug Administration (FDA) has begun to regulate e-liquids, but many
have not been tested, and their impact, both at the cellular level, and on
human health remains unclear. Methods We tested e-liquids on the human cell line HEK293T and measured toxicity,
mitochondrial membrane potential
(ΔΨ m), reactive oxygen species
production (ROS), and cellular membrane potential
(Vm) using high-throughput screening (HTS)
approaches. Our HTS efforts included single-dose and 16-point
dose–response curves, which allowed testing of ≥90
commercially available e-liquids in parallel to provide a rapid assessment
of cellular effects as a proof of concept for a fast, preliminary toxicity
method. We also investigated the chemical composition of the flavors via gas
chromatography–mass spectrometry. Results We found that e-liquids caused a decrease in
ΔΨ m and
Vm and an increase in ROS production and
toxicity in a dose-dependent fashion. In addition, the presence of five
specific chemical components: vanillin, benzyl alcohol, acetoin,
cinnamaldehyde, and methyl-cyclopentenolone, but not nicotine, were linked
with the changes observed in the cellular traits studied. Conclusion Our data suggest that ΔΨ m, ROS,
Vm, and toxicity may be indicative of the
extent of cell death upon e-liquid exposure. Further research on the effect
of flavors should be prioritized to help policy makers such as the FDA to
regulate e-liquid composition. Implications E-liquid cellular toxicity can be predicted using parameters amenable to HTS.
Our data suggest that ΔΨ m, ROS,
Vm, and toxicity may be indicative of the
extent of cell death upon e-liquid exposure, and this toxicity is linked to
the chemical composition, that is, flavoring components. Further research on
the effect of flavors should be prioritized to help policy makers such as
the FDA to regulate e-liquid composition.
Collapse
Affiliation(s)
- Eva Correia-Álvarez
- Department of Cell Biology and Physiology, University of North
Carolina, Chapel Hill, NC
| | - James E Keating
- Department of Chemistry, University of North Carolina,
Chapel Hill, NC
| | - Gary Glish
- Department of Chemistry, University of North Carolina,
Chapel Hill, NC
| | - Robert Tarran
- Department of Cell Biology and Physiology, University of North
Carolina, Chapel Hill, NC
| | - M Flori Sassano
- Department of Cell Biology and Physiology, University of North
Carolina, Chapel Hill, NC
- Corresponding Author: M. Flori Sassano, PhD, Department of Cell
Biology and Physiology, University of North Carolina 115 Mason Farm Road, Chapel
Hill, NC 27599-7544, USA. Telephone: 919-966-7053; Fax: 919-966-6927; E-mail:
| |
Collapse
|
13
|
Abstract
A limited number of peripheral targets generate pain. Inflammatory mediators can sensitize these. The review addresses targets acting exclusively or predominantly on sensory neurons, mediators involved in inflammation targeting sensory neurons, and mediators involved in a more general inflammatory process, of which an analgesic effect secondary to an anti-inflammatory effect can be expected. Different approaches to address these systems are discussed, including scavenging proinflammatory mediators, applying anti-inflammatory mediators, and inhibiting proinflammatory or facilitating anti-inflammatory receptors. New approaches are contrasted to established ones; the current stage of progress is mentioned, in particular considering whether there is data from a molecular and cellular level, from animals, or from human trials, including an early stage after a market release. An overview of publication activity is presented, considering a IuPhar/BPS-curated list of targets with restriction to pain-related publications, which was also used to identify topics.
Collapse
Affiliation(s)
- Cosmin I Ciotu
- Center of Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090, Vienna, Austria
| | - Michael J M Fischer
- Center of Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090, Vienna, Austria.
| |
Collapse
|
14
|
Voltage-dependent modulation of TRPA1 currents by diphenhydramine. Cell Calcium 2020; 90:102245. [PMID: 32634675 DOI: 10.1016/j.ceca.2020.102245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/08/2020] [Accepted: 06/15/2020] [Indexed: 11/23/2022]
Abstract
Diphenhydramine (DPH) has been broadly used to treat allergy. When used as a topical medicine, DPH temporarily relieves itching and pain. Although transient receptor potential type A1 (TRPA1) channel is known to play roles in both acute and chronic itch and pain, whether DPH affects the activities of TRPA1 remains unclear. Using whole-cell patch clamp recordings, we demonstrated that DPH modulates the voltage-dependence of TRPA1. When co-applied with a TRPA1 agonist, DPH significantly enhanced the inward currents while suppressing the outward currents of TRPA1, converting the channel from outwardly rectifying to inwardly rectifying. This effect of DPH occurred no matter TRPA1 was activated by an electrophilic or non-electrophilic agonist and for both mouse and human TRPA1. The modulation of TRPA1 by DPH was maintained in the L906C mutant, which by itself also causes inward rectification of TRPA1, indicating that additional acting sites are present for the modulation of TRPA1 currents by DPH. Our recordings also revealed that DPH partially blocked capsaicin evoked TRPV1 currents. These data suggest that DPH may exert its therapeutic effects on itch and pain, through modulation of TRPA1 in a voltage-dependent fashion.
Collapse
|
15
|
Thakore P, Ali S, Earley S. Regulation of vascular tone by transient receptor potential ankyrin 1 channels. CURRENT TOPICS IN MEMBRANES 2020; 85:119-150. [PMID: 32402637 DOI: 10.1016/bs.ctm.2020.01.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The Ca2+-permeable, non-selective cation channel, TRPA1 (transient receptor potential ankyrin 1), is the sole member of the ankyrin TRP subfamily. TRPA1 channels are expressed on the plasma membrane of neurons as well as non-neuronal cell types, such as vascular endothelial cells. TRPA1 is activated by electrophilic compounds, including dietary molecules such as allyl isothiocyanate, a derivative of mustard. Endogenously, the channel is thought to be activated by reactive oxygen species and their metabolites, such as 4-hydroxynonenal (4-HNE). In the context of the vasculature, activation of TRPA1 channels results in a vasodilatory response mediated by two distinct mechanisms. In the first instance, TRPA1 is expressed in sensory nerves of the vasculature and, upon activation, mediates release of the potent dilator, calcitonin gene-related peptide (CGRP). In the second, work from our laboratory has demonstrated that TRPA1 is expressed in the endothelium of blood vessels exclusively in the cerebral vasculature, where its activation produces a localized Ca2+ signal that results in dilation of cerebral arteries. In this chapter, we provide an in-depth overview of the biophysical and pharmacological properties of TRPA1 channels and their importance in regulating vascular tone.
Collapse
Affiliation(s)
- Pratish Thakore
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno, School of Medicine, Reno, NV, United States
| | - Sher Ali
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno, School of Medicine, Reno, NV, United States
| | - Scott Earley
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno, School of Medicine, Reno, NV, United States.
| |
Collapse
|
16
|
Sinica V, Zimova L, Barvikova K, Macikova L, Barvik I, Vlachova V. Human and Mouse TRPA1 Are Heat and Cold Sensors Differentially Tuned by Voltage. Cells 2019; 9:cells9010057. [PMID: 31878344 PMCID: PMC7016720 DOI: 10.3390/cells9010057] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/11/2019] [Accepted: 12/19/2019] [Indexed: 12/12/2022] Open
Abstract
Transient receptor potential ankyrin 1 channel (TRPA1) serves as a key sensor for reactive electrophilic compounds across all species. Its sensitivity to temperature, however, differs among species, a variability that has been attributed to an evolutionary divergence. Mouse TRPA1 was implicated in noxious cold detection but was later also identified as one of the prime noxious heat sensors. Moreover, human TRPA1, originally considered to be temperature-insensitive, turned out to act as an intrinsic bidirectional thermosensor that is capable of sensing both cold and heat. Using electrophysiology and modeling, we compare the properties of human and mouse TRPA1, and we demonstrate that both orthologues are activated by heat, and their kinetically distinct components of voltage-dependent gating are differentially modulated by heat and cold. Furthermore, we show that both orthologues can be strongly activated by cold after the concurrent application of voltage and heat. We propose an allosteric mechanism that could account for the variability in TRPA1 temperature responsiveness.
Collapse
Affiliation(s)
- Viktor Sinica
- Department of Cellular Neurophysiology, Institute of Physiology of the Czech Academy of Sciences, 142 20 Prague, Czech Republic; (V.S.); (K.B.); (L.M.)
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Lucie Zimova
- Department of Cellular Neurophysiology, Institute of Physiology of the Czech Academy of Sciences, 142 20 Prague, Czech Republic; (V.S.); (K.B.); (L.M.)
- Correspondence: (L.Z.); (V.V.); Tel.: +420-296-442-759 (L.Z.); +420-296-442-711 (V.V.)
| | - Kristyna Barvikova
- Department of Cellular Neurophysiology, Institute of Physiology of the Czech Academy of Sciences, 142 20 Prague, Czech Republic; (V.S.); (K.B.); (L.M.)
| | - Lucie Macikova
- Department of Cellular Neurophysiology, Institute of Physiology of the Czech Academy of Sciences, 142 20 Prague, Czech Republic; (V.S.); (K.B.); (L.M.)
| | - Ivan Barvik
- Division of Biomolecular Physics, Institute of Physics, Faculty of Mathematics and Physics, Charles University, 121 16 Prague, Czech Republic;
| | - Viktorie Vlachova
- Department of Cellular Neurophysiology, Institute of Physiology of the Czech Academy of Sciences, 142 20 Prague, Czech Republic; (V.S.); (K.B.); (L.M.)
- Correspondence: (L.Z.); (V.V.); Tel.: +420-296-442-759 (L.Z.); +420-296-442-711 (V.V.)
| |
Collapse
|
17
|
Talavera K, Startek JB, Alvarez-Collazo J, Boonen B, Alpizar YA, Sanchez A, Naert R, Nilius B. Mammalian Transient Receptor Potential TRPA1 Channels: From Structure to Disease. Physiol Rev 2019; 100:725-803. [PMID: 31670612 DOI: 10.1152/physrev.00005.2019] [Citation(s) in RCA: 253] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The transient receptor potential ankyrin (TRPA) channels are Ca2+-permeable nonselective cation channels remarkably conserved through the animal kingdom. Mammals have only one member, TRPA1, which is widely expressed in sensory neurons and in non-neuronal cells (such as epithelial cells and hair cells). TRPA1 owes its name to the presence of 14 ankyrin repeats located in the NH2 terminus of the channel, an unusual structural feature that may be relevant to its interactions with intracellular components. TRPA1 is primarily involved in the detection of an extremely wide variety of exogenous stimuli that may produce cellular damage. This includes a plethora of electrophilic compounds that interact with nucleophilic amino acid residues in the channel and many other chemically unrelated compounds whose only common feature seems to be their ability to partition in the plasma membrane. TRPA1 has been reported to be activated by cold, heat, and mechanical stimuli, and its function is modulated by multiple factors, including Ca2+, trace metals, pH, and reactive oxygen, nitrogen, and carbonyl species. TRPA1 is involved in acute and chronic pain as well as inflammation, plays key roles in the pathophysiology of nearly all organ systems, and is an attractive target for the treatment of related diseases. Here we review the current knowledge about the mammalian TRPA1 channel, linking its unique structure, widely tuned sensory properties, and complex regulation to its roles in multiple pathophysiological conditions.
Collapse
Affiliation(s)
- Karel Talavera
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Justyna B Startek
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Julio Alvarez-Collazo
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Brett Boonen
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Yeranddy A Alpizar
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Alicia Sanchez
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Robbe Naert
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Bernd Nilius
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| |
Collapse
|
18
|
Ciotu CI, Tsantoulas C, Meents J, Lampert A, McMahon SB, Ludwig A, Fischer MJM. Noncanonical Ion Channel Behaviour in Pain. Int J Mol Sci 2019; 20:E4572. [PMID: 31540178 PMCID: PMC6770626 DOI: 10.3390/ijms20184572] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/09/2019] [Accepted: 09/12/2019] [Indexed: 12/19/2022] Open
Abstract
Ion channels contribute fundamental properties to cell membranes. Although highly diverse in conductivity, structure, location, and function, many of them can be regulated by common mechanisms, such as voltage or (de-)phosphorylation. Primarily considering ion channels involved in the nociceptive system, this review covers more novel and less known features. Accordingly, we outline noncanonical operation of voltage-gated sodium, potassium, transient receptor potential (TRP), and hyperpolarization-activated cyclic nucleotide (HCN)-gated channels. Noncanonical features discussed include properties as a memory for prior voltage and chemical exposure, alternative ion conduction pathways, cluster formation, and silent subunits. Complementary to this main focus, the intention is also to transfer knowledge between fields, which become inevitably more separate due to their size.
Collapse
Affiliation(s)
- Cosmin I Ciotu
- Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | | | - Jannis Meents
- Institute of Physiology, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Angelika Lampert
- Institute of Physiology, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Stephen B McMahon
- Wolfson Centre for Age-Related Diseases, King's College London, London SE1 1UR, UK
| | - Andreas Ludwig
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Michael J M Fischer
- Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria.
| |
Collapse
|
19
|
Startek JB, Boonen B, López-Requena A, Talavera A, Alpizar YA, Ghosh D, Van Ranst N, Nilius B, Voets T, Talavera K. Mouse TRPA1 function and membrane localization are modulated by direct interactions with cholesterol. eLife 2019; 8:e46084. [PMID: 31184584 PMCID: PMC6590989 DOI: 10.7554/elife.46084] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 06/10/2019] [Indexed: 01/04/2023] Open
Abstract
The cation channel TRPA1 transduces a myriad of noxious chemical stimuli into nociceptor electrical excitation and neuropeptide release, leading to pain and neurogenic inflammation. Despite emergent evidence that TRPA1 is regulated by the membrane environment, it remains unknown whether this channel localizes in membrane microdomains or whether it interacts with cholesterol. Using total internal reflection fluorescence microscopy and density gradient centrifugation we found that mouse TRPA1 localizes preferably into cholesterol-rich domains and functional experiments revealed that cholesterol depletion decreases channel sensitivity to chemical agonists. Moreover, we identified two structural motifs in transmembrane segments 2 and 4 involved in mTRPA1-cholesterol interactions that are necessary for normal agonist sensitivity and plasma membrane localization. We discuss the impact of such interactions on TRPA1 gating mechanisms, regulation by the lipid environment, and role of this channel in sensory membrane microdomains, all of which helps to understand the puzzling pharmacology and pathophysiology of this channel.
Collapse
Affiliation(s)
- Justyna B Startek
- Laboratory of Ion Channel Research and TRP Research Platform Leuven (TRPLe), Department of Cellular and Molecular MedicineKU LeuvenLeuvenBelgium
- VIB Center for Brain & Disease ResearchLeuvenBelgium
| | - Brett Boonen
- Laboratory of Ion Channel Research and TRP Research Platform Leuven (TRPLe), Department of Cellular and Molecular MedicineKU LeuvenLeuvenBelgium
- VIB Center for Brain & Disease ResearchLeuvenBelgium
| | - Alejandro López-Requena
- Laboratory of Ion Channel Research and TRP Research Platform Leuven (TRPLe), Department of Cellular and Molecular MedicineKU LeuvenLeuvenBelgium
- VIB Center for Brain & Disease ResearchLeuvenBelgium
| | - Ariel Talavera
- Center for Microscopy and Molecular Imaging (CMMI), Laboratory of MicroscopyUniversité Libre de BruxellesGosseliesBelgium
| | - Yeranddy A Alpizar
- Laboratory of Ion Channel Research and TRP Research Platform Leuven (TRPLe), Department of Cellular and Molecular MedicineKU LeuvenLeuvenBelgium
- VIB Center for Brain & Disease ResearchLeuvenBelgium
| | - Debapriya Ghosh
- Laboratory of Ion Channel Research and TRP Research Platform Leuven (TRPLe), Department of Cellular and Molecular MedicineKU LeuvenLeuvenBelgium
- VIB Center for Brain & Disease ResearchLeuvenBelgium
| | - Nele Van Ranst
- Laboratory of Ion Channel Research and TRP Research Platform Leuven (TRPLe), Department of Cellular and Molecular MedicineKU LeuvenLeuvenBelgium
- VIB Center for Brain & Disease ResearchLeuvenBelgium
| | - Bernd Nilius
- Laboratory of Ion Channel Research and TRP Research Platform Leuven (TRPLe), Department of Cellular and Molecular MedicineKU LeuvenLeuvenBelgium
- VIB Center for Brain & Disease ResearchLeuvenBelgium
| | - Thomas Voets
- Laboratory of Ion Channel Research and TRP Research Platform Leuven (TRPLe), Department of Cellular and Molecular MedicineKU LeuvenLeuvenBelgium
- VIB Center for Brain & Disease ResearchLeuvenBelgium
| | - Karel Talavera
- Laboratory of Ion Channel Research and TRP Research Platform Leuven (TRPLe), Department of Cellular and Molecular MedicineKU LeuvenLeuvenBelgium
- VIB Center for Brain & Disease ResearchLeuvenBelgium
| |
Collapse
|
20
|
Abstract
Background: Migraine therapy with sumatriptan may cause adverse side effects like pain at the injection site, muscle pain, and transient aggravation of headaches. In animal experiments, sumatriptan excited or sensitized slowly conducting meningeal afferents. We hypothesized that sumatriptan may activate transduction channels of the “irritant receptor,” the transient receptor potential ankyrin type (TRPA1) expressed in nociceptive neurons. Methods: Calcium microfluorometry was performed in HEK293t cells transfected with human TRPA1 (hTRPA1) or a mutated channel (TRPA1-3C) and in dissociated trigeminal ganglion neurons. Membrane currents were recorded in the whole-cell patch clamp configuration. Results: Sumatriptan (10 and 400 µM) evoked calcium transients in hTRPA1-expressing HEK293t cells also activated by the TRPA1 agonist carvacrol (100 µM). In TRPA1-3C-expressing HEK293t cells, sumatriptan had hardly any effect. In rat trigeminal ganglion neurons, sumatriptan, carvacrol, and the transient receptor potential vanillod type 1 agonist capsaicin (1 µM) generated robust calcium signals. All sumatriptan-sensitive neurons (8% of the sample) were also activated by carvacrol (14%) and capsaicin (48%). In HEK293-hTRPA1 cells, sumatriptan (100 µM) evoked outwardly rectifying currents, which were almost completely inhibited by the TRPA1 antagonist HC-030031 (10 µM). Conclusion: Sumatriptan activates TRPA1 channels inducing calcium inflow and membrane currents. TRPA1-dependent activation of primary afferents may explain the painful side effects of sumatriptan.
Collapse
Affiliation(s)
- Alexandru Babes
- Department of Anatomy, Physiology and Biophysics, University of Bucharest, Bucharest, Romania
| | - Cristian Neacsu
- Department of Anatomy, Physiology and Biophysics, University of Bucharest, Bucharest, Romania
| | - Michael JM Fischer
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Karl Messlinger
- Institute of Physiology and Pathophysiology, University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
21
|
A Human TRPA1-Specific Pain Model. J Neurosci 2019; 39:3845-3855. [PMID: 30862667 DOI: 10.1523/jneurosci.3048-18.2019] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/19/2019] [Accepted: 02/22/2019] [Indexed: 12/31/2022] Open
Abstract
The cation channel transient receptor potential ankyrin 1 (TRPA1) plays an important role in sensing potentially hazardous substances. However, TRPA1 species differences are substantial and limit translational research. TRPA1 agonists tested previously in humans also have other targets. Therefore, the sensation generated by isolated TRPA1 activation in humans is unknown. The availability of 2-chloro-N-(4-(4-methoxyphenyl)thiazol-2-yl)-N-(3-methoxypropyl)-acetamide (JT010), a potent and specific TRPA1 agonist, allowed us to explore this issue. To corroborate the specificity of JT010, it was investigated whether the TRPA1 antagonist (1E,3E)-1-(4-fluorophenyl)-2-methyl-1-penten-3-one oxime (A-967079) abolishes JT010-elicited pain. Sixteen healthy volunteers of both sexes rated pain due to intraepidermal injections of different concentrations and combinations of the substances. The study design was a double-blind crossover study. All subjects received all types of injections, including a placebo without substances. Injections of the TRPA1 agonist dose-dependently caused pain with a half-maximal effective concentration of 0.31 μm Coinjection of A-967079 dose-dependently reduced and at a high concentration abolished JT010-induced pain. Quantification of JT010 by HPLC showed that a substantial part is adsorbed when in contact with polypropylene surfaces, but that this was overcome by handling in glass vials and injection using glass syringes. Isolated TRPA1 activation in humans causes pain. Thus, intradermal JT010 injection can serve as a tool to validate new TRPA1 antagonists concerning target engagement. More importantly, TRPA1-specific tools allow quantification of the TRPA1-dependent component in physiology and pathophysiology.SIGNIFICANCE STATEMENT This study showed that activation of the ion channel transient receptor potential ankyrin 1 (TRPA1) alone indeed suffices to elicit pain in humans, independent of other receptors previously found to be involved in pain generation. The newly established TRPA1-specific pain model allows different applications. First, it can be tested whether diseases are associated with compromised or exaggerated TRPA1-dependent painful sensations in the skin. Second, it can be investigated whether a new, possibly systemically applied drug directed against TRPA1 engages its target in humans. Further, the general possibility of quantitative inhibition of TRPA1 allows identification of the TRPA1-dependent disease component, given that the substance reaches its target. This contributes to a better understanding of pathophysiology, can lay the basis for new therapeutic approaches, and can bridge the gap between preclinical research and clinical trials.
Collapse
|
22
|
Abstract
The transient receptor potential ankyrin 1 (TRPA1) ion channel is expressed in pain-sensing neurons and other tissues and has become a major target in the development of novel pharmaceuticals. A remarkable feature of the channel is its long list of activators, many of which we are exposed to in daily life. Many of these agonists induce pain and inflammation, making TRPA1 a major target for anti-inflammatory and analgesic therapies. Studies in human patients and in experimental animals have confirmed an important role for TRPA1 in a number of pain conditions. Over the recent years, much progress has been made in elucidating the molecular structure of TRPA1 and in discovering binding sites and modulatory sites of the channel. Because the list of published mutations and important molecular sites is steadily growing and because it has become difficult to see the forest for the trees, this review aims at summarizing the current knowledge about TRPA1, with a special focus on the molecular structure and the known binding or gating sites of the channel.
Collapse
Affiliation(s)
- Jannis E Meents
- Institute of Physiology, University Hospital RWTH Aachen , Aachen , Germany
| | - Cosmin I Ciotu
- Center for Physiology and Pharmacology, Medical University of Vienna , Vienna , Austria
| | - Michael J M Fischer
- Center for Physiology and Pharmacology, Medical University of Vienna , Vienna , Austria
| |
Collapse
|
23
|
Photosensitization of TRPA1 and TRPV1 by 7-dehydrocholesterol: implications for the Smith-Lemli-Opitz syndrome. Pain 2018; 158:2475-2486. [PMID: 28891864 DOI: 10.1097/j.pain.0000000000001056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Loss-of-function mutations in the enzyme 7-dehydrocholesterol reductase are responsible for the Smith-Lemli-Opitz syndrome, in which 7-dehydrocholesterol (7-DHC) levels are markedly increased in the plasma and tissues of patients. This increase in 7-DHC is probably associated with the painful and itchy photosensitivity reported by the majority of patients with Smith-Lemli-Opitz syndrome. To identify the molecular targets involved in the activation and photosensitization of primary afferents by 7-DHC, we focused on TRPA1 and TRPV1, two ion channels expressed in nociceptive nerve endings and previously shown to respond to ultraviolet and visible light under pathophysiological circumstances. Recombinant human TRPA1 is activated and photosensitized in the presence of 7-DHC. Prolonged preexposure to 7-DHC causes more pronounced photosensitization, and while TRPV1 contributes less to the acute effect, it too becomes highly photosensitive upon preincubation with 7-DHC for 1 to 15 hours. Dorsal root ganglion neurons in primary culture display acute sensitivity to 7-DHC in the dark and also light-evoked responses in the presence of 7-DHC, which are exclusively dependent on TRPA1 and TRPV1. Similarly, prolonged exposure of mouse dorsal root ganglion neurons to 7-DHC renders these cells photosensitive in a largely TRPA1- and TRPV1-dependent manner. Single-fiber recordings in mouse skin-nerve preparations demonstrate violet light-evoked activation and a sensitization to 7-DHC exposure. Vice versa, 7-DHC pretreatment of the isolated trachea leads to a TRPA1- and TRPV1-dependent increase of the light-induced calcitonin gene-related peptide release. Taken together, our results implicate TRPA1 and TRPV1 channels as potential pharmacological targets to address the 7-DHC-induced hypersensitivity to light in patients.
Collapse
|
24
|
Kádková A, Synytsya V, Krusek J, Zímová L, Vlachová V. Molecular basis of TRPA1 regulation in nociceptive neurons. A review. Physiol Res 2018; 66:425-439. [PMID: 28730837 DOI: 10.33549/physiolres.933553] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Transient receptor potential A1 (TRPA1) is an excitatory ion channel that functions as a cellular sensor, detecting a wide range of proalgesic agents such as environmental irritants and endogenous products of inflammation and oxidative stress. Topical application of TRPA1 agonists produces an acute nociceptive response through peripheral release of neuropeptides, purines and other transmitters from activated sensory nerve endings. This, in turn, further regulates TRPA1 activity downstream of G-protein and phospholipase C-coupled signaling cascades. Despite the important physiological relevance of such regulation leading to nociceptor sensitization and consequent pain hypersensitivity, the specific domains through which TRPA1 undergoes post-translational modifications that affect its activation properties are yet to be determined at a molecular level. This review aims at providing an account of our current knowledge on molecular basis of regulation by neuronal inflammatory signaling pathways that converge on the TRPA1 channel protein and through modification of its specific residues influence the extent to which this channel may contribute to pain.
Collapse
Affiliation(s)
- A Kádková
- Department of Cellular Neurophysiology, Institute of Physiology CAS, Prague, Czech Republic. or
| | | | | | | | | |
Collapse
|
25
|
Kichko TI, Neuhuber W, Kobal G, Reeh PW. The roles of TRPV1, TRPA1 and TRPM8 channels in chemical and thermal sensitivity of the mouse oral mucosa. Eur J Neurosci 2018; 47:201-210. [PMID: 29247491 DOI: 10.1111/ejn.13799] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 11/28/2017] [Accepted: 12/05/2017] [Indexed: 12/24/2022]
Abstract
Spices in food and beverages and compounds in tobacco smoke interact with sensory irritant receptors of the transient receptor potential (TRP) cation channel family. TRPV1 (vanilloid type 1), TRPA1 (ankyrin 1) and TRPM8 (melastatin 8) not only elicit action potential signaling through trigeminal nerves, eventually evoking pungent or cooling sensations, but by their calcium conductance they also stimulate the release of calcitonin gene-related peptide (CGRP). This is measured as an index of neuronal activation to elucidate the chemo- and thermosensory transduction in the isolated mouse buccal mucosa of wild types and pertinent knockouts. We found that the lipophilic capsaicin, mustard oil and menthol effectively get access to the nerve endings below the multilayered squamous epithelium, while cigarette smoke and its gaseous phase were weakly effective releasing CGRP. The hydrophilic nicotine was ineffective unless applied unprotonated in alkaline (pH9) solution, activating TRPA1 and TRPV1. Also, mustard oil activated both these irritant receptors in millimolar but only TRPA1 in micromolar concentrations; in combination (1 mm) with heat (45 °C), it showed supraadditive, that is heat sensitizing, effects in TRPV1 and TRPA1 knockouts, suggesting action on an unknown heat-activated channel and mustard oil receptor. Menthol caused little CGRP release by itself, but in subliminal concentration (2 mm), it enabled a robust cold response that was absent in TRPM8-/- but retained in TRPA1-/- and strongly reduced by TRPM8 inhibitors. In conclusion, all three relevant irritant receptors are functionally expressed in the oral mucosa and play their specific roles in inducing neurogenic inflammation and sensitization to heat and cold.
Collapse
Affiliation(s)
- Tatjana I Kichko
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstrasse 17, Erlangen, 91056, Germany
| | - Winfried Neuhuber
- Institute of Anatomy I, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Gerd Kobal
- Altria Client Services Inc., Richmond, VA, USA
| | - Peter W Reeh
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstrasse 17, Erlangen, 91056, Germany
| |
Collapse
|
26
|
A-Kinase Anchoring Protein 79/150 Scaffolds Transient Receptor Potential A 1 Phosphorylation and Sensitization by Metabotropic Glutamate Receptor Activation. Sci Rep 2017; 7:1842. [PMID: 28500286 PMCID: PMC5431798 DOI: 10.1038/s41598-017-01999-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 04/05/2017] [Indexed: 01/20/2023] Open
Abstract
Mechanical pain serves as a base clinical symptom for many of the world’s most debilitating syndromes. Ion channels expressed by peripheral sensory neurons largely contribute to mechanical hypersensitivity. Transient Receptor Potential A 1 (TRPA1) is a ligand-gated ion channel that contributes to inflammatory mechanical hypersensitivity, yet little is known as to the post-translational mechanism behind its somatosensitization. Here, we utilize biochemical, electrophysiological, and behavioral measures to demonstrate that metabotropic glutamate receptor-induced sensitization of TRPA1 nociceptors stimulates targeted modification of the receptor. Type 1 mGluR5 activation increases TRPA1 receptor agonist sensitivity in an AKA-dependent manner. As a scaffolding protein for Protein Kinases A and C (PKA and PKC, respectively), AKAP facilitates phosphorylation and sensitization of TRPA1 in ex vivo sensory neuronal preparations. Furthermore, hyperalgesic priming of mechanical hypersensitivity requires both TRPA1 and AKAP. Collectively, these results identify a novel AKAP-mediated biochemical mechanism that increases TRPA1 sensitivity in peripheral sensory neurons, and likely contributes to persistent mechanical hypersensitivity.
Collapse
|
27
|
Meents JE, Fischer MJM, McNaughton PA. Sensitization of TRPA1 by Protein Kinase A. PLoS One 2017; 12:e0170097. [PMID: 28076424 PMCID: PMC5226813 DOI: 10.1371/journal.pone.0170097] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 12/28/2016] [Indexed: 01/08/2023] Open
Abstract
The TRPA1 ion channel is expressed in nociceptive (pain-sensitive) somatosensory neurons and is activated by a wide variety of chemical irritants, such as acrolein in smoke or isothiocyanates in mustard. Here, we investigate the enhancement of TRPA1 function caused by inflammatory mediators, which is thought to be important in lung conditions such as asthma and COPD. Protein kinase A is an important kinase acting downstream of inflammatory mediators to cause sensitization of TRPA1. By using site-directed mutagenesis, patch-clamp electrophysiology and calcium imaging we identify four amino acid residues, S86, S317, S428, and S972, as the principal targets of PKA-mediated phosphorylation and sensitization of TRPA1.
Collapse
Affiliation(s)
- Jannis E. Meents
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
- Institute of Physiology, Uniklinik RWTH Aachen, Aachen, Germany
| | - Michael J. M. Fischer
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
- Institute of Physiology and Pathophysiology, University of Erlangen-Nuremberg, Erlangen, Germany
- Center for Physiology and Pharmacology, Medical University Wien, Wien, Austria
| | - Peter A. McNaughton
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
- Wolfson Centre for Age-Related Diseases, King’s College London, London, United Kingdom
| |
Collapse
|
28
|
Schwarz MG, Namer B, Reeh PW, Fischer MJM. TRPA1 and TRPV1 Antagonists Do Not Inhibit Human Acidosis-Induced Pain. THE JOURNAL OF PAIN 2017; 18:526-534. [PMID: 28062311 DOI: 10.1016/j.jpain.2016.12.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/21/2016] [Accepted: 12/21/2016] [Indexed: 12/31/2022]
Abstract
Acidosis occurs in a variety of pathophysiological and painful conditions where it is thought to excite or contribute to excitation of nociceptive neurons. Despite potential clinical relevance the principal receptor for sensing acidosis is unclear, but several receptors have been proposed. We investigated the contribution of the acid-sensing ion channels, transient receptor potential vanilloid type 1 (TRPV1) and transient receptor potential ankyrin type 1 (TRPA1) to peripheral pain signaling. We first established a human pain model using intraepidermal injection of the TRPA1 agonist carvacrol. This resulted in concentration-dependent pain sensations, which were reduced by experimental TRPA1 antagonist A-967079. Capsaicin-induced pain was reduced by the TRPV1 inhibitor BCTC. Amiloride was used to block acid-sensing ion channels. Testing these antagonists in a double-blind and randomized experiment, we probed the contribution of the respective channels to experimental acidosis-induced pain in 15 healthy human subjects. A continuous intraepidermal injection of pH 4.3 was used to counter the buffering capacity of tissue and generate a prolonged painful stimulation. In this model, addition of A-967079, BCTC or amiloride did not reduce the reported pain. In conclusion, target-validated antagonists, applied locally in human skin, have excluded the main hypothesized targets and the mechanism of the human acidosis-induced pain remains unclear. PERSPECTIVE An acidic milieu is a trigger of pain in many clinical conditions. The aim of this study was to identify the contribution of the currently hypothesized sensors of acid-induced pain in humans. Surprisingly, inhibition of these receptors did not alter acidosis-induced pain.
Collapse
Affiliation(s)
- Matthias G Schwarz
- Institute of Physiology and Pathophysiology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Barbara Namer
- Institute of Physiology and Pathophysiology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Peter W Reeh
- Institute of Physiology and Pathophysiology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Michael J M Fischer
- Institute of Physiology and Pathophysiology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany; Center of Physiology and Pharmacology Medical University of Vienna, Vienna, Austria.
| |
Collapse
|