1
|
Malak B, Celichowski J, Drzymała-Celichowska H. The temperature sensitivity of motor units in rat soleus. Sci Rep 2024; 14:3070. [PMID: 38321022 PMCID: PMC10847422 DOI: 10.1038/s41598-024-53208-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/29/2024] [Indexed: 02/08/2024] Open
Abstract
Temperature has a significant impact on the performance of the neuromuscular system and motor control processes. The smallest functional components of these systems are motor units (MUs), which may differ significantly between different muscles. The influence of temperature on the contractile properties of slow-twitch (S) MUs from soleus (SOL) muscles in rats was investigated under hypothermia (25 °C), normothermia (37 °C), and hyperthermia (41 °C). Hypothermia prolonged the twitch time parameters, decreased the rate of force development, increased the twitch-to-tetanus ratio, enhanced twitch force, and abolished post-tetanic depression. In contrast, hyperthermia did not alter twitch time parameters. Moreover, there was no effect on force despite the noted increase in post-tetanic depression and the twitch-to-tetanus ratio. Therefore, hypothermia induced more profound changes in S MUs compared with hyperthermia. The temperature effects in SOL MUs were compared to the effects previously reported for S MUs in the medial gastrocnemius (MG). The major differences between the S MUs of both muscles were the effects of temperature on twitch force, post-tetanic force modulation, twitch-to-tetanus ratio, and the slope of the force-frequency curve under hypothermia. Hyperthermia shortened twitch time parameters solely in the MG. In contrast, post-tetanic depression, twitch-to-tetanus ratio, and the slope of the force-frequency curve were influenced by hyperthermia only in SOL MUs. The different temperature effects of S MUs probably corresponded to differences in muscle architecture and their diverse functional tasks and enzyme activity. In summary, S MUs in SOL are more thermal-sensitive than their counterparts in MG.
Collapse
Affiliation(s)
- Bartosz Malak
- Department of Neurobiology, Poznan University of Physical Education, 27/39 Królowej Jadwigi St., 61-871, Poznań, Poland.
| | - Jan Celichowski
- Department of Neurobiology, Poznan University of Physical Education, 27/39 Królowej Jadwigi St., 61-871, Poznań, Poland
| | - Hanna Drzymała-Celichowska
- Department of Neurobiology, Poznan University of Physical Education, 27/39 Królowej Jadwigi St., 61-871, Poznań, Poland
- Department of Physiology and Biochemistry, Poznan University of Physical Education, 27/39 Królowej Jadwigi St., 61-871, Poznań, Poland
| |
Collapse
|
2
|
Majerczak J, Drzymala‐Celichowska H, Grandys M, Kij A, Kus K, Celichowski J, Krysciak K, Molik WA, Szkutnik Z, Zoladz JA. Exercise Training Decreases Nitrite Concentration in the Heart and Locomotory Muscles of Rats Without Changing the Muscle Nitrate Content. J Am Heart Assoc 2024; 13:e031085. [PMID: 38214271 PMCID: PMC10926815 DOI: 10.1161/jaha.123.031085] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 11/20/2023] [Indexed: 01/13/2024]
Abstract
BACKGROUND Skeletal muscles are postulated to be a potent regulator of systemic nitric oxide homeostasis. In this study, we aimed to evaluate the impact of physical training on the heart and skeletal muscle nitric oxide bioavailability (judged on the basis of intramuscular nitrite and nitrate) in rats. METHODS AND RESULTS Rats were trained on a treadmill for 8 weeks, performing mainly endurance running sessions with some sprinting runs. Muscle nitrite (NO2-) and nitrate (NO3-) concentrations were measured using a high-performance liquid chromatography-based method, while amino acids, pyruvate, lactate, and reduced and oxidized glutathione were determined using a liquid chromatography coupled with tandem mass spectrometry technique. The content of muscle nitrite reductases (electron transport chain proteins, myoglobin, and xanthine oxidase) was assessed by western immunoblotting. We found that 8 weeks of endurance training decreased basal NO2- in the locomotory muscles and in the heart, without changes in the basal NO3-. In the slow-twitch oxidative soleus muscle, the decrease in NO2- was already present after the first week of training, and the content of nitrite reductases remained unchanged throughout the entire period of training, except for the electron transport chain protein content, which increased no sooner than after 8 weeks of training. CONCLUSIONS Muscle NO2- level, opposed to NO3-, decreases in the time course of training. This effect is rapid and already visible in the slow-oxidative soleus after the first week of training. The underlying mechanisms of training-induced muscle NO2- decrease may involve an increase in the oxidative stress, as well as metabolite changes related to an increased muscle anaerobic glycolytic activity contributing to (1) direct chemical reduction of NO2- or (2) activation of muscle nitrite reductases.
Collapse
Affiliation(s)
- Joanna Majerczak
- Chair of Exercise Physiology and Muscle Bioenergetics, Faculty of Health SciencesJagiellonian University Medical CollegeKrakowPoland
| | - Hanna Drzymala‐Celichowska
- Department of Neurobiology, Faculty of Health SciencesPoznan University of Physical EducationPoznanPoland
- Department of Physiology and Biochemistry, Faculty of Health SciencesPoznan University of Physical EducationPoznanPoland
| | - Marcin Grandys
- Chair of Exercise Physiology and Muscle Bioenergetics, Faculty of Health SciencesJagiellonian University Medical CollegeKrakowPoland
| | - Agnieszka Kij
- Jagiellonian Centre for Experimental Therapeutics (JCET)Jagiellonian UniversityKrakowPoland
| | - Kamil Kus
- Jagiellonian Centre for Experimental Therapeutics (JCET)Jagiellonian UniversityKrakowPoland
| | - Jan Celichowski
- Department of Neurobiology, Faculty of Health SciencesPoznan University of Physical EducationPoznanPoland
| | - Katarzyna Krysciak
- Department of Neurobiology, Faculty of Health SciencesPoznan University of Physical EducationPoznanPoland
| | - Weronika A. Molik
- Chair of Exercise Physiology and Muscle Bioenergetics, Faculty of Health SciencesJagiellonian University Medical CollegeKrakowPoland
- University of FloridaGainesvilleFLUSA
| | | | - Jerzy A. Zoladz
- Chair of Exercise Physiology and Muscle Bioenergetics, Faculty of Health SciencesJagiellonian University Medical CollegeKrakowPoland
| |
Collapse
|
3
|
Koszewicz M, Ubysz J, Dziadkowiak E, Wieczorek M, Budrewicz S. Motor fiber function in spinal muscular atrophy-analysis of conduction velocity distribution. Front Neurol 2023; 14:1305497. [PMID: 38192575 PMCID: PMC10773903 DOI: 10.3389/fneur.2023.1305497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/10/2023] [Indexed: 01/10/2024] Open
Abstract
Objectives The motor neuron survival protein, which is deficient in spinal muscular atrophy (SMA), performs numerous cellular functions. Currently, SMA is believed to be a multi-organ disease, including lesion of various structures of the central and peripheral nervous systems. Motor nerve damage, especially in milder SMA types, is controversial. This prompted the conduct of the electrophysiological studies in adults with SMA types 2 and 3 presented in this paper. Methods The study group consisted of 44 adult patients with SMA types 2 and 3. All patients underwent neurological examination with Hammersmith Functional Motor Scale-Expanded (HFMSE) assessment. Standard electrophysiological studies in the ulnar nerve and conduction velocity distribution (CVD) tests were performed in all patients and controls. Results A prolongation of the distal latency and lowering of the motor potential amplitude with no changes in CVD were found in the whole patient group. There were no dependencies on the number of gene copies. Patients with low HFSME value had slower standard conduction velocity, CVD in upper and median quartiles, and narrower CVD spread; in milder SMA, CVD spread was greater than in controls. Interpretation The significant reduction in motor response amplitude in SMA seems to be primarily related to motor neuron loss and directly proportional to its severity. The coexisting rearrangement in the peripheral nerve structure is present in SMA, and this could be partially caused by a coexisting demyelinating process. Nerve remodeling mainly affects large fibers and occurs in more severe SMA types with significant disability.
Collapse
Affiliation(s)
| | - Jakub Ubysz
- Department of Neurology, Wroclaw Medical University, Wroclaw, Poland
| | - Edyta Dziadkowiak
- Department of Neurology, Wroclaw Medical University, Wroclaw, Poland
| | - Malgorzata Wieczorek
- Faculty of Earth Sciences and Environmental Management, University of Wroclaw, Wroclaw, Poland
| | | |
Collapse
|
4
|
Nagamori A, Laine CM, Loeb GE, Valero-Cuevas FJ. Force variability is mostly not motor noise: Theoretical implications for motor control. PLoS Comput Biol 2021; 17:e1008707. [PMID: 33684099 PMCID: PMC7971898 DOI: 10.1371/journal.pcbi.1008707] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 03/18/2021] [Accepted: 01/15/2021] [Indexed: 11/19/2022] Open
Abstract
Variability in muscle force is a hallmark of healthy and pathological human behavior. Predominant theories of sensorimotor control assume 'motor noise' leads to force variability and its 'signal dependence' (variability in muscle force whose amplitude increases with intensity of neural drive). Here, we demonstrate that the two proposed mechanisms for motor noise (i.e. the stochastic nature of motor unit discharge and unfused tetanic contraction) cannot account for the majority of force variability nor for its signal dependence. We do so by considering three previously underappreciated but physiologically important features of a population of motor units: 1) fusion of motor unit twitches, 2) coupling among motoneuron discharge rate, cross-bridge dynamics, and muscle mechanics, and 3) a series-elastic element to account for the aponeurosis and tendon. These results argue strongly against the idea that force variability and the resulting kinematic variability are generated primarily by 'motor noise.' Rather, they underscore the importance of variability arising from properties of control strategies embodied through distributed sensorimotor systems. As such, our study provides a critical path toward developing theories and models of sensorimotor control that provide a physiologically valid and clinically useful understanding of healthy and pathologic force variability.
Collapse
Affiliation(s)
- Akira Nagamori
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, California, United States of America
| | - Christopher M. Laine
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, California, United States of America
- Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, California, United States of America
| | - Gerald E. Loeb
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, United States of America
| | - Francisco J. Valero-Cuevas
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, California, United States of America
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, United States of America
| |
Collapse
|
5
|
Fogarty MJ, Brandenburg JE, Sieck GC. Diaphragm neuromuscular transmission failure in a mouse model of an early-onset neuromotor disorder. J Appl Physiol (1985) 2020; 130:708-720. [PMID: 33382958 DOI: 10.1152/japplphysiol.00864.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The spa transgenic mouse displays spasticity and hypertonia that develops during the early postnatal period, with motor impairments that are remarkably similar to symptoms of human cerebral palsy. Previously, we observed that spa mice have fewer phrenic motor neurons innervating the diaphragm muscle (DIAm). We hypothesize that spa mice exhibit increased susceptibility to neuromuscular transmission failure (NMTF) due to an expanded innervation ratio. We retrogradely labeled phrenic motor neurons with rhodamine and imaged them in horizontal sections (70 µm) using confocal microscopy. Phrenic nerve-DIAm strip preparations from wild type and spa mice were stretched to optimal length, and force was evoked by phrenic nerve stimulation at 10, 40, or 75 Hz in 330-ms duration trains repeated each second (33% duty cycle) across a 120-s period. To assess NMTF, force evoked by phrenic nerve stimulation was compared to force evoked by direct DIAm stimulation superimposed every 15 s. Total DIAm fiber number was estimated in hematoxylin and eosin-stained strips. Compared to wild type, spa mice had over twofold greater NMTF during the first stimulus train that persisted throughout the 120 s period of repetitive activation. In both wild type and spa mice, NMTF was stimulation-frequency dependent. There was no difference in neuromuscular junction morphology or the total number of DIAm fibers between wild type and spa mice, however, there was an increase innervation ratio (39%) in spa mice. We conclude that early-onset developmental neuromotor disorders impair the efficacy of DIAm neuromuscular transmission, likely to contribute to respiratory complications.NEW & NOTEWORTHY Individuals with motor control deficits, including cerebral palsy (CP) often have respiratory impairments. Glycine-receptor mutant spa mice have early-onset hypertonia, and limb motor impairments, similar to individuals with CP. We hypothesized that in the diaphragm of spa mice, disruption of glycinergic inputs to MNs would result in increased phrenic-DIAm neuromuscular transmission failure. Pathophysiologic abnormalities in neuromuscular transmission may contribute to respiratory dysfunction in conditions where early developmental MN loss or motor control deficits are apparent.
Collapse
Affiliation(s)
- Matthew J Fogarty
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota.,School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - Joline E Brandenburg
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, Minnesota.,Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota
| | - Gary C Sieck
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota.,Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
6
|
Fogarty MJ, Sieck GC. Evolution and Functional Differentiation of the Diaphragm Muscle of Mammals. Compr Physiol 2019; 9:715-766. [PMID: 30873594 PMCID: PMC7082849 DOI: 10.1002/cphy.c180012] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Symmorphosis is a concept of economy of biological design, whereby structural properties are matched to functional demands. According to symmorphosis, biological structures are never over designed to exceed functional demands. Based on this concept, the evolution of the diaphragm muscle (DIAm) in mammals is a tale of two structures, a membrane that separates and partitions the primitive coelomic cavity into separate abdominal and thoracic cavities and a muscle that serves as a pump to generate intra-abdominal (Pab ) and intrathoracic (Pth ) pressures. The DIAm partition evolved in reptiles from folds of the pleural and peritoneal membranes that was driven by the biological advantage of separating organs in the larger coelomic cavity into separate thoracic and abdominal cavities, especially with the evolution of aspiration breathing. The DIAm pump evolved from the advantage afforded by more effective generation of both a negative Pth for ventilation of the lungs and a positive Pab for venous return of blood to the heart and expulsive behaviors such as airway clearance, defecation, micturition, and child birth. © 2019 American Physiological Society. Compr Physiol 9:715-766, 2019.
Collapse
Affiliation(s)
- Matthew J Fogarty
- Mayo Clinic, Department of Physiology & Biomedical Engineering, Rochester, Minnesota, USA
| | - Gary C Sieck
- Mayo Clinic, Department of Physiology & Biomedical Engineering, Rochester, Minnesota, USA
| |
Collapse
|
7
|
Dukkipati SS, Garrett TL, Elbasiouny SM. The vulnerability of spinal motoneurons and soma size plasticity in a mouse model of amyotrophic lateral sclerosis. J Physiol 2018; 596:1723-1745. [PMID: 29502344 DOI: 10.1113/jp275498] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 02/07/2018] [Indexed: 12/12/2022] Open
Abstract
KEY POINTS Motoneuron soma size is a largely plastic property that is altered during amyotrophic lateral sclerosis (ALS) progression. We report evidence of systematic spinal motoneuron soma size plasticity in mutant SOD1-G93A mice at various disease stages and across sexes, spinal regions and motoneuron types. We show that disease-vulnerable motoneurons exhibit early increased soma sizes. We show via computer simulations that the measured changes in soma size have a profound impact on the excitability of disease-vulnerable motoneurons. This study reveals a novel form of plasticity in ALS and suggests a potential target for altering motoneuron function and survival. ABSTRACT α-Motoneuron soma size is correlated with the cell's excitability and function, and has been posited as a plastic property that changes during cellular maturation, injury and disease. This study examined whether α-motoneuron somas change in size over disease progression in the G93A mouse model of amyotrophic lateral sclerosis (ALS), a disease characterized by progressive motoneuron death. We used 2D- and 3D-morphometric analysis of motoneuron size and measures of cell density at four key disease stages: neonatal (P10 - with earliest known disease changes); young adult (P30 - presymptomatic with early motoneuron death); symptom onset (P90 - with death of 70-80% of motoneurons); and end-stage (P120+ - with full paralysis of hindlimbs). We additionally examined differences in lumbar vs. sacral vs. cervical motoneurons; in motoneurons from male vs. female mice; and in fast vs. slow motoneurons. We present the first evidence of plastic changes in the soma size of spinal α-motoneurons occurring throughout different stages of ALS with profound effects on motoneuron excitability. Somatic changes are time dependent and are characterized by early-stage enlargement (P10 and P30); no change around symptom onset; and shrinkage at end-stage. A key finding in the study indicates that disease-vulnerable motoneurons exhibit increased soma sizes (P10 and P30). This pattern was confirmed across spinal cord regions, genders and motoneuron types. This extends the theory of motoneuron size-based vulnerability in ALS: not only are larger motoneurons more vulnerable to death in ALS, but are also enlarged further in the disease. Such information is valuable for identifying ALS pathogenesis mechanisms.
Collapse
Affiliation(s)
- S Shekar Dukkipati
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine and College of Science and Mathematics, Wright State University, Dayton, OH, 45435, USA
| | - Teresa L Garrett
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine and College of Science and Mathematics, Wright State University, Dayton, OH, 45435, USA
| | - Sherif M Elbasiouny
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine and College of Science and Mathematics, Wright State University, Dayton, OH, 45435, USA.,Department of Biomedical, Industrial, and Human Factors Engineering, College of Engineering and Computer Science, Wright State University, Dayton, OH 45435, USA
| |
Collapse
|
8
|
Drzymała-Celichowska H, Kaczmarek P, Krutki P, Celichowski J. Summation of slow motor unit forces at constant and variable interpulse intervals in rat soleus muscle. J Electromyogr Kinesiol 2016; 30:1-8. [PMID: 27203710 DOI: 10.1016/j.jelekin.2016.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 04/29/2016] [Accepted: 05/03/2016] [Indexed: 10/21/2022] Open
Abstract
Effects of the summation of forces generated by functionally isolated slow-twitch motor units (MU) of the rat soleus muscle were examined in this study. Initially, the twitch, fused tetanic and unfused tetanic contractions evoked by trains of stimuli at variable interpulse intervals were recorded for each MU. Then, two, three or four MUs were co-activated, and the recorded forces were compared to the algebraic sum of the forces of individual MUs. The mean cumulative force of twitches and the mean cumulative force of fused tetani were not statistically different from the respective algebraic sums of forces, which revealed a high degree of linearity in the summation. However, relaxation of the recorded tetanic contractions (either fused or unfused) was faster than that predicted by the linear summation of individual contractions. Moreover, for twitch and tetanic contractions, a tendency to shorten relaxation with an increasing number of co-active MUs was noted. The results indicate that forces of rat soleus slow MUs sum up more linearly than in the respective cat muscle as well as more linearly than for fast MUs in the medial gastrocnemius muscle.
Collapse
Affiliation(s)
- Hanna Drzymała-Celichowska
- Department of Neurobiology, University of Physical Education in Poznań, Poland; Division of Biochemistry, University of Physical Education in Poznań, Poland.
| | - Piotr Kaczmarek
- Institute of Control and Information Engineering, Poznań University of Technology, Poland
| | - Piotr Krutki
- Department of Neurobiology, University of Physical Education in Poznań, Poland
| | - Jan Celichowski
- Department of Neurobiology, University of Physical Education in Poznań, Poland
| |
Collapse
|
9
|
Drzymała-Celichowska H, Raikova R, Krutki P. Decomposition of motor unit tetanic contractions of rat soleus muscle: Differences between males and females. J Biomech 2015; 48:3097-102. [DOI: 10.1016/j.jbiomech.2015.07.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 07/15/2015] [Accepted: 07/18/2015] [Indexed: 11/16/2022]
|
10
|
Raikova R, Aladjov H, Krutki P, Celichowski J. Estimation of the error between experimental tetanic force curves of MUs of rat medial gastrocnemius muscle and their models by summation of equal successive contractions. Comput Methods Biomech Biomed Engin 2015. [DOI: 10.1080/10255842.2015.1062090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
Drzymała-Celichowska H, Krutki P. Slow motor units in female rat soleus are slower and weaker than their male counterparts. J Muscle Res Cell Motil 2015; 36:287-95. [DOI: 10.1007/s10974-015-9408-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 02/11/2015] [Indexed: 11/25/2022]
|
12
|
Maltais F, Decramer M, Casaburi R, Barreiro E, Burelle Y, Debigaré R, Dekhuijzen PNR, Franssen F, Gayan-Ramirez G, Gea J, Gosker HR, Gosselink R, Hayot M, Hussain SNA, Janssens W, Polkey MI, Roca J, Saey D, Schols AMWJ, Spruit MA, Steiner M, Taivassalo T, Troosters T, Vogiatzis I, Wagner PD. An official American Thoracic Society/European Respiratory Society statement: update on limb muscle dysfunction in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2014; 189:e15-62. [PMID: 24787074 DOI: 10.1164/rccm.201402-0373st] [Citation(s) in RCA: 729] [Impact Index Per Article: 66.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Limb muscle dysfunction is prevalent in chronic obstructive pulmonary disease (COPD) and it has important clinical implications, such as reduced exercise tolerance, quality of life, and even survival. Since the previous American Thoracic Society/European Respiratory Society (ATS/ERS) statement on limb muscle dysfunction, important progress has been made on the characterization of this problem and on our understanding of its pathophysiology and clinical implications. PURPOSE The purpose of this document is to update the 1999 ATS/ERS statement on limb muscle dysfunction in COPD. METHODS An interdisciplinary committee of experts from the ATS and ERS Pulmonary Rehabilitation and Clinical Problems assemblies determined that the scope of this document should be limited to limb muscles. Committee members conducted focused reviews of the literature on several topics. A librarian also performed a literature search. An ATS methodologist provided advice to the committee, ensuring that the methodological approach was consistent with ATS standards. RESULTS We identified important advances in our understanding of the extent and nature of the structural alterations in limb muscles in patients with COPD. Since the last update, landmark studies were published on the mechanisms of development of limb muscle dysfunction in COPD and on the treatment of this condition. We now have a better understanding of the clinical implications of limb muscle dysfunction. Although exercise training is the most potent intervention to address this condition, other therapies, such as neuromuscular electrical stimulation, are emerging. Assessment of limb muscle function can identify patients who are at increased risk of poor clinical outcomes, such as exercise intolerance and premature mortality. CONCLUSIONS Limb muscle dysfunction is a key systemic consequence of COPD. However, there are still important gaps in our knowledge about the mechanisms of development of this problem. Strategies for early detection and specific treatments for this condition are also needed.
Collapse
|
13
|
Mrówczyński W, Celichowski J, Krutki P, Cabaj A, Sławińska U, Majczyński H. Changes of the force-frequency relationship in the rat medial gastrocnemius muscle after total transection and hemisection of the spinal cord. J Neurophysiol 2011; 105:2943-50. [DOI: 10.1152/jn.00687.2010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The relationships between the stimulation frequency and the force developed by motor units (MUs) of the medial gastrocnemius muscle were compared between intact rats and animals after total transection or hemisection of the spinal cord at the low thoracic level. The experiments on functionally isolated MUs were carried out 14, 30, 90, and 180 days after the spinal cord injury. Axons of investigated MUs were stimulated with trains of pulses at 10 progressively increased frequencies (from 1 to 150 Hz), and the force-frequency curves were plotted. Spinal cord hemisection resulted in a considerable leftward shift of force-frequency curves in all types of MUs. After the total transection, a leftward shift of the curve was observed in fast MUs, whereas there was a rightward shift in slow MUs. These changes coincided with a decrease of stimulation frequencies necessary to evoke 60% of maximal force. Moreover, the linear correlation between these stimulation frequencies and the twitch contraction time observed in intact rats was disrupted in all groups of animals with spinal cord injury. The majority of the observed changes reached the maximum 1 mo after injury, whereas the effects evoked by spinal cord hemisection were significantly smaller and nearly constant in the studied period. The results of this study can be important for the prediction of changes in force regulation in human muscles after various extends of spinal cord injury and in evaluation of the frequency of functional electrical stimulation used for training of impaired muscles.
Collapse
Affiliation(s)
| | - Jan Celichowski
- Department of Neurobiology, University School of Physical Education, Poznań; and
| | - Piotr Krutki
- Department of Neurobiology, University School of Physical Education, Poznań; and
| | - Anna Cabaj
- Nencki Institute of Experimental Biology and
- Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | | | | |
Collapse
|
14
|
Mierzejewska-Krzyżowska B, Drzymała-Celichowska H, Celichowski J. Gender Differences in the Morphometric Properties of Muscle Fibres and the Innervation Ratio of Motor Units in Rat Medial Gastrocnemius Muscle. Anat Histol Embryol 2011; 40:249-55. [DOI: 10.1111/j.1439-0264.2011.01066.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Navallas J, Malanda A, Gila L, Rodríguez J, Rodríguez I. A muscle architecture model offering control over motor unit fiber density distributions. Med Biol Eng Comput 2010; 48:875-86. [PMID: 20535575 DOI: 10.1007/s11517-010-0642-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Accepted: 05/13/2010] [Indexed: 11/29/2022]
Abstract
The aim of this study was to develop a muscle architecture model able to account for the observed distributions of innervation ratios and fiber densities of different types of motor units in a muscle. A model algorithm is proposed and mathematically analyzed in order to obtain an inverse procedure that allows, by modification of input parameters, control over the output distributions of motor unit fiber densities. The model's performance was tested with independent data from a glycogen depletion study of the medial gastrocnemius of the rat. Results show that the model accurately reproduces the observed physiological distributions of innervation ratios and fiber densities and their relationships. The reliability and accuracy of the new muscle architecture model developed here can provide more accurate models for the simulation of different electromyographic signals.
Collapse
Affiliation(s)
- Javier Navallas
- Department of Electric and Electronic Engineering, Public University of Navarra, Pamplona, Navarra, Spain.
| | | | | | | | | |
Collapse
|
16
|
Navallas J, Malanda A, Gila L, Rodriguez J, Rodriguez I. Comparative evaluation of motor unit architecture models. Med Biol Eng Comput 2009; 47:1131-42. [DOI: 10.1007/s11517-009-0526-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Accepted: 08/03/2009] [Indexed: 11/27/2022]
|
17
|
Navallas J, Malanda A, Gila L, Rodríguez J, Rodríguez I. Mathematical analysis of a muscle architecture model. Math Biosci 2009; 217:64-76. [DOI: 10.1016/j.mbs.2008.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Revised: 05/14/2008] [Accepted: 10/02/2008] [Indexed: 10/21/2022]
|
18
|
O'Rielly DD, Loomis CW. Spinal nerve ligation-induced activation of nuclear factor kappaB is facilitated by prostaglandins in the affected spinal cord and is a critical step in the development of mechanical allodynia. Neuroscience 2008; 155:902-13. [PMID: 18617333 DOI: 10.1016/j.neuroscience.2008.04.077] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Revised: 04/14/2008] [Accepted: 04/15/2008] [Indexed: 01/22/2023]
Abstract
This study investigated the effect of 5th and 6th lumbar nerve (L5/L6) spinal nerve ligation (SNL) on activated nuclear factor kappaB (NFkBa) in nuclear extracts from the lumbar dorsal horn of the rat, and its relationship to prostaglandin (PG)-dependent spinal hyperexcitability and allodynia 3 days later. Male Sprague-Dawley rats, fitted with intrathecal (i.t.) catheters, underwent SNL- or sham-surgery. Paw withdrawal threshold (PWT), electromyographic analysis of the biceps femoris flexor reflex, and immunoblotting of the spinal cord were used. Both allodynia (PWT <or=4 g) and exaggerated A- and C-fiber-mediated reflex responses (AFRR and CFRR), featuring decreased activation thresholds and evoked hyperexcitability, were evident only in nerve-ligated animals. This was preceded by an increase in NFkBa in the ipsilateral lumbar dorsal horn at 12 h which was still present 3 days after SNL. The amount of NFkBa in the ventral horns was unchanged compared with sham-controls. Blocking the activation of spinal NFkappaB, either directly with ammonium pyrrolidedithiocarbamate (PDTC; 100 microg i.t.) or indirectly with S(+)-ibuprofen (100 microg i.t.) administered immediately after SNL, prevented the SNL-induced expression of spinal cyclooxygenase-2 and the development of spinal hyperexcitability and allodynia 3 days later. R(-)-Ibuprofen and vehicle had no effect. These results demonstrate that NFkappaB is not only activated by SNL, but that spinal PG generated in the affected spinal cord from the onset of nerve injury facilitates this process. NFkappaB is a critical antecedent in the development of spinal PG-dependent hyperexcitability and allodynia in the SNL model.
Collapse
Affiliation(s)
- D D O'Rielly
- Division of Basic Medical Sciences, Faculty of Medicine and School of Pharmacy, Memorial University of Newfoundland, 300 Prince Philip Drive, St. John's, Newfoundland, Canada A1B 3V6
| | | |
Collapse
|
19
|
Chebotareva NA. Effect of molecular crowding on the enzymes of glycogenolysis. BIOCHEMISTRY (MOSCOW) 2007; 72:1478-90. [DOI: 10.1134/s0006297907130056] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Celichowski J, Mrówczyński W, Krutki P, Górska T, Majczyński H, Sławińska U. Changes in contractile properties of motor units of the rat medial gastrocnemius muscle after spinal cord transection. Exp Physiol 2006; 91:887-95. [PMID: 16728457 DOI: 10.1113/expphysiol.2005.033076] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The effects of complete transection of the spinal cord at the level of Th9/10 on contractile properties of the motor units (MUs) in the rat medial gastrocnemius (MG) muscle were investigated. Our results indicate that 1 month after injury the contraction time (time-to-peak) and half-relaxation time were prolonged and the maximal tetanic force in most of the MUs in the MG muscle of spinal rats was reduced. The resistance to fatigue also decreased in most of the MUs in the MG of spinal animals. Moreover, the post-tetanic potentiation of twitches in MUs diminished after spinal cord transection. Criteria for the division of MUs into three types, namely slow (S), fast fatigue resistant (FR) and fast fatigable (FF), applied in intact animals, could not be directly used in spinal animals owing to changes in contractile properties of MUs. The 'sag' phenomenon observed in unfused tetani of fast units in intact animals essentially disappeared in spinal rats and it was only detected in few units, at low frequencies of stimulation only. Therefore, the MUs in spinal rats were classified as fast or slow on the basis of an adjusted borderline of 20 ms, instead of 18 ms as in intact animals, owing to a slightly longer contraction time of those fast motor units with the 'sag'. We conclude that all basic contractile properties of rat motor units in the medial gastrocnemius muscle are significantly changed 1 month after complete spinal cord transection, with the majority of motor units being more fatigable and slower than those of intact rats.
Collapse
Affiliation(s)
- Jan Celichowski
- Department of Neurobiology, University School of Physical Education, 60-352 Pozñan, Poland.
| | | | | | | | | | | |
Collapse
|
21
|
Van Cleave S, Shall MS. A critical period for the impact of vestibular sensation on ferret motor development. J Vestib Res 2006; 16:179-86. [PMID: 17538206 PMCID: PMC2034323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Children with hearing deficits and hypofunctioning vestibular receptors frequently have delayed motor development. This study focuses on when the vestibular system needs to be active for normal motor behavior development and the maturation of the soleus muscle in the ferret. Both vestibular labyrinths were removed from ferrets at Postnatal day 10 (P10), P21, or P45 and the resulting data were compared with ferrets that had undergone a sham surgery at the same ages. The animals were sacrificed at P120 (young adult ferret). The resulting data from these ferrets revealed that standing and walking balance was significantly affected when the vestibular system was eliminated at or before P21. The soleus of P10 and P21 animals generally had smaller diameter muscle fibers and proportionally less type I Myosin Heavy Chain (MHC) and more type IIX MHC. The twitch contraction time of the soleus of the P21 group was significantly slower than the other groups. It appears that the vestibular system is important to motor and muscle fiber development in the ferret during the period before P21. The eyes are still closed at that age and all of the vestibular receptors are not fully mature. These findings imply a "critical period" for vestibular sensation and the development of a muscle that is important to standing balance.
Collapse
Affiliation(s)
- S Van Cleave
- Department of Physical Therapy, Virginia Commonwealth University, Richmond, VA 23298-0224, USA
| | | |
Collapse
|
22
|
Leterme D, Tyc F. Re-innervation and recovery of rat soleus muscle and motor unit function after nerve crush. Exp Physiol 2004; 89:353-61. [PMID: 15123555 DOI: 10.1113/expphysiol.2004.027151] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In this study we have investigated the effects of peripheral nerve crush on the contractile properties of the adult rat soleus muscle. The soleus nerve was crushed close to the muscle and functional re-innervation was assessed by the measurement of the force produced by contraction induced by electrical nerve stimulation. Whole soleus muscle and single motor unit (MU) properties were studied at increasing re-innervation times 7-56 days after crush. Results showed progressive re-innervation as 50% of the axotomized motoneurones had re-innervated their muscle 7 days after crush, 72% at 14 days and re-innervation was complete at 28 days. The force parameters recovered more slowly. Tetanic contractions faded at high frequency stimulation, which did not occur in the control muscle. This disruption in the tetanic response was more pronounced in single MUs. Our results demonstrate for the first time a process of progressive axonal re-innervation by the axotomized motoneurones and provide a functional picture of the effective restoration of the neuromuscular function.
Collapse
Affiliation(s)
- D Leterme
- Laboratoire de Recherche sur les Biomatériaux et les Biotechnologies, Université du Littoral-Côte d'Opale, Bassin Napoléon, BP 120, 62327 Boulogne sur Mer, France.
| | | |
Collapse
|
23
|
Zhou P, Rymer WZ. Can standard surface EMG processing parameters be used to estimate motor unit global firing rate? J Neural Eng 2004; 1:99-110. [PMID: 15876628 DOI: 10.1088/1741-2560/1/2/005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The relations between motor unit global firing rates and established quantitative measures for processing the surface electromyogram (EMG) signals were explored using a simulation approach. Surface EMG signals were simulated using the reported properties of the first dorsal interosseous muscle in man, and the models were varied systematically, using several hypothetical relations between motor unit electrical and force output, and also using different motor unit firing rate strategies. The utility of using different EMG processing parameters to help estimate global motor unit firing rate was evaluated based on their relations to the number of motor unit action potentials (MUAPs) in the simulated surface EMG signals. Our results indicate that the relation between motor unit electrical and mechanical properties, and the motor unit firing rate scheme are all important factors determining the form of the relation between surface EMG amplitude and motor unit global firing rate. Conversely, these factors have less impact on the relations between turn or zero-crossing point counts and the number of MUAPs in surface EMG. We observed that the number of turn or zero-crossing points tends to saturate with the increase in the MUAP number in surface EMG, limiting the utility of these measures as estimates of MUAP number. The simulation results also indicate that the mean or median frequency of the surface EMG power spectrum is a poor indicator of the global motor unit firing rate.
Collapse
Affiliation(s)
- Ping Zhou
- Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, IL 60611, USA.
| | | |
Collapse
|
24
|
Hellström J, Oliveira ALR, Meister B, Cullheim S. Large cholinergic nerve terminals on subsets of motoneurons and their relation to muscarinic receptor type 2. J Comp Neurol 2003; 460:476-86. [PMID: 12717708 DOI: 10.1002/cne.10648] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The cholinergic C-bouton is a large nerve terminal found exclusively apposing motoneuron cell somata and proximal dendrites. The origin and function of the C-bouton is not known. An antiserum against the vesicular acetylcholine transporter was used to identify large cholinergic nerve terminals putatively of the C-type in close apposition to motoneuron cell somata. This type of nerve terminal was present in the rat spinal cord ventral horn, but only in some cranial motor nuclei. Fluoro-Gold tracing showed that subsets of spinal motoneuron cell somata were contacted by different numbers of putative C-boutons. Thus, motoneurons innervating an intrinsic foot muscle were contacted by about half the number of cholinergic terminals found on motoneurons of the predominantly fast-twitch gastrocnemius muscle. Slow-twitch soleus motoneurons showed an intermediate innervation. There was a strong correlation between the presence of putative C-boutons and muscarinic receptor 2 (m2)-like immunoreactivity (-LI) within a motor nucleus. By using confocal laser microscopy, the m2-LI appeared to be confined to the motoneuron cell membrane and strongly enriched beneath the C-type nerve terminal. Thus, our results suggested a differential distribution of large cholinergic C-boutons, depending on motoneuron type, and that the presence of this nerve terminal type is associated with m2-LI in the postsynaptic membrane.
Collapse
Affiliation(s)
- Johan Hellström
- Department of Neuroscience, The Retzius Laboratory, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| | | | | | | |
Collapse
|
25
|
Zhong H, Roy RR, Hodgson JA, Talmadge RJ, Grossman EJ, Edgerton VR. Activity-independent neural influences on cat soleus motor unit phenotypes. Muscle Nerve 2002; 26:252-64. [PMID: 12210390 DOI: 10.1002/mus.10190] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The physiological and phenotypic properties of motor units in the cat soleus muscle were studied after 4 months of inactivity induced by spinal cord isolation (SI). The soleus of some SI cats were stimulated for 30 min/day during an isometric (SI-I), shortening (SI-S), or lengthening (SI-L) phase of a simulated step cycle. Mean maximum tetanic tensions were approximately 15, 26, 32, and 51% of the control in the SI, SI-S, SI-L, and SI-I groups. Mean time-to-peak tension was approximately 50% shorter than the control in all SI groups. One motor unit was glycogen-depleted in each muscle via repetitive stimulation. Eighteen physiologically slow and 9 fast motor units from the spinal cord-isolated groups consisted of fibers that contained only slow myosin heavy chain (MHC) and sarco(endo)plasmic reticulum calcium-adenotriphosphatase (SERCA) isoforms. Two motor units (physiologically fast) consisted primarily of fibers that contained both fast and slow MHC and SERCA. These data reflect a dissociation between isometric speed-related properties and MHC and SERCA isoforms following inactivity. The predominance of fibers containing both fast and slow MHC and SERCA isoforms in 2 motor units demonstrates a strong motoneuronal influence on the muscle-fiber phenotype even when the motoneurons are silent.
Collapse
Affiliation(s)
- Hui Zhong
- Brain Research Institute, University of California at Los Angeles, 1320 Gonda Neuroscience and Genetics Building, Box 951761, Los Angeles, California 90095-1761, USA
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
The purpose of this review was to examine three issues that limit our understanding of motor unit physiology: (1) the range and distribution of the innervation ratios in a muscle; (2) the association between discharge rate and force; and (3) the variation in motor unit activity across contractions that differ in speed and type. We suggest that if more data were available on these issues, the understanding of neuromuscular function would be enhanced substantially, especially with regard to plasticity in the motor neuron pool, adequacy of the neural drive to muscle, and flexibility of activation patterns across various types of contractions. Current data are limited and these limitations influence our ability to interpret adaptations in muscle function in health and disease.
Collapse
Affiliation(s)
- R M Enoka
- Department of Kinesiology and Applied Physiology, University of Colorado, Boulder, Colorado 80309-0354, USA.
| | | |
Collapse
|
27
|
|
28
|
Prakash YS, Mantilla CB, Zhan WZ, Smithson KG, Sieck GC. Phrenic motoneuron morphology during rapid diaphragm muscle growth. J Appl Physiol (1985) 2000; 89:563-72. [PMID: 10926639 DOI: 10.1152/jappl.2000.89.2.563] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the adult rat, there is a general correspondence between the sizes of motoneurons, motor units, and muscle fibers that has particular functional importance in motor control. During early postnatal development, after the establishment of singular innervation, there is rapid growth of diaphragm muscle (Dia(m)) fibers. In the present study, the association between Dia(m) fiber growth and changes in phrenic motoneuron size (both somal and dendritic) was evaluated from postnatal day 21 (D21) to adulthood. Phrenic motoneurons were retrogradely labeled with fluorescent tetramethylrhodamine dextran (3,000 MW), and motoneuron somal volumes and surface areas were measured using three-dimensional confocal microscopy. In separate animals, phrenic motoneurons retrogradely labeled with choleratoxin B-fragment were visualized using immunocytochemistry, and dendritic arborization was analyzed by camera lucida. Between D21 and adulthood, Dia(m) fiber cross-sectional area increased by approximately 164% overall, with the growth of type II fibers being disproportionate to that of type I fibers. There was also substantial growth of phrenic motoneurons ( approximately 360% increase in total surface area), during this same period, that was primarily attributable to an expansion of dendritic surface area. Comparison of the distribution of phrenic motoneuron surface areas between D21 and adults suggests the establishment of a bimodal distribution that may have functional significance for motor unit recruitment in the adult rat.
Collapse
Affiliation(s)
- Y S Prakash
- Department of Anesthesiology, Mayo Foundation, Rochester, MN 55905, USA.
| | | | | | | | | |
Collapse
|
29
|
Gorassini M, Eken T, Bennett DJ, Kiehn O, Hultborn H. Activity of hindlimb motor units during locomotion in the conscious rat. J Neurophysiol 2000; 83:2002-11. [PMID: 10758110 DOI: 10.1152/jn.2000.83.4.2002] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This paper compares the activity of hindlimb motor units from muscles mainly composed of fast-twitch muscle fibers (medial and lateral gastrocnemius: MG/LG, tibialis anterior: TA) to motor units from a muscle mainly composed of slow-twitch muscle fibers (soleus: SOL) during unrestrained walking in the conscious rat. Several differences in the activation profiles of motor units from these two groups of muscles were observed. For example, motor units from fast muscles (e.g., MG/LG and TA) fired at very high mean frequencies of discharge, ranging from 60 to 100 Hz, and almost always were recruited with initial doublets or triplets, i.e., initial frequencies >/=100 Hz. In contrast, the majority of SOL units fired at much lower mean rates of discharge, approximately 30 Hz, and had initial frequencies of only 30-60 Hz (i.e., there were no initial doublets/triplets >/=100 Hz). Thus the presence of initial doublet or triplets was dependent on the intrinsic properties of the motor unit, i.e., faster units were recruited with a doublet/triplet more often than slower units. Moreover, in contrast to units from the slow SOL muscle, the activity of single motor units from the fast MG/LG muscle, especially units recruited midway or near the end of a locomotor burst, was unrelated to the activity of the remainder of the motoneuron pool, as measured by the corresponding gross-electromyographic (EMG) signal. This dissociation of activity was suggested to arise from a compartmentalized recruitment of the MG/LG motoneuron pool by the rhythm-generating networks of the spinal cord. In contrast, when comparing the rate modulation of simultaneously recorded motor units within a single LG muscle compartment, the frequency profiles of unit pairs were modulated in a parallel fashion. This suggested that the parent motoneurons were responsive to changes in synaptic inputs during unrestrained walking, unlike the poor rate modulation that occurs during locomotion induced from brain stem stimulation. In summary, data from this study provide evidence that the firing behavior of motor units during unrestrained walking is influenced by both the intrinsic properties of the parent motoneuron and by synaptic inputs from the locomotor networks of the spinal cord. In addition, it also provides the first extensive description of motor-unit activity from different muscles during unrestrained walking in the conscious rat.
Collapse
Affiliation(s)
- M Gorassini
- Department of Medical Physiology, Section of Neurophysiology, University of Copenhagen, 2200 Copenhagen N, Denmark
| | | | | | | | | |
Collapse
|
30
|
Gordon T, Tyreman N, Rafuse VF, Munson JB. Limited plasticity of adult motor units conserves recruitment order and rate coding. PROGRESS IN BRAIN RESEARCH 2000; 123:191-202. [PMID: 10635716 DOI: 10.1016/s0079-6123(08)62856-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Affiliation(s)
- T Gordon
- Department of Pharmacology, University of Alberta, Edmonton, Canada.
| | | | | | | |
Collapse
|
31
|
Suwa M, Nakamura T, Katsuta S. Muscle fibre number is a possible determinant of muscle fibre composition in rats. ACTA PHYSIOLOGICA SCANDINAVICA 1999; 167:267-72. [PMID: 10606829 DOI: 10.1046/j.1365-201x.1999.00610.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The purpose of the present study was to investigate whether the muscle fibre composition is related to the number of muscle fibres. To resolve this issue, we developed fast-twitch fibre dominant rats (FFDR) by selective breeding and compared the findings to those of control rats (CR) obtained by random breeding. Percentage of type I fibres of the deep portion of gastrocnemius (DG), soleus (SOL), vastus intermedius (VI), adductor longus (AL), and biceps brachii (BB) muscles in FFDR were lower than CR. Percentage of type IIB fibres in DG, VI and AL and percentage of type IIA fibres of SOL in FFDR were higher than CR. However, fibre composition of plantaris (PLAN), extensor digitorum longus (EDL), rectus abdominis (RA), diaphragm (DIA), and palmaris longus (PL) muscles in FFDR were identical with CR. Total fibre numbers on the cross-sectional area in SOL, PLAN, EDL, AL and PL were counted. Numbers of type I fibres of all those muscles in FFDR were not different from CR. Numbers of type IIA fibres of SOL and AL and of type IIB fibres of AL in FFDR were greater than CR, but there were no significant differences in the number of type IIA or type IIB fibres of PLAN, EDL or PL between the two groups. Based on these observations, it is suggested that there are pleiotropic and muscle-specific effects on muscle fibre composition. In addition, the number of type II fibres is a possible determinant of muscle fibre composition.
Collapse
Affiliation(s)
- M Suwa
- Institute of Health and Sport Sciences, University of Tsukuba, Japan
| | | | | |
Collapse
|
32
|
Celichowski J, Grottel K, Bichler E. Differences in the profile of unfused tetani of fast motor units with respect to their resistance to fatigue in the rat medial gastrocnemius muscle. J Muscle Res Cell Motil 1999; 20:681-5. [PMID: 10672516 DOI: 10.1023/a:1005541013209] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In most studies performed on motor units in mammalian muscles the division of these units into fast and slow types has been based on the 'sag' visible in the profile of unfused tetanus. The time course of the sag in unfused tetani of fast motor units was analysed in the present study. Fast units of rat medial gastrocnemius muscle were classified as fast fatigable (FF) or fast resistant to fatigue (FR) on the basis of a fatigue index calculated during the standard fatigue test. In middle-fused tetani (fusion index 0.25-0.75), it was observed that for FF motor units the sag was shorter and occurred earlier than for FR units. Moreover, in FF units, the sag was followed by potentiating tension, whereas for FR units this potentiation was weaker or even absent. A tetanus shape index, which expressed the ratio of the area of the first part of the tetanus record (between the tension record and the baseline, from the beginning of tetanus up to the lowest point during the sag in the tension record) to the area under the second part of tetanus (from this lowest point up to the end of the record) was introduced. For FF units, this index ranged from 0.13 to 0.47, whereas for FR units it ranged from 0.54 to 17.8 (with one exception). These results showed that the difference in unfused tetanus expressed in this tetanus shape index could be used as an accurate alternative method of dividing fast units into FF and FR groups. Moreover, the difference in sag time course in FF and FR groups. Moreover, the difference in sag time course in FF and FR units suggests that the metabolism responsible for this contractile phenomenon is significantly different time courses in IIa and IIb muscle fibres, constituting FF and FR units, respectively.
Collapse
Affiliation(s)
- J Celichowski
- Department of Neurobiology, University School of Physical Education, Poznań, Poland
| | | | | |
Collapse
|
33
|
Sutlive TG, McClung JR, Goldberg SJ. Whole-muscle and motor-unit contractile properties of the styloglossus muscle in rat. J Neurophysiol 1999; 82:584-92. [PMID: 10444658 DOI: 10.1152/jn.1999.82.2.584] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Investigations of whole muscle and motor-unit contractile properties have provided valuable information for our understanding of the spinal cord and extraocular motor systems. However, no previous investigation has examined these properties in an isolated tongue muscle. The purpose of this study was to determine the contractile properties and muscle fiber types of the rat styloglossus muscle. The styloglossus is one of three extrinsic tongue muscles and serves to retract the tongue within the oral cavity. Adult male Sprague-Dawley rats (n = 19) were used in these experiments. The contractile characteristics of the whole styloglossus muscle (n = 9) were measured in response to stimulation of the hypoglossal nerve branch to the muscle. The average twitch tension produced was 3.30 g with a mean twitch contraction time of 13.81 ms. The mean maximum tetanic tension was 19.66 g and occurred at or near the fusion frequency, which averaged 109 Hz. The styloglossus muscle was resistant to fatigue [fatigue index (F. I.) = 0.76]. In separate experiments (n = 7), the contractile characteristics of 37 single motor units were measured in response to extracellular stimulation of hypoglossal motoneurons. The twitch tension generated by styloglossus motor units averaged 35.7 mg, and the mean twitch contraction time was 12.46 ms. The mean fusion frequency was 92 Hz. Maximum tetanic tension averaged 177.8 mg. Styloglossus single motor units were resistant to fatigue (F. I. = 0.74). The sites of stimulation that yielded a contractile response in the styloglossus muscle were consistent with the location of the styloglossus motoneuron pool reported in earlier anatomy studies. Muscle fiber typing was determined in three animals based on the myofibrillar ATPase reaction at pH 9.8, 4.6, and 4.3. The styloglossus muscle was composed of approximately 99% type IIA fibers with a few scattered type I fibers present in the study sample. On the basis of the combined findings of the physiology and histochemistry experiments, the styloglossus muscle appeared to be a homogeneous muscle composed almost exclusively of fast, fatigue-resistant motor units. These properties of the styloglossus muscle and its motor units were compared with findings in other rat skeletal muscles.
Collapse
Affiliation(s)
- T G Sutlive
- Department of Anatomy, Virginia Commonwealth University, Richmond, Virginia 23298-0709, USA
| | | | | |
Collapse
|
34
|
Carp JS, Herchenroder PA, Chen XY, Wolpaw JR. Sag during unfused tetanic contractions in rat triceps surae motor units. J Neurophysiol 1999; 81:2647-61. [PMID: 10368385 DOI: 10.1152/jn.1999.81.6.2647] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Contractile properties and conduction velocity were studied in 202 single motor units of intact rat triceps surae muscles activated by intra-axonal (or intra-myelin) current injection in L5 or L6 ventral root to assess the factors that determine the expression of sag (i.e., decline in force after initial increase during unfused tetanic stimulation). Sag was consistently detected in motor units with unpotentiated twitch contraction times <20 ms. However, the range of frequencies at which sag was expressed varied among motor units such that there was no single interstimulus interval (ISI), with or without adjusting for twitch contraction time, at which sag could be detected reliably. Further analysis indicated that using the absence of sag as a criterion for identifying slow-twitch motor units requires testing with tetani at several different ISIs. In motor units with sag, the shape of the force profile varied with tetanic frequency and contractile properties. Simple sag force profiles (single maximum reached late in the tetanus followed by monotonic decay) tended to occur at shorter ISIs and were observed more frequently in fatigue-resistant motor units with long half-relaxation times and small twitch amplitudes. Complex sag profiles reached an initial maximum early in the tetanus, tended to occur at longer ISIs, and were more common in fatigue-sensitive motor units with long half-relaxation times and large twitch amplitudes. The differences in frequency dependence and force maximum location suggested that these phenomena represented discrete entities. Successive stimuli elicited near-linear increments in force during tetani in motor units that never exhibited sag. In motor units with at least one tetanus displaying sag, tetanic stimulation elicited large initial force increments followed by rapidly decreasing force increments. That the latter force envelope pattern occurred in these units even in tetani without sag suggested that the factors responsible for sag were expressed in the absence of overt sag. The time-to-peak force (TTP) of the individual contractions during a tetanus decreased in tetani with sag. Differences in the pattern of TTP change during a tetanus were consistent with the differences in force maximum location between tetani exhibiting simple and complex sag. Tetani from motor units that never exhibited sag did not display a net decrease in TTP during successive contractions. These data were consistent with the initial force decrement of sag resulting from a transient reduction in the duration of the contractile state.
Collapse
Affiliation(s)
- J S Carp
- Wadsworth Center, New York State Department of Health and State University of New York at Albany, Albany, New York 12201, USA
| | | | | | | |
Collapse
|
35
|
|
36
|
Rafuse VF, Pattullo MC, Gordon T. Innervation ratio and motor unit force in large muscles: a study of chronically stimulated cat medial gastrocnemius. J Physiol 1997; 499 ( Pt 3):809-23. [PMID: 9130174 PMCID: PMC1159296 DOI: 10.1113/jphysiol.1997.sp021970] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
1. The present study uses chronic low frequency stimulation of cat medial gastrocnemius (MG) muscle to investigate the relative contribution of innervation ratio to the wide range of motor unit force in large mammalian muscles by reducing the normal variation in muscle fibre cross-sectional area and specific force. 2. Isometric force recordings from isolated and physiologically characterized motor units were made 42-240 days after stimulation. Innervation ratio, fibre area and fibre type (I, II A, II B) were determined in one glycogen-depleted motor unit per muscle. 3. After 42 days of stimulation, all motor units were non-fatigable and were classified as either slow (S) or fast-fatigue resistant (FR). Despite the absence of fast-fatigable (FF) motor units, all three muscle fibre types were present, as identified according to their myofibrillar ATPase reactivity. After 143 days, all motor units and muscle fibres were classified as type S and type I, respectively. 4. A rapid decline in muscle and motor unit force to 30% of normal values after 42 days of chronic stimulation was accounted for by a reduction in muscle fibre area. Fibre areas did not change further with longer periods of stimulation but type II fibres were converted to type I. All stimulated muscle fibres were the size of normal type I fibres; the size of the fibres within single motor units covered the full range of the muscle fibre population. 5. In long-term stimulated muscles (> 100 days) when all muscle fibres were type I and all motor units type S, only differences in innervation ratio could account for the remaining range in motor unit force. Estimates of this range from the minimum and maximum values recorded and from values of tetanic force between the 5th and 95th percentiles indicate that the range in innervation ratio in the MG muscles is at least 15-fold and may be as large as 38-fold. Enumerations of glycogen-depleted muscle fibres from single motor units were consistent with this explanation. 6. The findings provide evidence that there is a wide range of innervation ratios in large muscles, which can account for the large range in motor unit forces in the muscles. Since motor unit force and innervation ratio vary with motoneurone size, these studies provide further support that the size of the peripheral field of innervation of motoneurones is related to their size.
Collapse
Affiliation(s)
- V F Rafuse
- Department of Pharmacology, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
37
|
Roy RR, Wilson R, Edgerton VR. Architectural and mechanical properties of the rat adductor longus: response to weight-lifting training. Anat Rec (Hoboken) 1997; 247:170-8. [PMID: 9025996 DOI: 10.1002/(sici)1097-0185(199702)247:2<170::aid-ar3>3.0.co;2-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND The primary objective of this study was to determine the effects of an 8 week weight-lifting program on the mechanical, histochemical, and architectural properties of the rat adductor longus muscle, a predominantly slow adductor muscle. METHODS The weight-lifting program was progressive such that the rats were performing three bouts of ten lifts with 300% body weight load every other day during the last 3 weeks of training. The in situ mechanical properties, fiber type composition, and architectural characteristics of the muscle were determined in control and weight-trained rats. Intramuscular electromyographic recordings were used to verify the recruitment of the adductor longus during the lifting task. RESULTS The adductor longus was composed predominantly of slow fibers (approximately 80% slow oxidative) and had a relatively simple architectural design, i.e., one motor end-plate band near the center of the muscle, virtually no angle of pinnation of the fibers from the line of pull, and a fiber length:muscle length ratio of 0.72. The mean fiber type composition and fiber size, the total fiber number, and the mean physiological cross-sectional area of the adductor longus were similar in the two groups of rats. The mean body weight of weight-lifting rats was significantly less than control. The weight of the adductor longus relative to body weight and its fatigue resistance were higher and the maximum rate of shortening was slower in weight-lifting than in control rats. No other mechanical property was significantly affected by the training program. CONCLUSIONS The results indicate that approximately 1 minute of over-load every other day by physiological recruitment of motor units can induce remodeling of the adductor longus of growing rats; i.e., the trained muscles were slower and less fatigable than control. Given that the effects on the architectural or force-generating properties of the muscles were small, the marked improvement in the ability to lift heavier loads as the training progressed appears to be more attributable to neurally related than to muscle-related phenomena.
Collapse
Affiliation(s)
- R R Roy
- Brain Research Institute, University of California, Los Angeles 90095-1761, USA
| | | | | |
Collapse
|
38
|
Bodine-Fowler SC, Meyer RS, Moskovitz A, Abrams R, Botte MJ. Inaccurate projection of rat soleus motoneurons: a comparison of nerve repair techniques. Muscle Nerve 1997; 20:29-37. [PMID: 8995580 DOI: 10.1002/(sici)1097-4598(199701)20:1<29::aid-mus4>3.0.co;2-j] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The objectives of this study were 1) to determine the degree to which soleus motoneurons find their appropriate target following crush and transection injuries to the sciatic nerve, and 2) to determine whether repair of a transected nerve with a silicone tube leads to greater specificity of reinnervation and recovery of muscle function than the standard epineurial suture repair method. Sixty adult female Sprague-Dawley rats were randomly assigned to one of three sciatic nerve injury groups: crush injury, transection with epineurial suture repair, or transection with a silicone tube repair. The degree to which soleus motoneurons were able to find their appropriate target following a sciatic nerve injury was examined using a double labeling dye technique in which the original soleus motor pool was labeled with fast blue and reinnervating motoneurons were labeled with Dil. Soleus motoneurons were able to find their appropriate target following a crush injury. The accuracy of reinnervation following a transection injury and repair, however, was relatively poor. Only 14% of the original soleus motoneurons found the correct target following a transection injury. Repair of a lesioned nerve with a silicone tube and a 5-mm gap as opposed to epineurial sutures did not increase the specificity of reinnervation or the degree of muscle recovery.
Collapse
Affiliation(s)
- S C Bodine-Fowler
- Department of Orthopaedics and Biomedical Sciences Graduate Program, UCSD School of Medicine and VA Medical Center, La Jolla, California, USA
| | | | | | | | | |
Collapse
|
39
|
Kadhiresan VA, Hassett CA, Faulkner JA. Properties of single motor units in medial gastrocnemius muscles of adult and old rats. J Physiol 1996; 493 ( Pt 2):543-52. [PMID: 8782115 PMCID: PMC1158936 DOI: 10.1113/jphysiol.1996.sp021402] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
1. The purpose of this study was to determine the role of motor unit remodelling in the deficit that develops in the maximum isometric tetanic force (Fo) of whole medial gastrocnemius (MGN) muscles in old compared with adult rats. The Fo values and morphological data were determined for MGN muscles and eighty-two single motor units in muscles of adult (10-12 months) and sixty-two units in those of old (24-26 months) F344 rats. During an unfused tetanus, fast and slow (S) motor units were identified by the presence and absence of sag, respectively. Fast-fatigable (FF) and fast-fatigue-resistant (FR) units were classified by fatigue indices less than or greater than 0.50, respectively. 2. For old rats, whole MGN muscle Fo was 29% less than the value of 11.2 N measured for adult rats. The deficit in whole muscle Fo of old rats resulted from equivalent decreases in the number of motor units, 16% smaller than the adult value of ninety-seven, and in the mean motor unit Fo value, 14% less than the adult value of 117 mN. 3. With ageing, little motor unit remodelling occurred in FR units, whereas the S and FF motor units demonstrated dramatic, but opposing, changes. For S units, the number of units remained constant, but the number of fibres per motor unit increased 3-fold from 57 to 165. In contrast, the number of FF units decreased by 34% and the number of fibres per motor unit of the remaining units decreased to 86% of the adult value of 333. The age-related remodelling of motor units appeared to involve denervation of fast muscle fibres with reinnervation of denervated fibres by axonal sprouting from slow fibres.
Collapse
Affiliation(s)
- V A Kadhiresan
- Bioengineering Program, University of Michigan Medical School, Ann Arbor 48109-2007, USA. ff
| | | | | |
Collapse
|
40
|
Leterme D, Falempin M. Contractile properties of rat soleus motor units following 14 days of hindlimb unloading. Pflugers Arch 1996; 432:313-9. [PMID: 8662282 DOI: 10.1007/s004240050138] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The purpose of this study was to compare the isometric contractile properties of rat soleus motor units after 14 days of hindlimb unloading (HU) to those under control conditions. The motor units (MU) were classified using two mechanical criteria: the presence or not of a sag during unfused tetani and the value of the twitch time-to-peak (TTP). Under control conditions, the soleus muscle was composed of 85% of slow-type (sag -, TTP > 20 ms) and 15% of fast-type (sag +, TTP < 20 ms) units. Following HU, these two populations were still present and results showed: (1) large decreases in their maximal tetanic tensions (of -67% and -60% for slow- and fast-type, respectively), and (2) changes in their relative proportions, i.e. a decrease in the percentage of slow-type units and a twofold increase in the percentage of fast-type units were observed. These latter changes might be the consequence of a complete transformation of slow-towards fast-type units. A third population appeared in the HU solei, 26% of the samples, combining the presence of a sag and speed-related properties between those of slow- and fast-type units. These slow-intermediate units might come from slow units partially transformed into a faster type during HU. Thus the present study showed that unloading conditions induced a reorganisation of the soleus motor unit profile. The complete or partial transformation of the motor units could be related to the changes in the electromyographical activity of the unloaded soleus.
Collapse
Affiliation(s)
- D Leterme
- Laboratoire de Physiologie des Structures Contractiles, Bâtiment SN4, Université des Sciences et Technologies de Lille, F-59655 Villeneuve d'Ascq Cedex, France
| | | |
Collapse
|
41
|
Kwa SH, Korfage JA, Weijs WA. Function-dependent anatomical parameters of rabbit masseter motor units. J Dent Res 1995; 74:1649-57. [PMID: 7499587 DOI: 10.1177/00220345950740100501] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Rabbit masseter motor units (22) were studied by stimulation of trigeminal motoneurons. We tested the hypotheses that masseter motor units facilitate fine motor control by concentrating fibers in small areas and that the distribution of motor unit fibers depends on the fiber type. The twitch contraction time and the isometric tetanic force were registered. The motor unit fibers were depleted of their glycogen by prolonged stimulation. Serial sections of the entire muscle were stained with the periodic acid Schiff (PAS) and monoclonal antibody stains. The muscle fibers of the motor unit were mapped and identified by four myosin heavy-chain (MHC) isoforms: I, IIA, IID, and cardiac-alpha. In the PAS-stained sections, anatomical parameters of the motor units, affecting the force output, were analyzed: the innervation ratio (IR), motor unit territory area (TA), and relative (R-DENS) and absolute (A-DENS) motor unit fiber densities. The fiber cross-sectional area (F-CSA) was measured for each MHC fiber type. The F-CSA sum of all motor unit fibers, the physiological cross-sectional area (P-CSA), was calculated. The IR ranged between 77 and 720 fibers (mean, 267). The mean TA was 8.71 mm2 (range, 4.45 to 19.58). The mean R-DENS was 10 fibers per 100; the A-DENS was 31 fibers per mm2. Linear correlations were found between the IR and the R-DENS and between the tetanic force and the IR. The F-CSAs showed a stepwise increase in value from type I- to IID-MHC fibers. The mean P-CSA was 0.90 mm2 (range, 0.09 to 2.97). A high linear correlation was noted between the P-CSA and the tetanic force. In conclusion, increase of motor unit size expressed in higher fiber counts and forces is accomplished by increase of the fiber density. Thus, forces can be exerted selectively in restricted regions of the masseter muscle. Differences in fiber orientation due to complex muscle pinnation emphasize the possibility of an accurate muscle performance.
Collapse
Affiliation(s)
- S H Kwa
- Department of Functional Anatomy, Academic Center for Dentistry, Amsterdam (ACTA), The Netherlands
| | | | | |
Collapse
|
42
|
|
43
|
Clark BD, Fish FE. Scaling of the locomotory apparatus and paddling rhythm in swimming mallard ducklings (Anas platyrhynchos): Test of a resonance model. ACTA ACUST UNITED AC 1994. [DOI: 10.1002/jez.1402700303] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
44
|
Lewis DM, Schmalbruch H. Contractile properties of aneurally regenerated compared with denervated muscles of rat. J Muscle Res Cell Motil 1994; 15:267-77. [PMID: 7929792 DOI: 10.1007/bf00123479] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The time course of aneural regeneration in slow-twitch soleus muscles of young adult rats was studied and compared with the changes following denervation in soleus and fast extensor digitorum longus muscles. Regeneration was induced by auto-grafting after treatment with bupivacaine; isometric contractions were recorded from 5 to 70 days later. Force was detected at 5 days; at 12 days force was maximal (at least 20% of original) and thereafter fell exponentially. Force varied normally with total fibre area, except at 5 and 71 days when force generating capacity was low. Contraction and relaxation in the twitch were longer than normal (maximally at 5 days), and were closer to denervated soleus than EDL; in contrast, the maximal rate of rise of force was as high as that of denervated EDL and much higher than in denervated soleus. It is suggested that the muscle was fundamentally fast contracting, but the twitches were probably slow because of greater than normal activation following a single stimulus--a hypothesis supported by twitch:tetanus ratios that were higher than in denervated muscles. Tetanic force was much more sensitive than normal to changes of muscle length from optimum, despite the fact that the lengths of regenerated muscles were similar to those of contralateral muscles. The properties of denervated soleus gradually approached those of regenerated soleus, probably because of replacement of original fibres by regenerated ones.
Collapse
Affiliation(s)
- D M Lewis
- Department of Physiology, Medical School, Bristol, UK
| | | |
Collapse
|
45
|
Unguez GA, Bodine-Fowler S, Roy RR, Pierotti DJ, Edgerton VR. Evidence of incomplete neural control of motor unit properties in cat tibialis anterior after self-reinnervation. J Physiol 1993; 472:103-25. [PMID: 8145136 PMCID: PMC1160479 DOI: 10.1113/jphysiol.1993.sp019939] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
1. The mechanical, morphological and biochemical properties of single motor units from the anterior compartment of the tibialis anterior muscle in adult cats were studied six months after the nerve branches to that compartment were cut and resutured in close proximity to the muscle. 2. In these self-reinnervated muscles, the maximum tetanic tensions were lower in slow than fast units, a relationship similar to that observed among motor units from control adult muscles. The maximum tetanic tensions produced by the fast units were larger than those produced by the same motor unit types in control muscles. Direct counts of muscle fibres belonging to a motor unit showed that factors controlling the number of muscle fibres innervated by a motoneurone type persist during the reinnervation process in that fast motoneurones reinnervated more muscle fibres than slow motoneurones. Thus, the number of muscle fibres reinnervated by a motoneurone principally accounted for the difference in the maximum tension outputs among motor unit types, a relationship similar to that observed in control tibialis anterior muscles. 3. Monoclonal antibodies for specific myosin heavy chains were used to differentiate fibre types. By this criterion, motor units from control muscles were found to contain a homogeneous fibre type composition. In contrast, a heterogeneous, yet markedly biased, fibre type composition was observed in each unit analysed from self-reinnervated muscles. 4. Although not all of the muscle fibres of a motor unit developed the same type-associated parameters after reinnervation, the relationships among myosin heavy chain profile, succinate dehydrogenase activity and the fibre size were similar in fibres of control and self-reinnervated muscles. 5. The processes which dictate both motor unit size and the matching between motoneurone and muscle fibre type during the reinnervation process must be interdependent and result from a hierarchy of decisions which reflects their relative importance. The mechanisms responsible for these two processes may be a combination of: (1) selective innervation which may or may not incorporate a pruning process if multiple synaptic connections are initially formed and/or (2) conversion of enough fibres of a motor unit to form a predominant type.
Collapse
Affiliation(s)
- G A Unguez
- Department of Physiological Science, University of California at Los Angeles 90024-1527
| | | | | | | | | |
Collapse
|
46
|
Lewis DM, Chamberlain S. Differences between contractions in vitro of slow and fast rat skeletal muscle persist after random reinnervation. J Physiol 1993; 465:731-45. [PMID: 8229861 PMCID: PMC1175456 DOI: 10.1113/jphysiol.1993.sp019703] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
1. The medial popliteal nerve was sectioned in adult rats, and reinnervation was permitted after nerve reunion. Reinnervation was observed in soleus (slow twitch) and plantaris (fast twitch) muscles for periods of 4-21 months after the initial operation. 2. In the reinnervated muscles, isometric twitch time to peak (contraction time) and time to half-relaxation were longer in soleus than plantaris in every muscle examined. 3. Some of the muscles were stained for actomyosin ATPase activity. The proportion of type I fibres (presumed slow) was at least twice as high in soleus compared with plantaris muscles. The proportion in the latter was similar to that predicted from random reinnervation. 4. The effects of differing proportions of fast and slow fibres on the twitch contraction and half-relaxation times were modelled, and the experimental twitch data were found to be compatible with the proportions of fibre types in individual muscles. 5. It is speculated that the mechanism accounting for the higher proportion of slow fibres in soleus muscle probably does not involve selective reinnervation. It is suggested that fast motoneurones may be transformed to slow by a trophic chemical released by slow muscle fibres; such a process would be more extensive in predominantly slow twitch soleus than a fast muscle, and the resulting decrease in the proportion of fast motoneurones would account for the less extensive conversion in soleus.
Collapse
Affiliation(s)
- D M Lewis
- Department of Physiology, Medical School, Bristol
| | | |
Collapse
|
47
|
Eldred E, Garfinkel A, Hsu ES, Ounjian M, Roy RR, Edgerton VR. The physiological cross-sectional area of motor units in the cat tibialis anterior. Anat Rec (Hoboken) 1993; 235:381-9. [PMID: 8430908 DOI: 10.1002/ar.1092350307] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The physiological cross-sectional area (CSA) of a motor unit (MU), taken as the sum of fiber areas measured on a single section through the approximate midlength of the MU, has been compared with the physiological CSA more strictly defined as the sum of the maximal areas to be found anywhere along the length of each of the MU fibers. The CSA at intervals along the fiber length was measured in fibers selected from four glycogen-depleted, isolated MUs in the cat tibialis anterior (TA), and profiles of the summed areas made. In one MU, measurements were also taken on all the MU's fibers at less frequent intervals. The profiles demonstrate that the summed CSA based on each fiber's maximum CSA may exceed that derived from observation on any single section by as much as 20%. As a consequence, values that have been reported for specific tension (force per unit area) of MUs in the TA and probably other muscles may have been overestimated, especially for those MUs of fast type. Estimates were also made of the share of the MU's total force transmitted directly to the tendons of origin and insertion via endings of the blunt musculotendinous type as distinct from tapering intrafascicular endings acting through in-series connective tissue and non-MU fibers. In two MUs of slow type in which most fibers ran from tendon to tendon, "partial tapering" extending over 1 cm of the fiber length accounted for a third of the total physiological CSA, and indicated yet another mode for relay of the MU's force to the tendon.
Collapse
Affiliation(s)
- E Eldred
- Department of Physiological Sciences, University of California, Los Angeles 90024
| | | | | | | | | | | |
Collapse
|
48
|
Roy RR, Pierotti DJ, Flores V, Rudolph W, Edgerton VR. Fibre size and type adaptations to spinal isolation and cyclical passive stretch in cat hindlimb. J Anat 1992; 180 ( Pt 3):491-9. [PMID: 1487441 PMCID: PMC1259649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Impulse activity is known to have a strong influence in determining the characteristics that distinguish skeletal muscle fibres into types. The control of muscle proteins by the neural systems that innervate the muscles, however, is not complete (Edgerton et al. 1985, 1990). The purpose of the present study, therefore, was to determine the effects of inactivity for 6 months on the size and fibre type composition of selected cat hindlimb muscles. Inactivity was produced by isolating the lumbar region of the spinal cord, i.e. transecting the cord at T12-T13 and again at L7-.S1 and then performing a bilateral dorsal rhizotomy between the transection sites (SI). In each SI cat, one hindlimb was passively manipulated for 30 min per day through a range of motion at the ankle mimicking a step cycle. SI resulted in an atrophic response in most muscles, with predominantly slow extensors showing the largest effect. In general, the predominant fibre type, which also had the largest mean size, in each muscle atrophied the most. The mean fibre size of all fibre types were similar after SI, suggesting that there may be a minimal size for inactive intact fibres. In comparison with control animals, all muscles in the SI cats had a higher proportion of fast fibres. Further, the relative contribution of the slow fibres to the total cross-sectional area of the muscle was decreased following SI. Some slow fibres in each muscle, however, were resistant to change. These data demonstrate the extent to which size and myosin type of mammalian muscle fibres are independent of activation characteristics.
Collapse
Affiliation(s)
- R R Roy
- Brain Research Institute, University of California, Los Angeles 90024-1761
| | | | | | | | | |
Collapse
|
49
|
Kanda K, Hashizume K. Factors causing difference in force output among motor units in the rat medial gastrocnemius muscle. J Physiol 1992; 448:677-95. [PMID: 1593483 PMCID: PMC1176222 DOI: 10.1113/jphysiol.1992.sp019064] [Citation(s) in RCA: 113] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
1. The isometric contractile properties and morphological characteristics of the muscle unit portion of motor units were investigated in the medial gastrocnemius (MG) muscle of Fischer 344 rats. Individual motor units were functionally isolated by stimulating single MG axons in finely dissected ventral root filaments. 2. To study the mechanical properties of the motor units in the rat MG muscle, ninety-six motor units in five animals were classified into three categories (type FF, FR and S units) using two physiological criteria: presence or absence of the 'sag' property and fatigability. The relative distribution of the different motor unit types in the sample was 35.4% for type FF, 47.9% for type FR, and 16.7% for type S units. 3. There was little overlap in the distribution of twitch contraction time between type F (including types FF and FR) and type S units. The mean value was 17.1 ms for type FF, 15.7 ms for type FR, and 28.0 ms for type S units. Type FF units produced the largest tetanic tension (mean +/- S.D.; 201 +/- 75 mN). Tension output of type S units was the smallest (15 +/- 6 mN), and that of type FR units was intermediate (100 +/- 45 mN). These values were significantly different. 4. A muscle unit portion of twenty-three motor units (8 FF, 6 FR, and 9 S units) was depleted of its glycogen through repetitive stimulation after characterization of its mechanical properties. Cross-sectional areas of units fibres and innervation ratio were directly measured in sections stained for glycogen using a periodic and acid-Schiff (PAS) reaction. Specific tension of unit fibres was calculated by dividing the maximum tetanic tension of a unit by its total fibre area. 5. The number of unit fibres ranged from 44 to 77 for type S, 116 to 198 for type FR, and 221 to 356 for type FF units, and differences among their means (66, 154 and 271, respectively) were significant. Tetanic tension was correlated with innervation ratio for all of the twenty-three units, or units within a particular type. 6. Mean fibre area for type S units (1983 microns2) was significantly smaller than that for type FF units (3489 microns2). Fibres belonging to type FR units had an intermediate size (2648 microns2). Correlation between tetanic tension and fibre area was significant for either all units or units within a particular type. 7. Total cross-sectional area was significantly different among the motor unit types, and was highly correlated to the maximum tetanic tension.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- K Kanda
- Department of Central Nervous System, Tokyo Metropolitan Institute of Gerontology, Japan
| | | |
Collapse
|
50
|
Pierotti DJ, Roy RR, Bodine-Fowler SC, Hodgson JA, Edgerton VR. Mechanical and morphological properties of chronically inactive cat tibialis anterior motor units. J Physiol 1991; 444:175-92. [PMID: 1726595 PMCID: PMC1179927 DOI: 10.1113/jphysiol.1991.sp018872] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
1. The lumbar spinal cord was functionally isolated in ten cats by cord transection at the junctions of segments T12-T13 and L7-S1 and cutting bilaterally all dorsal roots between the two transections. Two 24 h EMG recording sessions were used to verify that muscles in the lower limb were virtually electrically silent. The cats were maintained in excellent health for 6 months. 2. Six months after spinal cord isolation, an acute experiment was performed to isolate a single motor unit from the tibialis anterior of each hindlimb using ventral root splitting techniques. Each motor unit was characterized physiologically as either fast fatigable (FF, n = 11), fast fatigue resistant (FR, n = 4), fast intermediate (FI, n = 2), or slow (S, n = 1), and repetitively stimulated to deplete the motor unit of its glycogen. 3. Maximum tensions of the fast motor units were lower than mean maximum tensions of control, whereas the S motor unit remained within the range observed in controls. In general, the isometric contractile properties, as well as fatigability, were within the ranges for each of the motor unit types in control cats. The mean fibre cross-sectional areas of the fibres within the FR and FF motor units were approximately 40 and 50% smaller than control, while the mean fibre size of the fibers within the S motor unit was similar to control. 4. Innervation ratios and specific tensions for all experimental motor units were within the ranges of those reported for tibialis anterior motor units in control cats. Thus, it appears that the decrease in maximum tension of the fast motor units was primarily related to a reduction in fibre size. 5. The spatial distribution of the fibres within fast motor units of a spinally isolated cat, as measured by interfibre distances of the motor unit fibres, was similar to that reported for control tibialis anterior motor units. 6. These data suggest that factors independent of activity play a prominent, if not dominant, role in maintaining the complement of motor unit types typical of adult cat muscles. In addition, normal innervation patterns appear to be maintained in the absence of activity.
Collapse
Affiliation(s)
- D J Pierotti
- Department of Kinesiology, University of California, Los Angeles 90024
| | | | | | | | | |
Collapse
|