1
|
Xu W, Liao P, Cao M, White DJ, Lyu B, Gao JH. Facilitating cognitive neuroscience research with 80-sensor optically pumped magnetometer magnetoencephalography (OPM-MEG). Neuroimage 2025; 311:121182. [PMID: 40180002 DOI: 10.1016/j.neuroimage.2025.121182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/28/2025] [Accepted: 03/31/2025] [Indexed: 04/05/2025] Open
Abstract
Recent advancements in optically pumped magnetometer magnetoencephalography (OPM-MEG) make it a promising alternative to conventional SQUID-MEG systems. Nonetheless, as reported in the literature, current OPM-MEG systems are often constrained by a limited number of sampling points, which restricts their capability to match the full-head coverage offered by SQUID-MEG systems. Additionally, whether OPM-MEG can deliver results comparable to SQUID-MEG in practical cognitive neuroscience applications remains largely unexplored. In this study, we introduce a high-density, full-head coverage OPM-MEG system with 80 sensors and systematically compare the performance of OPM-MEG and SQUID-MEG, from sensor- to source-level analysis, across various classic cognitive tasks. Our results demonstrate that visual and auditory evoked fields captured using OPM-MEG align closely with those obtained from SQUID-MEG. Furthermore, steady-state visual evoked field and finger-tapping-induced beta power change recorded with OPM-MEG are accurately localized to corresponding brain regions, with activation centers highly congruent to those observed with SQUID-MEG. For resting-state recordings, the two modalities exhibit similar power distributions, functional connectomes, and microstate clusters. These findings indicate that the 80-sensor OPM-MEG system provides spatial and temporal characteristics comparable to those of traditional SQUID-MEG. Thus, our study offers empirical evidence supporting the efficacy of high-density OPM-MEG and suggests that OPM-MEG, with dense sampling capability, represents a compelling alternative to conventional SQUID-MEG, facilitating further exploration of human cognition.
Collapse
Affiliation(s)
- Wei Xu
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China; Changping Laboratory, Beijing, 102206, China
| | - Pan Liao
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China; Changping Laboratory, Beijing, 102206, China
| | - Miao Cao
- Centre for Mental Health & Brain Sciences, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - David J White
- Centre for Mental Health & Brain Sciences, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | | | - Jia-Hong Gao
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China; Changping Laboratory, Beijing, 102206, China; Beijing City Key Lab for Medical Physics and Engineering, Institution of Heavy Ion Physics, School of Physics, Peking University, Beijing, 100871, China; McGovern Institute for Brain Research, Peking University, Beijing, 100871, China; National Biomedical Imaging Center, Peking University, Beijing, 100871, China.
| |
Collapse
|
2
|
Xu W, Lyu B, Ru X, Li D, Gu W, Ma X, Zheng F, Li T, Liao P, Cheng H, Yang R, Song J, Jin Z, Li C, He K, Gao JH. Decoding the Temporal Structures and Interactions of Multiple Face Dimensions Using Optically Pumped Magnetometer Magnetoencephalography (OPM-MEG). J Neurosci 2024; 44:e2237232024. [PMID: 39358044 PMCID: PMC11580774 DOI: 10.1523/jneurosci.2237-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 09/18/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024] Open
Abstract
Humans possess a remarkable ability to rapidly access diverse information from others' faces with just a brief glance, which is crucial for intricate social interactions. While previous studies using event-related potentials/fields have explored various face dimensions during this process, the interplay between these dimensions remains unclear. Here, by applying multivariate decoding analysis to neural signals recorded with optically pumped magnetometer magnetoencephalography, we systematically investigated the temporal interactions between invariant and variable aspects of face stimuli, including race, gender, age, and expression. First, our analysis revealed unique temporal structures for each face dimension with high test-retest reliability. Notably, expression and race exhibited a dominant and stably maintained temporal structure according to temporal generalization analysis. Further exploration into the mutual interactions among face dimensions uncovered age effects on gender and race, as well as expression effects on race, during the early stage (∼200-300 ms postface presentation). Additionally, we observed a relatively late effect of race on gender representation, peaking ∼350 ms after the stimulus onset. Taken together, our findings provide novel insights into the neural dynamics underlying the multidimensional aspects of face perception and illuminate the promising future of utilizing OPM-MEG for exploring higher-level human cognition.
Collapse
Affiliation(s)
- Wei Xu
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Changping Laboratory, Beijing 102206, China
| | | | - Xingyu Ru
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Changping Laboratory, Beijing 102206, China
- Beijing City Key Lab for Medical Physics and Engineering, Institution of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871, China
| | - Dongxu Li
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Changping Laboratory, Beijing 102206, China
- Beijing City Key Lab for Medical Physics and Engineering, Institution of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871, China
| | - Wenyu Gu
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Changping Laboratory, Beijing 102206, China
| | - Xiao Ma
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Changping Laboratory, Beijing 102206, China
- Beijing City Key Lab for Medical Physics and Engineering, Institution of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871, China
| | - Fufu Zheng
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Changping Laboratory, Beijing 102206, China
- Beijing City Key Lab for Medical Physics and Engineering, Institution of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871, China
| | - Tingyue Li
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Changping Laboratory, Beijing 102206, China
- Beijing City Key Lab for Medical Physics and Engineering, Institution of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871, China
| | - Pan Liao
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Changping Laboratory, Beijing 102206, China
| | - Hao Cheng
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Changping Laboratory, Beijing 102206, China
| | - Rui Yang
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Changping Laboratory, Beijing 102206, China
- Beijing City Key Lab for Medical Physics and Engineering, Institution of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871, China
| | - Jingqi Song
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Changping Laboratory, Beijing 102206, China
- Beijing City Key Lab for Medical Physics and Engineering, Institution of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871, China
| | - Zeyu Jin
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Changping Laboratory, Beijing 102206, China
- Beijing City Key Lab for Medical Physics and Engineering, Institution of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871, China
| | | | - Kaiyan He
- Changping Laboratory, Beijing 102206, China
| | - Jia-Hong Gao
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Changping Laboratory, Beijing 102206, China
- Beijing City Key Lab for Medical Physics and Engineering, Institution of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871, China
- McGovern Institute for Brain Research, Peking University, Beijing 100871, China
- National Biomedical Imaging Center, Peking University, Beijing 100871, China
| |
Collapse
|
3
|
An N, Gao Z, Li W, Cao F, Wang W, Xu W, Wang C, Xiang M, Gao Y, Wang D, Yu D, Ning X. Source localization comparison and combination of OPM-MEG and fMRI to detect sensorimotor cortex responses. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 254:108292. [PMID: 38936152 DOI: 10.1016/j.cmpb.2024.108292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 04/29/2024] [Accepted: 06/16/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND AND OBJECTIVES The exploration of various neuroimaging techniques have become focal points within the field of neuroscience research. Magnetoencephalography based on optically pumped magnetometers (OPM-MEG) has shown significant potential to be the next generation of functional neuroimaging with the advantages of high signal intensity and flexible sensor arrangement. In this study, we constructed a 31-channel OPM-MEG system and performed a preliminary comparison of the temporal and spatial relationship between magnetic responses measured by OPM-MEG and blood-oxygen-level-dependent signals detected by functional magnetic resonance imaging (fMRI) during a grasping task. METHODS For OPM-MEG, the β-band (15-30 Hz) oscillatory activities can be reliably detected across multiple subjects and multiple session runs. To effectively localize the inhibitory oscillatory activities, a source power-spectrum ratio-based imaging method was proposed. This approach was compared with conventional source imaging methods, such as minimum norm-type and beamformer methods, and was applied in OPM-MEG source analysis. Subsequently, the spatial and temporal responses at the source-level between OPM-MEG and fMRI were analyzed. RESULTS The effectiveness of the proposed method was confirmed through simulations compared to benchmark methods. Our demonstration revealed an average spatial separation of 10.57 ± 4.41 mm between the localization results of OPM-MEG and fMRI across four subjects. Furthermore, the fMRI-constrained OPM-MEG localization results indicated a more focused imaging extent. CONCLUSIONS Taken together, the performance exhibited by OPM-MEG positions it as a potential instrument for functional surgery assessment.
Collapse
Affiliation(s)
- Nan An
- Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, 100191, China; Hangzhou Institute of Extremely-weak Magnetic Field Major National Science and Technology Infrastructure, Hangzhou, 310051, China
| | - Zhenfeng Gao
- Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, 100191, China; Hangzhou Institute of Extremely-weak Magnetic Field Major National Science and Technology Infrastructure, Hangzhou, 310051, China; Zhejiang Provincial Key Laboratory of Ultra-Weak Magnetic-Field Space and Applied Technology, Hangzhou Innovation Institute, Beihang University, Hangzhou, 310051, China
| | - Wen Li
- Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, 100191, China; Hangzhou Institute of Extremely-weak Magnetic Field Major National Science and Technology Infrastructure, Hangzhou, 310051, China; Zhejiang Provincial Key Laboratory of Ultra-Weak Magnetic-Field Space and Applied Technology, Hangzhou Innovation Institute, Beihang University, Hangzhou, 310051, China
| | - Fuzhi Cao
- Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, 100191, China; Hangzhou Institute of Extremely-weak Magnetic Field Major National Science and Technology Infrastructure, Hangzhou, 310051, China; School of Engineering Medicine, Beihang University, Beijing, 100191, China; Zhejiang Provincial Key Laboratory of Ultra-Weak Magnetic-Field Space and Applied Technology, Hangzhou Innovation Institute, Beihang University, Hangzhou, 310051, China.
| | - Wenli Wang
- Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, 100191, China; Hangzhou Institute of Extremely-weak Magnetic Field Major National Science and Technology Infrastructure, Hangzhou, 310051, China; Zhejiang Provincial Key Laboratory of Ultra-Weak Magnetic-Field Space and Applied Technology, Hangzhou Innovation Institute, Beihang University, Hangzhou, 310051, China
| | - Weinan Xu
- Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, 100191, China; Hangzhou Institute of Extremely-weak Magnetic Field Major National Science and Technology Infrastructure, Hangzhou, 310051, China; Zhejiang Provincial Key Laboratory of Ultra-Weak Magnetic-Field Space and Applied Technology, Hangzhou Innovation Institute, Beihang University, Hangzhou, 310051, China
| | - Chunhui Wang
- Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, 100191, China; Hangzhou Institute of Extremely-weak Magnetic Field Major National Science and Technology Infrastructure, Hangzhou, 310051, China; Zhejiang Provincial Key Laboratory of Ultra-Weak Magnetic-Field Space and Applied Technology, Hangzhou Innovation Institute, Beihang University, Hangzhou, 310051, China
| | - Min Xiang
- Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, 100191, China; Hangzhou Institute of Extremely-weak Magnetic Field Major National Science and Technology Infrastructure, Hangzhou, 310051, China; Zhejiang Provincial Key Laboratory of Ultra-Weak Magnetic-Field Space and Applied Technology, Hangzhou Innovation Institute, Beihang University, Hangzhou, 310051, China; Hefei National Laboratory, Hefei, 230088, China
| | - Yang Gao
- Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, 100191, China; Hangzhou Institute of Extremely-weak Magnetic Field Major National Science and Technology Infrastructure, Hangzhou, 310051, China
| | - Dawei Wang
- Shandong Key Laboratory: Magnetic Field-free Medicine & Functional Imaging, Qilu hospital of Shandong University, Jinan, 250014, China
| | - Dexin Yu
- Shandong Key Laboratory: Magnetic Field-free Medicine & Functional Imaging, Qilu hospital of Shandong University, Jinan, 250014, China
| | - Xiaolin Ning
- Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, 100191, China; Hangzhou Institute of Extremely-weak Magnetic Field Major National Science and Technology Infrastructure, Hangzhou, 310051, China; Zhejiang Provincial Key Laboratory of Ultra-Weak Magnetic-Field Space and Applied Technology, Hangzhou Innovation Institute, Beihang University, Hangzhou, 310051, China; Hefei National Laboratory, Hefei, 230088, China
| |
Collapse
|
4
|
Schofield H, Hill RM, Feys O, Holmes N, Osborne J, Doyle C, Bobela D, Corvilain P, Wens V, Rier L, Bowtell R, Ferez M, Mullinger KJ, Coleman S, Rhodes N, Rea M, Tanner Z, Boto E, de Tiège X, Shah V, Brookes MJ. A novel, robust, and portable platform for magnetoencephalography using optically-pumped magnetometers. IMAGING NEUROSCIENCE (CAMBRIDGE, MASS.) 2024; 2:1-22. [PMID: 39502465 PMCID: PMC11533384 DOI: 10.1162/imag_a_00283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/28/2024] [Accepted: 07/29/2024] [Indexed: 11/08/2024]
Abstract
Magnetoencephalography (MEG) measures brain function via assessment of magnetic fields generated by neural currents. Conventional MEG uses superconducting sensors, which place significant limitations on performance, practicality, and deployment; however, the field has been revolutionised in recent years by the introduction of optically-pumped magnetometers (OPMs). OPMs enable measurement of the MEG signal without cryogenics, and consequently the conception of "OPM-MEG" systems which ostensibly allow increased sensitivity and resolution, lifespan compliance, free subject movement, and lower cost. However, OPM-MEG is in its infancy with existing limitations on both sensor and system design. Here, we report a new OPM-MEG design with miniaturised and integrated electronic control, a high level of portability, and improved sensor dynamic range. We show that this system produces equivalent measures compared with an established OPM-MEG instrument; specifically, when measuring task-induced beta-band, gamma-band, and evoked neuro-electrical responses, source localisations from the two systems were comparable and temporal correlation of measured brain responses was >0.7 at the individual level and >0.9 for groups. Using an electromagnetic phantom, we demonstrate improved dynamic range by running the system in background fields up to 8 nT. We show that the system is effective in gathering data during free movement (including a sitting-to-standing paradigm) and that it is compatible with simultaneous electroencephalography (EEG). Finally, we demonstrate portability by moving the system between two laboratories. Overall, our new system is shown to be a significant step forward for OPM-MEG and offers an attractive platform for next generation functional medical imaging.
Collapse
Affiliation(s)
- Holly Schofield
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, United Kingdom
- Cerca Magnetics Limited, Nottingham, United Kingdom
| | - Ryan M. Hill
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, United Kingdom
- Cerca Magnetics Limited, Nottingham, United Kingdom
| | - Odile Feys
- Université libre de Bruxelles, ULB Neuroscience Institute, Laboratoire de neuroanatomie et neuroimagerie translationelles, Brussels, Belgium
- Department of Neurology, Hôpital Erasme, Hôpital Universitaire de Bruxelles, Université libre de Bruxelles, Brussels, Belgium
| | - Niall Holmes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, United Kingdom
- Cerca Magnetics Limited, Nottingham, United Kingdom
| | | | - Cody Doyle
- QuSpin Inc., Louisville, CO, United States
| | | | - Pierre Corvilain
- Université libre de Bruxelles, ULB Neuroscience Institute, Laboratoire de neuroanatomie et neuroimagerie translationelles, Brussels, Belgium
| | - Vincent Wens
- Université libre de Bruxelles, ULB Neuroscience Institute, Laboratoire de neuroanatomie et neuroimagerie translationelles, Brussels, Belgium
- Department of Translational Neuroimaging, Hôpital Erasme, Hôpital Universitaire de Bruxelles, Université libre de Bruxelles, Brussels, Belgium
| | - Lukas Rier
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Richard Bowtell
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Maxime Ferez
- Université libre de Bruxelles, ULB Neuroscience Institute, Laboratoire de neuroanatomie et neuroimagerie translationelles, Brussels, Belgium
| | - Karen J. Mullinger
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, United Kingdom
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, United Kingdom
| | - Sebastian Coleman
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Natalie Rhodes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Molly Rea
- Cerca Magnetics Limited, Nottingham, United Kingdom
| | - Zoe Tanner
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, United Kingdom
- Cerca Magnetics Limited, Nottingham, United Kingdom
| | - Elena Boto
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, United Kingdom
- Cerca Magnetics Limited, Nottingham, United Kingdom
| | - Xavier de Tiège
- Université libre de Bruxelles, ULB Neuroscience Institute, Laboratoire de neuroanatomie et neuroimagerie translationelles, Brussels, Belgium
- Department of Translational Neuroimaging, Hôpital Erasme, Hôpital Universitaire de Bruxelles, Université libre de Bruxelles, Brussels, Belgium
| | | | - Matthew J. Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, United Kingdom
- Cerca Magnetics Limited, Nottingham, United Kingdom
| |
Collapse
|
5
|
Brickwedde M, Anders P, Kühn AA, Lofredi R, Holtkamp M, Kaindl AM, Grent-'t-Jong T, Krüger P, Sander T, Uhlhaas PJ. Applications of OPM-MEG for translational neuroscience: a perspective. Transl Psychiatry 2024; 14:341. [PMID: 39181883 PMCID: PMC11344782 DOI: 10.1038/s41398-024-03047-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 06/25/2024] [Accepted: 08/01/2024] [Indexed: 08/27/2024] Open
Abstract
Magnetoencephalography (MEG) allows the non-invasive measurement of brain activity at millisecond precision combined with localization of the underlying generators. So far, MEG-systems consisted of superconducting quantum interference devices (SQUIDS), which suffer from several limitations. Recent technological advances, however, have enabled the development of novel MEG-systems based on optically pumped magnetometers (OPMs), offering several advantages over conventional SQUID-MEG systems. Considering potential improvements in the measurement of neuronal signals as well as reduced operating costs, the application of OPM-MEG systems for clinical neuroscience and diagnostic settings is highly promising. Here we provide an overview of the current state-of-the art of OPM-MEG and its unique potential for translational neuroscience. First, we discuss the technological features of OPMs and benchmark OPM-MEG against SQUID-MEG and electroencephalography (EEG), followed by a summary of pioneering studies of OPMs in healthy populations. Key applications of OPM-MEG for the investigation of psychiatric and neurological conditions are then reviewed. Specifically, we suggest novel applications of OPM-MEG for the identification of biomarkers and circuit deficits in schizophrenia, dementias, movement disorders, epilepsy, and neurodevelopmental syndromes (autism spectrum disorder and attention deficit hyperactivity disorder). Finally, we give an outlook of OPM-MEG for translational neuroscience with a focus on remaining methodological and technical challenges.
Collapse
Affiliation(s)
- Marion Brickwedde
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Department of Child and Adolescent Psychiatry, 13353, Berlin, Germany.
- Physikalisch-Technische Bundesanstalt, Berlin, Germany.
| | - Paul Anders
- Physikalisch-Technische Bundesanstalt, Berlin, Germany
| | - Andrea A Kühn
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Sektion für Bewegungsstörungen und Neuromodulation, Klinik für Neurologie und Experimentelle Neurologie, 10117, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Humboldt-Universität, Berlin, Germany
- NeuroCure, Exzellenzcluster, Charité-Universitätsmedizin Berlin, Berlin, Germany
- DZNE, German center for neurodegenerative diseases, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Roxanne Lofredi
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Sektion für Bewegungsstörungen und Neuromodulation, Klinik für Neurologie und Experimentelle Neurologie, 10117, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Martin Holtkamp
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Department of Neurology, Epilepsy-Center Berlin-Brandenburg, 10117, Berlin, Germany
| | - Angela M Kaindl
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Department of Pediatric Neurology, 13353, Berlin, Germany
- Charité- Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Center for Chronically Sick Children, 13353, Berlin, Germany
- Charité- Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Institute of Cell Biology and Neurobiology, 10117, Berlin, Germany
| | - Tineke Grent-'t-Jong
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Department of Child and Adolescent Psychiatry, 13353, Berlin, Germany
- Institute for Neuroscience and Psychology, Glasgow University, Scotland, United Kingdom
| | - Peter Krüger
- Physikalisch-Technische Bundesanstalt, Berlin, Germany
| | | | - Peter J Uhlhaas
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Department of Child and Adolescent Psychiatry, 13353, Berlin, Germany
- Institute for Neuroscience and Psychology, Glasgow University, Scotland, United Kingdom
| |
Collapse
|
6
|
Ruan Y, Xiang Z, Lu G, Chen Y, Liu Y, Liu F, Wang J, Zhang Y, Yao J, Liu Y, Lin Q. Non-invasive measurement of rat auditory evoked fields using an optically pumped atomic magnetometer: Effects of task manipulation. Heliyon 2024; 10:e31740. [PMID: 38845884 PMCID: PMC11152962 DOI: 10.1016/j.heliyon.2024.e31740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 06/09/2024] Open
Abstract
Optically pumped magnetometers (OPMs) have become a favorable tool for magnetoencephalography (MEG) measurement, offering a non-invasive method of measurement. OPMs do not require cryogenic environments, sensors can be more closely aligned with the brain. We employed a passive single-stimulus paradigm in conjunction with OPMs with a sensitivity of 20 fT/Hz to investigate the auditory response of rats to inter-stimulus interval (ISI) and frequencies, recording the rat auditory event-related magnetic fields (ERMFs). Our findings include: (1) Auditory evoked fields can be detected non-invasively by OPMs; (2) The amplitude of the rat auditory ERMFs varies with changes in ISI, with more pronounced amplitude changes observed after 5 s; (3) When the sound stimulus frequency is altered at the same ISI, the amplitude of the rats ERMFs changes with frequency, indicating significant differences in attention. Our method offers a valuable tool for the clinical application of a single stimulus paradigm and opens up a new avenue for research on the brain magnetic field detections.
Collapse
Affiliation(s)
- Yi Ruan
- Zhejiang Provincial Key Laboratory and Collaborative Innovation Center for Quantum Precision Measurement, College of Science, Zhejiang University of Technology, Hangzhou, 310023, China
| | - Zhao Xiang
- Zhejiang Provincial Key Laboratory and Collaborative Innovation Center for Quantum Precision Measurement, College of Science, Zhejiang University of Technology, Hangzhou, 310023, China
| | - Guanzhong Lu
- Zhejiang Provincial Key Laboratory and Collaborative Innovation Center for Quantum Precision Measurement, College of Science, Zhejiang University of Technology, Hangzhou, 310023, China
| | - Yuhai Chen
- Zhejiang Provincial Key Laboratory and Collaborative Innovation Center for Quantum Precision Measurement, College of Science, Zhejiang University of Technology, Hangzhou, 310023, China
| | - Yufei Liu
- Zhejiang Provincial Key Laboratory and Collaborative Innovation Center for Quantum Precision Measurement, College of Science, Zhejiang University of Technology, Hangzhou, 310023, China
| | - Fan Liu
- Zhejiang Provincial Key Laboratory and Collaborative Innovation Center for Quantum Precision Measurement, College of Science, Zhejiang University of Technology, Hangzhou, 310023, China
| | - Jiahao Wang
- Zhejiang Provincial Key Laboratory and Collaborative Innovation Center for Quantum Precision Measurement, College of Science, Zhejiang University of Technology, Hangzhou, 310023, China
| | - Ying Zhang
- Department of Endocrinology and Metabolism, Shaoxing Second Hospital, Shaoxing, 312000, China
| | - Jia Yao
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 311121, China
| | - Yu Liu
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 311121, China
| | - Qiang Lin
- Zhejiang Provincial Key Laboratory and Collaborative Innovation Center for Quantum Precision Measurement, College of Science, Zhejiang University of Technology, Hangzhou, 310023, China
| |
Collapse
|
7
|
Mardell LC, Spedden ME, O'Neill GC, Tierney TM, Timms RC, Zich C, Barnes GR, Bestmann S. Concurrent spinal and brain imaging with optically pumped magnetometers. J Neurosci Methods 2024; 406:110131. [PMID: 38583588 DOI: 10.1016/j.jneumeth.2024.110131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 03/11/2024] [Accepted: 04/03/2024] [Indexed: 04/09/2024]
Abstract
BACKGROUND The spinal cord and its interactions with the brain are fundamental for movement control and somatosensation. However, brain and spinal electrophysiology in humans have largely been treated as distinct enterprises, in part due to the relative inaccessibility of the spinal cord. Consequently, there is a dearth of knowledge on human spinal electrophysiology, including the multiple pathologies that affect the spinal cord as well as the brain. NEW METHOD Here we exploit recent advances in the development of wearable optically pumped magnetometers (OPMs) which can be flexibly arranged to provide coverage of both the spinal cord and the brain in relatively unconstrained environments. This system for magnetospinoencephalography (MSEG) measures both spinal and cortical signals simultaneously by employing custom-made scanning casts. RESULTS We evidence the utility of such a system by recording spinal and cortical evoked responses to median nerve stimulation at the wrist. MSEG revealed early (10 - 15 ms) and late (>20 ms) responses at the spinal cord, in addition to typical cortical evoked responses (i.e., N20). COMPARISON WITH EXISTING METHODS Early spinal evoked responses detected were in line with conventional somatosensory evoked potential recordings. CONCLUSION This MSEG system demonstrates the novel ability for concurrent non-invasive millisecond imaging of brain and spinal cord.
Collapse
Affiliation(s)
- Lydia C Mardell
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, WC1N 3BG, UK.
| | - Meaghan E Spedden
- Wellcome Centre for Human Neuroimaging, Department of Imaging Neuroscience, UCL Queen Square Institute of Neurology, University College London, WC1N 3AR, UK
| | - George C O'Neill
- Wellcome Centre for Human Neuroimaging, Department of Imaging Neuroscience, UCL Queen Square Institute of Neurology, University College London, WC1N 3AR, UK
| | - Tim M Tierney
- Wellcome Centre for Human Neuroimaging, Department of Imaging Neuroscience, UCL Queen Square Institute of Neurology, University College London, WC1N 3AR, UK
| | - Ryan C Timms
- Wellcome Centre for Human Neuroimaging, Department of Imaging Neuroscience, UCL Queen Square Institute of Neurology, University College London, WC1N 3AR, UK
| | - Catharina Zich
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, WC1N 3BG, UK
| | - Gareth R Barnes
- Wellcome Centre for Human Neuroimaging, Department of Imaging Neuroscience, UCL Queen Square Institute of Neurology, University College London, WC1N 3AR, UK
| | - Sven Bestmann
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, WC1N 3BG, UK; Wellcome Centre for Human Neuroimaging, Department of Imaging Neuroscience, UCL Queen Square Institute of Neurology, University College London, WC1N 3AR, UK
| |
Collapse
|
8
|
Schofield H, Hill RM, Feys O, Holmes N, Osborne J, Doyle C, Bobela D, Corvilian P, Wens V, Rier L, Bowtell R, Ferez M, Mullinger KJ, Coleman S, Rhodes N, Rea M, Tanner Z, Boto E, de Tiège X, Shah V, Brookes MJ. A Novel, Robust, and Portable Platform for Magnetoencephalography using Optically Pumped Magnetometers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.06.583313. [PMID: 38558964 PMCID: PMC10979878 DOI: 10.1101/2024.03.06.583313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Magnetoencephalography (MEG) measures brain function via assessment of magnetic fields generated by neural currents. Conventional MEG uses superconducting sensors, which place significant limitations on performance, practicality, and deployment; however, the field has been revolutionised in recent years by the introduction of optically-pumped-magnetometers (OPMs). OPMs enable measurement of the MEG signal without cryogenics, and consequently the conception of 'OPM-MEG' systems which ostensibly allow increased sensitivity and resolution, lifespan compliance, free subject movement, and lower cost. However, OPM-MEG remains in its infancy with limitations on both sensor and system design. Here, we report a new OPM-MEG design with miniaturised and integrated electronic control, a high level of portability, and improved sensor dynamic range (arguably the biggest limitation of existing instrumentation). We show that this system produces equivalent measures when compared to an established instrument; specifically, when measuring task-induced beta-band, gamma-band and evoked neuro-electrical responses, source localisations from the two systems were highly comparable and temporal correlation was >0.7 at the individual level and >0.9 for groups. Using an electromagnetic phantom, we demonstrate improved dynamic range by running the system in background fields up to 8 nT. We show that the system is effective in gathering data during free movement (including a sitting-to-standing paradigm) and that it is compatible with simultaneous electroencephalography (EEG - the clinical standard). Finally, we demonstrate portability by moving the system between two laboratories. Overall, our new system is shown to be a significant step forward for OPM-MEG technology and offers an attractive platform for next generation functional medical imaging.
Collapse
Affiliation(s)
- Holly Schofield
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
- Cerca Magnetics Limited, 2 Castlebridge Office Village, Kirtley Drive, Nottingham, NG7 1LD, Nottingham, UK
| | - Ryan M. Hill
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
- Cerca Magnetics Limited, 2 Castlebridge Office Village, Kirtley Drive, Nottingham, NG7 1LD, Nottingham, UK
| | - Odile Feys
- Université libre de Bruxelles, ULB Neuroscience Institute, Laboratoire de neuroanatomie et neuroimagerie translationelles, Brussels, Belgium
- Université libre de Bruxelles, Hôpital Universitaire de Bruxelles, Hôpital Erasme, Department of neurology, Brussels, Belgium
| | - Niall Holmes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
- Cerca Magnetics Limited, 2 Castlebridge Office Village, Kirtley Drive, Nottingham, NG7 1LD, Nottingham, UK
| | - James Osborne
- QuSpin Inc. 331 South 104 Street, Suite 130, Louisville, Colorado, 80027, USA
| | - Cody Doyle
- QuSpin Inc. 331 South 104 Street, Suite 130, Louisville, Colorado, 80027, USA
| | - David Bobela
- QuSpin Inc. 331 South 104 Street, Suite 130, Louisville, Colorado, 80027, USA
| | - Pierre Corvilian
- Université libre de Bruxelles, ULB Neuroscience Institute, Laboratoire de neuroanatomie et neuroimagerie translationelles, Brussels, Belgium
| | - Vincent Wens
- Université libre de Bruxelles, ULB Neuroscience Institute, Laboratoire de neuroanatomie et neuroimagerie translationelles, Brussels, Belgium
- Université libre de Bruxelles, Hôpital Universitaire de Bruxelles, Hôpital Erasme, Department of translational neuroimaging, Brussels, Belgium
| | - Lukas Rier
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Richard Bowtell
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Maxime Ferez
- Université libre de Bruxelles, ULB Neuroscience Institute, Laboratoire de neuroanatomie et neuroimagerie translationelles, Brussels, Belgium
| | - Karen J. Mullinger
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
- Centre for Human Brain Health, School of Psychology, University of Birmingham, UK
| | - Sebastian Coleman
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Natalie Rhodes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Molly Rea
- Cerca Magnetics Limited, 2 Castlebridge Office Village, Kirtley Drive, Nottingham, NG7 1LD, Nottingham, UK
| | - Zoe Tanner
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
- Cerca Magnetics Limited, 2 Castlebridge Office Village, Kirtley Drive, Nottingham, NG7 1LD, Nottingham, UK
| | - Elena Boto
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
- Cerca Magnetics Limited, 2 Castlebridge Office Village, Kirtley Drive, Nottingham, NG7 1LD, Nottingham, UK
| | - Xavier de Tiège
- Université libre de Bruxelles, ULB Neuroscience Institute, Laboratoire de neuroanatomie et neuroimagerie translationelles, Brussels, Belgium
- Université libre de Bruxelles, Hôpital Universitaire de Bruxelles, Hôpital Erasme, Department of translational neuroimaging, Brussels, Belgium
| | - Vishal Shah
- QuSpin Inc. 331 South 104 Street, Suite 130, Louisville, Colorado, 80027, USA
| | - Matthew J. Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
- Cerca Magnetics Limited, 2 Castlebridge Office Village, Kirtley Drive, Nottingham, NG7 1LD, Nottingham, UK
| |
Collapse
|
9
|
Skidchenko E, Butorina A, Ostras M, Vetoshko P, Kuzmichev A, Yavich N, Malovichko M, Koshev N. Yttrium-Iron Garnet Magnetometer in MEG: Advance towards Multi-Channel Arrays. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23094256. [PMID: 37177460 PMCID: PMC10181089 DOI: 10.3390/s23094256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/17/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023]
Abstract
Recently, a new kind of sensor applicable in magnetoencephalography (MEG) has been presented: a solid-state yttrium-iron garnet magnetometer (YIGM). The feasibility of yttrium-iron garnet magnetometers (YIGMs) was demonstrated in an alpha-rhythm registration experiment. In this paper, we propose the analysis of lead-field matrices for different possible multi-channel on-scalp sensor layouts using YIGMs with respect to information theory. Real noise levels of the new sensor were used to compute signal-to-noise ratio (SNR) and total information capacity (TiC), and compared with corresponding metrics that can be obtained with well-established MEG systems based on superconducting quantum interference devices (SQUIDs) and optically pumped magnetometers (OPMs). The results showed that due to YIGMs' proximity to the subject's scalp, they outperform SQUIDs and OPMs at their respective noise levels in terms of SNR and TiC. However, the current noise levels of YIGM sensors are unfortunately insufficient for constructing a multichannel YIG-MEG system. This simulation study provides insight into the direction for further development of YIGM sensors to create a multi-channel MEG system, namely, by decreasing the noise levels of sensors.
Collapse
Affiliation(s)
| | - Anna Butorina
- CNBR, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Maxim Ostras
- M-Granat, Russian Quantum Center, 121205 Moscow, Russia
| | - Petr Vetoshko
- M-Granat, Russian Quantum Center, 121205 Moscow, Russia
- Laboratory of Magnetic Phenomena in Microelectronics, Kotelnikov Institute of Radioengineering and Electronics of RAS, 125009 Moscow, Russia
| | | | - Nikolay Yavich
- CNBR, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
- Computational Geophysics Lab, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Mikhail Malovichko
- Computational Geophysics Lab, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Nikolay Koshev
- CNBR, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| |
Collapse
|
10
|
Schofield H, Boto E, Shah V, Hill RM, Osborne J, Rea M, Doyle C, Holmes N, Bowtell R, Woolger D, Brookes MJ. Quantum enabled functional neuroimaging: the why and how of magnetoencephalography using optically pumped magnetometers. CONTEMPORARY PHYSICS 2023; 63:161-179. [PMID: 38463461 PMCID: PMC10923587 DOI: 10.1080/00107514.2023.2182950] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 02/06/2023] [Indexed: 03/12/2024]
Abstract
Non-invasive imaging has transformed neuroscientific discovery and clinical practice, providing a non-invasive window into the human brain. However, whilst techniques like MRI generate ever more precise images of brain structure, in many cases, it's the function within neural networks that underlies disease. Here, we review the potential for quantum-enabled magnetic field sensors to shed light on such activity. Specifically, we describe how optically pumped magnetometers (OPMs) enable magnetoencephalographic (MEG) recordings with higher accuracy and improved practicality compared to the current state-of-the-art. The paper is split into two parts: first, we describe the work to date on OPM-MEG, detailing why this novel biomagnetic imaging technique is proving disruptive. Second, we explain how fundamental physics, including quantum mechanics and electromagnetism, underpins this developing technology. We conclude with a look to the future, outlining the potential for OPM-MEG to initiate a step change in the understanding and management of brain health.
Collapse
Affiliation(s)
- Holly Schofield
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
- Cerca Magnetics Limited, Nottingham, UK
| | - Elena Boto
- Cerca Magnetics Limited, Nottingham, UK
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | | | - Ryan M Hill
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
- Cerca Magnetics Limited, Nottingham, UK
| | | | - Molly Rea
- Cerca Magnetics Limited, Nottingham, UK
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | | | - Niall Holmes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
- Cerca Magnetics Limited, Nottingham, UK
| | - Richard Bowtell
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | | | - Matthew J Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
- Cerca Magnetics Limited, Nottingham, UK
| |
Collapse
|
11
|
Todd NPM, Govender S, Keller PE, Colebatch JG. Electrophysiological activity from over the cerebellum and cerebrum during eye blink conditioning in human subjects. Physiol Rep 2023; 11:e15642. [PMID: 36971094 PMCID: PMC10041378 DOI: 10.14814/phy2.15642] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/29/2023] Open
Abstract
We report the results of an experiment in which electrophysiological activity was recorded from the human cerebellum and cerebrum in a sample of 14 healthy subjects before, during and after a classical eye blink conditioning procedure with an auditory tone as conditional stimulus and a maxillary nerve unconditional stimulus. The primary aim was to show changes in the cerebellum and cerebrum correlated with behavioral ocular responses. Electrodes recorded EMG and EOG at peri-ocular sites, EEG from over the frontal eye-fields and the electrocerebellogram (ECeG) from over the posterior fossa. Of the 14 subjects half strongly conditioned while the other half were resistant. We confirmed that conditionability was linked under our conditions to the personality dimension of extraversion-introversion. Inhibition of cerebellar activity was shown prior to the conditioned response, as predicted by Albus (1971). However, pausing in high frequency ECeG and the appearance of a contingent negative variation (CNV) in both central leads occurred in all subjects. These led us to conclude that while conditioned cerebellar pausing may be necessary, it is not sufficient alone to produce overt behavioral conditioning, implying the existence of another central mechanism. The outcomes of this experiment indicate the potential value of the noninvasive electrophysiology of the cerebellum.
Collapse
Affiliation(s)
- Neil P M Todd
- Department of Psychology, University of Exeter, Exeter, UK
- School of Clinical Medicine, Randwick Campus, UNSW, Sydney, New South Wales, Australia
| | - Sendhil Govender
- School of Clinical Medicine, Randwick Campus, UNSW, Sydney, New South Wales, Australia
- Neuroscience Research Australia, UNSW, Sydney, New South Wales, Australia
| | - Peter E Keller
- MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Penrith, New South Wales, Australia
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - James G Colebatch
- School of Clinical Medicine, Randwick Campus, UNSW, Sydney, New South Wales, Australia
- Neuroscience Research Australia, UNSW, Sydney, New South Wales, Australia
| |
Collapse
|
12
|
Chen Y, Zhao L, Ma Y, Yu M, Wang Y, Zhang N, Wei K, Jiang Z. Spin exchange optically pumped nuclear spin self compensation system for moving magnetoencephalography measurement. BIOMEDICAL OPTICS EXPRESS 2022; 13:5937-5951. [PMID: 36733752 PMCID: PMC9872881 DOI: 10.1364/boe.474862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/10/2022] [Accepted: 10/10/2022] [Indexed: 05/25/2023]
Abstract
Recording moving magnetoencephalograms (MEGs ), in which a person's head can move freely as the brain's magnetic field is recorded, has been a key subject in recent years. Here, we describe a method based on an optically pumped atomic co-magnetometer (OPACM) for recording moving MEGs. In the OPACM, hyper-polarized nuclear spins produce a magnetic field that blocks the background fluctuation low-frequency magnetic field noise while the rapidly changing MEG signal is recorded. In this study, the magnetic field compensation was studied theoretically, and we found that the compensation is closely related to several parameters such as the electron spin magnetic field, nuclear spin magnetic field, and holding magnetic field. Furthermore, the magnetic field compensation was optimized based on a theoretical model . We also experimentally studied the magnetic field compensation and measured the responses of the OPACM to different magnetic field frequencies. We show that the OPACM clearly suppresses low-frequency (under 1 Hz) magnetic fields. However, the OPACM responses to magnetic field frequencies around the band of the MEG. A magnetic field sensitivity of 3 fT/Hz1/2 was achieved. Finally, we performed a simulation of the OPACM during utilization for moving MEG recording. For comparison, the traditional compensation system for moving MEG recording is based on a coil that is around 2 m in dimension , while our compensation system is only 2 mm in dimension .
Collapse
Affiliation(s)
- Yao Chen
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies,Overseas Expertise Introduction Center for Micro/Nano Manufacturing and Nano Measurement Technologies Discipline Innovation, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China
- Xi’an Jiaotong University Suzhou Institute, Suzhou 215123, China
| | - Libo Zhao
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies,Overseas Expertise Introduction Center for Micro/Nano Manufacturing and Nano Measurement Technologies Discipline Innovation, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Yintao Ma
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies,Overseas Expertise Introduction Center for Micro/Nano Manufacturing and Nano Measurement Technologies Discipline Innovation, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Mingzhi Yu
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies,Overseas Expertise Introduction Center for Micro/Nano Manufacturing and Nano Measurement Technologies Discipline Innovation, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Yanbin Wang
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies,Overseas Expertise Introduction Center for Micro/Nano Manufacturing and Nano Measurement Technologies Discipline Innovation, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Ning Zhang
- Research Center for Quantum Sensing, Intelligent Perception Research Institute, Zhejiang Lab, Hangzhou 310000, China
| | - Kai Wei
- School of Instrumentation Science and Opto-electronics Engineering, Beihang University, Beijing, 100191, China
| | - Zhuangde Jiang
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies,Overseas Expertise Introduction Center for Micro/Nano Manufacturing and Nano Measurement Technologies Discipline Innovation, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| |
Collapse
|
13
|
Brookes MJ, Leggett J, Rea M, Hill RM, Holmes N, Boto E, Bowtell R. Magnetoencephalography with optically pumped magnetometers (OPM-MEG): the next generation of functional neuroimaging. Trends Neurosci 2022; 45:621-634. [PMID: 35779970 PMCID: PMC10465236 DOI: 10.1016/j.tins.2022.05.008] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/06/2022] [Accepted: 05/24/2022] [Indexed: 10/17/2022]
Abstract
Magnetoencephalography (MEG) measures human brain function via assessment of the magnetic fields generated by electrical activity in neurons. Despite providing high-quality spatiotemporal maps of electrophysiological activity, current MEG instrumentation is limited by cumbersome field sensing technologies, resulting in major barriers to utility. Here, we review a new generation of MEG technology that is beginning to lift many of these barriers. By exploiting quantum sensors, known as optically pumped magnetometers (OPMs), 'OPM-MEG' has the potential to dramatically outperform the current state of the art, promising enhanced data quality (better sensitivity and spatial resolution), adaptability to any head size/shape (from babies to adults), motion robustness (participants can move freely during scanning), and a less complex imaging platform (without reliance on cryogenics). We discuss the current state of this emerging technique and describe its far-reaching implications for neuroscience.
Collapse
Affiliation(s)
- Matthew J Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| | - James Leggett
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Molly Rea
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Ryan M Hill
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Niall Holmes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Elena Boto
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Richard Bowtell
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| |
Collapse
|
14
|
Improved spatio-temporal measurements of visually evoked fields using optically-pumped magnetometers. Sci Rep 2021; 11:22412. [PMID: 34789806 PMCID: PMC8599680 DOI: 10.1038/s41598-021-01854-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 11/01/2021] [Indexed: 12/23/2022] Open
Abstract
Recent developments in performance and practicality of optically-pumped magnetometers (OPMs) have enabled new capabilities in non-invasive brain function mapping through magnetoencephalography. In particular, the lack of cryogenic operating conditions allows for more flexible placement of sensor heads closer to the brain, leading to improved spatial resolution and source localisation capabilities. Through recording visually evoked brain fields (VEFs), we demonstrate that the closer sensor proximity can be exploited to improve temporal resolution. We use OPMs, and superconducting quantum interference devices (SQUIDs) for reference, to measure brain responses to flash and pattern reversal stimuli. We find highly reproducible signals with consistency across multiple participants, stimulus paradigms and sensor modalities. The temporal resolution advantage of OPMs is manifest in a twofold improvement, compared to SQUIDs. The capability for improved spatio-temporal signal tracing is illustrated by simultaneous vector recordings of VEFs in the primary and associative visual cortex, where a time lag on the order of 10–20 ms is consistently found. This paves the way for further spatio-temporal studies of neurophysiological signal tracking in visual stimulus processing, and other brain responses, with potentially far-reaching consequences for time-critical mapping of functionality in healthy and pathological brains.
Collapse
|
15
|
Koshev N, Butorina A, Skidchenko E, Kuzmichev A, Ossadtchi A, Ostras M, Fedorov M, Vetoshko P. Evolution of MEG: A first MEG-feasible fluxgate magnetometer. Hum Brain Mapp 2021; 42:4844-4856. [PMID: 34327772 PMCID: PMC8449095 DOI: 10.1002/hbm.25582] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/24/2021] [Accepted: 06/10/2021] [Indexed: 11/15/2022] Open
Abstract
In the current article, we present the first solid‐state sensor feasible for magnetoencephalography (MEG) that works at room temperature. The sensor is a fluxgate magnetometer based on yttrium‐iron garnet films (YIGM). In this feasibility study, we prove the concept of usage of the YIGM in terms of MEG by registering a simple brain induced field—the human alpha rhythm. All the experiments and results are validated with usage of another kind of high‐sensitive magnetometers—optically pumped magnetometer, which currently appears to be well‐established in terms of MEG.
Collapse
Affiliation(s)
- Nikolay Koshev
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Anna Butorina
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | | | | | | | - Maxim Ostras
- M-Granat, Russian Quantum Center, Moscow, Russia
| | - Maxim Fedorov
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Petr Vetoshko
- M-Granat, Russian Quantum Center, Moscow, Russia.,Kotelnikov Institute of Radioengineering and Electronics of RAS, Moscow, Russia
| |
Collapse
|
16
|
Biomagnetometry is warming up from liquid helium to room temperature. Clin Neurophysiol 2021; 132:2666-2667. [PMID: 34344608 DOI: 10.1016/j.clinph.2021.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 11/23/2022]
|
17
|
Suzuki K, Yamashita O. MEG current source reconstruction using a meta-analysis fMRI prior. Neuroimage 2021; 236:118034. [PMID: 33839265 DOI: 10.1016/j.neuroimage.2021.118034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 02/16/2021] [Accepted: 03/26/2021] [Indexed: 12/01/2022] Open
Abstract
Magnetoencephalography (MEG) offers a unique way to noninvasively investigate millisecond-order cortical activities by mapping sensor signals (magnetic fields outside the head) to cortical current sources using current source reconstruction methods. Current source reconstruction is defined as an ill-posed inverse problem, since the number of sensors is less than the number of current sources. One powerful approach to solving this problem is to use functional MRI (fMRI) data as a spatial constraint, although it boosts the cost of measurement and the burden on subjects. Here, we show how to use the meta-analysis fMRI data synthesized from thousands of papers instead of the individually recorded fMRI data. To mitigate the differences between the meta-analysis and individual data, the former are imported as prior information of the hierarchical Bayesian estimation. Using realistic simulations, we found out the performance of current source reconstruction using meta-analysis fMRI data to be better than that using low-quality individual fMRI data and conventional methods. By applying experimental data of a face recognition task, we qualitatively confirmed that group analysis results using the meta-analysis fMRI data showed a tendency similar to the results using the individual fMRI data. Our results indicate that the use of meta-analysis fMRI data improves current source reconstruction without additional measurement costs. We assume the proposed method would have greater effect for modalities with lower measurement costs, such as optically pumped magnetometers.
Collapse
Affiliation(s)
- Keita Suzuki
- Department of Computational Brain Imaging, ATR Neural Information Analysis Laboratories, 2-2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0288, Japan; Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0192, Japan.
| | - Okito Yamashita
- Department of Computational Brain Imaging, ATR Neural Information Analysis Laboratories, 2-2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0288, Japan; Computational Brain Dynamics Team, RIKEN Center for Advanced Intelligence Project, 2-2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0288, Japan
| |
Collapse
|
18
|
de Lange P, Boto E, Holmes N, Hill RM, Bowtell R, Wens V, De Tiège X, Brookes MJ, Bourguignon M. Measuring the cortical tracking of speech with optically-pumped magnetometers. Neuroimage 2021; 233:117969. [PMID: 33744453 DOI: 10.1016/j.neuroimage.2021.117969] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 01/08/2021] [Accepted: 03/04/2021] [Indexed: 11/25/2022] Open
Abstract
During continuous speech listening, brain activity tracks speech rhythmicity at frequencies matching with the repetition rate of phrases (0.2-1.5 Hz), words (2-4 Hz) and syllables (4-8 Hz). Here, we evaluated the applicability of wearable MEG based on optically-pumped magnetometers (OPMs) to measure such cortical tracking of speech (CTS). Measuring CTS with OPMs is a priori challenging given the complications associated with OPM measurements at frequencies below 4 Hz, due to increased intrinsic interference and head movement artifacts. Still, this represents an important development as OPM-MEG provides lifespan compliance and substantially improved spatial resolution compared with classical MEG. In this study, four healthy right-handed adults listened to continuous speech for 9 min. The radial component of the magnetic field was recorded simultaneously with 45-46 OPMs evenly covering the scalp surface and fixed to an additively manufactured helmet which fitted all 4 participants. We estimated CTS with reconstruction accuracy and coherence, and determined the number of dominant principal components (PCs) to remove from the data (as a preprocessing step) for optimal estimation. We also identified the dominant source of CTS using a minimum norm estimate. CTS estimated with reconstruction accuracy and coherence was significant in all 4 participants at phrasal and word rates, and in 3 participants (reconstruction accuracy) or 2 (coherence) at syllabic rate. Overall, close-to-optimal CTS estimation was obtained when the 3 (reconstruction accuracy) or 10 (coherence) first PCs were removed from the data. Importantly, values of reconstruction accuracy (~0.4 for 0.2-1.5-Hz CTS and ~0.1 for 2-8-Hz CTS) were remarkably close to those previously reported in classical MEG studies. Finally, source reconstruction localized the main sources of CTS to bilateral auditory cortices. In conclusion, t his study demonstrates that OPMs can be used for the purpose of CTS assessment. This finding opens new research avenues to unravel the neural network involved in CTS across the lifespan and potential alterations in, e.g., language developmental disorders. Data also suggest that OPMs are generally suitable for recording neural activity at frequencies below 4 Hz provided PCA is used as a preprocessing step; 0.2-1.5-Hz being the lowest frequency range successfully investigated here.
Collapse
Affiliation(s)
- Paul de Lange
- Laboratoire de Cartographie fonctionnelle du Cerveau, UNI - ULB Neuroscience Institute, Université libre de Bruxelles (ULB), 808 Lennik Street, Brussels 1070, Belgium
| | - Elena Boto
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Niall Holmes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Ryan M Hill
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Richard Bowtell
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Vincent Wens
- Laboratoire de Cartographie fonctionnelle du Cerveau, UNI - ULB Neuroscience Institute, Université libre de Bruxelles (ULB), 808 Lennik Street, Brussels 1070, Belgium; Department of Functional Neuroimaging, Service of Nuclear Medicine, CUB Hôpital Erasme, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Xavier De Tiège
- Laboratoire de Cartographie fonctionnelle du Cerveau, UNI - ULB Neuroscience Institute, Université libre de Bruxelles (ULB), 808 Lennik Street, Brussels 1070, Belgium; Department of Functional Neuroimaging, Service of Nuclear Medicine, CUB Hôpital Erasme, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Matthew J Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Mathieu Bourguignon
- Laboratoire de Cartographie fonctionnelle du Cerveau, UNI - ULB Neuroscience Institute, Université libre de Bruxelles (ULB), 808 Lennik Street, Brussels 1070, Belgium; Laboratory of neurophysiology and movement biomechanics, UNI - ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium; BCBL, Basque Center on Cognition, Brain and Language, San Sebastian 20009, Spain.
| |
Collapse
|
19
|
Pan MK, Li YS, Wong SB, Ni CL, Wang YM, Liu WC, Lu LY, Lee JC, Cortes EP, Vonsattel JPG, Sun Q, Louis ED, Faust PL, Kuo SH. Cerebellar oscillations driven by synaptic pruning deficits of cerebellar climbing fibers contribute to tremor pathophysiology. Sci Transl Med 2021; 12:12/526/eaay1769. [PMID: 31941824 DOI: 10.1126/scitranslmed.aay1769] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 11/15/2019] [Indexed: 12/13/2022]
Abstract
Essential tremor (ET) is one of the most common movement disorders and the prototypical disorder for abnormal rhythmic movements. However, the pathophysiology of tremor generation in ET remains unclear. Here, we used autoptic cerebral tissue from patients with ET, clinical data, and mouse models to report that synaptic pruning deficits of climbing fiber (CF)-to-Purkinje cell (PC) synapses, which are related to glutamate receptor delta 2 (GluRδ2) protein insufficiency, cause excessive cerebellar oscillations and might be responsible for tremor. The CF-PC synaptic pruning deficits were correlated with the reduction in GluRδ2 expression in the postmortem ET cerebellum. Mice with GluRδ2 insufficiency and CF-PC synaptic pruning deficits develop ET-like tremor that can be suppressed with viral rescue of GluRδ2 protein. Step-by-step optogenetic or pharmacological inhibition of neuronal firing, axonal activity, or synaptic vesicle release confirmed that the activity of the excessive CF-to-PC synapses is required for tremor generation. In vivo electrophysiology in mice showed that excessive cerebellar oscillatory activity is CF dependent and necessary for tremor and optogenetic-driven PC synchronization was sufficient to generate tremor in wild-type animals. Human validation by cerebellar electroencephalography confirmed that excessive cerebellar oscillations also exist in patients with ET. Our findings identify a pathophysiologic contribution to tremor at molecular (GluRδ2), structural (CF-to-PC synapses), physiological (cerebellar oscillations), and behavioral levels (kinetic tremor) that might have clinical applications for treating ET.
Collapse
Affiliation(s)
- Ming-Kai Pan
- Department of Medical Research, National Taiwan University Hospital, Taipei City 10002, Taiwan. .,Institute of Pharmacology, College of Medicine, National Taiwan University Hospital, Taipei City 10051, Taiwan.,Neurobiology and Cognitive Science Center, National Taiwan University, Taipei City 10051, Taiwan.,Molecular Imaging Center, National Taiwan University, Taipei City 10051, Taiwan.,Department of Neurology, National Taiwan University Hospital, Yun-Lin Branch, Yun-Lin 64041, Taiwan
| | - Yong-Shi Li
- Department of Neurology, Columbia University, New York, NY 10032, USA
| | - Shi-Bing Wong
- Department of Neurology, Columbia University, New York, NY 10032, USA.,Department of Pediatrics, Taipei Tzu Chi Hospital, Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan
| | - Chun-Lun Ni
- Department of Neurology, Columbia University, New York, NY 10032, USA
| | - Yi-Mei Wang
- Department of Neurology, National Taiwan University Hospital, Yun-Lin Branch, Yun-Lin 64041, Taiwan
| | - Wen-Chuan Liu
- Department of Medical Research, National Taiwan University Hospital, Taipei City 10002, Taiwan.,Institute of Pharmacology, College of Medicine, National Taiwan University Hospital, Taipei City 10051, Taiwan
| | - Liang-Yin Lu
- Neurobiology and Cognitive Science Center, National Taiwan University, Taipei City 10051, Taiwan
| | - Jye-Chang Lee
- Molecular Imaging Center, National Taiwan University, Taipei City 10051, Taiwan
| | - Etty P Cortes
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Jean-Paul G Vonsattel
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Qian Sun
- Department of Neuroscience, Columbia University, New York, NY 10032, USA.,Department of Neurosciences, Case Western Reserve University, Cleveland, OH 44016, USA
| | - Elan D Louis
- Department of Neurology, Yale School of Medicine, Yale University, New Haven, CT 06519, USA.,Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale University, New Haven, CT 06510, USA
| | - Phyllis L Faust
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Sheng-Han Kuo
- Department of Neurology, Columbia University, New York, NY 10032, USA. .,Initiative of Columbia Ataxia and Tremor, New York, NY 10032, USA
| |
Collapse
|
20
|
Fan Y, Dong L, Liu X, Wang H, Liu Y. Recent advances in the noninvasive detection of high-frequency oscillations in the human brain. Rev Neurosci 2020; 32:305-321. [PMID: 33661582 DOI: 10.1515/revneuro-2020-0073] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/23/2020] [Indexed: 01/10/2023]
Abstract
In recent decades, a significant body of evidence based on invasive clinical research has showed that high-frequency oscillations (HFOs) are a promising biomarker for localization of the seizure onset zone (SOZ), and therefore, have the potential to improve postsurgical outcomes in patients with epilepsy. Emerging clinical literature has demonstrated that HFOs can be recorded noninvasively using methods such as scalp electroencephalography (EEG) and magnetoencephalography (MEG). Not only are HFOs considered to be a useful biomarker of the SOZ, they also have the potential to gauge disease severity, monitor treatment, and evaluate prognostic outcomes. In this article, we review recent clinical research on noninvasively detected HFOs in the human brain, with a focus on epilepsy. Noninvasively detected scalp HFOs have been investigated in various types of epilepsy. HFOs have also been studied noninvasively in other pathologic brain disorders, such as migraine and autism. Herein, we discuss the challenges reported in noninvasive HFO studies, including the scarcity of MEG and high-density EEG equipment in clinical settings, low signal-to-noise ratio, lack of clinically approved automated detection methods, and the difficulty in differentiating between physiologic and pathologic HFOs. Additional studies on noninvasive recording methods for HFOs are needed, especially prospective multicenter studies. Further research is fundamental, and extensive work is needed before HFOs can routinely be assessed in clinical settings; however, the future appears promising.
Collapse
Affiliation(s)
- Yuying Fan
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Liping Dong
- Library of China Medical University, Shenyang, China
| | - Xueyan Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hua Wang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yunhui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
21
|
Abstract
Concise history of fascinating magnetoencephalography (MEG) technology and catalog of very selected milestone preclinical and clinical MEG studies are provided as the background. The focus is the societal context defining a journey of MEG to and through clinical practice and formation of the American Clinical MEG Society (ACMEGS). We aspired to provide an objective historic perspective and document contributions of many professionals while focusing on the role of ACMEGS in the growth and maturation of clinical MEG field. The ACMEGS was born (2006) out of inevitability to address two vital issues-fair reimbursement and proper clinical acceptance. A beacon of accountable MEG practice and utilization is now an expanding professional organization with the highest level of competence in practice of clinical MEG and clinical credibility. The ACMEGS facilitated a favorable disposition of insurances toward MEG in the United States by combining the national replication of the grassroots efforts and teaming up with the strategic partners-particularly the American Academy of Neurology (AAN), published two Position Statements (2009 and 2017), the world's only set of MEG Clinical Practice Guidelines (CPGs; 2011) and surveys of clinical MEG practice (2011 and 2020) and use (2020). In addition to the annual ACMEGS Course (2012), we directly engaged MEG practitioners through an Invitational Summit (2019). The Society remains focused on the improvements and expansion of clinical practice, education, clinical training, and constructive engagement of vendors in these issues and pivotal studies toward additional MEG indications. The ACMEGS not only had the critical role in the progress of Clinical MEG in the United States and beyond since 2006 but positioned itself as the field leader in the future.
Collapse
|
22
|
Dash D, Wisler A, Ferrari P, Davenport EM, Maldjian J, Wang J. MEG Sensor Selection for Neural Speech Decoding. IEEE ACCESS : PRACTICAL INNOVATIONS, OPEN SOLUTIONS 2020; 8:182320-182337. [PMID: 33204579 PMCID: PMC7668411 DOI: 10.1109/access.2020.3028831] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Direct decoding of speech from the brain is a faster alternative to current electroencephalography (EEG) speller-based brain-computer interfaces (BCI) in providing communication assistance to locked-in patients. Magnetoencephalography (MEG) has recently shown great potential as a non-invasive neuroimaging modality for neural speech decoding, owing in part to its spatial selectivity over other high-temporal resolution devices. Standard MEG systems have a large number of cryogenically cooled channels/sensors (200 - 300) encapsulated within a fixed liquid helium dewar, precluding their use as wearable BCI devices. Fortunately, recently developed optically pumped magnetometers (OPM) do not require cryogens, and have the potential to be wearable and movable making them more suitable for BCI applications. This design is also modular allowing for customized montages to include only the sensors necessary for a particular task. As the number of sensors bears a heavy influence on the cost, size, and weight of MEG systems, minimizing the number of sensors is critical for designing practical MEG-based BCIs in the future. In this study, we sought to identify an optimal set of MEG channels to decode imagined and spoken phrases from the MEG signals. Using a forward selection algorithm with a support vector machine classifier we found that nine optimally located MEG gradiometers provided higher decoding accuracy compared to using all channels. Additionally, the forward selection algorithm achieved similar performance to dimensionality reduction using a stacked-sparse-autoencoder. Analysis of spatial dynamics of speech decoding suggested that both left and right hemisphere sensors contribute to speech decoding. Sensors approximately located near Broca's area were found to be commonly contributing among the higher-ranked sensors across all subjects.
Collapse
Affiliation(s)
- Debadatta Dash
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
| | - Alan Wisler
- Department of Speech, Language, and Hearing Sciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Paul Ferrari
- MEG Laboratory, Dell Children's Medical Center, Austin, TX 78723, USA
- Department of Psychology, The University of Texas at Austin, Austin, TX 78712, USA
| | | | - Joseph Maldjian
- Department of Radiology, University of Texas at Southwestern, Dallas, TX 75390, USA
| | - Jun Wang
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Speech, Language, and Hearing Sciences, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
23
|
Min BK, Hämäläinen MS, Pantazis D. New Cognitive Neurotechnology Facilitates Studies of Cortical-Subcortical Interactions. Trends Biotechnol 2020; 38:952-962. [PMID: 32278504 PMCID: PMC7442676 DOI: 10.1016/j.tibtech.2020.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 03/06/2020] [Accepted: 03/06/2020] [Indexed: 11/26/2022]
Abstract
Most of the studies employing neuroimaging have focused on cortical and subcortical signals individually to obtain neurophysiological signatures of cognitive functions. However, understanding the dynamic communication between the cortex and subcortical structures is essential for unraveling the neural correlates of cognition. In this quest, magnetoencephalography (MEG) and electroencephalography (EEG) are the methods of choice because they are noninvasive electrophysiological recording techniques with high temporal resolution. Sophisticated MEG/EEG source estimation techniques and network analysis methods, developed recently, can provide a more comprehensive understanding of the neurophysiological mechanisms of fundamental cognitive processes. Used together with noninvasive modulation of cortical-subcortical communication, these approaches may open up new possibilities for expanding the repertoire of noninvasive cognitive neurotechnology.
Collapse
Affiliation(s)
- Byoung-Kyong Min
- Department of Brain and Cognitive Engineering, Korea University, Seoul, 02841, Korea; McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Matti S Hämäläinen
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Dimitrios Pantazis
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
24
|
Andersen LM, Jerbi K, Dalal SS. Can EEG and MEG detect signals from the human cerebellum? Neuroimage 2020; 215:116817. [PMID: 32278092 PMCID: PMC7306153 DOI: 10.1016/j.neuroimage.2020.116817] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 03/17/2020] [Accepted: 03/31/2020] [Indexed: 01/11/2023] Open
Abstract
The cerebellum plays a key role in the regulation of motor learning, coordination and timing, and has been implicated in sensory and cognitive processes as well. However, our current knowledge of its electrophysiological mechanisms comes primarily from direct recordings in animals, as investigations into cerebellar function in humans have instead predominantly relied on lesion, haemodynamic and metabolic imaging studies. While the latter provide fundamental insights into the contribution of the cerebellum to various cerebellar-cortical pathways mediating behaviour, they remain limited in terms of temporal and spectral resolution. In principle, this shortcoming could be overcome by monitoring the cerebellum's electrophysiological signals. Non-invasive assessment of cerebellar electrophysiology in humans, however, is hampered by the limited spatial resolution of electroencephalography (EEG) and magnetoencephalography (MEG) in subcortical structures, i.e., deep sources. Furthermore, it has been argued that the anatomical configuration of the cerebellum leads to signal cancellation in MEG and EEG. Yet, claims that MEG and EEG are unable to detect cerebellar activity have been challenged by an increasing number of studies over the last decade. Here we address this controversy and survey reports in which electrophysiological signals were successfully recorded from the human cerebellum. We argue that the detection of cerebellum activity non-invasively with MEG and EEG is indeed possible and can be enhanced with appropriate methods, in particular using connectivity analysis in source space. We provide illustrative examples of cerebellar activity detected with MEG and EEG. Furthermore, we propose practical guidelines to optimize the detection of cerebellar activity with MEG and EEG. Finally, we discuss MEG and EEG signal contamination that may lead to localizing spurious sources in the cerebellum and suggest ways of handling such artefacts. This review is to be read as a perspective review that highlights that it is indeed possible to measure cerebellum with MEG and EEG and encourages MEG and EEG researchers to do so. Its added value beyond highlighting and encouraging is that it offers useful advice for researchers aspiring to investigate the cerebellum with MEG and EEG.
Collapse
Affiliation(s)
- Lau M Andersen
- Center of Functionally Integrative Neuroscience, Aarhus University, Denmark; NatMEG, Karolinska Institutet, Stockholm, Sweden.
| | - Karim Jerbi
- Computational and Cognitive Neuroscience Lab (CoCo Lab), Psychology Department, University of Montreal, Montreal, QC, Canada; MEG Unit, University of Montreal, Montreal, QC, Canada
| | - Sarang S Dalal
- Center of Functionally Integrative Neuroscience, Aarhus University, Denmark
| |
Collapse
|
25
|
Hill RM, Boto E, Rea M, Holmes N, Leggett J, Coles LA, Papastavrou M, Everton SK, Hunt BAE, Sims D, Osborne J, Shah V, Bowtell R, Brookes MJ. Multi-channel whole-head OPM-MEG: Helmet design and a comparison with a conventional system. Neuroimage 2020; 219:116995. [PMID: 32480036 PMCID: PMC8274815 DOI: 10.1016/j.neuroimage.2020.116995] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/20/2020] [Accepted: 05/23/2020] [Indexed: 12/18/2022] Open
Abstract
Magnetoencephalography (MEG) is a powerful technique for functional
neuroimaging, offering a non-invasive window on brain electrophysiology. MEG
systems have traditionally been based on cryogenic sensors which detect the
small extracranial magnetic fields generated by synchronised current in neuronal
assemblies, however, such systems have fundamental limitations. In recent years,
non-cryogenic quantum-enabled sensors, called optically-pumped magnetometers
(OPMs), in combination with novel techniques for accurate background magnetic
field control, have promised to lift those restrictions offering an adaptable,
motion-robust MEG system, with improved data quality, at reduced cost. However,
OPM-MEG remains a nascent technology, and whilst viable systems exist, most
employ small numbers of sensors sited above targeted brain regions. Here,
building on previous work, we construct a wearable OPM-MEG system with
‘whole-head’ coverage based upon commercially available OPMs, and
test its capabilities to measure alpha, beta and gamma oscillations. We design
two methods for OPM mounting; a flexible (EEG-like) cap and rigid
(additively-manufactured) helmet. Whilst both designs allow for high quality
data to be collected, we argue that the rigid helmet offers a more robust option
with significant advantages for reconstruction of field data into 3D images of
changes in neuronal current. Using repeat measurements in two participants, we
show signal detection for our device to be highly robust. Moreover, via
application of source-space modelling, we show that, despite having 5 times
fewer sensors, our system exhibits comparable performance to an established
cryogenic MEG device. While significant challenges still remain, these
developments provide further evidence that OPM-MEG is likely to facilitate a
step change for functional neuroimaging.
Collapse
Affiliation(s)
- Ryan M Hill
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| | - Elena Boto
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Molly Rea
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Niall Holmes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - James Leggett
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Laurence A Coles
- Added Scientific Limited, No 4, The Isaac Newton Centre, Nottingham Science Park, Nottingham, NG72RH, UK
| | - Manolis Papastavrou
- Added Scientific Limited, No 4, The Isaac Newton Centre, Nottingham Science Park, Nottingham, NG72RH, UK
| | - Sarah K Everton
- Added Scientific Limited, No 4, The Isaac Newton Centre, Nottingham Science Park, Nottingham, NG72RH, UK
| | - Benjamin A E Hunt
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Dominic Sims
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - James Osborne
- QuSpin Inc. 331 South 104th Street, Suite 130, Louisville, CO, 80027, USA
| | - Vishal Shah
- QuSpin Inc. 331 South 104th Street, Suite 130, Louisville, CO, 80027, USA
| | - Richard Bowtell
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Matthew J Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| |
Collapse
|
26
|
Samuelsson JG, Sundaram P, Khan S, Sereno MI, Hämäläinen MS. Detectability of cerebellar activity with magnetoencephalography and electroencephalography. Hum Brain Mapp 2020; 41:2357-2372. [PMID: 32115870 PMCID: PMC7244390 DOI: 10.1002/hbm.24951] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/15/2019] [Accepted: 02/01/2020] [Indexed: 12/31/2022] Open
Abstract
Electrophysiological signals from the cerebellum have traditionally been viewed as inaccessible to magnetoencephalography (MEG) and electroencephalography (EEG). Here, we challenge this position by investigating the ability of MEG and EEG to detect cerebellar activity using a model that employs a high‐resolution tessellation of the cerebellar cortex. The tessellation was constructed from repetitive high‐field (9.4T) structural magnetic resonance imaging (MRI) of an ex vivo human cerebellum. A boundary‐element forward model was then used to simulate the M/EEG signals resulting from neural activity in the cerebellar cortex. Despite significant signal cancelation due to the highly convoluted cerebellar cortex, we found that the cerebellar signal was on average only 30–60% weaker than the cortical signal. We also made detailed M/EEG sensitivity maps and found that MEG and EEG have highly complementary sensitivity distributions over the cerebellar cortex. Based on previous fMRI studies combined with our M/EEG sensitivity maps, we discuss experimental paradigms that are likely to offer high M/EEG sensitivity to cerebellar activity. Taken together, these results show that cerebellar activity should be clearly detectable by current M/EEG systems with an appropriate experimental setup.
Collapse
Affiliation(s)
- John G Samuelsson
- Harvard-MIT Division of Health Sciences and Technology (HST), Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, USA.,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Padmavathi Sundaram
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Sheraz Khan
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Martin I Sereno
- Department of Psychology and Neuroimaging Center, San Diego State University, San Diego, California, USA.,Experimental Psychology, University College London, London, UK
| | - Matti S Hämäläinen
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|