1
|
Zhang Y, Dai H, Lv M, Wang Y, Zheng Y, Luo J, Li S. Edaravone alleviates sepsis-induced diaphragmatic dysfunction via Sirt1/Nrf2 pathway. Int Immunopharmacol 2025; 153:114475. [PMID: 40106902 DOI: 10.1016/j.intimp.2025.114475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 01/14/2025] [Accepted: 03/10/2025] [Indexed: 03/22/2025]
Abstract
BACKGROUND The mechanisms underlying the development of sepsis-induced diaphragmatic dysfunction (SIDD) are poorly understood. Activation of the SIRT1/Nrf2 signaling pathway can attenuate oxidative stress damage in skeletal muscle injury. The present study aimed to validate the hypothesis that edaravone (ED) can improve SIDD through modulation of the SIRT1/Nrf2 signaling pathway and to explore the underlying mechanisms. METHODS Animal models (mice) were constructed using the cecal ligation and puncture (CLP) method, while the C2C12 cells were stimulated by lipopolysaccharide (LPS). The diaphragmatic function was accessed by diaphragm ultrasonography. We examined the expression levels of proteins involved in the SIRT1/Nrf2 pathway (Sirt1, Nrf2, and HO-1), oxidative stress markers (SOD, ROS, and GPX4), and muscle atrophy-related proteins (MuRF1 and Atrogin-1) to test the role of ED in SIDD. RESULTS We found that sepsis-induced a significant decrease in both diaphragmatic excursion and contractile velocity. Administration of ED (5 mg/kg) improved the diaphragmatic function in mice. Moreover, sepsis mice showed increased levels of oxidative stress markers and muscle atrophy-related proteins and a down-regulated pathway of SIRT1/Nrf2. The intervention of ED could modulate the SIRT1/Nrf2 pathway, which in turn protects the diaphragm from SIDD. Similar findings were also observed in vitro experiments with small interfering RNAs. CONCLUSIONS Edaravone was demonstrated to potentially alleviate SIDD by activating the SIRT1/Nrf2 pathway.
Collapse
Affiliation(s)
- Youping Zhang
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| | - Hongkai Dai
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Man Lv
- Department of Pharmacy, Taikang Tongji (Wuhan) Hospital, Wuhan, Hubei, PR China
| | - Yurou Wang
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yingfang Zheng
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Jinlong Luo
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| | - Shusheng Li
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| |
Collapse
|
2
|
Neyroud D, D'Lugos A, Trevino E, Callaway C, Lamm J, Laitano O, Poole B, Deyhle M, Brantley J, Le L, Judge A, Judge S. Local Inflammation Precedes Diaphragm Wasting and Fibrotic Remodelling in a Mouse Model of Pancreatic Cancer. J Cachexia Sarcopenia Muscle 2025; 16:e13668. [PMID: 39810606 PMCID: PMC11733308 DOI: 10.1002/jcsm.13668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/16/2024] [Accepted: 11/06/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Cancer cachexia represents a debilitating muscle wasting condition that is highly prevalent in gastrointestinal cancers, including pancreatic ductal adenocarcinoma (PDAC). Cachexia is estimated to contribute to ~30% of cancer-related deaths, with deterioration of respiratory muscles suspected to be a key contributor to cachexia-associated morbidity and mortality. In recent studies, we identified fibrotic remodelling of respiratory accessory muscles as a key feature of human PDAC cachexia. METHODS To gain insight into mechanisms driving respiratory muscle wasting and fibrotic remodelling in response to PDAC, we conducted temporal histological and transcriptomic analyses on diaphragm muscles harvested from mice-bearing orthotopic murine pancreatic (KPC) tumours at time points reflective of precachexia (D8 and D10), mild-moderate cachexia (D12 and D14) and advanced cachexia (endpoint). RESULTS During the precachexia phase, diaphragms showed significant leukocyte infiltration (+3-fold to +13-fold; D8-endpoint vs. Sham, p < 0.05) and transcriptomic enrichment of inflammatory processes associated with tissue injury that remained increased through endpoint. Diaphragm inflammation was followed by increases in PDGFR-ɑ+ fibroadipogenic progenitors (+2.5 to +3.8-fold; D10-endpoint vs. Sham, p < 0.05), fibre atrophy (-16% to -24%, D12 to endpoint vs. Sham, p < 0.05), ECM expansion (+1.5 to +1.8-fold; D14-endpoint vs. Sham, p < 0.05), collagen accumulation (+3.8-fold; endpoint vs. Sham, p = 0.0013) and reductions in breathing frequency (-55%, p = 0.0074) and diaphragm excursion (-43%, p = 0.0006). These biological processes were supported by changes in the diaphragm transcriptome. Ingenuity pathway analysis predicted factors involved in inflammatory responses to tissue injury, including TGF-β1, angiotensin and PDGF BB, as top upstream regulators activated in diaphragms prior to and throughout cachexia progression, while PGC-1α and the insulin receptor were among the top upstream regulators predicted to be suppressed. The transcriptomic dataset further revealed progressive disturbances to networks involved in lipid, glucose and oxidative metabolism, activation of the unfolded protein response and neuromuscular junction remodelling associated with denervation. CONCLUSIONS In summary, our data support leukocyte infiltration and expansion of PDGFRα mesenchymal progenitors as early events that precede wasting and fibrotic remodelling of the diaphragm in response to PDAC that may also underlie metabolic disturbances, weakness and respiratory complications.
Collapse
Affiliation(s)
- Daria Neyroud
- Department of Physical TherapyUniversity of Florida Health Cancer CenterGainesvilleFloridaUSA
- Myology InstituteUniversity of FloridaGainesvilleFloridaUSA
- Institute of Sports SciencesUniversity of LausanneLausanneSwitzerland
| | - Andrew C. D'Lugos
- Department of Physical TherapyUniversity of Florida Health Cancer CenterGainesvilleFloridaUSA
- Myology InstituteUniversity of FloridaGainesvilleFloridaUSA
| | - Enrique J. Trevino
- Department of Physical TherapyUniversity of Florida Health Cancer CenterGainesvilleFloridaUSA
| | - Chandler S. Callaway
- Department of Physical TherapyUniversity of Florida Health Cancer CenterGainesvilleFloridaUSA
- Myology InstituteUniversity of FloridaGainesvilleFloridaUSA
| | - Jacqueline Lamm
- Department of Physical TherapyUniversity of Florida Health Cancer CenterGainesvilleFloridaUSA
| | - Orlando Laitano
- Myology InstituteUniversity of FloridaGainesvilleFloridaUSA
- Department of Applied Physiology and KinesiologyUniversity of FloridaGainesvilleFloridaUSA
| | - Brittney Poole
- Department of Physical TherapyUniversity of Florida Health Cancer CenterGainesvilleFloridaUSA
- Myology InstituteUniversity of FloridaGainesvilleFloridaUSA
- Department of Physiology and Aging, College of MedicineUniversity of FloridaGainesvilleFloridaUSA
| | - Michael R. Deyhle
- Department of Physical TherapyUniversity of Florida Health Cancer CenterGainesvilleFloridaUSA
- Myology InstituteUniversity of FloridaGainesvilleFloridaUSA
| | - Justina Brantley
- Department of Physical TherapyUniversity of Florida Health Cancer CenterGainesvilleFloridaUSA
| | - Lam Le
- Department of Physical TherapyUniversity of Florida Health Cancer CenterGainesvilleFloridaUSA
| | - Andrew R. Judge
- Department of Physical TherapyUniversity of Florida Health Cancer CenterGainesvilleFloridaUSA
- Myology InstituteUniversity of FloridaGainesvilleFloridaUSA
- Department of Physiology and Aging, College of MedicineUniversity of FloridaGainesvilleFloridaUSA
| | - Sarah M. Judge
- Department of Physical TherapyUniversity of Florida Health Cancer CenterGainesvilleFloridaUSA
- Myology InstituteUniversity of FloridaGainesvilleFloridaUSA
- Department of Physiology and Aging, College of MedicineUniversity of FloridaGainesvilleFloridaUSA
| |
Collapse
|
3
|
Agrawal A, Clayton EL, Cavazos CL, Clayton BA, Rodney GG. Histone deacetylase 6 inhibition promotes microtubule acetylation and facilitates autophagosome-lysosome fusion in dystrophin-deficient mdx mice. Acta Physiol (Oxf) 2025; 241:e14243. [PMID: 39422111 DOI: 10.1111/apha.14243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 08/23/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024]
Abstract
AIM Duchenne muscular dystrophy is a progressive muscle-wasting disease caused by mutations in the dystrophin gene. Despite progress in dystrophin-targeted gene therapies, it is still a fatal disease requiring novel therapeutics that can be used synergistically or alternatively to emerging gene therapy. Defective autophagy and disorganized microtubule networks contribute to dystrophic pathogenesis, yet the mechanisms by which microtubule alterations regulate autophagy remain elusive. The present study was designed to uncover possible mechanisms underpinning the role of microtubules in regulating autophagy in dystrophic mice. METHODS Mdx mice were also supplemented with Tubastatin A, a pharmacological inhibitor of histone deacetylase 6, and pathophysiology was assessed. Mdx mice with a genetic deletion of the Nox-2 scaffolding subunit p47phox were used to assess redox dependence on tubulin acetylation. RESULTS Our data show decreased acetylation of α-tubulin with enhanced histone deacetylase 6 expression. Tubastatin A increases tubulin acetylation and Q-SNARE complex formation but does not alter microtubule organization or density, indicating improved autophagosome-lysosome fusion. Tubastatin A increases the acetylation of peroxiredoxin and protects it from hyper-oxidation, hence modulating intracellular redox status in mdx mice. Tubastatin A reduces muscle damage and enhances force production. Genetic down regulation of Nox2 activity in the mdx mice promotes autophagosome maturation but not autolysosome formation. CONCLUSION Our data highlight that autophagy is differentially regulated by redox and acetylation in mdx mice. By improving autophagy through promoting tubulin acetylation, Tubastatin A decreases the dystrophic phenotype and improves muscle function, suggesting a great potential for clinical translation and treating dystrophic patients.
Collapse
Affiliation(s)
- Akanksha Agrawal
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas, USA
| | - Erin L Clayton
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas, USA
| | - Courtney L Cavazos
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas, USA
| | - Benjamin A Clayton
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas, USA
| | - George G Rodney
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
4
|
Buras ED, Woo MS, Kaul Verma R, Kondisetti SH, Davis CS, Claflin DR, Converso-Baran K, Michele DE, Brooks SV, Chun TH. Thrombospondin-1 promotes fibro-adipogenic stromal expansion and contractile dysfunction of the diaphragm in obesity. JCI Insight 2024; 9:e175047. [PMID: 38954467 PMCID: PMC11343600 DOI: 10.1172/jci.insight.175047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 06/27/2024] [Indexed: 07/04/2024] Open
Abstract
Pulmonary disorders affect 40%-80% of individuals with obesity. Respiratory muscle dysfunction is linked to these conditions; however, its pathophysiology remains largely undefined. Mice subjected to diet-induced obesity (DIO) develop diaphragm muscle weakness. Increased intradiaphragmatic adiposity and extracellular matrix (ECM) content correlate with reductions in contractile force. Thrombospondin-1 (THBS1) is an obesity-associated matricellular protein linked with muscular damage in genetic myopathies. THBS1 induces proliferation of fibro-adipogenic progenitors (FAPs) - mesenchymal cells that differentiate into adipocytes and fibroblasts. We hypothesized that THBS1 drives FAP-mediated diaphragm remodeling and contractile dysfunction in DIO. We tested this by comparing the effects of dietary challenge on diaphragms of wild-type (WT) and Thbs1-knockout (Thbs1-/-) mice. Bulk and single-cell transcriptomics demonstrated DIO-induced stromal expansion in WT diaphragms. Diaphragm FAPs displayed upregulation of ECM and TGF-β-related expression signatures and augmentation of a Thy1-expressing subpopulation previously linked to type 2 diabetes. Despite similar weight gain, Thbs1-/- mice were protected from these transcriptomic changes and from obesity-induced increases in diaphragm adiposity and ECM deposition. Unlike WT controls, Thbs1-/- diaphragms maintained normal contractile force and motion after DIO challenge. THBS1 is therefore a necessary mediator of diaphragm stromal remodeling and contractile dysfunction in overnutrition and a potential therapeutic target in obesity-associated respiratory dysfunction.
Collapse
Affiliation(s)
- Eric D. Buras
- Division of Metabolism, Endocrinology and Diabetes (MEND), Department of Internal Medicine
| | - Moon-Sook Woo
- Division of Metabolism, Endocrinology and Diabetes (MEND), Department of Internal Medicine
| | - Romil Kaul Verma
- Division of Metabolism, Endocrinology and Diabetes (MEND), Department of Internal Medicine
| | | | | | - Dennis R. Claflin
- Department of Biomedical Engineering
- Department of Surgery, Section of Plastic Surgery
| | | | | | | | - Tae-Hwa Chun
- Division of Metabolism, Endocrinology and Diabetes (MEND), Department of Internal Medicine
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
5
|
Huang S, Pan Y, Wang Y, Pei S, Wang X, Sun S, Yao S, Chen X, Xia H. Muscular Function Recovery from General Anesthesia in 132 Patients Undergoing Surgery with Acceleromyography, Combined Acceleromyography, and Ultrasonography, and without Monitoring Muscular Function. Med Sci Monit 2024; 30:e942780. [PMID: 38627942 PMCID: PMC11034390 DOI: 10.12659/msm.942780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 02/08/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Diaphragmatic thickness fraction (DTF), measured by ultrasound, can predict the occurrence of postoperative residual neuromuscular blockade (RNMB). We hypothesized that the utilization of diaphragmatic ultrasound during the postoperative awakening phase of anesthesia in patients offers a successful means of avoiding RNMB in a notably comfortable manner, as compared to the use of acceleromyograph. MATERIAL AND METHODS Patients who underwent elective thyroid cancer radical surgery were enrolled in this prospective clinical study. Eligible participants were randomly assigned to 1 of 3 groups: 1) combined ultrasonography with acceleromyography group (the US+AMG group), 2) the AMG group, or 3) the usual clinical practice group (the UCP group). The primary outcomes of the study were the incidence of RNMB and hypoxemia after tracheal extubation. RESULTS The study included a total of 127 patients (43 in the US+AMG group, 44 in the AMG group, and 40 in the UCP group). The incidence of RNMB and hypoxemia was higher in the UCP group than in the US+AMG and AMG groups at 15 and 30 min after extubation, respectively. The mean area under the receiver operating characteristic curve, and the decision curve of the recovery rate of DTF (DTF) was greater than that of DTF. CONCLUSIONS The use of diaphragm ultrasound during the postoperative awakening phase of anesthesia can significantly reduce the incidence of RNMB. This method was non-inferior to the use of AMG during the entire perioperative period.
Collapse
Affiliation(s)
- Shiqian Huang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, Hubei, PR China
| | - Yu Pan
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, Hubei, PR China
| | - Yu Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, Hubei, PR China
| | - Shuaijie Pei
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, Hubei, PR China
| | - Xiang Wang
- Department of Anesthesiology, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Shujun Sun
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, Hubei, PR China
| | - Shanglong Yao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, Hubei, PR China
| | - Xiangdong Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, Hubei, PR China
| | - Haifa Xia
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, Hubei, PR China
| |
Collapse
|
6
|
Zhou S, Lei S, She Y, Shi H, Li Y, Zhou X, Chen R. Running improves muscle mass by activating autophagic flux and inhibiting ubiquitination degradation in mdx mice. Gene 2024; 899:148136. [PMID: 38185293 DOI: 10.1016/j.gene.2024.148136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/15/2023] [Accepted: 01/03/2024] [Indexed: 01/09/2024]
Abstract
BACKGROUND Exercise therapy can improve muscle mass, strengthen muscle and cardiorespiratory function, and may be an excellent adjunctive treatment option for Duchenne muscular dystrophy. METHODS This article investigates the effects of 10 weeks of treadmill training on skeletal muscle in control and mdx mice. Hematoxylin and eosin (H&E) staining was used to detect the morphometry of skeletal muscle; the grip strength test, suspension test, and rotarod test were used to detect limb muscle strength of mice, and Aurora Scientific Instruments were used to detect in vivo Muscle Stimulation Measuring Maximum Force of pre-fatigue and post-fatigue. The expression levels of myogenic proteins, ubiquitination markers, autophagy pathway proteins, and the proportion of different muscle fiber types were detected. RESULTS The experimental results show that running exercise can significantly improve the muscle mass of mdx mice, promote muscle strength, endurance, and anti-fatigue ability, reverse the pathological state of skeletal muscle destruction in mdx mice, and promote muscle regeneration. WB experiments showed that running inhibited the ubiquitination and degradation of muscle protein in mdx mice, inhibited AKT activation, decreased phosphorylated FoxO1 and FoxO3a, and restored the suppressed autophagic flux. Running enhances muscle strength and endurance by comprehensively promoting the expression of Myh1/2/4/7 fast and slow muscle fibers in mdx mice. CONCLUSIONS Running can inhibit the degradation of muscle protein in mdx mice, and promote the reuse and accumulation of proteins, thereby slowing down muscle loss. Running improves skeletal muscle mass by activating autophagic flux and inhibiting ubiquitination degradation in mdx mice.
Collapse
Affiliation(s)
- Shanyao Zhou
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, 466 Xin Gang Zhong Road, Guangzhou 510317, China
| | - Si Lei
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, 466 Xin Gang Zhong Road, Guangzhou 510317, China
| | - Yanling She
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, 466 Xin Gang Zhong Road, Guangzhou 510317, China
| | - Huacai Shi
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, 466 Xin Gang Zhong Road, Guangzhou 510317, China
| | - Yang Li
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, 466 Xin Gang Zhong Road, Guangzhou 510317, China
| | - Xin Zhou
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, 466 Xin Gang Zhong Road, Guangzhou 510317, China
| | - Rui Chen
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, 466 Xin Gang Zhong Road, Guangzhou 510317, China.
| |
Collapse
|
7
|
Lee J, Myrie NO, Jeong GJ, Han WM, Jang YC, García AJ, Emelianov S. In vivo shear wave elasticity imaging for assessment of diaphragm function in muscular dystrophy. Acta Biomater 2023; 168:277-285. [PMID: 37453552 PMCID: PMC10540053 DOI: 10.1016/j.actbio.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 06/28/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Duchenne muscular dystrophy (DMD) causes patients to suffer from ambulatory disability and cardiorespiratory failure, the latter of which leads to premature death. Due to its role in respiration, the diaphragm is an important muscle for study. A common method for evaluating diaphragm function is ex vivo force testing, which only allows for an end point measurement. In contrast, ultrasound shear wave elastography imaging (US-SWEI) can assess diaphragm function over time; however, US-SWEI studies in dystrophic patients to date have focused on the limbs without preclinical studies. In this work, we used US-SWEI to estimate the shear wave speed (SWS) in diaphragm muscles of healthy (WT) mice, mdx mice, and mdx mice haploinsufficient for utrophin (mdx-utr) at 6 and 12 months of age. Diaphragms were then subjected to ex vivo force testing and histological analysis at 12 months of age. Between 6 and 12 months, a 23.8% increase in SWS was observed in WT mice and a 27.8% increase in mdx mice, although no significant difference was found in mdx-utr mice. Specific force generated by mdx-utr diaphragms was lower than that of WT diaphragms following twitch stimulus. A strong correlation between SWS and collagen deposition was observed, as well as between SWS and muscle fiber size. Together, these data demonstrate the ability of US-SWEI to evaluate dystrophic diaphragm functionality over time and predict the biochemical and morphological make-up of the diaphragm. Additionally, our results highlight the advantage of US-SWEI over ex vivo testing by obtaining longitudinal measurements in the same subject. STATEMENT OF SIGNIFICANCE: In DMD patients, muscles experience cycles of regeneration and degeneration that contribute to chronic inflammation and muscle weakness. This pathology only worsens with time and leads to muscle wasting, including in respiratory and cardiac muscles. Because respiratory failure is a major contributor to premature death in DMD patients, the diaphragm muscle is an important muscle to evaluate and treat over time. Currently, diaphragm function is assessed using ex vivo force testing, a technique that only allows measurement at sacrifice. In contrast, ultrasonography, particularly shear wave elasticity imaging (USSWEI), is a promising tool for longitudinal assessment; however, most US-SWEI in DMD patients aimed for limb muscles only with the absence of preclinical studies. This work broadens the applications of US-SWE imaging by demonstrating its ability to track properties and function of dystrophic diaphragm muscles longitudinally in multiple dystrophic mouse models.
Collapse
Affiliation(s)
- Jeehyun Lee
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Nia O Myrie
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332, USA
| | - Gun-Jae Jeong
- Institute of Cell and Tissue Engineering, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Woojin M Han
- Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Young C Jang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332, USA; Department of Orthopedics, Emory Musculoskeletal Institute, Emory School of Medicine, Atlanta, GA 30329, USA.
| | - Andrés J García
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Stanislav Emelianov
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332, USA.
| |
Collapse
|
8
|
Buras ED, Woo MS, Verma RK, Kondisetti SH, Davis CS, Claflin DR, Baran KC, Michele DE, Brooks SV, Chun TH. Thrombospondin-1 promotes fibro-adipogenic stromal expansion and contractile dysfunction of the diaphragm in obesity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.17.553733. [PMID: 37645822 PMCID: PMC10462153 DOI: 10.1101/2023.08.17.553733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Pulmonary disorders impact 40-80% of individuals with obesity. Respiratory muscle dysfunction is linked to these conditions; however, its pathophysiology remains largely undefined. Mice subjected to diet-induced obesity (DIO) develop diaphragmatic weakness. Increased intra-diaphragmatic adiposity and extracellular matrix (ECM) content correlate with reductions in contractile force. Thrombospondin-1 (THBS1) is an obesity-associated matricellular protein linked with muscular damage in genetic myopathies. THBS1 induces proliferation of fibro-adipogenic progenitors (FAPs)-mesenchymal cells that differentiate into adipocytes and fibroblasts. We hypothesized that THBS1 drives FAP-mediated diaphragm remodeling and contractile dysfunction in DIO. We tested this by comparing effects of dietary challenge on diaphragms of wild-type (WT) and Thbs1 knockout ( Thbs1 -/- ) mice. Bulk and single-cell transcriptomics demonstrated DIO-induced stromal expansion in WT diaphragms. Diaphragm FAPs displayed upregulation of ECM and TGFβ-related expression signatures, and augmentation of a Thy1 -expressing sub-population previously linked to type 2 diabetes. Despite similar weight gain, Thbs1 -/- mice were protected from these transcriptomic changes, and from obesity-induced increases in diaphragm adiposity and ECM deposition. Unlike WT controls, Thbs1 -/- diaphragms maintained normal contractile force and motion after DIO challenge. These findings establish THBS1 as a necessary mediator of diaphragm stromal remodeling and contractile dysfunction in overnutrition, and potential therapeutic target in obesity-associated respiratory dysfunction.
Collapse
|
9
|
Preclinical Ultrasonography in Rodent Models of Neuromuscular Disorders: The State of the Art for Diagnostic and Therapeutic Applications. Int J Mol Sci 2023; 24:ijms24054976. [PMID: 36902405 PMCID: PMC10003358 DOI: 10.3390/ijms24054976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Ultrasonography is a safe, non-invasive imaging technique used in several fields of medicine, offering the possibility to longitudinally monitor disease progression and treatment efficacy over time. This is particularly useful when a close follow-up is required, or in patients with pacemakers (not suitable for magnetic resonance imaging). By virtue of these advantages, ultrasonography is commonly used to detect multiple skeletal muscle structural and functional parameters in sports medicine, as well as in neuromuscular disorders, e.g., myotonic dystrophy and Duchenne muscular dystrophy (DMD). The recent development of high-resolution ultrasound devices allowed the use of this technique in preclinical settings, particularly for echocardiographic assessments that make use of specific guidelines, currently lacking for skeletal muscle measurements. In this review, we describe the state of the art for ultrasound skeletal muscle applications in preclinical studies conducted in small rodents, aiming to provide the scientific community with necessary information to support an independent validation of these procedures for the achievement of standard protocols and reference values useful in translational research on neuromuscular disorders.
Collapse
|
10
|
Irion CI, Williams M, Capcha JC, Eisenberg T, Lambert G, Takeuchi LM, Seo G, Yousefi K, Kanashiro-Takeuchi R, Webster KA, Young KC, Hare JM, Shehadeh LA. Col4a3-/- Mice on Balb/C Background Have Less Severe Cardiorespiratory Phenotype and SGLT2 Over-Expression Compared to 129x1/SvJ and C57Bl/6 Backgrounds. Int J Mol Sci 2022; 23:6674. [PMID: 35743114 PMCID: PMC9223785 DOI: 10.3390/ijms23126674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/12/2022] [Accepted: 06/13/2022] [Indexed: 01/27/2023] Open
Abstract
Alport syndrome (AS) is a hereditary renal disorder with no etiological therapy. In the preclinical Col4a3-/- model of AS, disease progression and severity vary depending on mouse strain. The sodium-glucose cotransporter 2 (SGLT2) is emerging as an attractive therapeutic target in cardiac/renal pathologies, but its application to AS remains untested. This study investigates cardiorespiratory function and SGLT2 renal expression in Col4a3-/- mice from three different genetic backgrounds, 129x1/SvJ, C57Bl/6 and Balb/C. male Col4a3-/- 129x1/SvJ mice displayed alterations consistent with heart failure with preserved ejection fraction (HFpEF). Female, but not male, C57Bl/6 and Balb/C Col4a3-/- mice exhibited mild changes in systolic and diastolic function of the heart by echocardiography. Male C57Bl/6 Col4a3-/- mice presented systolic dysfunction by invasive hemodynamic analysis. All strains except Balb/C males demonstrated alterations in respiratory function. SGLT2 expression was significantly increased in AS compared to WT mice from all strains. However, cardiorespiratory abnormalities and SGLT2 over-expression were significantly less in AS Balb/C mice compared to the other two strains. Systolic blood pressure was significantly elevated only in mutant 129x1/SvJ mice. The results provide further evidence for strain-dependent cardiorespiratory and hypertensive phenotype variations in mouse AS models, corroborated by renal SGLT2 expression, and support ongoing initiatives to develop SGLT2 inhibitors for the treatment of AS.
Collapse
Affiliation(s)
- Camila I. Irion
- Department of Medicine, Division of Cardiology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (C.I.I.); (M.W.); (J.C.C.); (T.E.); (G.L.); (J.M.H.)
- Leonard M. Miller School of Medicine, Interdisciplinary Stem Cell Institute, University of Miami, Miami, FL 33136, USA; (L.M.T.); (K.Y.); (R.K.-T.)
| | - Monique Williams
- Department of Medicine, Division of Cardiology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (C.I.I.); (M.W.); (J.C.C.); (T.E.); (G.L.); (J.M.H.)
- Leonard M. Miller School of Medicine, Interdisciplinary Stem Cell Institute, University of Miami, Miami, FL 33136, USA; (L.M.T.); (K.Y.); (R.K.-T.)
| | - Jose Condor Capcha
- Department of Medicine, Division of Cardiology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (C.I.I.); (M.W.); (J.C.C.); (T.E.); (G.L.); (J.M.H.)
- Leonard M. Miller School of Medicine, Interdisciplinary Stem Cell Institute, University of Miami, Miami, FL 33136, USA; (L.M.T.); (K.Y.); (R.K.-T.)
| | - Trevor Eisenberg
- Department of Medicine, Division of Cardiology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (C.I.I.); (M.W.); (J.C.C.); (T.E.); (G.L.); (J.M.H.)
| | - Guerline Lambert
- Department of Medicine, Division of Cardiology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (C.I.I.); (M.W.); (J.C.C.); (T.E.); (G.L.); (J.M.H.)
- Leonard M. Miller School of Medicine, Interdisciplinary Stem Cell Institute, University of Miami, Miami, FL 33136, USA; (L.M.T.); (K.Y.); (R.K.-T.)
| | - Lauro M. Takeuchi
- Leonard M. Miller School of Medicine, Interdisciplinary Stem Cell Institute, University of Miami, Miami, FL 33136, USA; (L.M.T.); (K.Y.); (R.K.-T.)
| | - Grace Seo
- Department of Medical Education, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
| | - Keyvan Yousefi
- Leonard M. Miller School of Medicine, Interdisciplinary Stem Cell Institute, University of Miami, Miami, FL 33136, USA; (L.M.T.); (K.Y.); (R.K.-T.)
- Department of Molecular and Cellular Pharmacology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Rosemeire Kanashiro-Takeuchi
- Leonard M. Miller School of Medicine, Interdisciplinary Stem Cell Institute, University of Miami, Miami, FL 33136, USA; (L.M.T.); (K.Y.); (R.K.-T.)
- Department of Molecular and Cellular Pharmacology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Keith A. Webster
- Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030, USA;
- Department of Ophthalmology, Vascular Biology Institute, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Karen C. Young
- Department of Pediatrics, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
| | - Joshua M. Hare
- Department of Medicine, Division of Cardiology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (C.I.I.); (M.W.); (J.C.C.); (T.E.); (G.L.); (J.M.H.)
- Leonard M. Miller School of Medicine, Interdisciplinary Stem Cell Institute, University of Miami, Miami, FL 33136, USA; (L.M.T.); (K.Y.); (R.K.-T.)
| | - Lina A. Shehadeh
- Department of Medicine, Division of Cardiology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (C.I.I.); (M.W.); (J.C.C.); (T.E.); (G.L.); (J.M.H.)
- Leonard M. Miller School of Medicine, Interdisciplinary Stem Cell Institute, University of Miami, Miami, FL 33136, USA; (L.M.T.); (K.Y.); (R.K.-T.)
| |
Collapse
|
11
|
Mhandire DZ, Burns DP, Roger AL, O'Halloran KD, ElMallah MK. Breathing in Duchenne muscular dystrophy: Translation to therapy. J Physiol 2022; 600:3465-3482. [PMID: 35620971 PMCID: PMC9357048 DOI: 10.1113/jp281671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/17/2022] [Indexed: 11/08/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked neuromuscular disease caused by a deficiency in dystrophin - a structural protein which stabilizes muscle during contraction. Dystrophin deficiency adversely affects the respiratory system leading to sleep-disordered breathing, hypoventilation, and weakness of the expiratory and inspiratory musculature, which culminate in severe respiratory dysfunction. Muscle degeneration associated respiratory impairment in neuromuscular disease is a result of disruptions at multiple sites of the respiratory control network, including sensory and motor pathways. As a result of this pathology, respiratory failure is a leading cause of premature death in DMD patients. Currently available treatments for DMD respiratory insufficiency attenuate respiratory symptoms without completely reversing the underlying pathophysiology. This underscores the need to develop curative therapies to improve quality of life and longevity of DMD patients. This review summarises research findings on the pathophysiology of respiratory insufficiencies in DMD disease in humans and animal models, the clinical interventions available to ameliorate symptoms, and gene-based therapeutic strategies uncovered by preclinical animal studies. Abstract figure legend: Summary of the therapeutic strategies for respiratory insufficiency in DMD (Duchenne muscular dystrophy). Treatment options currently in clinical use only attenuate respiratory symptoms without reversing the underlying pathology of DMD-associated respiratory insufficiencies. Ongoing preclinical and clinical research is aimed at developing curative therapies that both improve quality of life and longevity of DMD patients. AAV - adeno-associated virus, PPMO - Peptide-conjugated phosphorodiamidate morpholino oligomer This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Doreen Z Mhandire
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina, 27710, USA
| | - David P Burns
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland
| | - Angela L Roger
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina, 27710, USA
| | - Ken D O'Halloran
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland
| | - Mai K ElMallah
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center Box 2644, Durham, North Carolina, 27710, USA
| |
Collapse
|
12
|
Gartz M, Haberman M, Prom MJ, Beatka MJ, Strande JL, Lawlor MW. A Long-Term Study Evaluating the Effects of Nicorandil Treatment on Duchenne Muscular Dystrophy-Associated Cardiomyopathy in mdx Mice. J Cardiovasc Pharmacol Ther 2022; 27:10742484221088655. [PMID: 35353647 DOI: 10.1177/10742484221088655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD) is a neuromuscular disease caused by dystrophin gene mutations affecting striated muscle. Due to advances in skeletal muscle treatment, cardiomyopathy has emerged as a leading cause of death. Previously, nicorandil, a drug with antioxidant and nitrate-like properties, ameliorated cardiac damage and improved cardiac function in young, injured mdx mice. Nicorandil mitigated damage by stimulating antioxidant activity and limiting pro-oxidant expression. Here, we examined whether nicorandil was similarly cardioprotective in aged mdx mice. METHODS AND RESULTS Nicorandil (6 mg/kg) was given over 15 months. Echocardiography of mdx mice showed some functional defects at 12 months compared to wild-type (WT) mice, but not at 15 months. Disease manifestation was evident in mdx mice via treadmill assays and survival, but not open field and grip strength assays. Cardiac levels of SOD2 and NOX4 were decreased in mdx vs. WT. Nicorandil increased survival in mdx but did not alter cardiac function, fibrosis, diaphragm function or muscle fatigue. CONCLUSIONS In contrast to our prior work in young, injured mdx mice, nicorandil did not exert cardioprotective effects in 15 month aged mdx mice. Discordant findings may be explained by the lack of cardiac disease manifestation in aged mdx mice compared to WT, whereas significant cardiac dysfunction was previously seen with the sub-acute injury in young mice. Therefore, we are not able to conclude any cardioprotective effects with long-term nicorandil treatment in aging mdx mice.
Collapse
Affiliation(s)
- Melanie Gartz
- Department of Cell Biology, Neurobiology and Anatomy, 5506Medical College of Wisconsin, Milwaukee, WI, USA.,Cardiovascular Research Center, 5506Medical College of Wisconsin, Milwaukee, WI, USA.,Neuroscience Research Center, 5506Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Pathology and Laboratory Medicine, 5506Medical College of Wisconsin, Milwaukee, WI, USA
| | - Margaret Haberman
- Cardiovascular Research Center, 5506Medical College of Wisconsin, Milwaukee, WI, USA.,Neuroscience Research Center, 5506Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Pathology and Laboratory Medicine, 5506Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Medicine, 5506Medical College of Wisconsin, Milwaukee, WI, USA
| | - Mariah J Prom
- Neuroscience Research Center, 5506Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Pathology and Laboratory Medicine, 5506Medical College of Wisconsin, Milwaukee, WI, USA
| | - Margaret J Beatka
- Neuroscience Research Center, 5506Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Pathology and Laboratory Medicine, 5506Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jennifer L Strande
- Cardiovascular Research Center, 5506Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Medicine, 5506Medical College of Wisconsin, Milwaukee, WI, USA
| | - Michael W Lawlor
- Neuroscience Research Center, 5506Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Pathology and Laboratory Medicine, 5506Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
13
|
Creisméas A, Gazaille C, Bourdon A, Lallemand MA, François V, Allais M, Ledevin M, Larcher T, Toumaniantz G, Lafoux A, Huchet C, Anegon I, Adjali O, Le Guiner C, Fraysse B. TRPC3, but not TRPC1, as a good therapeutic target for standalone or complementary treatment of DMD. J Transl Med 2021; 19:519. [PMID: 34930315 PMCID: PMC8686557 DOI: 10.1186/s12967-021-03191-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/09/2021] [Indexed: 12/12/2022] Open
Abstract
Background Duchenne muscular dystrophy (DMD) is an X-linked inherited disease caused by mutations in the gene encoding dystrophin that leads to a severe and ultimately life limiting muscle-wasting condition. Recombinant adeno-associated vector (rAAV)-based gene therapy is promising, but the size of the full-length dystrophin cDNA exceeds the packaging capacity of a rAAV. Alternative or complementary strategies that could treat DMD patients are thus needed. Intracellular calcium overload due to a sarcolemma permeability to calcium (SPCa) increase is an early and critical step of the DMD pathogenesis. We assessed herein whether TRPC1 and TRPC3 calcium channels may be involved in skeletal muscle SPCa alterations and could represent therapeutic targets to treat DMD. Methods All experiments were conducted in the DMDmdx rat, an animal model that closely reproduces the human DMD disease. We measured the cytosolic calcium concentration ([Ca2+]c) and SPCa in EDL (Extensor Digitorum Longus) muscle fibers from age-matched WT and DMDmdx rats of 1.5 to 7 months old. TRPC1 and TRPC3 expressions were measured in the EDL muscles at both the mRNA and protein levels, by RT-qPCR, western blot and immunocytofluorescence analysis. Results As expected from the malignant hyperthermia like episodes observed in several DMDmdx rats, calcium homeostasis alterations were confirmed by measurements of early increases in [Ca2+]c and SPCa in muscle fibers. TRPC3 and TRPC1 protein levels were increased in DMDmdx rats. This was observed as soon as 1.5 months of age for TRPC3 but only at 7 months of age for TRPC1. A slight but reliable shift of the TRPC3 apparent molecular weight was observed in DMDmdx rat muscles. Intracellular localization of both channels was not altered. We thus focused our attention on TRPC3. Application of Pyr10, a specific inhibitor of TRPC3, abolished the differences between SPCa values measured in WT and DMDmdx. Finally, we showed that a rAAV-microdystrophin based treatment induced a high microdystrophin expression but only partial prevention of calcium homeostasis alterations, skeletal muscle force and TRPC3 protein increase. Conclusions All together our results show that correcting TRPC3 channel expression and/or activity appear to be a promising approach as a single or as a rAAV-based complementary therapy to treat DMD.
Collapse
Affiliation(s)
- Anna Creisméas
- Nantes Gene Therapy Laboratory, Université de Nantes, INSERM UMR 1089, IRS 2 Nantes Biotech, CHU de Nantes, 22, Boulevard Bénoni Goullin, 44200, Nantes, France
| | - Claire Gazaille
- Nantes Gene Therapy Laboratory, Université de Nantes, INSERM UMR 1089, IRS 2 Nantes Biotech, CHU de Nantes, 22, Boulevard Bénoni Goullin, 44200, Nantes, France
| | - Audrey Bourdon
- Nantes Gene Therapy Laboratory, Université de Nantes, INSERM UMR 1089, IRS 2 Nantes Biotech, CHU de Nantes, 22, Boulevard Bénoni Goullin, 44200, Nantes, France
| | - Marc-Antoine Lallemand
- Nantes Gene Therapy Laboratory, Université de Nantes, INSERM UMR 1089, IRS 2 Nantes Biotech, CHU de Nantes, 22, Boulevard Bénoni Goullin, 44200, Nantes, France
| | - Virginie François
- Nantes Gene Therapy Laboratory, Université de Nantes, INSERM UMR 1089, IRS 2 Nantes Biotech, CHU de Nantes, 22, Boulevard Bénoni Goullin, 44200, Nantes, France
| | - Marine Allais
- Nantes Gene Therapy Laboratory, Université de Nantes, INSERM UMR 1089, IRS 2 Nantes Biotech, CHU de Nantes, 22, Boulevard Bénoni Goullin, 44200, Nantes, France
| | | | | | - Gilles Toumaniantz
- L'Institut du Thorax, Université de Nantes, CNRS, INSERM UMR 1087, Nantes, France
| | - Aude Lafoux
- Therassay Platform, Capacités, Université de Nantes, Nantes, France
| | - Corinne Huchet
- Nantes Gene Therapy Laboratory, Université de Nantes, INSERM UMR 1089, IRS 2 Nantes Biotech, CHU de Nantes, 22, Boulevard Bénoni Goullin, 44200, Nantes, France
| | - Ignacio Anegon
- INSERM, UMR 1064-Center for Research in Transplantation and Immunology, ITUN, CHU Nantes, Université de Nantes, Faculté de Médecine, Nantes, France
| | - Oumeya Adjali
- Nantes Gene Therapy Laboratory, Université de Nantes, INSERM UMR 1089, IRS 2 Nantes Biotech, CHU de Nantes, 22, Boulevard Bénoni Goullin, 44200, Nantes, France
| | - Caroline Le Guiner
- Nantes Gene Therapy Laboratory, Université de Nantes, INSERM UMR 1089, IRS 2 Nantes Biotech, CHU de Nantes, 22, Boulevard Bénoni Goullin, 44200, Nantes, France
| | - Bodvaël Fraysse
- Nantes Gene Therapy Laboratory, Université de Nantes, INSERM UMR 1089, IRS 2 Nantes Biotech, CHU de Nantes, 22, Boulevard Bénoni Goullin, 44200, Nantes, France.
| |
Collapse
|
14
|
Mantuano P, Boccanegra B, Conte E, De Bellis M, Cirmi S, Sanarica F, Cappellari O, Arduino I, Cutrignelli A, Lopedota AA, Mele A, Denora N, De Luca A. β-Dystroglycan Restoration and Pathology Progression in the Dystrophic mdx Mouse: Outcome and Implication of a Clinically Oriented Study with a Novel Oral Dasatinib Formulation. Biomolecules 2021; 11:1742. [PMID: 34827740 PMCID: PMC8615430 DOI: 10.3390/biom11111742] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/19/2021] [Accepted: 11/21/2021] [Indexed: 01/17/2023] Open
Abstract
ROS-activated cSrc tyrosine kinase (TK) promotes the degradation of β-dystroglycan (β-DG), a dystrophin-glycoprotein complex component, which may reinforce damaging signals in Duchenne muscular dystrophy (DMD). Therefore, cSrc-TK represents a promising therapeutic target. In mdx mice, a 4-week subcutaneous treatment with dasatinib (DAS), a pan-Src-TKs inhibitor approved as anti-leukemic agent, increased muscle β-DG, with minimal amelioration of morphofunctional indices. To address possible dose/pharmacokinetic (PK) issues, a new oral DAS/hydroxypropyl(HP)-β-cyclodextrin(CD) complex was developed and chronically administered to mdx mice. The aim was to better assess the role of β-DG in pathology progression, meanwhile confirming DAS mechanism of action over the long-term, along with its efficacy and tolerability. The 4-week old mdx mice underwent a 12-week treatment with DAS/HP-β-CD10% dissolved in drinking water, at 10 or 20 mg/kg/day. The outcome was evaluated via in vivo/ex vivo disease-relevant readouts. Oral DAS/HP-β-CD efficiently distributed in mdx mice plasma and tissues in a dose-related fashion. The new DAS formulation confirmed its main upstream mechanism of action, by reducing β-DG phosphorylation and restoring its levels dose-dependently in both diaphragm and gastrocnemius muscle. However, it modestly improved in vivo neuromuscular function, ex vivo muscle force, and histopathology, although the partial recovery of muscle elasticity and the decrease of CK and LDH plasma levels suggest an increased sarcolemmal stability of dystrophic muscles. Our clinically oriented study supports the interest in this new, pediatric-suitable DAS formulation for proper exposure and safety and for enhancing β-DG expression. This latter mechanism is, however, not sufficient by itself to impact on pathology progression. In-depth analyses will be dedicated to elucidating the mechanism limiting DAS effectiveness in dystrophic settings, meanwhile assessing its potential synergy with dystrophin-based molecular therapies.
Collapse
Affiliation(s)
- Paola Mantuano
- Section of Pharmacology, Department of Pharmacy—Drug Sciences, Orabona 4—Campus, University of Bari “Aldo Moro”, 70125 Bari, Italy; (P.M.); (B.B.); (E.C.); (M.D.B.); (S.C.); (F.S.); (O.C.); (A.M.)
| | - Brigida Boccanegra
- Section of Pharmacology, Department of Pharmacy—Drug Sciences, Orabona 4—Campus, University of Bari “Aldo Moro”, 70125 Bari, Italy; (P.M.); (B.B.); (E.C.); (M.D.B.); (S.C.); (F.S.); (O.C.); (A.M.)
| | - Elena Conte
- Section of Pharmacology, Department of Pharmacy—Drug Sciences, Orabona 4—Campus, University of Bari “Aldo Moro”, 70125 Bari, Italy; (P.M.); (B.B.); (E.C.); (M.D.B.); (S.C.); (F.S.); (O.C.); (A.M.)
| | - Michela De Bellis
- Section of Pharmacology, Department of Pharmacy—Drug Sciences, Orabona 4—Campus, University of Bari “Aldo Moro”, 70125 Bari, Italy; (P.M.); (B.B.); (E.C.); (M.D.B.); (S.C.); (F.S.); (O.C.); (A.M.)
| | - Santa Cirmi
- Section of Pharmacology, Department of Pharmacy—Drug Sciences, Orabona 4—Campus, University of Bari “Aldo Moro”, 70125 Bari, Italy; (P.M.); (B.B.); (E.C.); (M.D.B.); (S.C.); (F.S.); (O.C.); (A.M.)
| | - Francesca Sanarica
- Section of Pharmacology, Department of Pharmacy—Drug Sciences, Orabona 4—Campus, University of Bari “Aldo Moro”, 70125 Bari, Italy; (P.M.); (B.B.); (E.C.); (M.D.B.); (S.C.); (F.S.); (O.C.); (A.M.)
| | - Ornella Cappellari
- Section of Pharmacology, Department of Pharmacy—Drug Sciences, Orabona 4—Campus, University of Bari “Aldo Moro”, 70125 Bari, Italy; (P.M.); (B.B.); (E.C.); (M.D.B.); (S.C.); (F.S.); (O.C.); (A.M.)
| | - Ilaria Arduino
- Section of Pharmaceutical Technologies, Department of Pharmacy—Drug Sciences, Orabona 4—Campus, University of Bari “Aldo Moro”, 70125 Bari, Italy; (I.A.); (A.C.); (A.A.L.); (N.D.)
| | - Annalisa Cutrignelli
- Section of Pharmaceutical Technologies, Department of Pharmacy—Drug Sciences, Orabona 4—Campus, University of Bari “Aldo Moro”, 70125 Bari, Italy; (I.A.); (A.C.); (A.A.L.); (N.D.)
| | - Angela Assunta Lopedota
- Section of Pharmaceutical Technologies, Department of Pharmacy—Drug Sciences, Orabona 4—Campus, University of Bari “Aldo Moro”, 70125 Bari, Italy; (I.A.); (A.C.); (A.A.L.); (N.D.)
| | - Antonietta Mele
- Section of Pharmacology, Department of Pharmacy—Drug Sciences, Orabona 4—Campus, University of Bari “Aldo Moro”, 70125 Bari, Italy; (P.M.); (B.B.); (E.C.); (M.D.B.); (S.C.); (F.S.); (O.C.); (A.M.)
| | - Nunzio Denora
- Section of Pharmaceutical Technologies, Department of Pharmacy—Drug Sciences, Orabona 4—Campus, University of Bari “Aldo Moro”, 70125 Bari, Italy; (I.A.); (A.C.); (A.A.L.); (N.D.)
| | - Annamaria De Luca
- Section of Pharmacology, Department of Pharmacy—Drug Sciences, Orabona 4—Campus, University of Bari “Aldo Moro”, 70125 Bari, Italy; (P.M.); (B.B.); (E.C.); (M.D.B.); (S.C.); (F.S.); (O.C.); (A.M.)
| |
Collapse
|
15
|
Oliveira TS, Santos AT, Andrade CBV, Silva JD, Blanco N, Rocha NDN, Woyames J, Silva PL, Rocco PRM, da-Silva WS, Ortiga-Carvalho TM, Bloise FF. Sepsis Disrupts Mitochondrial Function and Diaphragm Morphology. Front Physiol 2021; 12:704044. [PMID: 34557108 PMCID: PMC8452856 DOI: 10.3389/fphys.2021.704044] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 08/02/2021] [Indexed: 12/12/2022] Open
Abstract
Background The diaphragm is the primary muscle of inspiration, and its dysfunction is frequent during sepsis. However, the mechanisms associated with sepsis and diaphragm dysfunction are not well understood. In this study, we evaluated the morphophysiological changes of the mitochondrial diaphragm 5 days after sepsis induction. Methods Male C57Bl/6 mice were divided into two groups, namely, cecal ligation and puncture (CLP, n = 26) and sham-operated (n = 19). Mice received antibiotic treatment 8 h after surgery and then every 24 h until 5 days after surgery when mice were euthanized and the diaphragms were collected. Also, diaphragm function was evaluated in vivo by ultrasound 120 h after CLP. The tissue fiber profile was evaluated by the expression of myosin heavy chain and SERCA gene by qPCR and myosin protein by using Western blot. The Myod1 and Myog expressions were evaluated by using qPCR. Diaphragm ultrastructure was assessed by electron microscopy, and mitochondrial physiology was investigated by high-resolution respirometry, Western blot, and qPCR. Results Cecal ligation and puncture mice developed moderated sepsis, with a 74% survivor rate at 120 h. The diaphragm mass did not change in CLP mice compared with control, but we observed sarcomeric disorganization and increased muscle thickness (38%) during inspiration and expiration (21%). Septic diaphragm showed a reduction in fiber myosin type I and IIb mRNA expression by 50% but an increase in MyHC I and IIb protein levels compared with the sham mice. Total and healthy mitochondria were reduced by 30% in septic mice, which may be associated with a 50% decrease in Ppargc1a (encoding PGC1a) and Opa1 (mitochondria fusion marker) expressions in the septic diaphragm. The small and non-functional OPA1 isoform also increased 70% in the septic diaphragm. These data suggest an imbalance in mitochondrial function. In fact, we observed downregulation of all respiratory chain complexes mRNA expression, decreased complex III and IV protein levels, and reduced oxygen consumption associated with ADP phosphorylation (36%) in CLP mice. Additionally, the septic diaphragm increased proton leak and downregulated Sod2 by 70%. Conclusion The current model of sepsis induced diaphragm morphological changes, increased mitochondrial damage, and induced functional impairment. Thus, diaphragm damage during sepsis seems to be associated with mitochondrial dysfunction.
Collapse
Affiliation(s)
- Thamires Siqueira Oliveira
- Laboratory of Translational Endocrinology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Anderson Teixeira Santos
- Laboratory of Metabolic Adaptations, Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cherley Borba Vieira Andrade
- Laboratory of Translational Endocrinology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Johnatas Dutra Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Natália Blanco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Nazareth de Novaes Rocha
- Physiology and Pharmacology Department, Biomedical Institute, Fluminense Federal University, Niteroi, Brazil
| | - Juliana Woyames
- Laboratory of Molecular Endocrinology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro Leme Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patricia Rieken Macedo Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Wagner Seixas da-Silva
- Laboratory of Metabolic Adaptations, Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tânia Maria Ortiga-Carvalho
- Laboratory of Translational Endocrinology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Flavia Fonseca Bloise
- Laboratory of Translational Endocrinology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
16
|
Scala R, Maqoud F, Zizzo N, Passantino G, Mele A, Camerino GM, McClenaghan C, Harter TM, Nichols CG, Tricarico D. Consequences of SUR2[A478V] Mutation in Skeletal Muscle of Murine Model of Cantu Syndrome. Cells 2021; 10:cells10071791. [PMID: 34359961 PMCID: PMC8307364 DOI: 10.3390/cells10071791] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 12/18/2022] Open
Abstract
(1) Background: Cantu syndrome (CS) arises from gain-of-function (GOF) mutations in the ABCC9 and KCNJ8 genes, which encode ATP-sensitive K+ (KATP) channel subunits SUR2 and Kir6.1, respectively. Most CS patients have mutations in SUR2, the major component of skeletal muscle KATP, but the consequences of SUR2 GOF in skeletal muscle are unknown. (2) Methods: We performed in vivo and ex vivo characterization of skeletal muscle in heterozygous SUR2[A478V] (SUR2wt/AV) and homozygous SUR2[A478V] (SUR2AV/AV) CS mice. (3) Results: In SUR2wt/AV and SUR2AV/AV mice, forelimb strength and diaphragm amplitude movement were reduced; muscle echodensity was enhanced. KATP channel currents recorded in Flexor digitorum brevis fibers showed reduced MgATP-sensitivity in SUR2wt/AV, dramatically so in SUR2AV/AV mice; IC50 for MgATP inhibition of KATP currents were 1.9 ± 0.5 × 10−5 M in SUR2wt/AV and 8.6 ± 0.4 × 10−6 M in WT mice and was not measurable in SUR2AV/AV. A slight rightward shift of sensitivity to inhibition by glibenclamide was detected in SUR2AV/AV mice. Histopathological and qPCR analysis revealed atrophy of soleus and tibialis anterior muscles and up-regulation of atrogin-1 and MuRF1 mRNA in CS mice. (4) Conclusions: SUR2[A478V] “knock-in” mutation in mice impairs KATP channel modulation by MgATP, markedly so in SUR2AV/AV, with atrophy and non-inflammatory edema in different skeletal muscle phenotypes.
Collapse
Affiliation(s)
- Rosa Scala
- Section of Pharmacology, Department of Pharmacy-Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (R.S.); (F.M.); (A.M.); (G.M.C.)
| | - Fatima Maqoud
- Section of Pharmacology, Department of Pharmacy-Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (R.S.); (F.M.); (A.M.); (G.M.C.)
| | - Nicola Zizzo
- Section of Veterinary Pathology and Comparative Oncology, Department of Veterinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (N.Z.); (G.P.)
| | - Giuseppe Passantino
- Section of Veterinary Pathology and Comparative Oncology, Department of Veterinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy; (N.Z.); (G.P.)
| | - Antonietta Mele
- Section of Pharmacology, Department of Pharmacy-Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (R.S.); (F.M.); (A.M.); (G.M.C.)
| | - Giulia Maria Camerino
- Section of Pharmacology, Department of Pharmacy-Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (R.S.); (F.M.); (A.M.); (G.M.C.)
| | - Conor McClenaghan
- Center for the Investigation of Membrane Excitability Diseases, Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110-1010, USA; (C.M.); (T.M.H.); (C.G.N.)
| | - Theresa M. Harter
- Center for the Investigation of Membrane Excitability Diseases, Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110-1010, USA; (C.M.); (T.M.H.); (C.G.N.)
| | - Colin G. Nichols
- Center for the Investigation of Membrane Excitability Diseases, Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110-1010, USA; (C.M.); (T.M.H.); (C.G.N.)
| | - Domenico Tricarico
- Section of Pharmacology, Department of Pharmacy-Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (R.S.); (F.M.); (A.M.); (G.M.C.)
- Correspondence:
| |
Collapse
|
17
|
Xia Q, Huang X, Huang J, Zheng Y, March ME, Li J, Wei Y. The Role of Autophagy in Skeletal Muscle Diseases. Front Physiol 2021; 12:638983. [PMID: 33841177 PMCID: PMC8027491 DOI: 10.3389/fphys.2021.638983] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
Skeletal muscle is the most abundant type of tissue in human body, being involved in diverse activities and maintaining a finely tuned metabolic balance. Autophagy, characterized by the autophagosome–lysosome system with the involvement of evolutionarily conserved autophagy-related genes, is an important catabolic process and plays an essential role in energy generation and consumption, as well as substance turnover processes in skeletal muscles. Autophagy in skeletal muscles is finely tuned under the tight regulation of diverse signaling pathways, and the autophagy pathway has cross-talk with other pathways to form feedback loops under physiological conditions and metabolic stress. Altered autophagy activity characterized by either increased formation of autophagosomes or inhibition of lysosome-autophagosome fusion can lead to pathological cascades, and mutations in autophagy genes and deregulation of autophagy pathways have been identified as one of the major causes for a variety of skeleton muscle disorders. The advancement of multi-omics techniques enables further understanding of the molecular and biochemical mechanisms underlying the role of autophagy in skeletal muscle disorders, which may yield novel therapeutic targets for these disorders.
Collapse
Affiliation(s)
- Qianghua Xia
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Xubo Huang
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Jieru Huang
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Yongfeng Zheng
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Michael E March
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Jin Li
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Yongjie Wei
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
18
|
Mele A, Mantuano P, Fonzino A, Rana F, Capogrosso RF, Sanarica F, Rolland JF, Cappellari O, De Luca A. Ultrasonography validation for early alteration of diaphragm echodensity and function in the mdx mouse model of Duchenne muscular dystrophy. PLoS One 2021; 16:e0245397. [PMID: 33434240 PMCID: PMC7802948 DOI: 10.1371/journal.pone.0245397] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 12/29/2020] [Indexed: 12/26/2022] Open
Abstract
The mdx mouse model of Duchenne muscular dystrophy is characterized by functional and structural alterations of the diaphragm since early stages of pathology, closely resembling patients' condition. In recent years, ultrasonography has been proposed as a useful longitudinal non-invasive technique to assess mdx diaphragm dysfunction and evaluate drug efficacy over time. To date, only a few preclinical studies have been conducted. Therefore, an independent validation of this method by different laboratories is needed to increase results reliability and reduce biases. Here, we performed diaphragm ultrasonography in 3- and 6-month-old mdx mice, the preferred age-window for pharmacology studies. The alteration of diaphragm function over time was measured as diaphragm ultrasound movement amplitude. At the same time points, a first-time assessment of diaphragm echodensity was performed, as an experimental index of progressive loss of contractile tissue. A parallel evaluation of other in vivo and ex vivo dystrophy-relevant readouts was carried out. Both 3- and 6-month-old mdx mice showed a significant decrease in diaphragm amplitude compared to wild type (wt) mice. This index was well-correlated either with in vivo running performance or ex vivo isometric tetanic force of isolated diaphragm. In addition, diaphragms from 6-month-old dystrophic mice were also highly susceptible to eccentric contraction ex vivo. Importantly, we disclosed an age-dependent increase in echodensity in mdx mice not observed in wt animals, which was independent from abdominal wall thickness. This was accompanied by a notable increase of pro-fibrotic TGF-β1 levels in the mdx diaphragm and of non-muscle tissue amount in diaphragm sections stained by hematoxylin & eosin. Our findings corroborate the usefulness of diaphragm ultrasonography in preclinical drug studies as a powerful tool to monitor mdx pathology progression since early stages.
Collapse
Affiliation(s)
- Antonietta Mele
- Section of Pharmacology, Department of Pharmacy—Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Paola Mantuano
- Section of Pharmacology, Department of Pharmacy—Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Adriano Fonzino
- Section of Pharmacology, Department of Pharmacy—Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Francesco Rana
- Section of Pharmacology, Department of Pharmacy—Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | | | - Francesca Sanarica
- Section of Pharmacology, Department of Pharmacy—Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | | | - Ornella Cappellari
- Section of Pharmacology, Department of Pharmacy—Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Annamaria De Luca
- Section of Pharmacology, Department of Pharmacy—Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
19
|
Fayssoil A, Michel-Flutot P, Lofaso F, Carlier R, El Hajjam M, Vinit S, Mansart A. Analysis of inspiratory and expiratory muscles using ultrasound in rats: A reproducible and non-invasive tool to study respiratory function. Respir Physiol Neurobiol 2020; 285:103596. [PMID: 33301966 DOI: 10.1016/j.resp.2020.103596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 11/09/2020] [Accepted: 12/06/2020] [Indexed: 12/18/2022]
Abstract
Ultrasound imaging is a non-invasive technique to assess organ function. Its potential application in rodents to evaluate respiratory function remains poorly investigated. We aimed to assess and validate ultrasound technique in rats to analyze inspiratory and expiratory muscles. We measured respiratory parameters to provide normal eupneic values. Histological studies and plethysmography were used to validate the technique and assess the physiological implications. A linear relationship was observed between ultrasound and histological data for diaphragm and rectus abdominis (RA) measurement. The tidal volume was significantly correlated with the right + left RA area (r = 0.76, p < 0.001), and the rapid shallow breathing index was significantly and inversely correlated with the right + left RA area (r=-0.53, p < 0.05). In the supine position, the right and left diaphragm expiratory thickness were not associated with tidal volume obtained in the physiological position. Ultrasound imaging is highly accurate and reproducible to assess and follow up diaphragm and RA structure and function in rats.
Collapse
Affiliation(s)
- Abdallah Fayssoil
- University of Paris-Saclay, UVSQ, INSERM U1179, END-ICAP, Montigny-le-Bretonneux, France; Raymond Poincaré Hospital, APHP, Garches, France
| | - Pauline Michel-Flutot
- University of Paris-Saclay, UVSQ, INSERM U1179, END-ICAP, Montigny-le-Bretonneux, France
| | - Frédéric Lofaso
- University of Paris-Saclay, UVSQ, INSERM U1179, END-ICAP, Montigny-le-Bretonneux, France; Raymond Poincaré Hospital, APHP, Garches, France
| | - Robert Carlier
- University of Paris-Saclay, UVSQ, INSERM U1179, END-ICAP, Montigny-le-Bretonneux, France; APHP, GH Université Paris Saclay, DMU Smart Imaging, Raymond Poincaré Teaching Hospital, Garches, France
| | - Mostafa El Hajjam
- Radiology Department, Ambroise Paré Hospital, APHP, Boulogne-Billancourt, France
| | - Stéphane Vinit
- University of Paris-Saclay, UVSQ, INSERM U1179, END-ICAP, Montigny-le-Bretonneux, France
| | - Arnaud Mansart
- University of Paris-Saclay, UVSQ, INSERM U1173, 2I, Montigny-le-Bretonneux, France.
| |
Collapse
|
20
|
Scala R, Maqoud F, Zizzo N, Mele A, Camerino GM, Zito FA, Ranieri G, McClenaghan C, Harter TM, Nichols CG, Tricarico D. Pathophysiological Consequences of KATP Channel Overactivity and Pharmacological Response to Glibenclamide in Skeletal Muscle of a Murine Model of Cantù Syndrome. Front Pharmacol 2020; 11:604885. [PMID: 33329006 PMCID: PMC7734337 DOI: 10.3389/fphar.2020.604885] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/03/2020] [Indexed: 12/11/2022] Open
Abstract
Cantù syndrome (CS) arises from mutations in ABCC9 and KCNJ8 genes that lead to gain of function (GOF) of ATP-sensitive potassium (KATP) channels containing SUR2A and Kir6.1 subunits, respectively, of KATP channels. Pathological consequences of CS have been reported for cardiac and smooth muscle cells but consequences in skeletal muscle are unknown. Children with CS show muscle hypotonia and adult manifest fatigability. We analyzed muscle properties of Kir6.1[V65M] CS mice, by measurements of forelimb strength and ultrasonography of hind-limb muscles, as well as assessing KATP channel properties in native Flexor digitorum brevis (FDB) and Soleus (SOL) fibers by the patch-clamp technique in parallel with histopathological, immunohistochemical and Polymerase Chain Reaction (PCR) analysis. Forelimb strength was lower in Kir6.1wt/VM mice than in WT mice. Also, a significant enhancement of echodensity was observed in hind-limb muscles of Kir6.1wt/VM mice relative to WT, suggesting the presence of fibrous tissue. There was a higher KATP channel current amplitude in Kir6.1wt/VM FDB fibers relative to WT and a reduced response to glibenclamide. The IC50 of glibenclamide to block KATP channels in FDB fibers was 1.3 ± 0.2 × 10−7 M in WT and 1.2 ± 0.1 × 10−6 M in Kir6.1wt/VM mice, respectively; and it was 1.2 ± 0.4 × 10−7 M in SOL WT fibers but not measurable in Kir6.1wt/VM fibers. The sensitivity of the KATP channel to MgATP was not modified in Kir6.1wt/VM fibers. Histopathological/immunohistochemical analysis of SOL revealed degeneration plus regressive-necrotic lesions with regeneration, and up-regulation of Atrogin-1, MuRF1, and BNIP3 mRNA/proteins in Kir6.1wt/VM mice. Kir6.1wt/VM mutation in skeletal muscle leads to changes of the KATP channel response to glibenclamide in FDB and SOL fibers, and it is associated with histopathological and gene expression changes in slow-twitch muscle, suggesting marked atrophy and autophagy.
Collapse
Affiliation(s)
- Rosa Scala
- Section of Pharmacology, Department of Pharmacy-Pharmaceutical Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Fatima Maqoud
- Section of Pharmacology, Department of Pharmacy-Pharmaceutical Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Nicola Zizzo
- Section of Veterinary Pathology and Comparative Oncology, Department of Veterinary Medicine, University of Bari "Aldo Moro", Valenzano, Italy
| | - Antonietta Mele
- Section of Pharmacology, Department of Pharmacy-Pharmaceutical Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Giulia Maria Camerino
- Section of Pharmacology, Department of Pharmacy-Pharmaceutical Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Francesco Alfredo Zito
- Interventional and Medical Oncology Unit, Department of Pathology National Cancer Research Centre, IRCCS Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Girolamo Ranieri
- Interventional and Medical Oncology Unit, Department of Pathology National Cancer Research Centre, IRCCS Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Conor McClenaghan
- Department of Cell Biology and Physiology, and Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO, United States
| | - Theresa M Harter
- Department of Cell Biology and Physiology, and Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO, United States
| | - Colin G Nichols
- Department of Cell Biology and Physiology, and Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO, United States
| | - Domenico Tricarico
- Section of Pharmacology, Department of Pharmacy-Pharmaceutical Sciences, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
21
|
Rodrigues GC, Rocha NN, Maia LDA, Melo I, Simões AC, Antunes MA, Bloise FF, Woyames J, da Silva WS, Capelozzi VL, Abela GP, Ball L, Pelosi P, Rocco PRM, Silva PL. Impact of experimental obesity on diaphragm structure, function, and bioenergetics. J Appl Physiol (1985) 2020; 129:1062-1074. [PMID: 32909923 DOI: 10.1152/japplphysiol.00262.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Obesity is associated with bioenergetic dysfunction of peripheral muscles; however, little is known regarding the impact of obesity on the diaphragm. We hypothesized that obesity would be associated with diaphragm dysfunction attributable to mitochondrial oxygen consumption and structural and ultrastructural changes. Wistar rat litters were culled to 3 pups to induce early postnatal overfeeding and consequent obesity. Control animals were obtained from unculled litters. From postnatal day 150, diaphragm ultrasound, computed tomography, high-resolution respirometry, immunohistochemical, biomolecular, and ultrastructural histological analyses were performed. The diaphragms of obese animals, compared with those of controls, presented changes in morphology as increased thickening fraction, diaphragm excursion, and diaphragm dome height, as well as increased mitochondrial respiratory capacity coupled to ATP synthesis and maximal respiratory capacity. Fatty acid synthase gene expression was also higher in obese animals, suggesting a source of energy for the respiratory chain. Myosin heavy chain-IIA was increased, indicating shift from glycolytic toward oxidative muscle fiber profile. Diaphragm tissue also exhibited ultrastructural changes, such as compact, round, and swollen mitochondria with fainter cristae and more lysosomal bodies. Dynamin-1 expression in the diaphragm was reduced in obese rats, suggesting decreased mitochondrial fission. Furthermore, gene expressions of peroxisome γ proliferator-activated receptor coactivator-1α and superoxide dismutase-2 were lower in obese animals than in controls, which may indicate a predisposition to oxidative injury. In conclusion, in the obesity model used herein, muscle fiber phenotype was altered in a manner likely associated with increased mitochondrial respiratory capability, suggesting respiratory adaptation to increased metabolic demand.NEW & NOTEWORTHY Obesity has been associated with peripheral muscle dysfunction; however, little is known about its impact on the diaphragm. In the current study, we found high oxygen consumption in diaphragm tissue and changes in muscle fiber phenotypes toward a more oxidative profile in experimental obesity.
Collapse
Affiliation(s)
- Gisele C Rodrigues
- Laboratory of Pulmonary Investigation, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Nazareth N Rocha
- Laboratory of Pulmonary Investigation, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Fluminense Federal University, Niteroi, Brazil
| | - Ligia de A Maia
- Laboratory of Pulmonary Investigation, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Isabella Melo
- Laboratory of Pulmonary Investigation, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Carolina Simões
- Laboratory of Pulmonary Investigation, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mariana A Antunes
- Laboratory of Pulmonary Investigation, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Flavia F Bloise
- Laboratory of Translational Endocrinology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Juliana Woyames
- Laboratory of Molecular Endocrinology, Institute of Biophysics Carlos Chagas Filho, Rio de Janeiro, Brazil
| | - Wagner S da Silva
- Laboratory of Metabolic Adaptations, Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vera L Capelozzi
- Laboratory of Pulmonary Genomics, Department of Pathology, University of São Paulo, São Paulo, Brazil
| | - Glenn Paul Abela
- Anesthesiology and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Lorenzo Ball
- Anesthesiology and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy.,Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - Paolo Pelosi
- Anesthesiology and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy.,Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro L Silva
- Laboratory of Pulmonary Investigation, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
22
|
Cabrera-Aguilera I, Falcones B, Calvo-Fernández A, Benito B, Barreiro E, Gea J, Farré R, Almendros I, Farré N. The conventional isoproterenol-induced heart failure model does not consistently mimic the diaphragmatic dysfunction observed in patients. PLoS One 2020; 15:e0236923. [PMID: 32730329 PMCID: PMC7392250 DOI: 10.1371/journal.pone.0236923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/16/2020] [Indexed: 11/25/2022] Open
Abstract
Heart failure (HF) impairs diaphragm function. Animal models realistically mimicking HF should feature both the cardiac alterations and the diaphragmatic dysfunction characterizing this disease. The isoproterenol-induced HF model is widely used, but whether it presents diaphragmatic dysfunction is unknown. However, indirect data from research in other fields suggest that isoproterenol could increase diaphragm function. The aim of this study was to test the hypothesis that the widespread rodent model of isoproterenol-induced HF results in increased diaphragmatic contractility. Forty C57BL/6J male mice were randomized into 2 groups: HF and healthy controls. After 30 days of isoproterenol infusion to establish HF, in vivo diaphragmatic excursion and ex vivo isolated diaphragm contractibility were measured. As compared with healthy controls, mice with isoproterenol-induced HF showed the expected changes in structural and functional echocardiographic parameters and lung edema. isoproterenol-induced HF increased in vivo diaphragm excursion (by ≈30%, p<0.01) and increased by ≈50% both ex vivo peak specific force (p<0.05) and tetanic force (p<0.05) at almost all 10–100 Hz frequencies (p<0.05), with reduced fatigue resistance (p<0.01) when compared with healthy controls. Expression of myosin genes encoding the main muscle fiber types revealed that Myh4 was higher in isoproterenol-induced HF than in healthy controls (p<0.05), suggesting greater distribution of type IIb fibers. These results show that the conventional isoproterenol-induced HF model increases diaphragm contraction, a finding contrary to what is observed in patients with HF. Therefore, this specific model seems limited for translational an integrative HF research, especially when cardio-respiratory interactions are investigated.
Collapse
Affiliation(s)
- Ignacio Cabrera-Aguilera
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
- Heart Diseases Biomedical Research Group, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Department of Human Movement Sciences, School of Kinesiology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
| | - Bryan Falcones
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Alicia Calvo-Fernández
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- Heart Failure Unit, Department of Cardiology, Hospital del Mar, Barcelona, Spain
| | - Begoña Benito
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- Cardiology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain
| | - Esther Barreiro
- Respiratory Department, Hospital del Mar and Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
- Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra, Barcelona, Spain
- CIBER de Enfermedades Respiratorias, Madrid, Spain
| | - Joaquim Gea
- Respiratory Department, Hospital del Mar and Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
- Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra, Barcelona, Spain
- CIBER de Enfermedades Respiratorias, Madrid, Spain
| | - Ramon Farré
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
- CIBER de Enfermedades Respiratorias, Madrid, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Isaac Almendros
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
- CIBER de Enfermedades Respiratorias, Madrid, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Núria Farré
- Heart Diseases Biomedical Research Group, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- Heart Failure Unit, Department of Cardiology, Hospital del Mar, Barcelona, Spain
| |
Collapse
|
23
|
Himelman E, Lillo MA, Nouet J, Gonzalez JP, Zhao Q, Xie LH, Li H, Liu T, Wehrens XH, Lampe PD, Fishman GI, Shirokova N, Contreras JE, Fraidenraich D. Prevention of connexin-43 remodeling protects against Duchenne muscular dystrophy cardiomyopathy. J Clin Invest 2020; 130:1713-1727. [PMID: 31910160 PMCID: PMC7108916 DOI: 10.1172/jci128190] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 12/18/2019] [Indexed: 12/11/2022] Open
Abstract
Aberrant expression of the cardiac gap junction protein connexin-43 (Cx43) has been suggested as playing a role in the development of cardiac disease in the mdx mouse model of Duchenne muscular dystrophy (DMD); however, a mechanistic understanding of this association is lacking. Here, we identified a reduction of phosphorylation of Cx43 serines S325/S328/S330 in human and mouse DMD hearts. We hypothesized that hypophosphorylation of Cx43 serine-triplet triggers pathological Cx43 redistribution to the lateral sides of cardiomyocytes (remodeling). Therefore, we generated knockin mdx mice in which the Cx43 serine-triplet was replaced with either phospho-mimicking glutamic acids (mdxS3E) or nonphosphorylatable alanines (mdxS3A). The mdxS3E, but not mdxS3A, mice were resistant to Cx43 remodeling, with a corresponding reduction of Cx43 hemichannel activity. MdxS3E cardiomyocytes displayed improved intracellular Ca2+ signaling and a reduction of NADPH oxidase 2 (NOX2)/ROS production. Furthermore, mdxS3E mice were protected against inducible arrhythmias, related lethality, and the development of cardiomyopathy. Inhibition of microtubule polymerization by colchicine reduced both NOX2/ROS and oxidized CaMKII, increased S325/S328/S330 phosphorylation, and prevented Cx43 remodeling in mdx hearts. Together, these results demonstrate a mechanism of dystrophic Cx43 remodeling and suggest that targeting Cx43 may be a therapeutic strategy for preventing heart dysfunction and arrhythmias in DMD patients.
Collapse
Affiliation(s)
| | | | - Julie Nouet
- Department of Cell Biology and Molecular Medicine
| | | | - Qingshi Zhao
- Department of Cell Biology and Molecular Medicine
| | - Lai-Hua Xie
- Department of Cell Biology and Molecular Medicine
| | - Hong Li
- Center for Advanced Proteomics Research, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, New Jersey, USA
| | - Tong Liu
- Center for Advanced Proteomics Research, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, New Jersey, USA
| | - Xander H.T. Wehrens
- Department of Molecular Physiology and Biophysics, Medicine, Neuroscience, and Pediatrics, Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas, USA
| | - Paul D. Lampe
- Fred Hutchinson Cancer Research Center, Translational Research Program, Public Health Sciences Division, Seattle, Washington, USA
| | - Glenn I. Fishman
- Leon H. Charney Division of Cardiology, New York University Langone Health, New York, New York, USA
| | | | | | | |
Collapse
|
24
|
Lim SY, Lim G, Lee YJ, Cho YJ, Park JS, Yoon HI, Lee JH, Lee CT. Ultrasound Assessment Of Diaphragmatic Function During Acute Exacerbation Of Chronic Obstructive Pulmonary Disease: A Pilot Study. Int J Chron Obstruct Pulmon Dis 2019; 14:2479-2484. [PMID: 31806957 PMCID: PMC6844220 DOI: 10.2147/copd.s214716] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 10/21/2019] [Indexed: 01/10/2023] Open
Abstract
Purpose Impairment of diaphragmatic function is one of the main pathophysiological mechanisms of chronic obstructive pulmonary disease (COPD) and is known to be related to acute exacerbation. Ultrasonography (US) allows for a simple, non-invasive assessment of diaphragm kinetics. The purpose of this study was to investigate the changes in diaphragmatic function during acute exacerbation of COPD, by US. Methods This single-center, prospective study included patients with acute exacerbation of COPD symptoms. US measurements were performed within 72 hrs after exacerbation and after improvement of symptoms. Diaphragmatic excursion and its thickening fraction (TF) were measured as markers of diaphragmatic function. TF was calculated as (thickness at end inspiration - thickness at end expiration)/thickness at end expiration. Results Ten patients were enrolled. All patients were male, and the mean age was 79.8 years. The TF of the right diaphragm showed a significant increase from the initial to the follow-up values (80.1 ± 104.9 mm vs. 159.5 ± 224.6 mm, p = 0.011); however, the diaphragmatic excursion did not vary significantly between the initial and follow-up values (22 ± 6 mm vs 23 ±12 mm). The change in excursion between the stable and exacerbation periods was positively correlated with time to the next exacerbation and negatively correlated with the time taken to recover from the exacerbation. Conclusion These data support the possibility that a defect in diaphragm thickening is related to acute exacerbation of COPD.
Collapse
Affiliation(s)
- Sung Yoon Lim
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Gajin Lim
- Division of Pulmonology Medicine, Department of Internal Medicine, Cheongju Hana Hospital, Cheongju-si, Korea
| | - Yeon Joo Lee
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Young Jae Cho
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Jong Sun Park
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Ho Il Yoon
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Division of Pulmonology Medicine, Department of Internal Medicine, Cheongju Hana Hospital, Cheongju-si, Korea
| | - Jae Ho Lee
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Division of Pulmonology Medicine, Department of Internal Medicine, Cheongju Hana Hospital, Cheongju-si, Korea
| | - Choon-Taek Lee
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
25
|
Buras ED, Converso-Baran K, Davis CS, Akama T, Hikage F, Michele DE, Brooks SV, Chun TH. Fibro-Adipogenic Remodeling of the Diaphragm in Obesity-Associated Respiratory Dysfunction. Diabetes 2019; 68:45-56. [PMID: 30361289 PMCID: PMC6302533 DOI: 10.2337/db18-0209] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 10/03/2018] [Indexed: 12/19/2022]
Abstract
Respiratory dysfunction is a common complication of obesity, conferring cardiovascular morbidity and increased mortality and often necessitating mechanical ventilatory support. While impaired lung expansion in the setting of increased adipose mass and reduced central response to hypercapnia have been implicated as pathophysiological drivers, the impact of obesity on respiratory muscles-in particular, the diaphragm-has not been investigated in detail. Here, we demonstrate that chronic high-fat diet (HFD) feeding impairs diaphragm muscle function, as assessed in vivo by ultrasonography and ex vivo by measurement of contractile force. During an HFD time course, progressive adipose tissue expansion and collagen deposition within the diaphragm parallel contractile deficits. Moreover, intradiaphragmatic fibro-adipogenic progenitors (FAPs) proliferate with long-term HFD feeding while giving rise to adipocytes and type I collagen-depositing fibroblasts. Thrombospondin 1 (THBS1), a circulating adipokine, increases with obesity and induces FAP proliferation. These findings suggest a novel role for FAP-mediated fibro-adipogenic diaphragm remodeling in obesity-associated respiratory dysfunction.
Collapse
Affiliation(s)
- Eric D Buras
- Division of Metabolism Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI
| | - Kimber Converso-Baran
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI
| | - Carol S Davis
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI
| | - Takeshi Akama
- Division of Metabolism Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI
| | - Fumihito Hikage
- Division of Metabolism Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI
| | - Daniel E Michele
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI
| | - Susan V Brooks
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI
| | - Tae-Hwa Chun
- Division of Metabolism Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI
| |
Collapse
|
26
|
Burns DP, Canavan L, Rowland J, O'Flaherty R, Brannock M, Drummond SE, O'Malley D, Edge D, O'Halloran KD. Recovery of respiratory function in mdx mice co-treated with neutralizing interleukin-6 receptor antibodies and urocortin-2. J Physiol 2018; 596:5175-5197. [PMID: 30160301 PMCID: PMC6209753 DOI: 10.1113/jp276954] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 08/22/2018] [Indexed: 12/17/2022] Open
Abstract
KEY POINTS Impaired ventilatory capacity and diaphragm muscle weakness are prominent features of Duchenne muscular dystrophy, with strong evidence of attendant systemic and muscle inflammation. We performed a 2-week intervention in young wild-type and mdx mice, consisting of either injection of saline or co-administration of a neutralizing interleukin-6 receptor antibody (xIL-6R) and urocortin-2 (Ucn2), a corticotrophin releasing factor receptor 2 agonist. We examined breathing and diaphragm muscle form and function. Breathing and diaphragm muscle functional deficits are improved following xIL-6R and Ucn2 co-treatment in mdx mice. The functional improvements were associated with a preservation of mdx diaphragm muscle myosin heavy chain IIx fibre complement. The concentration of the pro-inflammatory cytokine interleukin-1β was reduced and the concentration of the anti-inflammatory cytokine interleukin-10 was increased in mdx diaphragm following drug co-treatment. Our novel findings may have implications for the development of pharmacotherapies for the dystrophinopathies with relevance for respiratory muscle performance and breathing. ABSTRACT The mdx mouse model of Duchenne muscular dystrophy shows evidence of hypoventilation and pronounced diaphragm dysfunction. Six-week-old male mdx (n = 32) and wild-type (WT; n = 32) mice received either saline (0.9% w/v) or a co-administration of neutralizing interleukin-6 receptor antibodies (xIL-6R; 0.2 mg kg-1 ) and corticotrophin-releasing factor receptor 2 agonist (urocortin-2; 30 μg kg-1 ) subcutaneously over 2 weeks. Breathing and diaphragm muscle contractile function (ex vivo) were examined. Diaphragm structure was assessed using histology and immunofluorescence. Muscle cytokine concentration was determined using a multiplex assay. Minute ventilation and diaphragm muscle peak force at 100 Hz were significantly depressed in mdx compared with WT. Drug treatment completely restored ventilation in mdx mice during normoxia and significantly increased mdx diaphragm force- and power-generating capacity. The number of centrally nucleated muscle fibres and the areal density of infiltrates and collagen content were significantly increased in mdx diaphragm; all indices were unaffected by drug co-treatment. The abundance of myosin heavy chain (MyHC) type IIx fibres was significantly decreased in mdx diaphragm; drug co-treatment preserved MyHC type IIx complement in mdx muscle. Drug co-treatment increased the cross-sectional area of MyHC type I and IIx fibres in mdx diaphragm. The cytokines IL-1β, IL-6, KC/GRO and TNF-α were significantly increased in mdx diaphragm compared with WT. Drug co-treatment significantly decreased IL-1β and increased IL-10 in mdx diaphragm. Drug co-treatment had no significant effect on WT diaphragm muscle structure, cytokine concentrations or function. Recovery of breathing and diaphragm force in mdx mice was impressive in our studies, with implication for human dystrophinopathies.
Collapse
Affiliation(s)
- David P. Burns
- Department of PhysiologySchool of MedicineCollege of Medicine and HealthUniversity College CorkCorkIreland
| | - Leonie Canavan
- Department of PhysiologySchool of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, the University of DublinDublinIreland
| | - Jane Rowland
- Department of PhysiologySchool of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, the University of DublinDublinIreland
| | - Robin O'Flaherty
- Department of PhysiologySchool of MedicineCollege of Medicine and HealthUniversity College CorkCorkIreland
| | - Molly Brannock
- Department of PhysiologySchool of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, the University of DublinDublinIreland
| | - Sarah E. Drummond
- Department of PhysiologySchool of MedicineCollege of Medicine and HealthUniversity College CorkCorkIreland
| | - Dervla O'Malley
- Department of PhysiologySchool of MedicineCollege of Medicine and HealthUniversity College CorkCorkIreland
| | - Deirdre Edge
- Department of PhysiologySchool of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, the University of DublinDublinIreland
| | - Ken D. O'Halloran
- Department of PhysiologySchool of MedicineCollege of Medicine and HealthUniversity College CorkCorkIreland
| |
Collapse
|
27
|
O'Halloran KD, Burns DP. Breathing with neuromuscular disease: Does compensatory plasticity in the motor drive to breathe offer a potential therapeutic target in muscular dystrophy? Respir Physiol Neurobiol 2018; 265:49-54. [PMID: 29933052 DOI: 10.1016/j.resp.2018.06.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 05/22/2018] [Accepted: 06/18/2018] [Indexed: 11/26/2022]
Abstract
Duchenne muscular dystrophy is a fatal neuromuscular disease associated with respiratory-related morbidity and mortality. Herein, we review recent work by our group exploring deficits and compensation in the respiratory control network governing respiratory homeostasis in a pre-clinical model of DMD, the mdx mouse. Deficits at multiple sites of the network provide considerable challenges to respiratory control. However, our work has also revealed evidence of compensatory neuroplasticity in the motor drive to breathe enhancing diaphragm muscle activity during increased chemical drive. The finding may explain the preserved capacity for mdx mice to increase ventilation in response to chemoactivation. Given the profound dysfunction in the primary pump muscle of breathing, we argue that activation of accessory muscles of breathing may be especially important in mdx (and perhaps DMD). Notwithstanding the limitations resulting from respiratory muscle dysfunction, it may be possible to further leverage intrinsic physiological mechanisms serving to compensate for weak muscles in attempts to preserve or restore ventilatory capacity. We discuss current knowledge gaps and the need to better appreciate fundamental aspects of respiratory control in pre-clinical models so as to better inform intervention strategies in human DMD.
Collapse
Affiliation(s)
- Ken D O'Halloran
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland.
| | - David P Burns
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland
| |
Collapse
|
28
|
Mankodi A, Kovacs W, Norato G, Hsieh N, Bandettini WP, Bishop CA, Shimellis H, Newbould RD, Kim E, Fischbeck KH, Arai AE, Yao J. Respiratory magnetic resonance imaging biomarkers in Duchenne muscular dystrophy. Ann Clin Transl Neurol 2017; 4:655-662. [PMID: 28904987 PMCID: PMC5590523 DOI: 10.1002/acn3.440] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 06/28/2017] [Indexed: 02/04/2023] Open
Abstract
OBJECTIVE To examine the diaphragm and chest wall dynamics with cine breathing magnetic resonance imaging (MRI) in ambulatory boys with Duchenne muscular dystrophy (DMD) without respiratory symptoms and controls. METHODS In 11 DMD boys and 15 controls, cine MRI of maximal breathing was recorded for 10 sec. The lung segmentations were done by an automated pipeline based on a Holistically-Nested Network model (HNN method). Lung areas, diaphragm, and chest wall motion were measured throughout the breathing cycle. RESULTS The HNN method reliably identified the contours of the lung and the diaphragm in every frame of each dataset (~180 frames) within seconds. The lung areas at maximal inspiration and expiration were reduced in DMD patients relative to controls (P = 0.02 and <0.01, respectively). The change in the lung area between inspiration and expiration correlated with percent predicted forced vital capacity (FVC) in patients (rs = 0.75, P = 0.03) and was not significantly different between groups. The diaphragm position, length, contractility, and motion were not significantly different between groups. Chest wall motion was reduced in patients compared to controls (P < 0.01). INTERPRETATION Cine breathing MRI allows independent and reliable assessment of the diaphragm and chest wall dynamics during the breathing cycle in DMD patients and controls. The MRI data indicate that ambulatory DMD patients breathe at lower lung volumes than controls when their FVC is in the normal range. The diaphragm moves normally, whereas chest wall motion is reduced in these boys with DMD.
Collapse
Affiliation(s)
- Ami Mankodi
- Neurogenetics Branch National Institute of Neurological Disorders and Stroke National Institutes of Health Bethesda Maryland
| | - William Kovacs
- Radiology and Imaging Sciences The National Institutes of Health Clinical Center Bethesda Maryland
| | - Gina Norato
- Office of Biostatistics National Institute of Neurological Disorders and Stroke National Institutes of Health Bethesda Maryland
| | - Nathan Hsieh
- Radiology and Imaging Sciences The National Institutes of Health Clinical Center Bethesda Maryland
| | - W Patricia Bandettini
- Advanced Cardiovascular Imaging National Heart Lung and Blood Institute National Institutes of Health Bethesda Maryland
| | - Courtney A Bishop
- Imanova Center for Imaging Sciences Imperial College London Hammersmith Hospital London United Kingdom
| | - Hirity Shimellis
- Neurogenetics Branch National Institute of Neurological Disorders and Stroke National Institutes of Health Bethesda Maryland
| | - Rexford D Newbould
- Imanova Center for Imaging Sciences Imperial College London Hammersmith Hospital London United Kingdom
| | - Eunhee Kim
- Office of Biostatistics National Institute of Neurological Disorders and Stroke National Institutes of Health Bethesda Maryland
| | - Kenneth H Fischbeck
- Neurogenetics Branch National Institute of Neurological Disorders and Stroke National Institutes of Health Bethesda Maryland
| | - Andrew E Arai
- Advanced Cardiovascular Imaging National Heart Lung and Blood Institute National Institutes of Health Bethesda Maryland
| | - Jianhua Yao
- Radiology and Imaging Sciences The National Institutes of Health Clinical Center Bethesda Maryland
| |
Collapse
|
29
|
Connolly AM, Mittendorfer B. Tracking diaphragm movement by using ultrasound to assess its strength. J Physiol 2016; 594:7147-7148. [PMID: 27976400 DOI: 10.1113/jp273313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Anne M Connolly
- Department of Neurology, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Bettina Mittendorfer
- Center for Human Nutrition, Washington University School of Medicine, St Louis, MO, 63110, USA.,Department of Medicine, Washington University School of Medicine, St Louis, MO, 63110, USA
| |
Collapse
|
30
|
Jorens PG, Schepens T. Ultrasound: a novel translational tool to study diaphragmatic dysfunction in critical illness. ANNALS OF TRANSLATIONAL MEDICINE 2016; 4:515. [PMID: 28149877 DOI: 10.21037/atm.2016.12.49] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Philippe G Jorens
- Department of Critical Care Medicine, Antwerp University Hospital, University of Antwerp, B-2650 Edegem, Belgium
| | - Tom Schepens
- Department of Critical Care Medicine, Antwerp University Hospital, University of Antwerp, B-2650 Edegem, Belgium
| |
Collapse
|