1
|
Sun Y, Sanders AM, Pashley DH, Alexander A, Bergeron BE, Gu L, Tay FR. Beyond hydrodynamics: The role of ion channels in dentine hypersensitivity. J Dent 2025; 157:105745. [PMID: 40216070 DOI: 10.1016/j.jdent.2025.105745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/06/2025] [Accepted: 04/09/2025] [Indexed: 04/25/2025] Open
Abstract
OBJECTIVES This review examined the roles of ion channels in dentine hypersensitivity (DH), highlighting their contributions to pain perception and intercellular communication between odontoblasts and afferent sensory neurons. BACKGROUND Dentine hypersensitivity is a prevalent condition resulting from the exposure of dentinal tubules to the oral environment, leading to sharp pain triggered by mechanical, thermal, chemical, and osmotic stimuli. The prevailing hypothesis integrates aspects of the hydrodynamic and odontoblast transducer theories. It suggests that rapid intratubular fluid movement activates specific ion channels in odontoblasts and trigeminal sensory neurons, converting external stimuli into electrical signals interpreted as pain by the central nervous system. DATA & SOURCES A comprehensive literature review was conducted on ion channels involved in DH, with a focus on transient receptor potential (TRP) channels, Piezo channels, acid-sensing ion channels (ASICs), as well as other voltage-gated ion channels. Particular emphasis was placed on their physiological roles, responsiveness to stimuli, and contributions to DH pain. RESULTS PIEZO, TRP, and ASICs respond to pressure, heat, acidic environments, and chemical irritants, all of which contribute to DH pain. Activation of odontoblastic ion channels results in the release of adenosine triphosphate and glutamate, which bind respectively to purinergic and glutamate receptors on sensory neurons. This interaction induces depolarization, generating action potentials that transmit pain signals to the brain. CONCLUSION The diverse ion channels involved in dentine hypersensitivity play a crucial role in intercellular communication that leads to pain perception. However, their widespread physiological functions make direct pharmacological targeting challenging due to potential systemic effects. CLINICAL SIGNIFICANCE The use of antagonists for targeting specific ion channels involved in dentine hypersensitivity is difficult because of their involvement in other important physiological processes. Hence, clinical management strategies focusing on dentinal tubule occlusion or dentine desensitisation remain the safest and most effective approaches.
Collapse
Affiliation(s)
- Yutong Sun
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | | | | | | | | | - Lisha Gu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China.
| | | |
Collapse
|
2
|
Martí-Solans J, Børve A, Hejnol A, Lynagh T. Diarylamidine activation of a brachiopod DEG/ENaC/ASIC channel. J Biol Chem 2025; 301:108066. [PMID: 39662830 PMCID: PMC11750451 DOI: 10.1016/j.jbc.2024.108066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 11/24/2024] [Accepted: 12/04/2024] [Indexed: 12/13/2024] Open
Abstract
Diarylamidines are a group of widely used small molecule drugs. One common use of diarylamidines is their pharmacological inhibition of ligand-gated cation channels, including tetrameric ionotropic glutamate receptors and trimeric degenerin/epithelial sodium channel/acid-sensing ion channels. Here, we discover a degenerin/epithelial sodium channel/acid-sensing ion channel from the brachiopod (lamp shell) Novocrania anomala, at which diarylamidines act as agonists. The channel is closely related to bile acid-gated, pH-gated, and peptide-gated channels but is not activated by such stimuli. We describe activation of the channel by diminazene, 4',6-diamidino-2-phenylindole, and pentamidine, examine several biophysical and pharmacological properties, and briefly explore the molecular determinants of channel activity with site-directed mutagenesis. We term this channel the diarylamidine-activated sodium channel.
Collapse
Affiliation(s)
| | - Aina Børve
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Andreas Hejnol
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Timothy Lynagh
- Michael Sars Centre, University of Bergen, Bergen, Norway.
| |
Collapse
|
3
|
Bandarupalli R, Roth R, Klipp RC, Bankston JR, Li J. Molecular Insights into Single-Chain Lipid Modulation of Acid-Sensing Ion Channel 3. J Phys Chem B 2024; 128:12685-12697. [PMID: 39666997 DOI: 10.1021/acs.jpcb.4c04289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Polyunsaturated fatty acids (PUFAs) and their analogs play a significant role in modulating the activity of diverse ion channels, and recent studies show that these lipids potentiate acid-sensing ion channels (ASICs), leading to increased activity. The potentiation of the channel stems from multiple gating changes, but the exact mechanism of these effects remains uncertain. We posit a mechanistic explanation for one of these changes in channel function, the increase in the maximal current, by applying a combination of electrophysiology and all-atom molecular dynamics simulations on open-state hASIC3. Microsecond-scale simulations were performed on open-state hASIC3 in the absence and presence of a PUFA, docosahexaenoic acid (DHA), and a PUFA analogue, N-arachidonyl glycine (AG). Intriguingly, our simulations in the absence of PUFA or PUFA analogs reveal that a tail from the membrane phospholipid POPC inserts itself into the pore of the channel through lateral fenestrations on the sides of the transmembrane segments, obstructing ion permeation through the channel. The binding of either DHA or AG prevented POPC from accessing the pore in our simulations, which relied on the block of ionic conduction by phospholipids. Finally, we use single-channel recording to show that DHA increases the amplitude of the single-channel currents in ASIC3, which is consistent with our hypothesis that PUFAs relieve the pore block of the channel induced by POPCs. Together, these findings offer a potential mechanistic explanation of how PUFAs modulate the ASIC maximal current, revealing a novel mechanism of action for PUFA-induced modulation of ion channels.
Collapse
Affiliation(s)
- Ramya Bandarupalli
- Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, Mississippi 38677, United States
| | - Rebecca Roth
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Robert C Klipp
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - John R Bankston
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Jing Li
- Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, Mississippi 38677, United States
| |
Collapse
|
4
|
Berger KD, MacLean DM. Mechanism of acid-sensing ion channel modulation by Hi1a. J Gen Physiol 2024; 156:e202313519. [PMID: 39446054 PMCID: PMC11513431 DOI: 10.1085/jgp.202313519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 09/01/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024] Open
Abstract
Acid-sensing ion channels (ASICs) are trimeric cation-selective channels activated by extracellular acidification. Amongst many pathological roles, ASICs are an important mediator of ischemic cell death and hence an attractive drug target for stroke treatment as well as other conditions. A peptide called Hi1a, isolated from Australian funnel web spider venom, inhibits ASIC1a and attenuates cell death in a stroke model up to 8 h after stroke induction. Here, we set out to understand the molecular basis for Hi1a's action. Hi1a is a bivalent toxin with two inhibitory cystine knot domains joined by a short linker. We found that both Hi1a domains modulate human ASIC1a gating with the N-terminal domain impairing channel activation while the C-terminal domain produces a "pro-open" phenotype even at submicromolar concentrations. Interestingly, both domains bind at the same site since a single point mutation, F352A, abolishes functional effects and reduces toxin affinity in surface plasmon resonance measurements. Therefore, the action of Hi1a at ASIC1a appears to arise through a mutually exclusive binding model where either the N or C domain of a single Hi1a binds one ASIC1a subunit. An ASIC1a trimer may bind several inhibitory N domains and one or more pro-open C domains at any one time, accounting for the incomplete inhibition of wild type Hi1a. We also found that the functional differences between these two domains are partially transferred by mutagenesis, affording new insight into the channel function and possible novel avenues of drug design.
Collapse
Affiliation(s)
- Kyle D. Berger
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - David M. MacLean
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
5
|
Purohit R, Couch T, Rook ML, MacLean DM. Proline substitutions in the ASIC1 β11-12 linker slow desensitization. Biophys J 2024; 123:3507-3518. [PMID: 39182166 PMCID: PMC11494525 DOI: 10.1016/j.bpj.2024.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/27/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024] Open
Abstract
Desensitization is a prominent feature of nearly all ligand-gated ion channels. Acid-sensing ion channels (ASICs) undergo desensitization within hundreds of milliseconds to seconds upon continual extracellular acidification. The ASIC mechanism of desensitization is primarily due to the isomerization or "flipping" of a short linker joining the 11th and 12th β sheets in the extracellular domain. In the resting and active states this β11-12 linker adopts an "upward" conformation while in the desensitized conformation the linker assumes a "downward" state. It is unclear if a single linker adopting the downward state is sufficient to desensitize the entire channel, or if all three are needed or some more complex scheme. To accommodate this downward state, specific peptide bonds within the linker adopt either trans-like or cis-like conformations. Since proline-containing peptide bonds undergo cis-trans isomerization very slowly, we hypothesized that introducing proline residues in the linker may slow or even abolish ASIC desensitization, potentially providing a valuable research tool. Proline substitutions in the chicken ASIC1 β11-12 linker (L414P and Y416P) slowed desensitization decays approximately 100- to 1000-fold as measured in excised patches. Both L414P and Y416P shifted the steady-state desensitization curves to more acidic pH values while activation curves and ion selectivity were largely unaffected (except for a left-shifted activation pH50 of L414P). To investigate the functional stoichiometry of desensitization in the trimeric ASIC, we created families of L414P and Y416P concatemers with zero, one, two, or three proline substitutions in all possible configurations. Introducing one or two L414P or Y416P substitutions only slightly attenuated desensitization, suggesting that conformational changes in the single remaining faster wild-type subunits were sufficient to desensitize the channel. These data highlight the unusual cis-trans isomerization mechanism of ASIC desensitization and support a model where ASIC desensitization requires only a single subunit.
Collapse
Affiliation(s)
- Rutambhara Purohit
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York
| | - Tyler Couch
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York
| | - Matthew L Rook
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York
| | - David M MacLean
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York.
| |
Collapse
|
6
|
Ortega-Ramírez AM, Albani S, Bachmann M, Schmidt A, Pinoé-Schmidt M, Assmann M, Augustinowski K, Rossetti G, Gründer S. A conserved peptide-binding pocket in HyNaC/ASIC ion channels. Proc Natl Acad Sci U S A 2024; 121:e2409097121. [PMID: 39365813 PMCID: PMC11474038 DOI: 10.1073/pnas.2409097121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/05/2024] [Indexed: 10/06/2024] Open
Abstract
The only known peptide-gated ion channels-FaNaCs/WaNaCs and HyNaCs-belong to different clades of the DEG/ENaC family. FaNaCs are activated by the short neuropeptide FMRFamide, and HyNaCs by Hydra RFamides, which are not evolutionarily related to FMRFamide. The FMRFamide-binding site in FaNaCs was recently identified in a cleft atop the large extracellular domain. However, this cleft is not conserved in HyNaCs. Here, we combined molecular modeling and site-directed mutagenesis and identified a putative binding pocket for Hydra-RFamides in the extracellular domain of the heterotrimeric HyNaC2/3/5. This pocket localizes to only one of the three subunit interfaces, indicating that this trimeric ion channel binds a single peptide ligand. We engineered an unnatural amino acid at the putative binding pocket entrance, which allowed covalent tethering of Hydra RFamide to the channel, thereby trapping the channel in an open conformation. The identified pocket localizes to the same region as the acidic pocket of acid-sensing ion channels (ASICs), which binds peptide ligands. The pocket in HyNaCs is less acidic, and both electrostatic and hydrophobic interactions contribute to peptide binding. Collectively, our results reveal a conserved ligand-binding pocket in HyNaCs and ASICs and indicate independent evolution of peptide-binding cavities in the two subgroups of peptide-gated ion channels.
Collapse
Affiliation(s)
- Audrey Magdalena Ortega-Ramírez
- Medical Faculty, Institute of Physiology, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074Aachen, Germany
| | - Simone Albani
- Computational Biomedicine—Institute for Advanced Simulation/Institute of Neuroscience and Medicine, Forschungszentrum Jülich, 52425Jülich, Germany
- Jülich Supercomputing Center, Forschungszentrum Jülich, 52425Jülich, Germany
- Department of Neurology, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074Aachen, Germany
| | - Michèle Bachmann
- Medical Faculty, Institute of Physiology, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074Aachen, Germany
| | - Axel Schmidt
- Medical Faculty, Institute of Physiology, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074Aachen, Germany
| | - Manuela Pinoé-Schmidt
- Medical Faculty, Institute of Physiology, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074Aachen, Germany
| | - Marc Assmann
- Medical Faculty, Institute of Physiology, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074Aachen, Germany
| | - Katrin Augustinowski
- Medical Faculty, Institute of Physiology, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074Aachen, Germany
| | - Giulia Rossetti
- Computational Biomedicine—Institute for Advanced Simulation/Institute of Neuroscience and Medicine, Forschungszentrum Jülich, 52425Jülich, Germany
- Jülich Supercomputing Center, Forschungszentrum Jülich, 52425Jülich, Germany
- Department of Neurology, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074Aachen, Germany
| | - Stefan Gründer
- Medical Faculty, Institute of Physiology, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074Aachen, Germany
| |
Collapse
|
7
|
Bandarupalli R, Roth R, Klipp RC, Bankston JR, Li J. Molecular Insights into Single Chain Lipid Modulation of Acid-Sensing Ion Channel 3. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.29.610156. [PMID: 39257759 PMCID: PMC11383688 DOI: 10.1101/2024.08.29.610156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Polyunsaturated fatty acids (PUFAs) and their analogs play a significant role in modulating the activity of diverse ion channels, and recent studies show that these lipids potentiate acid-sensing ion channels (ASICs), leading to increased activity. The potentiation of the channel stems from multiple gating changes, but the exact mechanism of these effects remains uncertain. We posit a mechanistic explanation for one of these changes in channel function, the increase in the maximal current, by applying a combination of electrophysiology and all-atom molecular dynamics simulations on the open-state hASIC3. Microsecond-scale simulations were performed on open-state hASIC3 in the absence and presence of a PUFA, docosahexaenoic acid (DHA), and a PUFA analog, N-arachidonyl glycine (AG). Intriguingly, our simulations in the absence of PUFA or PUFA analogs reveal that a tail from the membrane phospholipid POPC inserts itself into the pore of the channel through lateral fenestrations on the sides of the transmembrane segments, obstructing ion permeation through the channel. The binding of either DHA or AG prevented POPC from accessing the pore in our simulations, relieving the block of ionic conduction by phospholipids. Finally, we use the single-channel recording to show that DHA increases the amplitude of the single-channel currents in ASIC3, which is consistent with our hypothesis that PUFAs relieve the pore block of the channel induced by POPCs. Together, these findings offer a potential mechanistic explanation of how PUFAs modulate ASIC maximal current, revealing a novel mechanism of action for PUFA-induced modulation of ion channels.
Collapse
Affiliation(s)
- Ramya Bandarupalli
- Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS
| | - Rebecca Roth
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Robert C Klipp
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - John R Bankston
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Jing Li
- Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS
| |
Collapse
|
8
|
Holm CM, Topaktas AB, Dannesboe J, Pless SA, Heusser SA. Dynamic conformational changes of acid-sensing ion channels in different desensitizing conditions. Biophys J 2024; 123:2122-2135. [PMID: 38549370 PMCID: PMC11309988 DOI: 10.1016/j.bpj.2024.03.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/21/2024] [Accepted: 03/26/2024] [Indexed: 04/18/2024] Open
Abstract
Acid-sensing ion channels (ASICs) are proton-gated cation channels that contribute to fast synaptic transmission and have roles in fear conditioning and nociception. Apart from activation at low pH, ASIC1a also undergoes several types of desensitization, including acute desensitization, which terminates activation; steady-state desensitization, which occurs at sub-activating proton concentrations and limits subsequent activation; and tachyphylaxis, which results in a progressive decrease in response during a series of activations. Structural insights from a desensitized state of ASIC1 have provided great spatial detail, but dynamic insights into conformational changes in different desensitizing conditions are largely missing. Here, we use electrophysiology and voltage-clamp fluorometry to follow the functional changes of the pore along with conformational changes at several positions in the extracellular and upper transmembrane domain via cysteine-labeled fluorophores. Acute desensitization terminates activation in wild type, but introducing an N414K mutation in the β11-12 linker of mouse ASIC1a interfered with this process. The mutation also affected steady-state desensitization and led to pronounced tachyphylaxis. Although the extracellular domain of this mutant remained sensitive to pH and underwent pH-dependent conformational changes, these conformational changes did not necessarily lead to desensitization. N414K-containing channels also remained sensitive to a known peptide modulator that increases steady-state desensitization, indicating that the mutation only reduced, but not precluded, desensitization. Together, this study contributes to our understanding of the fundamental properties of ASIC1a desensitization, emphasizing the complex interplay between the conformational changes of the extracellular domain and the pore during channel activation and desensitization.
Collapse
Affiliation(s)
- Caroline Marcher Holm
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Asli B Topaktas
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark; Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Johs Dannesboe
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark; Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stephan A Pless
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Stephanie A Heusser
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
9
|
Cristofori-Armstrong B, Budusan E, Smith JJ, Reynaud S, Voll K, Chassagnon IR, Durek T, Rash LD. Revealing molecular determinants governing mambalgin-3 pharmacology at acid-sensing ion channel 1 variants. Cell Mol Life Sci 2024; 81:266. [PMID: 38880807 PMCID: PMC11335189 DOI: 10.1007/s00018-024-05276-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/19/2024] [Accepted: 05/12/2024] [Indexed: 06/18/2024]
Abstract
Acid-sensing ion channels (ASICs) are trimeric proton-gated cation channels that play a role in neurotransmission and pain sensation. The snake venom-derived peptides, mambalgins, exhibit potent analgesic effects in rodents by inhibiting central ASIC1a and peripheral ASIC1b. Despite their distinct species- and subtype-dependent pharmacology, previous structure-function studies have focussed on the mambalgin interaction with ASIC1a. Currently, the specific channel residues responsible for this pharmacological profile, and the mambalgin pharmacophore at ASIC1b remain unknown. Here we identify non-conserved residues at the ASIC1 subunit interface that drive differences in the mambalgin pharmacology from rat ASIC1a to ASIC1b, some of which likely do not make peptide binding interactions. Additionally, an amino acid variation below the core binding site explains potency differences between rat and human ASIC1. Two regions within the palm domain, which contribute to subtype-dependent effects for mambalgins, play key roles in ASIC gating, consistent with subtype-specific differences in the peptides mechanism. Lastly, there is a shared primary mambalgin pharmacophore for ASIC1a and ASIC1b activity, with certain peripheral peptide residues showing variant-specific significance for potency. Through our broad mutagenesis studies across various species and subtype variants, we gain a more comprehensive understanding of the pharmacophore and the intricate molecular interactions that underlie ligand specificity. These insights pave the way for the development of more potent and targeted peptide analogues required to advance our understating of human ASIC1 function and its role in disease.
Collapse
Affiliation(s)
- Ben Cristofori-Armstrong
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Elena Budusan
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Jennifer J Smith
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
- Genentech, 1 DNA Way, South San Francisco, CA, 94080, United States
| | - Steve Reynaud
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
- In Extenso Innovation Growth, Lyon, France
| | - Kerstin Voll
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397, Biberach an der Riß, Germany
| | - Irène R Chassagnon
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
- Servatus Ltd. Coolum Beach, Coolum Beach, QLD, Australia
| | - Thomas Durek
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Lachlan D Rash
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
10
|
Purohit R, Couch T, MacLean DM. Proline substitutions in the ASIC1 β11-12 linker slow desensitization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.09.593312. [PMID: 38798386 PMCID: PMC11118455 DOI: 10.1101/2024.05.09.593312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Desensitization is a prominent feature of nearly all ligand gated ion channels. Acid-sensing ion channels (ASIC) undergo desensitization within hundreds of milliseconds to seconds upon continual extracellular acidification. The ASIC mechanism of desensitization is primarily due to the isomerization or "flipping" of a short linker joining the 11th and 12th beta sheets in the extracellular domain. In the resting and active states this β11-12 linker adopts an "upward" conformation while in the desensitized conformation the linker assumes a "downward" state. To accommodate this "downward" state, specific peptide bonds within the linker adopt either trans-like or cis-like conformations. Since proline-containing peptide bonds undergo cis-trans isomerization very slowly, we hypothesized that introducing proline residues in the linker may slow or even abolish ASIC desensitization, potentially providing a valuable research tools. Proline substitutions in the chicken ASIC1 β11-12 linker (L414P and Y416P) slowed desensitization decays approximately 100 to 1000-fold as measured in excised patches. Both L414P and Y416P shifted the steady state desensitization curves to more acidic pHs while activation curves and ion selectivity of these slow-desensitizing currents were largely unaffected. To investigate the functional stoichiometry of desensitization in the trimeric ASIC, we created families of L414P and Y416P concatemers with zero, one, two or three proline substitutions in all possible configurations. Introducing one or two L414P or Y416P mutations only slightly attenuated desensitization, suggesting that conformational changes in the remaining faster wild type subunits were sufficient to desensitize the channel. These data highlight the unusual cis-trans isomerization mechanism of ASIC desensitization and support a model where a single subunit is sufficient to desensitize the entire channel.
Collapse
Affiliation(s)
- Rutambhara Purohit
- Department of Pharmacology and Physiology, University of Rochester Medical Center
| | - Tyler Couch
- Department of Pharmacology and Physiology, University of Rochester Medical Center
| | - David M MacLean
- Department of Pharmacology and Physiology, University of Rochester Medical Center
| |
Collapse
|
11
|
Lu Y, Lin Y, Wang J. Progress on functions of intracellular domain of trimeric ligand-gated ion channels. Zhejiang Da Xue Xue Bao Yi Xue Ban 2024; 53:221-230. [PMID: 38310082 PMCID: PMC11057991 DOI: 10.3724/zdxbyxb-2023-0472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 11/11/2023] [Indexed: 02/05/2024]
Abstract
Ligand-gated ion channels are a large category of essential ion channels, modulating their state by binding to specific ligands to allow ions to pass through the cell membrane. Purinergic ligand-gated ion channel receptors (P2XRs) and acid-sensitive ion channels (ASICs) are representative members of trimeric ligand-gated ion channel. Recent studies have shown that structural differences in the intracellular domain of P2XRs may determine the desensitization process. The lateral fenestrations of P2XRs potentially serve as a pathway for ion conductance and play a decisive role in ion selectivity. Phosphorylation of numerous amino acid residues in the P2XRs are involved in regulating the activity of ion channels. Additionally, the P2XRs interact with other ligand-gated ion channels including N-methyl-D-aspartate receptors, γ-aminobutyric acid receptors, 5-hydroxytryptamin receptors and nicotinic acetylcholine receptors, mediating physiological processes such as synaptic plasticity. Conformational changes in the intracellular domain of the ASICs expose binding sites of intracellular signal partners, facilitating metabolic signal transduction. Amino acids such as Val16, Ser17, Ile18, Gln19 and Ala20 in the ASICs participate in channel opening and membrane expression. ASICs can also bind to intracellular proteins, such as CIPP and p11, to regulate channel function. Many phosphorylation sites at the C-terminus and N-terminus of ASICs are involved in the regulation of receptors. Furthermore, ASICs are involved in various physiological and pathophysiological processes, which include pain, ischemic stroke, psychiatric disorders, and neurodegenerative disease. In this article, we review the roles of the intracellular domains of these trimeric ligand-gated ion channels in channel gating as well as their physiological and pathological functions, in order to provide new insights into the discovery of related drugs.
Collapse
Affiliation(s)
- Yan Lu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Yiyu Lin
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jin Wang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
12
|
Ribeiro Liberato H, Bezerra Maciel J, Wlisses Da Silva A, Eduarda Uchoa Bezerra M, San De Oliveira Brito L, Silva J, Kuerislene Amâncio Ferreira M, Machado Marinho M, Marinho GS, Deusdênia Loiola Pessoa O, Guedes MIF, Goberlânio De Barros Silva P, Ferreira de Castro Gomes A, Silva Alencar De Menezes JE, Silva Dos Santos H. Neuromodulation of Acid-Sensitive Ion Channels (ASICs) and Anti-Inflammatory Potential by Lichenxanthone in Adult Zebrafish (Danio rerio): Experimental and Docking Studies. Chem Biodivers 2024; 21:e202400063. [PMID: 38329295 DOI: 10.1002/cbdv.202400063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/09/2024]
Abstract
The xanthone lichenxanthone did not show toxic effects (LC50>1.0 mg/mL). lichenxanthone prevented nociceptive behavior induced by acidic saline, and its analgesic effect was blocked by amiloride, highlighting the involvement of neuromodulation of acid-sensitive ion channels (ASICs). In the analysis of anti-inflammatory activity, concentrations of 0.1 and 0.5 mg/mL of lichenxanthone reduced the edema induced by k-carrageenan 3.5 %, observed from the fourth hour of analysis. This effect was similar to that observed with ibuprofen (positive control). No leukocyte infiltrates were observed in lichenxanthone, suggesting that the compound acts in the acute inflammatory response. The results of the molecular docking study revealed that lichenxanthone exhibited better affinity energy when compared to the ibuprofen control against the two targets evaluated.
Collapse
Affiliation(s)
- Hortência Ribeiro Liberato
- Programa de Pós-graduação em Ciências Naturais, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
| | - Jéssica Bezerra Maciel
- Programa de Pós-graduação em Ciências Naturais, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
| | | | | | - Luana San De Oliveira Brito
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Campus do Pici s/n, Fortaleza, Ceará, Brazil
| | - Jacilene Silva
- Programa de Pós-graduação em Ciências Naturais, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
| | | | - Marcia Machado Marinho
- Programa de Pós-graduação em Ciências Naturais, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
| | - Gabrielle S Marinho
- Programa de Pós-graduação em Ciências Naturais, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
| | - Otília Deusdênia Loiola Pessoa
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Campus do Pici s/n, Fortaleza, Ceará, Brazil
| | - Maria Izabel F Guedes
- Centro de Ciências da Saúde, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
| | | | | | | | - Hélcio Silva Dos Santos
- Programa de Pós-graduação em Ciências Naturais, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
- Universidade Estadual do Vale do Acaraú, Centro de Ciências Exatas e Tecnologia, Sobral, Ceará, Brasil
| |
Collapse
|
13
|
Kalienkova V, Dandamudi M, Paulino C, Lynagh T. Structural basis for excitatory neuropeptide signaling. Nat Struct Mol Biol 2024; 31:717-726. [PMID: 38337033 PMCID: PMC11026163 DOI: 10.1038/s41594-023-01198-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 12/05/2023] [Indexed: 02/12/2024]
Abstract
Rapid signaling between neurons is mediated by ligand-gated ion channels, cell-surface proteins with an extracellular ligand-binding domain and a membrane-spanning ion channel domain. The degenerin/epithelial sodium channel (DEG/ENaC) superfamily is diverse in terms of its gating stimuli, with some DEG/ENaCs gated by neuropeptides, and others gated by pH, mechanical force or enzymatic activity. The mechanism by which ligands bind to and activate DEG/ENaCs is poorly understood. Here we dissected the structural basis for neuropeptide-gated activity of a neuropeptide-gated DEG/ENaC, FMRFamide-gated sodium channel 1 (FaNaC1) from the annelid worm Malacoceros fuliginosus, using cryo-electron microscopy. Structures of FaNaC1 in the ligand-free resting state and in several ligand-bound states reveal the ligand-binding site and capture the ligand-induced conformational changes of channel gating, which we verified with complementary mutagenesis experiments. Our results illuminate channel gating in DEG/ENaCs and offer a structural template for experimental dissection of channel pharmacology and ion conduction.
Collapse
Affiliation(s)
- Valeria Kalienkova
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | | | - Cristina Paulino
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands.
- Biochemistry Center, Heidelberg University, Heidelberg, Germany.
| | - Timothy Lynagh
- Michael Sars Centre, University of Bergen, Bergen, Norway.
| |
Collapse
|
14
|
Evlanenkov KK, Nikolaev MV, Potapieva NN, Bolshakov KV, Tikhonov DB. Probing the Proton-Gated ASIC Channels Using Tetraalkylammonium Ions. Biomolecules 2023; 13:1631. [PMID: 38002313 PMCID: PMC10669046 DOI: 10.3390/biom13111631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/04/2023] [Accepted: 11/05/2023] [Indexed: 11/26/2023] Open
Abstract
The action of tetraalkylammonium ions, from tetrametylammonium (TMA) to tetrapentylammonium (TPtA), on the recombinant and native acid-sensing ion channels (ASICs) was studied using the patch-clamp approach. The responses of ASIC1a, ASIC2a, and native heteromeric ASICs were inhibited by TPtA. The peak currents through ASIC3 were unaffected, whereas the steady-state currents were significantly potentiated. This effect was characterized by an EC50 value of 1.22 ± 0.12 mM and a maximal effect of 3.2 ± 0.5. The effects of TPtA were voltage-independent but significantly decreased under conditions of strong acidification, which caused saturation of ASIC responses. Molecular modeling predicted TPtA binding in the acidic pocket of closed ASICs. Bound TPtA can prevent acidic pocket collapse through a process involving ASIC activation and desensitization. Tetraethylammonium (TEA) inhibited ASIC1a and native ASICs. The effect was independent of the activating pH but decreased with depolarization, suggesting a pore-blocking mechanism.
Collapse
Affiliation(s)
| | | | | | | | - Denis B. Tikhonov
- Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, St. Petersburg 194223, Russia or (K.K.E.); (M.V.N.); or (N.N.P.); or (K.V.B.)
| |
Collapse
|
15
|
Rook ML, McCullock TW, Couch T, Lueck JD, MacLean DM. Photomodulation of the ASIC1a acidic pocket destabilizes the open state. Protein Sci 2023; 32:e4800. [PMID: 37805833 PMCID: PMC10599103 DOI: 10.1002/pro.4800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 10/09/2023]
Abstract
Acid-sensing ion channels (ASICs) are important players in detecting extracellular acidification throughout the brain and body. ASICs have large extracellular domains containing two regions replete with acidic residues: the acidic pocket, and the palm domain. In the resting state, the acidic pocket is in an expanded conformation but collapses in low pH conditions as the acidic side chains are neutralized. Thus, extracellular acidification has been hypothesized to collapse the acidic pocket that, in turn, ultimately drives channel activation. However, several observations run counter to this idea. To explore how collapse or mobility of the acidic pocket is linked to channel gating, we employed two distinct tools. First, we incorporated the photocrosslinkable noncanonical amino acids (ncAAs) 4-azido-L-phenylalanine (AzF) or 4-benzoyl-L-phenylalanine (BzF) into several positions in the acidic pocket. At both E315 and Y318, AzF incorporation followed by UV irradiation led to right shifts in pH response curves and accelerations of desensitization and deactivation, consistent with restrictions of acidic pocket mobility destabilizing the open state. Second, we reasoned that because Cl- ions are found in the open and desensitized structures but absent in the resting state structures, Cl- substitution would provide insight into how stability of the pocket is linked to gating. Anion substitution resulted in faster deactivation and desensitization, consistent with the acidic pocket regulating the stability of the open state. Taken together, our data support a model where acidic pocket collapse is not essential for channel activation. Rather, collapse of the acidic pocket influences the stability of the open state of the pore.
Collapse
Affiliation(s)
- Matthew L. Rook
- Department of Pharmacology and Physiology, School of Medicine and DentistryUniversity of RochesterRochesterNew YorkUSA
| | - Tyler W. McCullock
- Department of Pharmacology and Physiology, School of Medicine and DentistryUniversity of RochesterRochesterNew YorkUSA
| | - Tyler Couch
- Department of Pharmacology and Physiology, School of Medicine and DentistryUniversity of RochesterRochesterNew YorkUSA
| | - John D. Lueck
- Department of Pharmacology and Physiology, School of Medicine and DentistryUniversity of RochesterRochesterNew YorkUSA
- Deparment of Neurology, School of Medicine and DentistryUniversity of RochesterRochesterNew YorkUSA
- Center for RNA BiologyUniversity of Rochester Medical CenterRochesterNew YorkUSA
| | - David M. MacLean
- Department of Pharmacology and Physiology, School of Medicine and DentistryUniversity of RochesterRochesterNew YorkUSA
| |
Collapse
|
16
|
Liu F, Dang Y, Li L, Feng H, Li J, Wang H, Zhang X, Zhang Z, Ye S, Tian Y, Chen Q. Structure and mechanism of a neuropeptide-activated channel in the ENaC/DEG superfamily. Nat Chem Biol 2023; 19:1276-1285. [PMID: 37550431 DOI: 10.1038/s41589-023-01401-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 07/10/2023] [Indexed: 08/09/2023]
Abstract
Phe-Met-Arg-Phe-amide (FMRFamide)-activated sodium channels (FaNaCs) are a family of channels activated by the neuropeptide FMRFamide, and, to date, the underlying ligand gating mechanism remains unknown. Here we present the high-resolution cryo-electron microscopy structures of Aplysia californica FaNaC in both apo and FMRFamide-bound states. AcFaNaC forms a chalice-shaped trimer and possesses several notable features, including two FaNaC-specific insertion regions, a distinct finger domain and non-domain-swapped transmembrane helix 2 in the transmembrane domain (TMD). One FMRFamide binds to each subunit in a cleft located in the top-most region of the extracellular domain, with participation of residues from the neighboring subunit. Bound FMRFamide adopts an extended conformation. FMRFamide binds tightly to A. californica FaNaC in an N terminus-in manner, which causes collapse of the binding cleft and induces large local conformational rearrangements. Such conformational changes are propagated downward toward the TMD via the palm domain, possibly resulting in outward movement of the TMD and dilation of the ion conduction pore.
Collapse
Affiliation(s)
- Fenglian Liu
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan and Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Yu Dang
- State Key Laboratory of Membrane Biology, Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Lu Li
- Academy of Medical Engineering and Translational Medicine (AMT) and Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin, China
| | - Hao Feng
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, China
| | - Jianlin Li
- Academy of Medical Engineering and Translational Medicine (AMT) and Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin, China
| | - Haowei Wang
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan and Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Xu Zhang
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan and Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Zhe Zhang
- State Key Laboratory of Membrane Biology, Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
- Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China.
| | - Sheng Ye
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, China.
| | - Yutao Tian
- Academy of Medical Engineering and Translational Medicine (AMT) and Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin, China.
| | - Qingfeng Chen
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan and Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China.
| |
Collapse
|
17
|
Alexander SPH, Mathie AA, Peters JA, Veale EL, Striessnig J, Kelly E, Armstrong JF, Faccenda E, Harding SD, Davies JA, Aldrich RW, Attali B, Baggetta AM, Becirovic E, Biel M, Bill RM, Caceres AI, Catterall WA, Conner AC, Davies P, De Clerq K, Delling M, Di Virgilio F, Falzoni S, Fenske S, Fortuny-Gomez A, Fountain S, George C, Goldstein SAN, Grimm C, Grissmer S, Ha K, Hammelmann V, Hanukoglu I, Hu M, Ijzerman AP, Jabba SV, Jarvis M, Jensen AA, Jordt SE, Kaczmarek LK, Kellenberger S, Kennedy C, King B, Kitchen P, Liu Q, Lynch JW, Meades J, Mehlfeld V, Nicke A, Offermanns S, Perez-Reyes E, Plant LD, Rash L, Ren D, Salman MM, Sieghart W, Sivilotti LG, Smart TG, Snutch TP, Tian J, Trimmer JS, Van den Eynde C, Vriens J, Wei AD, Winn BT, Wulff H, Xu H, Yang F, Fang W, Yue L, Zhang X, Zhu M. The Concise Guide to PHARMACOLOGY 2023/24: Ion channels. Br J Pharmacol 2023; 180 Suppl 2:S145-S222. [PMID: 38123150 PMCID: PMC11339754 DOI: 10.1111/bph.16178] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
The Concise Guide to PHARMACOLOGY 2023/24 is the sixth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of approximately 1800 drug targets, and over 6000 interactions with about 3900 ligands. There is an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (https://www.guidetopharmacology.org/), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes almost 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.16178. Ion channels are one of the six major pharmacological targets into which the Guide is divided, with the others being: G protein-coupled receptors, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2023, and supersedes data presented in the 2021/22, 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.
Collapse
Affiliation(s)
- Stephen P H Alexander
- School of Life Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK
| | - Alistair A Mathie
- School of Engineering, Arts, Science and Technology, University of Suffolk, Ipswich, IP4 1QJ, UK
| | - John A Peters
- Neurosci-ence Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK
| | - Emma L Veale
- Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway, Anson Building, Central Avenue, Chatham Maritime, Chatham, Kent, ME4 4TB, UK
| | - Jörg Striessnig
- Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck, A-6020, Innsbruck, Austria
| | - Eamonn Kelly
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK
| | - Jane F Armstrong
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Elena Faccenda
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Simon D Harding
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Jamie A Davies
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | | | | | | | | | - Martin Biel
- Ludwig Maximilian University of Munich, Munich, Germany
| | | | | | | | | | - Paul Davies
- Tufts University School of Medicine, Boston, USA
| | | | - Markus Delling
- University of California San Francisco, San Francisco, USA
| | | | | | | | | | | | - Chandy George
- Nanyang Technological University, Singapore, Singapore
| | | | | | | | - Kotdaji Ha
- University of California San Francisco, San Francisco, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Annette Nicke
- Ludwig Maximilian University of Munich, Munich, Germany
| | - Stefan Offermanns
- Max Planck Institute for Heart and Lung Research/JW Goethe University, Bad Nauheim/Frankfurt, Germany
| | | | | | | | - Dejian Ren
- University of Pennsylvania, Philadelphia, USA
| | | | | | | | | | | | - Jinbin Tian
- University of Texas at Houston, Houston, USA
| | | | | | | | | | | | | | | | | | | | - Lixia Yue
- University of Connecticut, Farmington, USA
| | | | - Michael Zhu
- University of Texas at Houston, Houston, USA
| |
Collapse
|
18
|
Zhao P, Tang C, Yang Y, Xiao Z, Perez-Miller S, Zhang H, Luo G, Liu H, Li Y, Liao Q, Yang F, Dong H, Khanna R, Liu Z. A new polymodal gating model of the proton-activated chloride channel. PLoS Biol 2023; 21:e3002309. [PMID: 37713449 PMCID: PMC10529583 DOI: 10.1371/journal.pbio.3002309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 09/27/2023] [Accepted: 08/23/2023] [Indexed: 09/17/2023] Open
Abstract
The proton-activated chloride (PAC) channel plays critical roles in ischemic neuron death, but its activation mechanisms remain elusive. Here, we investigated the gating of PAC channels using its novel bifunctional modulator C77304. C77304 acted as a weak activator of the PAC channel, causing moderate activation by acting on its proton gating. However, at higher concentrations, C77304 acted as a weak inhibitor, suppressing channel activity. This dual function was achieved by interacting with 2 modulatory sites of the channel, each with different affinities and dependencies on the channel's state. Moreover, we discovered a protonation-independent voltage activation of the PAC channel that appears to operate through an ion-flux gating mechanism. Through scanning-mutagenesis and molecular dynamics simulation, we confirmed that E181, E257, and E261 in the human PAC channel serve as primary proton sensors, as their alanine mutations eliminated the channel's proton gating while sparing the voltage-dependent gating. This proton-sensing mechanism was conserved among orthologous PAC channels from different species. Collectively, our data unveils the polymodal gating and proton-sensing mechanisms in the PAC channel that may inspire potential drug development.
Collapse
Affiliation(s)
- Piao Zhao
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
- Peptide and small molecule drug R&D platform, Furong Laboratory, Hunan Normal University, Changsha, China
| | - Cheng Tang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
- Peptide and small molecule drug R&D platform, Furong Laboratory, Hunan Normal University, Changsha, China
| | - Yuqin Yang
- Kuang Yaming Honors School, State Key Laboratory of Analytical Chemistry for Life Science, Engineering Research Center of Protein and Peptide Medicine of Ministry of Education, & Institute for Brain Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Zhen Xiao
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Samantha Perez-Miller
- Department of Molecular Pathobiology and NYU Pain Research Center, College of Dentistry, New York University, New York, New York, United States of America
| | - Heng Zhang
- Department of Biophysics and Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Guoqing Luo
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Hao Liu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yaqi Li
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Qingyi Liao
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Fan Yang
- Department of Biophysics and Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hao Dong
- Kuang Yaming Honors School, State Key Laboratory of Analytical Chemistry for Life Science, Engineering Research Center of Protein and Peptide Medicine of Ministry of Education, & Institute for Brain Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Rajesh Khanna
- Department of Molecular Pathobiology and NYU Pain Research Center, College of Dentistry, New York University, New York, New York, United States of America
- Department of Neuroscience and Physiology and Neuroscience Institute, School of Medicine, New York University, New York, New York, United States of America
| | - Zhonghua Liu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
- Peptide and small molecule drug R&D platform, Furong Laboratory, Hunan Normal University, Changsha, China
| |
Collapse
|
19
|
Elverson K, Freeman S, Manson F, Warwicker J. Computational Investigation of Mechanisms for pH Modulation of Human Chloride Channels. Molecules 2023; 28:5753. [PMID: 37570721 PMCID: PMC10420675 DOI: 10.3390/molecules28155753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Many transmembrane proteins are modulated by intracellular or extracellular pH. Investigation of pH dependence generally proceeds by mutagenesis of a wide set of amino acids, guided by properties such as amino-acid conservation and structure. Prediction of pKas can streamline this process, allowing rapid and effective identification of amino acids of interest with respect to pH dependence. Commencing with the calcium-activated chloride channel bestrophin 1, the carboxylate ligand structure around calcium sites relaxes in the absence of calcium, consistent with a measured lack of pH dependence. By contrast, less relaxation in the absence of calcium in TMEM16A, and maintenance of elevated carboxylate sidechain pKas, is suggested to give rise to pH-dependent chloride channel activity. This hypothesis, modulation of calcium/proton coupling and pH-dependent activity through the extent of structural relaxation, is shown to apply to the well-characterised cytosolic proteins calmodulin (pH-independent) and calbindin D9k (pH-dependent). Further application of destabilised, ionisable charge sites, or electrostatic frustration, is made to other human chloride channels (that are not calcium-activated), ClC-2, GABAA, and GlyR. Experimentally determined sites of pH modulation are readily identified. Structure-based tools for pKa prediction are freely available, allowing users to focus on mutagenesis studies, construct hypothetical proton pathways, and derive hypotheses such as the model for control of pH-dependent calcium activation through structural flexibility. Predicting altered pH dependence for mutations in ion channel disorders can support experimentation and, ultimately, clinical intervention.
Collapse
Affiliation(s)
- Kathleen Elverson
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| | - Sally Freeman
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| | - Forbes Manson
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| | - Jim Warwicker
- Division of Molecular and Cellular Function, Faculty of Biology, Medicine and Health, Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, UK
| |
Collapse
|
20
|
Petratou D, Gjikolaj M, Kaulich E, Schafer W, Tavernarakis N. A proton-inhibited DEG/ENaC ion channel maintains neuronal ionstasis and promotes neuronal survival under stress. iScience 2023; 26:107117. [PMID: 37416472 PMCID: PMC10320524 DOI: 10.1016/j.isci.2023.107117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 03/28/2023] [Accepted: 06/09/2023] [Indexed: 07/08/2023] Open
Abstract
The nervous system participates in the initiation and modulation of systemic stress. Ionstasis is of utmost importance for neuronal function. Imbalance in neuronal sodium homeostasis is associated with pathologies of the nervous system. However, the effects of stress on neuronal Na+ homeostasis, excitability, and survival remain unclear. We report that the DEG/ENaC family member DEL-4 assembles into a proton-inactivated sodium channel. DEL-4 operates at the neuronal membrane and synapse to modulate Caenorhabditis elegans locomotion. Heat stress and starvation alter DEL-4 expression, which in turn alters the expression and activity of key stress-response transcription factors and triggers appropriate motor adaptations. Similar to heat stress and starvation, DEL-4 deficiency causes hyperpolarization of dopaminergic neurons and affects neurotransmission. Using humanized models of neurodegenerative diseases in C. elegans, we showed that DEL-4 promotes neuronal survival. Our findings provide insights into the molecular mechanisms by which sodium channels promote neuronal function and adaptation under stress.
Collapse
Affiliation(s)
- Dionysia Petratou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, 70013 Crete, Greece
- Department of Basic Sciences, Medical School, University of Crete, Heraklion, 71003 Crete, Greece
| | - Martha Gjikolaj
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, 70013 Crete, Greece
- Department of Basic Sciences, Medical School, University of Crete, Heraklion, 71003 Crete, Greece
| | - Eva Kaulich
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, CB2 0QH Cambridge, UK
| | - William Schafer
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, CB2 0QH Cambridge, UK
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, 70013 Crete, Greece
- Department of Basic Sciences, Medical School, University of Crete, Heraklion, 71003 Crete, Greece
| |
Collapse
|
21
|
Cherninskyi A, Storozhuk M, Maximyuk O, Kulyk V, Krishtal O. Triggering of Major Brain Disorders by Protons and ATP: The Role of ASICs and P2X Receptors. Neurosci Bull 2023; 39:845-862. [PMID: 36445556 PMCID: PMC9707125 DOI: 10.1007/s12264-022-00986-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 08/14/2022] [Indexed: 11/30/2022] Open
Abstract
Adenosine triphosphate (ATP) is well-known as a universal source of energy in living cells. Less known is that this molecule has a variety of important signaling functions: it activates a variety of specific metabotropic (P2Y) and ionotropic (P2X) receptors in neuronal and non-neuronal cell membranes. So, a wide variety of signaling functions well fits the ubiquitous presence of ATP in the tissues. Even more ubiquitous are protons. Apart from the unspecific interaction of protons with any protein, many physiological processes are affected by protons acting on specific ionotropic receptors-acid-sensing ion channels (ASICs). Both protons (acidification) and ATP are locally elevated in various pathological states. Using these fundamentally important molecules as agonists, ASICs and P2X receptors signal a variety of major brain pathologies. Here we briefly outline the physiological roles of ASICs and P2X receptors, focusing on the brain pathologies involving these receptors.
Collapse
Affiliation(s)
- Andrii Cherninskyi
- Bogomoletz Institute of Physiology of National Academy of Sciences of Ukraine, Kyiv, 01024, Ukraine.
| | - Maksim Storozhuk
- Bogomoletz Institute of Physiology of National Academy of Sciences of Ukraine, Kyiv, 01024, Ukraine
| | - Oleksandr Maximyuk
- Bogomoletz Institute of Physiology of National Academy of Sciences of Ukraine, Kyiv, 01024, Ukraine
| | - Vyacheslav Kulyk
- Bogomoletz Institute of Physiology of National Academy of Sciences of Ukraine, Kyiv, 01024, Ukraine
| | - Oleg Krishtal
- Bogomoletz Institute of Physiology of National Academy of Sciences of Ukraine, Kyiv, 01024, Ukraine
| |
Collapse
|
22
|
Martí-Solans J, Børve A, Bump P, Hejnol A, Lynagh T. Peripheral and central employment of acid-sensing ion channels during early bilaterian evolution. eLife 2023; 12:e81613. [PMID: 36821351 PMCID: PMC9949801 DOI: 10.7554/elife.81613] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 01/08/2023] [Indexed: 02/24/2023] Open
Abstract
Nervous systems are endowed with rapid chemosensation and intercellular signaling by ligand-gated ion channels (LGICs). While a complex, bilaterally symmetrical nervous system is a major innovation of bilaterian animals, the employment of specific LGICs during early bilaterian evolution is poorly understood. We therefore questioned bilaterian animals' employment of acid-sensing ion channels (ASICs), LGICs that mediate fast excitatory responses to decreases in extracellular pH in vertebrate neurons. Our phylogenetic analysis identified an earlier emergence of ASICs from the overarching DEG/ENaC (degenerin/epithelial sodium channel) superfamily than previously thought and suggests that ASICs were a bilaterian innovation. Our broad examination of ASIC gene expression and biophysical function in each major bilaterian lineage of Xenacoelomorpha, Protostomia, and Deuterostomia suggests that the earliest bilaterian ASICs were probably expressed in the periphery, before being incorporated into the brain as it emerged independently in certain deuterostomes and xenacoelomorphs. The loss of certain peripheral cells from Ecdysozoa after they separated from other protostomes likely explains their loss of ASICs, and thus the absence of ASICs from model organisms Drosophila and Caenorhabditis elegans. Thus, our use of diverse bilaterians in the investigation of LGIC expression and function offers a unique hypothesis on the employment of LGICs in early bilaterian evolution.
Collapse
Affiliation(s)
| | - Aina Børve
- Department of Biological Sciences, University of BergenBergenNorway
| | - Paul Bump
- Hopkins Marine Station, Department of Biology, Stanford UniversityPacific GroveUnited States
| | - Andreas Hejnol
- Department of Biological Sciences, University of BergenBergenNorway
| | | |
Collapse
|
23
|
Korkosh VS, Tikhonov DB. Analysis of residue-residue interactions in the structures of ASIC1a suggests possible gating mechanisms. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2023; 52:111-119. [PMID: 36690863 DOI: 10.1007/s00249-023-01628-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/25/2023]
Abstract
The gating mechanism of acid-sensitive ion channels (ASICs) remains unclear, despite the availability of atomic-scale structures in various functional states. The collapse of the acidic pocket and structural changes in the low-palm region are assumed to trigger activation. For the acidic pocket, protonation of some residues can minimize repulsion in the collapsed conformation. The relationship between low-palm rearrangements and gating is unknown. In this work, we performed a Monte Carlo energy optimization of known ASIC1a structures and determined the residue-residue interactions in different functional states. For rearrangements in the acidic pocket, our results are consistent with previously proposed mechanisms, although significant complexity was revealed for the residue-residue interactions. The data support the proposal of a gating mechanism in the low-palm region, in which residues E80 and E417 share a proton to activate the channel.
Collapse
Affiliation(s)
- Vyacheslav S Korkosh
- Sechenov Institute of Evolutionary Physiology and Biochemistry, St. Petersburg, Russia
| | - Denis B Tikhonov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, St. Petersburg, Russia.
| |
Collapse
|
24
|
Peng H, Yang X, Fang H, Zhang Z, Zhao J, Zhao T, Liu J, Li Y. Simultaneous effect of different chromatographic conditions on the chromatographic retention of pentapeptide derivatives (HGRFG and NPNPT). Front Chem 2023; 11:1171824. [PMID: 37143822 PMCID: PMC10151710 DOI: 10.3389/fchem.2023.1171824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 03/29/2023] [Indexed: 05/06/2023] Open
Abstract
Introduction: Oligopeptides exhibit great prospects for clinical application and its separation is of great importance in new drug development. Methods: To accurately predict the retention of pentapeptides with analogous structures in chromatography, the retention times of 57 pentapeptide derivatives in seven buffers at three temperatures and four mobile phase compositions were measured via reversed-phase high-performance liquid chromatography. The parameters ( k H A , k A , and p K a ) of the acid-base equilibrium were obtained by fitting the data corresponding to a sigmoidal function. We then studied the dependence of these parameters on the temperature (T), organic modifier composition (φ, methanol volume fraction), and polarity ( P m N parameter). Finally, we proposed two six-parameter models with (1) pH and T and (2) pH and φ or P m N as the independent variables. These models were validated for their prediction capacities by linearly fitting the predicted retention factor k-value and the experimental k-value. Results: The results showed that log k H A and log k A exhibited linear relationships with 1 / T , φ or P m N for all pentapeptides, especially for the acid pentapeptides. In the model of pH and T, the correlation coefficient (R2) of the acid pentapeptides was 0.8603, suggesting a certain prediction capability of chromatographic retention. Moreover, in the model of pH and φ or P m N , the R2 values of the acid and neutral pentapeptides were greater than 0.93, and the average root mean squared error was approximately 0.3, indicating that the k-values could be effectively predicted. Discussion: In summary, the two six-parameter models were appropriate to characterize the chromatographic retention of amphoteric compounds, especially the acid or neutral pentapeptides, and could predict the chromatographic retention of pentapeptide compounds.
Collapse
Affiliation(s)
- Huan Peng
- Center for Brain Science, The First Affiliated Hospital of Xi’ an Jiaotong University, Xi’an, Shaanxi, China
- College of Life Science, Northwest University, Xi’an, Shaanxi, China
| | - Xiangrong Yang
- College of Life Science, Northwest University, Xi’an, Shaanxi, China
- Kangya of Ningxia Pharmaceutical Co., Ltd., Yinchuan, China
| | - Huanle Fang
- Medical College, Peihua University, Xi’an, Shaanxi, China
| | - Zhongqi Zhang
- Department of Polypeptide Engineering, Active Protein and Polypeptide Engineering Center of Xi’an Hui Kang, Xi’an, Shaanxi, China
| | - Jinli Zhao
- Department of Polypeptide Engineering, Active Protein and Polypeptide Engineering Center of Xi’an Hui Kang, Xi’an, Shaanxi, China
| | - Te Zhao
- College of Electronic Engineering, Xidian University, Xi’an, Shaanxi, China
| | - Jianli Liu
- College of Life Science, Northwest University, Xi’an, Shaanxi, China
- Medical College, Peihua University, Xi’an, Shaanxi, China
- *Correspondence: Yan Li, ; Jianli Liu,
| | - Yan Li
- Center for Brain Science, The First Affiliated Hospital of Xi’ an Jiaotong University, Xi’an, Shaanxi, China
- *Correspondence: Yan Li, ; Jianli Liu,
| |
Collapse
|
25
|
Segmental Upregulation of ASIC1 Channels in the Formalin Acute Pain Mouse Model. Pharmaceuticals (Basel) 2022; 15:ph15121539. [PMID: 36558990 PMCID: PMC9784454 DOI: 10.3390/ph15121539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/23/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Hindpaw injection of formalin in rodents is used to assess acute persistent pain. The response to formalin is biphasic. The initial response (first minutes) is thought to be linked to inflammatory, peripheral mechanisms, while the latter (around 30 min after the injection), is linked to central mechanisms. This model is useful to analyze the effect of drugs at one or both phases, and the involvement of ion channels in the response. Acid-sensing ion channels (ASICs) regulate synaptic activities and play important roles in pain conditions. Recently, psalmotoxin-1 (Pctx-1), a toxin that inhibits ASIC1a-constituted channels, and antisense ASIC1a-RNA, intrathecal administered in mice were shown to affect both phases of the test. METHODS The mouse formalin test was performed on C57/BL6 7- to 9-week-old mice. Behavioral tests were conducted and tissue was extracted to detect proteins (ASIC1 and pERK) and ASIC1-mRNA and mir485-5p levels. RESULTS The injection of formalin was accompanied by an increase in ASIC1 levels. This was detected at the contralateral anterior cingulate cortex (ACC) compared to the ipsilateral side, and both sides of the ACC of vehicle-injected animals. At the spinal cord and dorsal root ganglia, ASIC1 levels followed a gradient stronger at lumbar (L) 3 and decreased towards L5. Gender differences were detected at the ACC; with female mice showing higher ASIC1a levels at the ACC. No significant changes in ASIC1-mRNA levels were detected. Evidence suggests ASIC1 upregulation depends on regulatory microRNAs. CONCLUSION This work highlights the important role of ASIC1 in pain and the potential role of pharmacological therapies aimed at this channel.
Collapse
|
26
|
Roy S, Johner N, Trendafilov V, Gautschi I, Bignucolo O, Molton O, Bernèche S, Kellenberger S. Calcium regulates acid-sensing ion channel 3 activation by competing with protons in the channel pore and at an allosteric binding site. Open Biol 2022; 12:220243. [PMID: 36541099 PMCID: PMC9768671 DOI: 10.1098/rsob.220243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The extracellular Ca2+ concentration changes locally under certain physiological and pathological conditions. Such variations affect the function of ion channels of the nervous system and consequently also neuronal signalling. We investigated here the mechanisms by which Ca2+ controls the activity of acid-sensing ion channel (ASIC) 3. ASICs are neuronal, H+-gated Na+ channels involved in several physiological and pathological processes, including the expression of fear, learning, pain sensation and neurodegeneration after ischaemic stroke. It was previously shown that Ca2+ negatively modulates the ASIC pH dependence. While protons are default activators of ASIC3, this channel can also be activated at pH7.4 by the removal of the extracellular Ca2+. Two previous studies concluded that low pH opens ASIC3 by displacing Ca2+ ions that block the channel pore at physiological pH. We show here that an acidic residue, distant from the pore, together with pore residues, controls the modulation of ASIC3 by Ca2+. Our study identifies a new regulatory site in ASIC3 and demonstrates that ASIC3 activation involves an allosteric mechanism together with Ca2+ unbinding from the channel pore. We provide a molecular analysis of a regulatory mechanism found in many ion channels.
Collapse
Affiliation(s)
- Sophie Roy
- Department of biomedical Sciences, University of Lausanne, 1011 Lausanne, Switzerland
| | - Niklaus Johner
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland,Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Viktor Trendafilov
- Department of biomedical Sciences, University of Lausanne, 1011 Lausanne, Switzerland
| | - Ivan Gautschi
- Department of biomedical Sciences, University of Lausanne, 1011 Lausanne, Switzerland
| | - Olivier Bignucolo
- Department of biomedical Sciences, University of Lausanne, 1011 Lausanne, Switzerland,Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Ophélie Molton
- Department of biomedical Sciences, University of Lausanne, 1011 Lausanne, Switzerland
| | - Simon Bernèche
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland,Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Stephan Kellenberger
- Department of biomedical Sciences, University of Lausanne, 1011 Lausanne, Switzerland
| |
Collapse
|
27
|
Kaulich E, Grundy LJ, Schafer WR, Walker DS. The diverse functions of the DEG/ENaC family: linking genetic and physiological insights. J Physiol 2022; 601:1521-1542. [PMID: 36314992 PMCID: PMC10148893 DOI: 10.1113/jp283335] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
The DEG/ENaC family of ion channels was defined based on the sequence similarity between degenerins (DEG) from the nematode Caenorhabditis elegans and subunits of the mammalian epithelial sodium channel (ENaC), and also includes a diverse array of non-voltage-gated cation channels from across animal phyla, including the mammalian acid-sensing ion channels (ASICs) and Drosophila pickpockets. ENaCs and ASICs have wide ranging medical importance; for example, ENaCs play an important role in respiratory and renal function, and ASICs in ischaemia and inflammatory pain, as well as being implicated in memory and learning. Electrophysiological approaches, both in vitro and in vivo, have played an essential role in establishing the physiological properties of this diverse family, identifying an array of modulators and implicating them in an extensive range of cellular functions, including mechanosensation, acid sensation and synaptic modulation. Likewise, genetic studies in both invertebrates and vertebrates have played an important role in linking our understanding of channel properties to function at the cellular and whole animal/behavioural level. Drawing together genetic and physiological evidence is essential to furthering our understanding of the precise cellular roles of DEG/ENaC channels, with the diversity among family members allowing comparative physiological studies to dissect the molecular basis of these diverse functions.
Collapse
Affiliation(s)
- Eva Kaulich
- Neurobiology Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, UK
| | - Laura J Grundy
- Neurobiology Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, UK
| | - William R Schafer
- Neurobiology Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, UK.,Department of Biology, KU Leuven, Leuven, Belgium
| | - Denise S Walker
- Neurobiology Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, UK
| |
Collapse
|
28
|
Verkest C, Salinas M, Diochot S, Deval E, Lingueglia E, Baron A. Mechanisms of Action of the Peptide Toxins Targeting Human and Rodent Acid-Sensing Ion Channels and Relevance to Their In Vivo Analgesic Effects. Toxins (Basel) 2022; 14:toxins14100709. [PMID: 36287977 PMCID: PMC9612379 DOI: 10.3390/toxins14100709] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/30/2022] [Accepted: 10/02/2022] [Indexed: 11/16/2022] Open
Abstract
Acid-sensing ion channels (ASICs) are voltage-independent H+-gated cation channels largely expressed in the nervous system of rodents and humans. At least six isoforms (ASIC1a, 1b, 2a, 2b, 3 and 4) associate into homotrimers or heterotrimers to form functional channels with highly pH-dependent gating properties. This review provides an update on the pharmacological profiles of animal peptide toxins targeting ASICs, including PcTx1 from tarantula and related spider toxins, APETx2 and APETx-like peptides from sea anemone, and mambalgin from snake, as well as the dimeric protein snake toxin MitTx that have all been instrumental to understanding the structure and the pH-dependent gating of rodent and human cloned ASICs and to study the physiological and pathological roles of native ASICs in vitro and in vivo. ASICs are expressed all along the pain pathways and the pharmacological data clearly support a role for these channels in pain. ASIC-targeting peptide toxins interfere with ASIC gating by complex and pH-dependent mechanisms sometimes leading to opposite effects. However, these dual pH-dependent effects of ASIC-inhibiting toxins (PcTx1, mambalgin and APETx2) are fully compatible with, and even support, their analgesic effects in vivo, both in the central and the peripheral nervous system, as well as potential effects in humans.
Collapse
Affiliation(s)
- Clément Verkest
- CNRS (Centre National de la Recherche Scientifique), IPMC (Institut de Pharmacologie Moléculaire et Cellulaire), LabEx ICST (Laboratory of Excellence in Ion Channel Science and Therapeutics), FHU InovPain (Fédération Hospitalo-Universitaire “Innovative Solutions in Refractory Chronic Pain”), Université Côte d’Azur, 660 Route des Lucioles, Sophia-Antipolis, 06560 Nice, France
- Department of Anesthesiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Miguel Salinas
- CNRS (Centre National de la Recherche Scientifique), IPMC (Institut de Pharmacologie Moléculaire et Cellulaire), LabEx ICST (Laboratory of Excellence in Ion Channel Science and Therapeutics), FHU InovPain (Fédération Hospitalo-Universitaire “Innovative Solutions in Refractory Chronic Pain”), Université Côte d’Azur, 660 Route des Lucioles, Sophia-Antipolis, 06560 Nice, France
| | - Sylvie Diochot
- CNRS (Centre National de la Recherche Scientifique), IPMC (Institut de Pharmacologie Moléculaire et Cellulaire), LabEx ICST (Laboratory of Excellence in Ion Channel Science and Therapeutics), FHU InovPain (Fédération Hospitalo-Universitaire “Innovative Solutions in Refractory Chronic Pain”), Université Côte d’Azur, 660 Route des Lucioles, Sophia-Antipolis, 06560 Nice, France
| | - Emmanuel Deval
- CNRS (Centre National de la Recherche Scientifique), IPMC (Institut de Pharmacologie Moléculaire et Cellulaire), LabEx ICST (Laboratory of Excellence in Ion Channel Science and Therapeutics), FHU InovPain (Fédération Hospitalo-Universitaire “Innovative Solutions in Refractory Chronic Pain”), Université Côte d’Azur, 660 Route des Lucioles, Sophia-Antipolis, 06560 Nice, France
| | - Eric Lingueglia
- CNRS (Centre National de la Recherche Scientifique), IPMC (Institut de Pharmacologie Moléculaire et Cellulaire), LabEx ICST (Laboratory of Excellence in Ion Channel Science and Therapeutics), FHU InovPain (Fédération Hospitalo-Universitaire “Innovative Solutions in Refractory Chronic Pain”), Université Côte d’Azur, 660 Route des Lucioles, Sophia-Antipolis, 06560 Nice, France
| | - Anne Baron
- CNRS (Centre National de la Recherche Scientifique), IPMC (Institut de Pharmacologie Moléculaire et Cellulaire), LabEx ICST (Laboratory of Excellence in Ion Channel Science and Therapeutics), FHU InovPain (Fédération Hospitalo-Universitaire “Innovative Solutions in Refractory Chronic Pain”), Université Côte d’Azur, 660 Route des Lucioles, Sophia-Antipolis, 06560 Nice, France
- Correspondence:
| |
Collapse
|
29
|
Osei-Owusu J, Kots E, Ruan Z, Mihaljević L, Chen KH, Tamhaney A, Ye X, Lü W, Weinstein H, Qiu Z. Molecular determinants of pH sensing in the proton-activated chloride channel. Proc Natl Acad Sci U S A 2022; 119:e2200727119. [PMID: 35878032 PMCID: PMC9351481 DOI: 10.1073/pnas.2200727119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/31/2022] [Indexed: 01/27/2023] Open
Abstract
In response to acidic pH, the widely expressed proton-activated chloride (PAC) channel opens and conducts anions across cellular membranes. By doing so, PAC plays an important role in both cellular physiology (endosome acidification) and diseases associated with tissue acidosis (acid-induced cell death). Despite the available structural information, how proton binding in the extracellular domain (ECD) leads to PAC channel opening remains largely unknown. Here, through comprehensive mutagenesis and electrophysiological studies, we identified several critical titratable residues, including two histidine residues (H130 and H131) and an aspartic acid residue (D269) at the distal end of the ECD, together with the previously characterized H98 at the transmembrane domain-ECD interface, as potential pH sensors for human PAC. Mutations of these residues resulted in significant changes in pH sensitivity. Some combined mutants also exhibited large basal PAC channel activities at neutral pH. By combining molecular dynamics simulations with structural and functional analysis, we further found that the β12 strand at the intersubunit interface and the associated "joint region" connecting the upper and lower ECDs allosterically regulate the proton-dependent PAC activation. Our studies suggest a distinct pH-sensing and gating mechanism of this new family of ion channels sensitive to acidic environment.
Collapse
Affiliation(s)
- James Osei-Owusu
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Ekaterina Kots
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065
| | - Zheng Ruan
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI 49503
| | - Ljubica Mihaljević
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Kevin Hong Chen
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Ami Tamhaney
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Xinyu Ye
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI 49503
| | - Wei Lü
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI 49503
| | - Harel Weinstein
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065
| | - Zhaozhu Qiu
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
30
|
Zhu Z, Deng Z, Wang Q, Wang Y, Zhang D, Xu R, Guo L, Wen H. Simulation and Machine Learning Methods for Ion-Channel Structure Determination, Mechanistic Studies and Drug Design. Front Pharmacol 2022; 13:939555. [PMID: 35837274 PMCID: PMC9275593 DOI: 10.3389/fphar.2022.939555] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Ion channels are expressed in almost all living cells, controlling the in-and-out communications, making them ideal drug targets, especially for central nervous system diseases. However, owing to their dynamic nature and the presence of a membrane environment, ion channels remain difficult targets for the past decades. Recent advancement in cryo-electron microscopy and computational methods has shed light on this issue. An explosion in high-resolution ion channel structures paved way for structure-based rational drug design and the state-of-the-art simulation and machine learning techniques dramatically improved the efficiency and effectiveness of computer-aided drug design. Here we present an overview of how simulation and machine learning-based methods fundamentally changed the ion channel-related drug design at different levels, as well as the emerging trends in the field.
Collapse
Affiliation(s)
- Zhengdan Zhu
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Beijing Institute of Big Data Research, Beijing, China
| | - Zhenfeng Deng
- DP Technology, Beijing, China
- School of Pharmaceutical Sciences, Peking University, Beijing, China
| | | | | | - Duo Zhang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- DP Technology, Beijing, China
| | - Ruihan Xu
- DP Technology, Beijing, China
- National Engineering Research Center of Visual Technology, Peking University, Beijing, China
| | | | - Han Wen
- DP Technology, Beijing, China
| |
Collapse
|
31
|
Wang C, Polovitskaya MM, Delgado BD, Jentsch TJ, Long SB. Gating choreography and mechanism of the human proton-activated chloride channel ASOR. SCIENCE ADVANCES 2022; 8:eabm3942. [PMID: 35108041 PMCID: PMC8809534 DOI: 10.1126/sciadv.abm3942] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/08/2021] [Indexed: 05/25/2023]
Abstract
The proton-activated chloride channel ASOR (TMEM206/PAC) permeates anions across cellular membranes in response to acidification, thereby enhancing acid-induced cell death and regulating endocytosis. The molecular mechanisms of pH-dependent control are not understood, in part because structural information for an activated conformation of ASOR is lacking. Here, we reconstitute function from purified protein and present a 3.1-Å-resolution cryo-electron microscopy structure of human ASOR at acidic pH in an activated conformation. The work contextualizes a previous acidic pH structure as a desensitized conformation. Combined with electrophysiological studies and high-resolution structures of resting and desensitized states, the work reveals mechanisms of proton sensing and ion pore gating. Clusters of extracellular acidic residues function as pH sensors and coalesce when protonated. Ensuing conformational changes induce metamorphosis of transmembrane helices to fashion an ion conduction pathway unique to the activated conformation. The studies identify a new paradigm of channel gating in this ubiquitous ion channel.
Collapse
Affiliation(s)
- Chongyuan Wang
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Maya M. Polovitskaya
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), D-13125 Berlin, Germany
| | - Bryce D. Delgado
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
- Graduate Program in Biochemistry and Structural Biology, Cell and Developmental Biology, and Molecular Biology, Weill Cornell Medicine Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Thomas J. Jentsch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), D-13125 Berlin, Germany
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin, D-10117 Berlin, Germany
| | - Stephen B. Long
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| |
Collapse
|
32
|
Acid-Sensing Ion Channels in Glial Cells. MEMBRANES 2022; 12:membranes12020119. [PMID: 35207041 PMCID: PMC8878633 DOI: 10.3390/membranes12020119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/29/2021] [Accepted: 01/17/2022] [Indexed: 12/13/2022]
Abstract
Acid-sensing ion channels (ASICs) are proton-gated cation channels and key mediators of responses to neuronal injury. ASICs exhibit unique patterns of distribution in the brain, with high expression in neurons and low expression in glial cells. While there has been a lot of focus on ASIC in neurons, less is known about the roles of ASICs in glial cells. ASIC1a is expressed in astrocytes and might contribute to synaptic transmission and long-term potentiation. In oligodendrocytes, constitutive activation of ASIC1a participates in demyelinating diseases. ASIC1a, ASIC2a, and ASIC3, found in microglial cells, could mediate the inflammatory response. Under pathological conditions, ASIC dysregulation in glial cells can contribute to disease states. For example, activation of astrocytic ASIC1a may worsen neurodegeneration and glioma staging, activation of microglial ASIC1a and ASIC2a may perpetuate ischemia and inflammation, while oligodendrocytic ASIC1a might be involved in multiple sclerosis. This review concentrates on the unique ASIC components in each of the glial cells and integrates these glial-specific ASICs with their physiological and pathological conditions. Such knowledge provides promising evidence for targeting of ASICs in individual glial cells as a therapeutic strategy for a diverse range of conditions.
Collapse
|
33
|
Sivils A, Wang JQ, Chu XP. Striatonigrostriatal Spirals in Addiction. Front Neural Circuits 2021; 15:803501. [PMID: 34955762 PMCID: PMC8703003 DOI: 10.3389/fncir.2021.803501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/24/2021] [Indexed: 11/13/2022] Open
Abstract
A biological reward system is integral to all animal life and humans are no exception. For millennia individuals have investigated this system and its influences on human behavior. In the modern day, with the US facing an ongoing epidemic of substance use without an effective treatment, these investigations are of paramount importance. It is well known that basal ganglia contribute to rewards and are involved in learning, approach behavior, economic choices, and positive emotions. This review aims to elucidate the physiological role of striatonigrostriatal (SNS) spirals, as part of basal ganglia circuits, in this reward system and their pathophysiological role in perpetuating addiction. Additionally, the main functions of neurotransmitters such as dopamine and glutamate and their receptors in SNS circuits will be summarized. With this information, the claim that SNS spirals are crucial intermediaries in the shift from goal-directed behavior to habitual behavior will be supported, making this circuit a viable target for potential therapeutic intervention in those with substance use disorders.
Collapse
Affiliation(s)
| | | | - Xiang-Ping Chu
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, United States
| |
Collapse
|
34
|
Rook ML, Ananchenko A, Musgaard M, MacLean DM. Molecular Investigation of Chicken Acid-Sensing Ion Channel 1 β11-12 Linker Isomerization and Channel Kinetics. Front Cell Neurosci 2021; 15:761813. [PMID: 34924957 PMCID: PMC8675884 DOI: 10.3389/fncel.2021.761813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/05/2021] [Indexed: 11/13/2022] Open
Abstract
Structures of the trimeric acid-sensing ion channel have been solved in the resting, toxin-bound open and desensitized states. Within the extracellular domain, there is little difference between the toxin-bound open state and the desensitized state. The main exception is that a loop connecting the 11th and 12th β-strand, just two amino acid residues long, undergoes a significant and functionally critical re-orientation or flipping between the open and desensitized conformations. Here we investigate how specific interactions within the surrounding area influence linker stability in the "flipped" desensitized state using all-atom molecular dynamics simulations. An inherent challenge is bringing the relatively slow channel desensitization and recovery processes (in the milliseconds to seconds) within the time window of all-atom simulations (hundreds of nanoseconds). To accelerate channel behavior, we first identified the channel mutations at either the Leu414 or Asn415 position with the fastest recovery kinetics followed by molecular dynamics simulations of these mutants in a deprotonated state, accelerating recovery. By mutating one residue in the loop and examining the evolution of interactions in the neighbor, we identified a novel electrostatic interaction and validated prior important interactions. Subsequent functional analysis corroborates these findings, shedding light on the molecular factors controlling proton-mediated transitions between functional states of the channel. Together, these data suggest that the flipped loop in the desensitized state is stabilized by interactions from surrounding regions keeping both L414 and N415 in place. Interestingly, very few mutations in the loop allow for equivalent channel kinetics and desensitized state stability. The high degree of sequence conservation in this region therefore indicates that the stability of the ASIC desensitized state is under strong selective pressure and underlines the physiological importance of desensitization.
Collapse
Affiliation(s)
- Matthew L. Rook
- Graduate Program in Cellular and Molecular Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, United States
| | - Anna Ananchenko
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Maria Musgaard
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada
| | - David M. MacLean
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
35
|
Alijevic O, Peng Z, Kellenberger S. Changes in H +, K +, and Ca 2+ Concentrations, as Observed in Seizures, Induce Action Potential Signaling in Cortical Neurons by a Mechanism That Depends Partially on Acid-Sensing Ion Channels. Front Cell Neurosci 2021; 15:732869. [PMID: 34720879 PMCID: PMC8553998 DOI: 10.3389/fncel.2021.732869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/27/2021] [Indexed: 11/13/2022] Open
Abstract
Acid-sensing ion channels (ASICs) are activated by extracellular acidification. Because ASIC currents are transient, these channels appear to be ideal sensors for detecting the onset of rapid pH changes. ASICs are involved in neuronal death after ischemic stroke, and in the sensation of inflammatory pain. Ischemia and inflammation are associated with a slowly developing, long-lasting acidification. Recent studies indicate however that ASICs are unable to induce an electrical signaling activity under standard experimental conditions if pH changes are slow. In situations associated with slow and sustained pH drops such as high neuronal signaling activity and ischemia, the extracellular K+ concentration increases, and the Ca2+ concentration decreases. We hypothesized that the concomitant changes in H+, K+, and Ca2+ concentrations may allow a long-lasting ASIC-dependent induction of action potential (AP) signaling. We show that for acidification from pH7.4 to pH7.0 or 6.8 on cultured cortical neurons, the number of action potentials and the firing time increased strongly if the acidification was accompanied by a change to higher K+ and lower Ca2+ concentrations. Under these conditions, APs were also induced in neurons from ASIC1a-/- mice, in which a pH of ≤ 5.0 would be required to activate ASICs, indicating that ASIC activation was not required for the AP induction. Comparison between neurons of different ASIC genotypes indicated that the ASICs modulate the AP induction under such changed ionic conditions. Voltage-clamp measurements of the Na+ and K+ currents in cultured cortical neurons showed that the lowering of the pH inhibited Na+ and K+ currents. In contrast, the lowering of the Ca2+ together with the increase in the K+ concentration led to a hyperpolarizing shift of the activation voltage dependence of voltage-gated Na+ channels. We conclude that the ionic changes observed during high neuronal activity mediate a sustained AP induction caused by the potentiation of Na+ currents, a membrane depolarization due to the changed K+ reversal potential, the activation of ASICs, and possibly effects on other ion channels. Our study describes therefore conditions under which slow pH changes induce neuronal signaling by a mechanism involving ASICs.
Collapse
Affiliation(s)
- Omar Alijevic
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Zhong Peng
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Stephan Kellenberger
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
36
|
Mango D, Nisticò R. Neurodegenerative Disease: What Potential Therapeutic Role of Acid-Sensing Ion Channels? Front Cell Neurosci 2021; 15:730641. [PMID: 34690702 PMCID: PMC8531221 DOI: 10.3389/fncel.2021.730641] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/15/2021] [Indexed: 12/19/2022] Open
Abstract
Acidic pH shift occurs in many physiological neuronal activities such as synaptic transmission and synaptic plasticity but also represents a characteristic feature of many pathological conditions including inflammation and ischemia. Neuroinflammation is a complex process that occurs in various neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, and Huntington’s disease. Acid-sensing ion channels (ASICs) represent a widely expressed pH sensor in the brain that play a key role in neuroinflammation. On this basis, acid-sensing ion channel blockers are able to exert neuroprotective effects in different neurodegenerative diseases. In this review, we discuss the multifaceted roles of ASICs in brain physiology and pathology and highlight ASIC1a as a potential pharmacological target in neurodegenerative diseases.
Collapse
Affiliation(s)
- Dalila Mango
- Laboratory of Pharmacology of Synaptic Plasticity, European Brain Research Institute, Rome, Italy.,School of Pharmacy, University of Rome "Tor Vergata", Rome, Italy
| | - Robert Nisticò
- Laboratory of Pharmacology of Synaptic Plasticity, European Brain Research Institute, Rome, Italy.,School of Pharmacy, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
37
|
High-throughput characterization of photocrosslinker-bearing ion channel variants to map residues critical for function and pharmacology. PLoS Biol 2021; 19:e3001321. [PMID: 34491979 PMCID: PMC8448361 DOI: 10.1371/journal.pbio.3001321] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 09/17/2021] [Accepted: 06/10/2021] [Indexed: 12/24/2022] Open
Abstract
Incorporation of noncanonical amino acids (ncAAs) can endow proteins with novel functionalities, such as crosslinking or fluorescence. In ion channels, the function of these variants can be studied with great precision using standard electrophysiology, but this approach is typically labor intensive and low throughput. Here, we establish a high-throughput protocol to conduct functional and pharmacological investigations of ncAA-containing human acid-sensing ion channel 1a (hASIC1a) variants in transiently transfected mammalian cells. We introduce 3 different photocrosslinking ncAAs into 103 positions and assess the function of the resulting 309 variants with automated patch clamp (APC). We demonstrate that the approach is efficient and versatile, as it is amenable to assessing even complex pharmacological modulation by peptides. The data show that the acidic pocket is a major determinant for current decay, and live-cell crosslinking provides insight into the hASIC1a–psalmotoxin 1 (PcTx1) interaction. Further, we provide evidence that the protocol can be applied to other ion channels, such as P2X2 and GluA2 receptors. We therefore anticipate the approach to enable future APC-based studies of ncAA-containing ion channels in mammalian cells. This study describes a method to rapidly screen hundreds of ion channel variants containing non-canonical amino acids. A proof-of-principle introducing photocrosslinking non-canonical amino acids into the human ion channel hASIC1a shows how this approach can provide insights into function and pharmacology.
Collapse
|
38
|
Rook ML, Miaro M, Couch T, Kneisley DL, Musgaard M, MacLean DM. Mutation of a conserved glutamine residue does not abolish desensitization of acid-sensing ion channel 1. THE JOURNAL OF GENERAL PHYSIOLOGY 2021; 153:212203. [PMID: 34061161 PMCID: PMC8167889 DOI: 10.1085/jgp.202012855] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 05/13/2021] [Indexed: 12/14/2022]
Abstract
Desensitization is a common feature of ligand-gated ion channels, although the molecular cause varies widely between channel types. Mutations that greatly reduce or nearly abolish desensitization have been described for many ligand-gated ion channels, including glutamate, GABA, glycine, and nicotinic receptors, but not for acid-sensing ion channels (ASICs) until recently. Mutating Gln276 to a glycine (Q276G) in human ASIC1a was reported to mostly abolish desensitization at both the macroscopic and the single channel levels, potentially providing a valuable tool for subsequent studies. However, we find that in both human and chicken ASIC1, the effect of Q276G is modest. In chicken ASIC1, the equivalent Q277G slightly reduces desensitization when using pH 6.5 as a stimulus but desensitizes, essentially like wild-type, when using more acidic pH values. In addition, steady-state desensitization is intact, albeit right-shifted, and recovery from desensitization is accelerated. Molecular dynamics simulations indicate that the Gln277 side chain participates in a hydrogen bond network that might stabilize the desensitized conformation. Consistent with this, destabilizing this network with the Q277N or Q277L mutations largely mimics the Q277G phenotype. In human ASIC1a, the Q276G mutation also reduces desensitization, but not to the extent reported previously. Interestingly, the kinetic consequences of Q276G depend on the human variant used. In the common G212 variant, Q276G slows desensitization, while in the rare D212 variant desensitization accelerates. Our data reveal that while the Q/G mutation does not abolish or substantially impair desensitization as previously reported, it does point to unexpected differences between chicken and human ASICs and the need for careful scrutiny before using this mutation in future studies.
Collapse
Affiliation(s)
- Matthew L Rook
- Graduate Program in Cellular and Molecular Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY
| | - Megan Miaro
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Tyler Couch
- Graduate Program in Cellular and Molecular Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY
| | - Dana L Kneisley
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY
| | - Maria Musgaard
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - David M MacLean
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY
| |
Collapse
|
39
|
Ruan N, Tribble J, Peterson AM, Jiang Q, Wang JQ, Chu XP. Acid-Sensing Ion Channels and Mechanosensation. Int J Mol Sci 2021; 22:ijms22094810. [PMID: 34062742 PMCID: PMC8125064 DOI: 10.3390/ijms22094810] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/16/2022] Open
Abstract
Acid-sensing ion channels (ASICs) are mainly proton-gated cation channels that are activated by pH drops and nonproton ligands. They are part of the degenerin/epithelial sodium channel superfamily due to their sodium permeability. Predominantly expressed in the central nervous system, ASICs are involved in synaptic plasticity, learning/memory, and fear conditioning. These channels have also been implicated in multiple disease conditions, including ischemic brain injury, multiple sclerosis, Alzheimer’s disease, and drug addiction. Recent research has illustrated the involvement of ASICs in mechanosensation. Mechanosensation is a form of signal transduction in which mechanical forces are converted into neuronal signals. Specific mechanosensitive functions have been elucidated in functional ASIC1a, ASIC1b, ASIC2a, and ASIC3. The implications of mechanosensation in ASICs indicate their subsequent involvement in functions such as maintaining blood pressure, modulating the gastrointestinal function, and bladder micturition, and contributing to nociception. The underlying mechanism of ASIC mechanosensation is the tether-gate model, which uses a gating-spring mechanism to activate ASIC responses. Further understanding of the mechanism of ASICs will help in treatments for ASIC-related pathologies. Along with the well-known chemosensitive functions of ASICs, emerging evidence has revealed that mechanosensitive functions of ASICs are important for maintaining homeostasis and contribute to various disease conditions.
Collapse
|
40
|
Chen Z, Kuenze G, Meiler J, Canessa CM. An arginine residue in the outer segment of hASIC1a TM1 affects both proton affinity and channel desensitization. J Gen Physiol 2021; 153:211986. [PMID: 33851970 PMCID: PMC8050794 DOI: 10.1085/jgp.202012802] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/14/2020] [Accepted: 03/11/2021] [Indexed: 12/25/2022] Open
Abstract
Acid-sensing ion channels (ASICs) respond to changes in pH in the central and peripheral nervous systems and participate in synaptic plasticity and pain perception. Understanding the proton-mediated gating mechanism remains elusive despite the of their structures in various conformational states. We report here that R64, an arginine located in the outer segment of the first transmembrane domain of all three isoforms of mammalian ASICs, markedly impacts the apparent proton affinity of activation and the degree of desensitization from the open and preopen states. Rosetta calculations of free energy changes predict that substitutions of R64 in hASIC1a by aromatic residues destabilize the closed conformation while stabilizing the open conformation. Accordingly, F64 enhances the efficacy of proton-mediated gating of hASIC1a, which increases the apparent pH50 and facilitates channel opening when only one or two subunits are activated. F64 also lengthens the duration of opening events, thus keeping channels open for extended periods of time and diminishing low pH-induced desensitization. Our results indicate that activation of a proton sensor(s) with pH50 equal to or greater than pH 7.2–7.1 opens F64hASIC1a, whereas it induces steady-state desensitization in wildtype channels due to the high energy of activation imposed by R64, which prevents opening of the pore. Together, these findings suggest that activation of a high-affinity proton-sensor(s) and a common gating mechanism may mediate the processes of activation and steady-state desensitization of hASIC1a.
Collapse
Affiliation(s)
- Zhuyuan Chen
- Department of Basic Sciences, Tsinghua University School of Medicine, Beijing, China
| | - Georg Kuenze
- Department of Chemistry, Vanderbilt University, Nashville, TN.,Center for Structural Biology, Vanderbilt University, Nashville, TN.,Institute for Drug Discovery, Leipzig University, Leipzig, Germany
| | - Jens Meiler
- Department of Chemistry, Vanderbilt University, Nashville, TN.,Center for Structural Biology, Vanderbilt University, Nashville, TN.,Department of Pharmacology, Vanderbilt University, Nashville, TN.,Institute for Drug Discovery, Leipzig University, Leipzig, Germany
| | - Cecilia M Canessa
- Department of Basic Sciences, Tsinghua University School of Medicine, Beijing, China.,Cellular and Molecular Physiology, Yale University, New Haven, CT
| |
Collapse
|
41
|
Bowie D. Neurotransmitter-gated ion channels, still front and centre stage. J Physiol 2021; 599:389-395. [PMID: 33448020 DOI: 10.1113/jp280800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Derek Bowie
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, H3G 1Y6, Canada
| |
Collapse
|
42
|
Xu Y, Chen F. Acid-Sensing Ion Channel-1a in Articular Chondrocytes and Synovial Fibroblasts: A Novel Therapeutic Target for Rheumatoid Arthritis. Front Immunol 2021; 11:580936. [PMID: 33584647 PMCID: PMC7876322 DOI: 10.3389/fimmu.2020.580936] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 12/14/2020] [Indexed: 12/19/2022] Open
Abstract
Acid-sensing ion channel 1a (ASIC1a) is a member of the extracellular H+-activated cation channel family. Emerging evidence has suggested that ASIC1a plays a crucial role in the pathogenesis of rheumatoid arthritis (RA). Specifically, ASIC1a could promote inflammation, synovial hyperplasia, articular cartilage, and bone destruction; these lead to the progression of RA, a chronic autoimmune disease characterized by chronic synovial inflammation and extra-articular lesions. In this review, we provided a brief overview of the molecular properties of ASIC1a, including the basic biological characteristics, tissue and cell distribution, channel blocker, and factors influencing the expression and function, and focused on the potential therapeutic targets of ASIC1a in RA and possible mechanisms of blocking ASIC1a to improve RA symptoms, such as regulation of apoptosis, autophagy, pyroptosis, and necroptosis of articular cartilage, and synovial inflammation and invasion of fibroblast-like cells in synovial tissue.
Collapse
Affiliation(s)
- Yayun Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China.,The Key Laboratory of Major Autoimmune Diseases of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Feihu Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China.,The Key Laboratory of Major Autoimmune Diseases of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| |
Collapse
|