1
|
Abbott JA, Wen H, Liu B, Gupta SS, Iacobucci GJ, Zheng W, Popescu GK. Allosteric inhibition of NMDA receptors by low dose ketamine. Mol Psychiatry 2025; 30:1009-1018. [PMID: 39237721 PMCID: PMC11948614 DOI: 10.1038/s41380-024-02729-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 08/12/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024]
Abstract
Ketamine, a general anesthetic, has rapid and sustained antidepressant effects when administered at lower doses. Anesthetic levels of ketamine reduce excitatory transmission by binding deep into the pore of NMDA receptors where it blocks current influx. In contrast, the molecular targets responsible for antidepressant levels of ketamine remain controversial. We used electrophysiology, structure-based mutagenesis, and molecular and kinetic modeling to investigate the effects of ketamine on NMDA receptors across an extended range of concentrations. We report functional and structural evidence that, at nanomolar concentrations, ketamine interacts with membrane-accessible hydrophobic sites on NMDA receptors, which are distinct from the established pore-blocking site. These interactions stabilize receptors in pre-open states and produce an incomplete, voltage- and pH-dependent reduction in receptor gating. Notably, this allosteric inhibitory mechanism spares brief synaptic-like receptor activations and preferentially reduces currents from receptors activated tonically by ambient levels of neurotransmitters. We propose that the hydrophobic sites we describe here account for clinical effects of ketamine not shared by other NMDA receptor open-channel blockers such as memantine and represent promising targets for developing safe and effective neuroactive therapeutics.
Collapse
Affiliation(s)
- Jamie A Abbott
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14203, USA
| | - Han Wen
- Department of Physics, College of Biological Sciences, Buffalo, NY, 14260, USA
| | - Beiying Liu
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14203, USA
| | - Sheila S Gupta
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14203, USA
| | - Gary J Iacobucci
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14203, USA
| | - Wenjun Zheng
- Department of Physics, College of Biological Sciences, Buffalo, NY, 14260, USA
| | - Gabriela K Popescu
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14203, USA.
| |
Collapse
|
2
|
Zhigulin AS, Dron MY, Barygin OI, Tikhonov DB. The diversity of AMPA receptor inhibition mechanisms among amidine-containing compounds. Front Pharmacol 2024; 15:1467266. [PMID: 39444609 PMCID: PMC11496081 DOI: 10.3389/fphar.2024.1467266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/27/2024] [Indexed: 10/25/2024] Open
Abstract
Amidine-containing compounds are primarily known as antiprotozoal agents (pentamidine, diminazene, furamidine) or as serine protease inhibitors (nafamostat, sepimostat, camostat, gabexate). DAPI is widely recognized as a fluorescent DNA stain. Recently, it has been shown that these compounds also act as NMDA receptor inhibitors. In this study, we examined the activity of these compounds and analyzed the mechanisms of action in relation to another important class of ionotropic glutamate receptors-calcium-permeable AMPA receptors (CP-AMPARs) and calcium-impermeable AMPA receptors (CI-AMPARs) - using the whole-cell patch-clamp method on isolated male Wistar rat brain neurons. Gabexate and camostat were found to be inactive. Other compounds preferentially inhibited calcium-permeable AMPA receptors with IC50 values of 30-60 µM. DAPI and furamidine were also active against CI-AMPARs with IC50s of 50-60 μM, while others showed poor activity. All active compounds acted as channel blockers, which are able for permeating into the cytoplasm on both CP- and CI-AMPARs. Specifically, sepimostat showed trapping in the closed CP-AMPAR channel. Furamidine and DAPI demonstrated a voltage-independent action on CI-AMPARs, indicating binding to an additional superficial site. While the majority of compounds inhibited glutamate-activated steady-state currents as well as kainate-activated currents on CI-AMPARs, pentamidine significantly potentiated glutamate-induced steady-state responses. The potentiating effect of pentamidine resembles the action of the positive allosteric modulator cyclothiazide although the exact binding site remains unclear. Thus, this study, together with our previous research on NMDA receptors, provides a comprehensive overview of this novel group of ionotropic glutamate receptors inhibitors with a complex pharmacological profile, remarkable diversity of effects and mechanisms of action.
Collapse
Affiliation(s)
- Arseniy S. Zhigulin
- Laboratory for the Research of the Mechanisms of Regulation and Compensation of Nervous System Excitability Pathologies, I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, Saint Petersburg, Russia
| | | | | | | |
Collapse
|
3
|
Barragan EV, Anisimova M, Vijayakumar V, Coblentz A, Park DK, Salaka RJ, Nisan AFK, Petshow S, Dore K, Zito K, Gray JA. d-Serine Inhibits Non-ionotropic NMDA Receptor Signaling. J Neurosci 2024; 44:e0140242024. [PMID: 38942470 PMCID: PMC11308331 DOI: 10.1523/jneurosci.0140-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/24/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024] Open
Abstract
NMDA-type glutamate receptors (NMDARs) are widely recognized as master regulators of synaptic plasticity, most notably for driving long-term changes in synapse size and strength that support learning. NMDARs are unique among neurotransmitter receptors in that they require binding of both neurotransmitter (glutamate) and co-agonist (e.g., d-serine) to open the receptor channel, which leads to the influx of calcium ions that drive synaptic plasticity. Over the past decade, evidence has accumulated that NMDARs also support synaptic plasticity via ion flux-independent (non-ionotropic) signaling upon the binding of glutamate in the absence of co-agonist, although conflicting results have led to significant controversy. Here, we hypothesized that a major source of contradictory results might be attributed to variable occupancy of the co-agonist binding site under different experimental conditions. To test this hypothesis, we manipulated co-agonist availability in acute hippocampal slices from mice of both sexes. We found that enzymatic scavenging of endogenous co-agonists enhanced the magnitude of long-term depression (LTD) induced by non-ionotropic NMDAR signaling in the presence of the NMDAR pore blocker MK801. Conversely, a saturating concentration of d-serine completely inhibited LTD and spine shrinkage induced by glutamate binding in the presence of MK801 or Mg2+ Using a Förster resonance energy transfer (FRET)-based assay in cultured neurons, we further found that d-serine completely blocked NMDA-induced conformational movements of the GluN1 cytoplasmic domains in the presence of MK801. Our results support a model in which d-serine availability serves to modulate NMDAR signaling and synaptic plasticity even when the NMDAR is blocked by magnesium.
Collapse
Affiliation(s)
- Eden V Barragan
- Center for Neuroscience, University of California, Davis, California 95618
| | - Margarita Anisimova
- Center for Neuroscience, University of California, Davis, California 95618
- Departments of Neurobiology, Physiology and Behavior, University of California, Davis, California 95618
| | - Vishnu Vijayakumar
- Center for Neural Circuits and Behavior, Department of Neuroscience and Section for Neurobiology, Division of Biology, University of California at San Diego, San Diego, California 92093
| | - Azariah Coblentz
- Center for Neuroscience, University of California, Davis, California 95618
- Departments of Neurobiology, Physiology and Behavior, University of California, Davis, California 95618
| | - Deborah K Park
- Center for Neuroscience, University of California, Davis, California 95618
- Departments of Neurobiology, Physiology and Behavior, University of California, Davis, California 95618
| | - Raghava Jagadeesh Salaka
- Center for Neuroscience, University of California, Davis, California 95618
- Neurology, University of California, Davis, California 95618
| | - Atheer F K Nisan
- Center for Neuroscience, University of California, Davis, California 95618
| | - Samuel Petshow
- Center for Neuroscience, University of California, Davis, California 95618
- Departments of Neurobiology, Physiology and Behavior, University of California, Davis, California 95618
| | - Kim Dore
- Center for Neural Circuits and Behavior, Department of Neuroscience and Section for Neurobiology, Division of Biology, University of California at San Diego, San Diego, California 92093
| | - Karen Zito
- Center for Neuroscience, University of California, Davis, California 95618
- Departments of Neurobiology, Physiology and Behavior, University of California, Davis, California 95618
| | - John A Gray
- Center for Neuroscience, University of California, Davis, California 95618
- Neurology, University of California, Davis, California 95618
- Psychiatry and Behavioral Sciences, University of California, Davis, California 95618
| |
Collapse
|
4
|
Boikov SI, Karelina TV, Sibarov DA, Antonov SM. Selective inhibitor of sodium-calcium exchanger, SEA0400, affects NMDA receptor currents and abolishes their calcium-dependent block by tricyclic antidepressants. Front Pharmacol 2024; 15:1432718. [PMID: 39156114 PMCID: PMC11327140 DOI: 10.3389/fphar.2024.1432718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/22/2024] [Indexed: 08/20/2024] Open
Abstract
The open-channel block of N-methyl-D-aspartate receptors (NMDARs) and their calcium-dependent desensitization (CDD) represent conventional mechanisms of glutamatergic synapse regulation. In neurotrauma, neurodegeneration, and neuropathic pain the clinical benefits of cure with memantine, ketamine, Mg2+, and some tricyclic antidepressants are often attributed to NMDAR open-channel block, while possible involvement of NMDAR CDD in the therapy is not well established. Here the effects of selective high-affinity sodium-calcium exchanger (NCX) isoform 1 inhibitor, SEA0400, on NMDA-activated whole-cell currents and their block by amitriptyline, desipramine and clomipramine recorded by patch-clamp technique in cortical neurons of primary culture were studied. We demonstrated that in the presence of extracellular Ca2+, 50 nM SEA0400 caused a reversible decrease of the steady-state amplitude of NMDAR currents, whereas loading neurons with BAPTA or the removal of extracellular Ca2+ abolished the effect. The decrease did not exceed 30% of the amplitude and did not depend on membrane voltage. The external Mg2+ block and 50 nM SEA0400 inhibition of currents were additive, suggesting their independent modes of action. In the presence of Ca2+ SEA0400 speeded up the decay of NMDAR currents to the steady state determined by CDD. The measured IC50 value of 27 nM for SEA0400-induced inhibition coincides with that for NCX1. Presumably, SEA0400 effects are induced by an enhancement of NMDAR CDD through the inhibition of Ca2+ extrusion by NCX1. SEA0400, in addition, at nanomolar concentrations could interfere with Ca2+-dependent effect of tricyclic antidepressants. In the presence of 50 nM SEA0400, the IC50s for NMDAR inhibition by amitriptyline and desipramine increased by about 20 folds, as the Ca2+-dependent NMDAR inhibition disappeared. This observation highlights NCX1 involvement in amitriptyline and desipramine effects on NMDARs and unmasks competitive relationships between SEA0400 and these antidepressants. Neither amitriptyline nor desipramine could affect NCX3. The open-channel block of NMDARs by these substances was not affected by SEA0400. In agreement, SEA0400 did not change the IC50 for clomipramine, which acts as a pure NMDAR open-channel blocker. Thus, NCX seems to represent a promising molecular target to treat neurological disorders, because of the ability to modulate NMDARs by decreasing the open probability through the enhancement of their CDD.
Collapse
Affiliation(s)
| | | | | | - Sergei M. Antonov
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint-Petersburg, Russia
| |
Collapse
|
5
|
Jiang Y, Dong Y, Hu H. The N-methyl-d-aspartate receptor hypothesis of ketamine's antidepressant action: evidence and controversies. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230225. [PMID: 38853549 PMCID: PMC11343275 DOI: 10.1098/rstb.2023.0225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/26/2023] [Accepted: 01/02/2024] [Indexed: 06/11/2024] Open
Abstract
Substantial clinical evidence has unravelled the superior antidepressant efficacy of ketamine: in comparison to traditional antidepressants targeting the monoamine systems, ketamine, as an N-methyl-d-aspartate receptor (NMDAR) antagonist, acts much faster and more potently. Surrounding the antidepressant mechanisms of ketamine, there is ample evidence supporting an NMDAR-antagonism-based hypothesis. However, alternative arguments also exist, mostly derived from the controversial clinical results of other NMDAR inhibitors. In this article, we first summarize the historical development of the NMDAR-centred hypothesis of rapid antidepressants. We then classify different NMDAR inhibitors based on their mechanisms of inhibition and evaluate preclinical as well as clinical evidence of their antidepressant effects. Finally, we critically analyse controversies and arguments surrounding ketamine's NMDAR-dependent and NMDAR-independent antidepressant action. A better understanding of ketamine's molecular targets and antidepressant mechanisms should shed light on the future development of better treatment for depression. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.
Collapse
Affiliation(s)
- Yihao Jiang
- Department of Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou310058, People's Republic of China
- Nanhu Brain-Computer Interface Institute, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou311100, People's Republic of China
| | - Yiyan Dong
- Department of Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou310058, People's Republic of China
| | - Hailan Hu
- Department of Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou310058, People's Republic of China
- Nanhu Brain-Computer Interface Institute, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou311100, People's Republic of China
| |
Collapse
|
6
|
Shibata K, Enomoto K, Tsutsumi T, Muraoka H, Fuwa T, Kawano M, Ishigooka J, Inada K, Nishimura K, Oshibuchi H. Effect of intermittent subchronic MK-801 administration on dopamine synthesis capacity and responsiveness in the prefrontal cortex. Neuropsychopharmacol Rep 2024; 44:333-341. [PMID: 38376999 PMCID: PMC11144610 DOI: 10.1002/npr2.12420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/30/2023] [Accepted: 01/15/2024] [Indexed: 02/22/2024] Open
Abstract
AIM The therapeutic potential of N-methyl-D-aspartate glutamate receptor (NMDAR) antagonists, particularly ketamine, in mood disorders, is linked to their modulation of dopamine dynamics in the medial prefrontal cortex (mPFC). However, conflicting effects of distinct NMDAR antagonists, like ketamine and phencyclidine, on mPFC dopamine levels stem from variances in their receptor affinity profiles. This study investigates the impact of intermittent subchronic administration of an NMDAR antagonist on dopamine synthesis capacity and responsiveness within the mPFC, focusing on Dizocilpine (MK-801), a highly selective NMDAR antagonist. METHODS In vivo microdialysis and high-performance liquid chromatography assessed extracellular dopamine levels in the mPFC following subchronic MK-801 treatment. Locomotor activity was measured using a computed video tracking system. RESULTS Intermittent subchronic MK-801 administration, followed by a 24-h withdrawal, preserved both dopamine synthesis capacity and responsiveness to MK-801 challenge in the mPFC. However, altered locomotor activity was observed, deviating from previous findings indicating impaired dopamine synthesis and responsiveness in the mPFC with twice-daily subchronic NMDAR antagonist treatment. CONCLUSION These findings offer crucial biochemical insights into the diverse impacts of NMDAR antagonists on dopamine dynamics and the distinct therapeutic mechanisms associated with ketamine in depression treatment. However, further investigation is imperative to pinpoint potential inconsistencies stemming from variances in drug type, dosage, or administration frequency.
Collapse
Affiliation(s)
- Kazuro Shibata
- Department of PsychiatryTokyo Women's Medical UniversityShinjuku‐kuTokyoJapan
| | - Kosuke Enomoto
- Department of PsychiatryTokyo Women's Medical UniversityShinjuku‐kuTokyoJapan
| | - Takahiro Tsutsumi
- Department of PsychiatryTokyo Women's Medical UniversityShinjuku‐kuTokyoJapan
| | - Hiroyuki Muraoka
- Department of PsychiatryKitasato UniversitySagamihara‐ShiKanagawaJapan
| | - Tatsu Fuwa
- Department of PsychiatryTokyo Women's Medical UniversityShinjuku‐kuTokyoJapan
| | | | - Jun Ishigooka
- CNS Pharmacological Research InstituteShibuya‐kuTokyoJapan
| | - Ken Inada
- Department of PsychiatryTokyo Women's Medical UniversityShinjuku‐kuTokyoJapan
- Department of PsychiatryKitasato UniversitySagamihara‐ShiKanagawaJapan
| | - Katsuji Nishimura
- Department of PsychiatryTokyo Women's Medical UniversityShinjuku‐kuTokyoJapan
| | - Hidehiro Oshibuchi
- Department of PsychiatryTokyo Women's Medical UniversityShinjuku‐kuTokyoJapan
| |
Collapse
|
7
|
Barragan EV, Anisimova M, Vijayakumar V, Coblentz AC, Park DK, Salaka RJ, Nisan AFK, Petshow S, Dore K, Zito K, Gray JA. D-Serine inhibits non-ionotropic NMDA receptor signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.29.596266. [PMID: 38854020 PMCID: PMC11160797 DOI: 10.1101/2024.05.29.596266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
NMDA-type glutamate receptors (NMDARs) are widely recognized as master regulators of synaptic plasticity, most notably for driving long-term changes in synapse size and strength that support learning. NMDARs are unique among neurotransmitter receptors in that they require binding of both neurotransmitter (glutamate) and co-agonist (e.g. d -serine) to open the receptor channel, which leads to the influx of calcium ions that drive synaptic plasticity. Over the past decade, evidence has accumulated that NMDARs also support synaptic plasticity via ion flux-independent (non-ionotropic) signaling upon the binding of glutamate in the absence of co-agonist, although conflicting results have led to significant controversy. Here, we hypothesized that a major source of contradictory results can be attributed to variable occupancy of the co-agonist binding site under different experimental conditions. To test this hypothesis, we manipulated co-agonist availability in acute hippocampal slices from mice of both sexes. We found that enzymatic scavenging of endogenous co-agonists enhanced the magnitude of LTD induced by non-ionotropic NMDAR signaling in the presence of the NMDAR pore blocker, MK801. Conversely, a saturating concentration of d -serine completely inhibited both LTD and spine shrinkage induced by glutamate binding in the presence of MK801. Using a FRET-based assay in cultured neurons, we further found that d -serine completely blocked NMDA-induced conformational movements of the GluN1 cytoplasmic domains in the presence of MK801. Our results support a model in which d -serine inhibits ion flux-independent NMDAR signaling and plasticity, and thus d -serine availability could serve to modulate NMDAR signaling even when the NMDAR is blocked by magnesium. Significance Statement NMDARs are glutamate-gated cation channels that are key regulators of neurodevelopment and synaptic plasticity and unique in their requirement for binding of a co-agonist (e.g. d -serine) in order for the channel to open. NMDARs have been found to drive synaptic plasticity via non-ionotropic (ion flux-independent) signaling upon the binding of glutamate in the absence of co-agonist, though conflicting results have led to controversy. Here, we found that d -serine inhibits non-ionotropic NMDAR-mediated LTD and LTD-associated spine shrinkage. Thus, a major source of the contradictory findings might be attributed to experimental variability in d -serine availability. In addition, the developmental regulation of d -serine levels suggests a role for non-ionotropic NMDAR plasticity during critical periods of plasticity.
Collapse
|
8
|
Pavlovič A, Ševčíková L, Hřivňacký M, Rác M. Effect of the General Anaesthetic Ketamine on Electrical and Ca 2+ Signal Propagation in Arabidopsis thaliana. PLANTS (BASEL, SWITZERLAND) 2024; 13:894. [PMID: 38592882 PMCID: PMC10975207 DOI: 10.3390/plants13060894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 04/11/2024]
Abstract
The systemic electrical signal propagation in plants (i.e., from leaf to leaf) is dependent on GLUTAMATE RECEPTOR-LIKE proteins (GLRs). The GLR receptors are the homologous proteins to the animal ionotropic glutamate receptors (iGluRs) which are ligand-gated non-selective cation channels that mediate neurotransmission in the animal's nervous system. In this study, we investigated the effect of the general anaesthetic ketamine, a well-known non-competitive channel blocker of human iGluRs, on systemic electrical signal propagation in Arabidopsis thaliana. We monitored the electrical signal propagation, intracellular calcium level [Ca2+]cyt and expression of jasmonate (JA)-responsive genes in response to heat wounding. Although ketamine affected the shape and the parameters of the electrical signals (amplitude and half-time, t1/2) mainly in systemic leaves, it was not able to block a systemic response. Increased [Ca2+]cyt and the expression of jasmonate-responsive genes were detected in local as well as in systemic leaves in response to heat wounding in ketamine-treated plants. This is in contrast with the effect of the volatile general anaesthetic diethyl ether which completely blocked the systemic response. This low potency of ketamine in plants is probably caused by the fact that the critical amino acid residues needed for ketamine binding in human iGluRs are not conserved in plants' GLRs.
Collapse
Affiliation(s)
- Andrej Pavlovič
- Department of Biophysics, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic; (L.Š.); (M.H.); (M.R.)
| | | | | | | |
Collapse
|
9
|
Evans VD, Arenas A, Shinozuka K, Tabaac BJ, Beutler BD, Cherian K, Fasano C, Muir OS. Psychedelic Therapy: A Primer for Primary Care Clinicians-Ketamine. Am J Ther 2024; 31:e155-e177. [PMID: 38518272 DOI: 10.1097/mjt.0000000000001721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
BACKGROUND Ketamine, an arylcyclohexylamine dissociative anesthetic agent, has evolved into a versatile therapeutic. It has a rapid-onset, well-understood cardiovascular effects and a favorable safety profile in clinical use. Its enantiomeric compound, esketamine, was approved by the Food and Drug Administration in 2019 for both treatment-resistant depression and major depressive disorder with suicidal ideation. AREAS OF UNCERTAINTY Research indicates dose-dependent impacts on cognition, particularly affecting episodic and working memory following both acute administration and chronic use, albeit temporarily for the former and potentially persistent for the latter. Alongside acute risks to cardiovascular stability, ketamine use poses potential liver toxicity concerns, especially with prolonged or repeated exposure within short time frames. The drug's association with "ketamine cystitis," characterized by bladder inflammation, adds to its profile of physiological risks. THERAPEUTIC ADVANCES Data demonstrate a single intravenous infusion of ketamine exhibits antidepressant effects within hours (weighted effect size averages of depression scores (N = 518) following a single 0.5 mg/kg infusion of ketamine is d = 0.96 at 24 hours). Ketamine is also effective at reducing posttraumatic stress disorder (PTSD) symptom severity following repeated infusions (Clinician-Administered PTSD Scale scores: -11.88 points compared with midazolam control). Ketamine also decreased suicidal ideation in emergency settings (Scale for Suicidal Ideation scores: -4.96 compared with midazolam control). Through its opioid-sparing effect, ketamine has revolutionized postoperative pain management by reducing analgesic consumption and enhancing recovery. LIMITATIONS Many studies indicate that ketamine's therapeutic effects may subside within weeks. Repeated administrations, given multiple times per week, are often required to sustain decreases in suicidality and depressive symptoms. CONCLUSIONS Ketamine's comprehensive clinical profile, combined with its robust effects on depression, suicidal ideation, PTSD, chronic pain, and other psychiatric conditions, positions it as a substantial contender for transformative therapeutic application.
Collapse
Affiliation(s)
- Viviana D Evans
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Alejandro Arenas
- Department of Anesthesiology, University of Washington School of Medicine, Seattle, WA
| | - Kenneth Shinozuka
- Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, United Kingdom
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Burton J Tabaac
- University of Nevada, Reno School of Medicine, Reno, NV
- Department of Neurology, Carson Tahoe Health, Carson City, NV
| | - Bryce D Beutler
- University of Southern California, Keck School of Medicine, Los Angeles, CA
| | - Kirsten Cherian
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, CA
| | | | - Owen S Muir
- Fermata Health, Brooklyn, NY; and
- Acacia Clinics, Sunnyvale, CA
| |
Collapse
|
10
|
Handforth A, Singh RP, Treven M, Ernst M. Search for Novel Therapies for Essential Tremor Based on Positive Modulation of α6-Containing GABA A Receptors. Tremor Other Hyperkinet Mov (N Y) 2023; 13:39. [PMID: 37900009 PMCID: PMC10607569 DOI: 10.5334/tohm.796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/10/2023] [Indexed: 10/31/2023] Open
Abstract
Background Prior work using GABAA receptor subunit knockouts and the harmaline model has indicated that low-dose alcohol, gaboxadol, and ganaxolone suppress tremor via α6βδ GABAA receptors. This suggests that drugs specifically enhancing the action of α6βδ or α6βγ2 GABAA receptors, both predominantly expressed on cerebellar granule cells, would be effective against tremor. We thus examined three drugs described by in vitro studies as selective α6βδ (ketamine) or α6βγ2 (Compound 6, flumazenil) receptor modulators. Methods In the first step of evaluation, the maximal dose was sought at which 6/6 mice pass straight wire testing, a sensitive test for psychomotor impairment. Only non-impairing doses were used to evaluate for anti-tremor efficacy in the harmaline model, which was assessed in wildtype and α6 subunit knockout littermates. Results Ketamine, in maximally tolerated doses of 2.0 and 3.5 mg/kg had minimal effect on harmaline tremor in both genotypes. Compound 6, at well-tolerated doses of 1-10 mg/kg, effectively suppressed tremor in both genotypes. Flumazenil suppressed tremor in wildtype mice at doses (0.015-0.05 mg/kg) far lower than those causing straight wire impairment, and did not suppress tremor in α6 knockout mice. Discussion Modulators of α6βδ and α6βγ2 GABAA receptors warrant attention for novel therapies as they are anticipated to be effective and well-tolerated. Ketamine likely failed to attain α6βδ-active levels. Compound 6 is an attractive candidate, but further study is needed to clarify its mechanism of action. The flumazenil results provide proof of principle that targeting α6βγ2 receptors represents a worthy strategy for developing essential tremor therapies. Highlights We tested for harmaline tremor suppression drugs previously described as in vitro α6βδ or α6βγ2 GABAA receptor-selective modulators. Well-tolerated flumazenil doses suppressed tremor in α6-wildtype but not α6-knockout mice. Compound 6 and ketamine failed to display this profile, likely from off-target effects. Selective α6 modulators hold promise as tremor therapy.
Collapse
Affiliation(s)
- Adrian Handforth
- Neurology Service, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, United States of America
| | - Ram P. Singh
- Research Service, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, United States of America
| | - Marco Treven
- Department of Neurology, Medical Neuroscience Cluster, Medical University of Vienna, Vienna, Austria
| | - Margot Ernst
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
11
|
Ma S, Chen M, Jiang Y, Xiang X, Wang S, Wu Z, Li S, Cui Y, Wang J, Zhu Y, Zhang Y, Ma H, Duan S, Li H, Yang Y, Lingle CJ, Hu H. Sustained antidepressant effect of ketamine through NMDAR trapping in the LHb. Nature 2023; 622:802-809. [PMID: 37853123 PMCID: PMC10600008 DOI: 10.1038/s41586-023-06624-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/08/2023] [Indexed: 10/20/2023]
Abstract
Ketamine, an N-methyl-D-aspartate receptor (NMDAR) antagonist1, has revolutionized the treatment of depression because of its potent, rapid and sustained antidepressant effects2-4. Although the elimination half-life of ketamine is only 13 min in mice5, its antidepressant activities can last for at least 24 h6-9. This large discrepancy poses an interesting basic biological question and has strong clinical implications. Here we demonstrate that after a single systemic injection, ketamine continues to suppress burst firing and block NMDARs in the lateral habenula (LHb) for up to 24 h. This long inhibition of NMDARs is not due to endocytosis but depends on the use-dependent trapping of ketamine in NMDARs. The rate of untrapping is regulated by neural activity. Harnessing the dynamic equilibrium of ketamine-NMDAR interactions by activating the LHb and opening local NMDARs at different plasma ketamine concentrations, we were able to either shorten or prolong the antidepressant effects of ketamine in vivo. These results provide new insights into the causal mechanisms of the sustained antidepressant effects of ketamine. The ability to modulate the duration of ketamine action based on the biophysical properties of ketamine-NMDAR interactions opens up new opportunities for the therapeutic use of ketamine.
Collapse
Affiliation(s)
- Shuangshuang Ma
- Department of Psychiatry and International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
- Nanhu Brain-Computer Interface Institute, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou, China
| | - Min Chen
- Nanhu Brain-Computer Interface Institute, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou, China
- Department of Affiliated Mental Health Center and Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yihao Jiang
- Nanhu Brain-Computer Interface Institute, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou, China
- Department of Affiliated Mental Health Center and Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinkuan Xiang
- Nanhu Brain-Computer Interface Institute, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou, China
| | - Shiqi Wang
- Nanhu Brain-Computer Interface Institute, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou, China
| | - Zuohang Wu
- Nanhu Brain-Computer Interface Institute, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou, China
| | - Shuo Li
- Nanhu Brain-Computer Interface Institute, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou, China
| | - Yihui Cui
- Nanhu Brain-Computer Interface Institute, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou, China
| | - Junying Wang
- Nanhu Brain-Computer Interface Institute, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou, China
| | - Yanqing Zhu
- Nanhu Brain-Computer Interface Institute, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou, China
| | - Yan Zhang
- Nanhu Brain-Computer Interface Institute, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou, China
| | - Huan Ma
- Nanhu Brain-Computer Interface Institute, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou, China
| | - Shumin Duan
- Nanhu Brain-Computer Interface Institute, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou, China
| | - Haohong Li
- Nanhu Brain-Computer Interface Institute, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou, China
| | - Yan Yang
- Nanhu Brain-Computer Interface Institute, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou, China
- Department of Affiliated Mental Health Center and Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Christopher J Lingle
- Department of Anesthesiology, Washington University School of Medicine, St Louis, MO, USA
| | - Hailan Hu
- Department of Psychiatry and International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China.
- Nanhu Brain-Computer Interface Institute, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou, China.
- Department of Affiliated Mental Health Center and Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
12
|
Popescu G, Abbott J, Wen H, Liu B, Gupta S, Iacobucci G, Zheng W. Allosteric Site Mediates Inhibition of Tonic NMDA Receptor Activity by Low Dose Ketamine. RESEARCH SQUARE 2023:rs.3.rs-3304783. [PMID: 37790558 PMCID: PMC10543308 DOI: 10.21203/rs.3.rs-3304783/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Ketamine, a general anesthetic, has rapid and sustained antidepressant effects when administered at lower doses. At anesthetic doses, ketamine causes a drastic reduction in excitatory transmission by lodging in the centrally located hydrophilic pore of the NMDA receptor, where it blocks ionic flow. In contrast, the molecular and cellular targets responsible for the antidepressant effects of ketamine remain controversial. Here, we report functional and structural evidence that, at nanomolar concentrations, ketamine interacts with membrane-accessible hydrophobic sites where it stabilizes desensitized receptors to cause an incomplete, voltage- and pH-dependent reduction in NMDA receptor activity. This allosteric mechanism spares brief receptor activations and reduces preferentially currents from tonically active receptors. The hydrophobic site is a promising target for safe and effective therapies against acute and chronic neurodegeneration.
Collapse
Affiliation(s)
- Gabriela Popescu
- Jacobs School of Medicine and Biomedical Sciences/University at Buffalo, SUNY
| | - Jamie Abbott
- Jacobs School of Medicine and Biomedical Sciences/University at Buffalo, SUN
| | | | | | - Sheila Gupta
- Jacobs School of Medicine and Biomedical Sciences/University at Buffalo, SUN
| | | | | |
Collapse
|
13
|
Nikolaev M, Tikhonov D. Light-Sensitive Open Channel Block of Ionotropic Glutamate Receptors by Quaternary Ammonium Azobenzene Derivatives. Int J Mol Sci 2023; 24:13773. [PMID: 37762075 PMCID: PMC10530362 DOI: 10.3390/ijms241813773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Glutamate ionotropic receptors mediate fast excitation processes in the central nervous system of vertebrates and play an important role in synaptic plasticity, learning, and memory. Here, we describe the action of two azobenene-containing compounds, AAQ (acrylamide-azobenzene-quaternary ammonium) and QAQ (quaternary ammonium-azobenzene-quaternary ammonium), which produced rapid and fully reversible light-dependent inhibition of glutamate ionotropic receptors. The compounds demonstrated voltage-dependent inhibition with only minor voltage-independent allosteric action. Calcium-impermeable AMPA receptors had weaker sensitivity compared to NMDA and calcium-permeable AMPA receptors. We further revealed that the compounds bound to NMDA and calcium-permeable AMPA receptors in different modes. They were able to enter the wide selectivity filter of AMPA receptors, and strong negative voltages caused permeation into the cytoplasm. The narrow selectivity filter of the NMDA receptors did not allow the molecules to bypass them; therefore, QAQ and AAQ bound to the shallow channel site and prevented channel closure by a foot-in-the-door mechanism. Computer simulations employing available AMPA and NMDA receptor structures readily reproduced the experimental findings, allowing for the structure-based design of more potent and selective drugs in the future. Thus, our work creates a framework for the development of light-sensitive blockers of calcium-permeable AMPA receptors, which are desirable tools for neuroscience.
Collapse
Affiliation(s)
- Maxim Nikolaev
- I.M.Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, 194223 St. Petersburg, Russia;
| | | |
Collapse
|
14
|
Abramova V, Leal Alvarado V, Hill M, Smejkalova T, Maly M, Vales K, Dittert I, Bozikova P, Kysilov B, Hrcka Krausova B, Vyklicky V, Balik A, Fili K, Korinek M, Chodounska H, Kudova E, Ciz D, Martinovic J, Cerny J, Bartunek P, Vyklicky L. Effects of Pregnanolone Glutamate and Its Metabolites on GABA A and NMDA Receptors and Zebrafish Behavior. ACS Chem Neurosci 2023; 14:1870-1883. [PMID: 37126803 PMCID: PMC10198160 DOI: 10.1021/acschemneuro.3c00131] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023] Open
Abstract
Multiple molecular targets have been identified to mediate membrane-delimited and nongenomic effects of natural and synthetic steroids, but the influence of steroid metabolism on neuroactive steroid signaling is not well understood. To begin to address this question, we set out to identify major metabolites of a neuroprotective synthetic steroid 20-oxo-5β-pregnan-3α-yl l-glutamyl 1-ester (pregnanolone glutamate, PAG) and characterize their effects on GABAA and NMDA receptors (GABARs, NMDARs) and their influence on zebrafish behavior. Gas chromatography-mass spectrometry was used to assess concentrations of PAG and its metabolites in the hippocampal tissue of juvenile rats following intraperitoneal PAG injection. PAG is metabolized in the peripheral organs and nervous tissue to 20-oxo-17α-hydroxy-5β-pregnan-3α-yl l-glutamyl 1-ester (17-hydroxypregnanolone glutamate, 17-OH-PAG), 3α-hydroxy-5β-pregnan-20-one (pregnanolone, PA), and 3α,17α-dihydroxy-5β-pregnan-20-one (17-hydroxypregnanolone, 17-OH-PA). Patch-clamp electrophysiology experiments in cultured hippocampal neurons demonstrate that PA and 17-OH-PA are potent positive modulators of GABARs, while PAG and 17-OH-PA have a moderate inhibitory effect at NMDARs. PAG, 17-OH-PA, and PA diminished the locomotor activity of zebrafish larvae in a dose-dependent manner. Our results show that PAG and its metabolites are potent modulators of neurotransmitter receptors with behavioral consequences and indicate that neurosteroid-based ligands may have therapeutic potential.
Collapse
Affiliation(s)
- Vera Abramova
- Laboratory
of Cellular Neurophysiology, Institute of
Physiology CAS, Videnska 1083, 142 20 Prague 4, Czech Republic
- Charles
University, Third Faculty of Medicine, Ruska 87, 100 00 Prague 10,Czech Republic
| | - Vanessa Leal Alvarado
- Laboratory
of Cellular Neurophysiology, Institute of
Physiology CAS, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Martin Hill
- Institute
of Endocrinology, Narodni
8, 116 94 Prague
1, Czech Republic
| | - Tereza Smejkalova
- Laboratory
of Cellular Neurophysiology, Institute of
Physiology CAS, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Michal Maly
- Laboratory
of Cellular Neurophysiology, Institute of
Physiology CAS, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Karel Vales
- Institute
of Physiology CAS, Videnska 1083, 142 20 Prague 4, Czech Republic
- National
Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic
| | - Ivan Dittert
- Laboratory
of Cellular Neurophysiology, Institute of
Physiology CAS, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Paulina Bozikova
- Institute
of Biotechnology CAS, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Bohdan Kysilov
- Laboratory
of Cellular Neurophysiology, Institute of
Physiology CAS, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Barbora Hrcka Krausova
- Laboratory
of Cellular Neurophysiology, Institute of
Physiology CAS, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Vojtech Vyklicky
- Laboratory
of Cellular Neurophysiology, Institute of
Physiology CAS, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Ales Balik
- Laboratory
of Cellular Neurophysiology, Institute of
Physiology CAS, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Klevinda Fili
- Laboratory
of Cellular Neurophysiology, Institute of
Physiology CAS, Videnska 1083, 142 20 Prague 4, Czech Republic
- Charles
University, Third Faculty of Medicine, Ruska 87, 100 00 Prague 10,Czech Republic
| | - Miloslav Korinek
- Laboratory
of Cellular Neurophysiology, Institute of
Physiology CAS, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Hana Chodounska
- Institute
of Organic Chemistry and Biochemistry CAS, Flemingovo nam. 2, 166 10 Prague 2, Czech Republic
| | - Eva Kudova
- Institute
of Organic Chemistry and Biochemistry CAS, Flemingovo nam. 2, 166 10 Prague 2, Czech Republic
| | - David Ciz
- IT4Innovations
National Supercomputing Center, Studentska 6231/1B, 708 00 Ostrava-Poruba, Czech Republic
| | - Jan Martinovic
- IT4Innovations
National Supercomputing Center, Studentska 6231/1B, 708 00 Ostrava-Poruba, Czech Republic
| | - Jiri Cerny
- Laboratory
of Cellular Neurophysiology, Institute of
Physiology CAS, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Petr Bartunek
- Institute
of Molecular Genetics CAS, Videnska 1083, 142 20 Prague, Czech Republic
- CZ-OPENSCREEN, Institute of
Molecular Genetics CAS, Videnska 1083, 142
20 Prague 4, Czech Republic
| | - Ladislav Vyklicky
- Laboratory
of Cellular Neurophysiology, Institute of
Physiology CAS, Videnska 1083, 142 20 Prague 4, Czech Republic
| |
Collapse
|
15
|
Wang X, Wang T, Fan X, Zhang Z, Wang Y, Li Z. A Molecular Toolbox of Positron Emission Tomography Tracers for General Anesthesia Mechanism Research. J Med Chem 2023; 66:6463-6497. [PMID: 37145921 DOI: 10.1021/acs.jmedchem.2c01965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
With appropriate radiotracers, positron emission tomography (PET) allows direct or indirect monitoring of the spatial and temporal distribution of anesthetics, neurotransmitters, and biomarkers, making it an indispensable tool for studying the general anesthesia mechanism. In this Perspective, PET tracers that have been recruited in general anesthesia research are introduced in the following order: 1) 11C/18F-labeled anesthetics, i.e., PET tracers made from inhaled and intravenous anesthetics; 2) PET tracers targeting anesthesia-related receptors, e.g., neurotransmitters and voltage-gated ion channels; and 3) PET tracers for studying anesthesia-related neurophysiological effects and neurotoxicity. The radiosynthesis, pharmacodynamics, and pharmacokinetics of the above PET tracers are mainly discussed to provide a practical molecular toolbox for radiochemists, anesthesiologists, and those who are interested in general anesthesia.
Collapse
Affiliation(s)
- Xiaoxiao Wang
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
| | - Tao Wang
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
| | - Xiaowei Fan
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
| | - Zhao Zhang
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yingwei Wang
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Zijing Li
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
| |
Collapse
|
16
|
Nash PB, Hemphill MA, Barron JN. Administration of ketamine/xylazine increases severity of influenza (A/Puerto Rico/8/34) in mice. Heliyon 2023; 9:e14368. [PMID: 36950568 PMCID: PMC10025899 DOI: 10.1016/j.heliyon.2023.e14368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 01/18/2023] [Accepted: 03/02/2023] [Indexed: 03/10/2023] Open
Abstract
The use of ketamine/xylazine for its anesthetic, anti-inflammatory, and anti-depressant properties could alter other medications and immune functions of the body. Thus, the current study explored how ketamine/xylazine affects the severity of influenza infection in BALB/c and C57Bl/6 mice, monitored for weight loss after intranasal inoculation with A/Puerto Rico/8/34 influenza virus. Mice were inoculated by using a micropipettor to insert 18 μL of control or a suspension of virus into each nostril and allowing the mouse to inhale the material. Several experiments were performed where groups of mice were treated with various combinations of virus and anesthesia and the results compared. Mice were weighed daily and monitored for other signs of illness. The experiments continued until the mice either regained their original weight or died (were euthanized when signs indicated non-recoverable status), which ranged from nine to twenty-three days. Anesthetized mice experienced more weight loss. Additionally, in experiments where the virus suspension was potent enough to lead to death, only mice that were anesthetized died.
Collapse
Affiliation(s)
- Paul B. Nash
- Department of Biological and Physical Sciences, Montana State University Billings, 1500 University Drive, Billings, MT, USA
- Department of Biology, University of West Florida, 11000 University Parkway, Pensacola, FL, USA
- Corresponding author. Department of Biological and Physical Sciences, Montana State University Billings, 1500 University Drive, Billings, MT, USA.
| | - Melissa A. Hemphill
- Department of Biology, University of West Florida, 11000 University Parkway, Pensacola, FL, USA
- United States Air Force, Dover Air Force Base, DE, USA
| | - James N. Barron
- Department of Biological and Physical Sciences, Montana State University Billings, 1500 University Drive, Billings, MT, USA
| |
Collapse
|
17
|
Neurotoxicity evoked by organophosphates and available countermeasures. Arch Toxicol 2023; 97:39-72. [PMID: 36335468 DOI: 10.1007/s00204-022-03397-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/11/2022] [Indexed: 11/07/2022]
Abstract
Organophosphorus compounds (OP) are a constant problem, both in the military and in the civilian field, not only in the form of acute poisoning but also for their long-lasting consequences. No antidote has been found that satisfactorily protects against the toxic effects of organophosphates. Likewise, there is no universal cure to avert damage after poisoning. The key mechanism of organophosphate toxicity is the inhibition of acetylcholinesterase. The overstimulation of nicotinic or muscarinic receptors by accumulated acetylcholine on a synaptic cleft leads to activation of the glutamatergic system and the development of seizures. Further consequences include generation of reactive oxygen species (ROS), neuroinflammation, and the formation of various other neuropathologists. In this review, we present neuroprotection strategies which can slow down the secondary nerve cell damage and alleviate neurological and neuropsychiatric disturbance. In our opinion, there is no unequivocal approach to ensure neuroprotection, however, sooner the neurotoxicity pathway is targeted, the better the results which can be expected. It seems crucial to target the key propagation pathways, i.e., to block cholinergic and, foremostly, glutamatergic cascades. Currently, the privileged approach oriented to stimulating GABAAR by benzodiazepines is of limited efficacy, so that antagonizing the hyperactivity of the glutamatergic system could provide an even more efficacious approach for terminating OP-induced seizures and protecting the brain from permanent damage. Encouraging results have been reported for tezampanel, an antagonist of GluK1 kainate and AMPA receptors, especially in combination with caramiphen, an anticholinergic and anti-glutamatergic agent. On the other hand, targeting ROS by antioxidants cannot or already developed neuroinflammation does not seem to be very productive as other processes are also involved.
Collapse
|
18
|
Zhang K, Yao Y, Hashimoto K. Ketamine and its metabolites: Potential as novel treatments for depression. Neuropharmacology 2023; 222:109305. [PMID: 36354092 DOI: 10.1016/j.neuropharm.2022.109305] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/19/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022]
Abstract
Depression is a well-known serious mental illness, and the onset of treatment using traditional antidepressants is frequently delayed by several weeks. Moreover, numerous patients with depression fail to respond to therapy. One major breakthrough in antidepressant therapy is that subanesthetic ketamine doses can rapidly alleviate depressive symptoms within hours of administering a single dose, even in treatment-resistant patients. However, specific mechanisms through which ketamine exerts its antidepressant effects remain elusive, leading to concerns regarding its rapid and long-lasting antidepressant effects. N-methyl-d-aspartate receptor (NMDAR) antagonists like ketamine are reportedly associated with serious side effects, such as dissociative symptoms, cognitive impairment, and abuse potential, limiting the large-scale clinical use of ketamine as an antidepressant. Herein, we reviewed the pharmacological properties of ketamine and the mechanisms of action underlying the rapid antidepressant efficacy, including the disinhibition hypothesis and synaptogenesis, along with common downstream effector pathways such as enhanced brain-derived neurotrophic factor and tropomyosin-related kinase B signaling, activation of the mechanistic target of rapamycin complex 1 and transforming growth factor β1. We focused on evidence supporting the relevance of these potential mechanisms of ketamine and its metabolites in mediating the clinical efficacy of the drug. Given its reported antidepressant efficacy in preclinical studies and limited undesirable adverse effects, (R)-ketamine may be a safer, more controllable, rapid antidepressant. Overall, understanding the potential mechanisms of action of ketamine and its metabolites in combination with pharmacology may help develop a new generation of rapid antidepressants that maximize antidepressant effects while avoiding unfavorable adverse effects. This article is part of the Special Issue on 'Ketamine and its Metabolites'.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, Hefei, China; Anhui Psychiatric Center, Anhui Medical University, Hefei, China.
| | - Yitan Yao
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, Hefei, China; Anhui Psychiatric Center, Anhui Medical University, Hefei, China
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan.
| |
Collapse
|
19
|
Inhibition of NMDA receptors through a membrane-to-channel path. Nat Commun 2022; 13:4114. [PMID: 35840593 PMCID: PMC9287434 DOI: 10.1038/s41467-022-31817-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 07/05/2022] [Indexed: 11/21/2022] Open
Abstract
N-methyl-d-aspartate receptors (NMDARs) are transmembrane proteins that are activated by the neurotransmitter glutamate and are found at most excitatory vertebrate synapses. NMDAR channel blockers, an antagonist class of broad pharmacological and clinical significance, inhibit by occluding the NMDAR ion channel. A vast literature demonstrates that NMDAR channel blockers, including MK-801, phencyclidine, ketamine, and the Alzheimer’s disease drug memantine, can bind and unbind only when the NMDAR channel is open. Here we use electrophysiological recordings from transfected tsA201 cells and cultured neurons, NMDAR structural modeling, and custom-synthesized compounds to show that NMDAR channel blockers can enter the channel through two routes: the well-known hydrophilic path from extracellular solution to channel through the open channel gate, and also a hydrophobic path from plasma membrane to channel through a gated fenestration (“membrane-to-channel inhibition” (MCI)). Our demonstration that ligand-gated channels are subject to MCI, as are voltage-gated channels, highlights the broad expression of this inhibitory mechanism. Wilcox et al. (2022) show that NMDA receptor channel blockers, some of which are clinically important drugs, can access their binding site via 2 routes: a well-known path from the extracellular solution, and another path through the plasma membrane.
Collapse
|
20
|
Turcu AL, Companys-Alemany J, Phillips MB, Patel DS, Griñán-Ferré C, Loza MI, Brea JM, Pérez B, Soto D, Sureda FX, Kurnikova MG, Johnson JW, Pallàs M, Vázquez S. Design, synthesis, and in vitro and in vivo characterization of new memantine analogs for Alzheimer's disease. Eur J Med Chem 2022; 236:114354. [PMID: 35453065 PMCID: PMC9106868 DOI: 10.1016/j.ejmech.2022.114354] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 12/28/2022]
Abstract
Currently, of the few accessible symptomatic therapies for Alzheimer's disease (AD), memantine is the only N-methyl-d-aspartate receptor (NMDAR) blocker approved by the FDA. This work further explores a series of memantine analogs featuring a benzohomoadamantane scaffold. Most of the newly synthesized compounds block NMDARs in the micromolar range, but with lower potency than previously reported hit IIc, results that were supported by molecular dynamics simulations. Subsequently, electrophysiological studies with the more potent compounds allowed classification of IIc, a low micromolar, uncompetitive, voltage-dependent, NMDAR blocker, as a memantine-like compound. The excellent in vitro DMPK properties of IIc made it a promising candidate for in vivo studies in Caenorhabditis elegans (C. elegans) and in the 5XFAD mouse model of AD. Administration of IIc or memantine improved locomotion and rescues chemotaxis behavior in C. elegans. Furthermore, both compounds enhanced working memory in 5XFAD mice and modified NMDAR and CREB signaling, which may prevent synaptic dysfunction and modulate neurodegenerative progression.
Collapse
Affiliation(s)
- Andreea L Turcu
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia i Ciències de l'Alimentació i Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028, Barcelona, Spain; Neurophysiology Laboratory, Department of Biomedicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, 08036, Barcelona, Spain
| | - Júlia Companys-Alemany
- Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Neurosciences (NeuroUB), Universitat de Barcelona, Av. Joan XXIII 27-31, 08028, Barcelona, Spain
| | - Matthew B Phillips
- Department of Neuroscience and Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Dhilon S Patel
- Chemistry Department, Carnegie Mellon University, 4400 Fifth Ave, Pittsburgh, PA, 15213, USA
| | - Christian Griñán-Ferré
- Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Neurosciences (NeuroUB), Universitat de Barcelona, Av. Joan XXIII 27-31, 08028, Barcelona, Spain
| | - M Isabel Loza
- Innopharma Screening Platform, Biofarma Research Group, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas, Universidad de Santiago de Compostela, Edificio CIMUS, Av. Barcelona, S/N, E, 15706, Santiago de Compostela, Spain
| | - José M Brea
- Innopharma Screening Platform, Biofarma Research Group, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas, Universidad de Santiago de Compostela, Edificio CIMUS, Av. Barcelona, S/N, E, 15706, Santiago de Compostela, Spain
| | - Belén Pérez
- Department of Pharmacology, Therapeutics and Toxicology, Autonomous University of Barcelona, E-08193, Bellaterra, Spain
| | - David Soto
- Neurophysiology Laboratory, Department of Biomedicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, 08036, Barcelona, Spain; August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Francesc X Sureda
- Pharmacology Unit, Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili, C./ St. Llorenç 21, 43201, Reus, Tarragona, Spain
| | - Maria G Kurnikova
- Chemistry Department, Carnegie Mellon University, 4400 Fifth Ave, Pittsburgh, PA, 15213, USA
| | - Jon W Johnson
- Department of Neuroscience and Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Mercè Pallàs
- Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Neurosciences (NeuroUB), Universitat de Barcelona, Av. Joan XXIII 27-31, 08028, Barcelona, Spain
| | - Santiago Vázquez
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia i Ciències de l'Alimentació i Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028, Barcelona, Spain.
| |
Collapse
|
21
|
Zhigulin AS, Barygin OI. Mechanisms of NMDA receptor inhibition by nafamostat, gabexate and furamidine. Eur J Pharmacol 2022; 919:174795. [PMID: 35122868 DOI: 10.1016/j.ejphar.2022.174795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 11/03/2022]
Abstract
N-methyl-D-aspartate (NMDA) receptors are affected by many pharmaceuticals. In this work, we studied the action of the serine protease inhibitors nafamostat, gabexate and camostat, and an antiprotozoal compound, furamidine, on native NMDA receptors in rat hippocampal pyramidal neurons. Nafamostat, furamidine and gabexate inhibited these receptors with IC50 values of 0.20 ± 0.04, 0.64 ± 0.13 and 16 ± 3 μM, respectively, whereas camostat was ineffective. Nafamostat and furamidine showed voltage-dependent inhibition, while gabexate showed practically voltage-independent inhibition. Nafamostat and furamidine demonstrated tail currents, implying a 'foot-in-the-door' mechanism of action; gabexate did not demonstrate any signs of 'foot-in-the-door' or trapping channel block. Gabexate action was also not competitive, suggesting allosteric inhibition of NMDA receptors. Furamidine and nafamostat are structurally similar to the previously studied diminazene and all three demonstrated a 'foot-in-the-door' mechanism. They have a rather rigid, elongated structures and cannot fold into more compact forms. By contrast, the gabexate molecule can fold, but its folded structure differs drastically from that of typical NMDA receptor blockers, in agreement with its voltage-independent inhibition. These findings provide a better understanding of the structural determinants of NMDA receptor antagonism, while also supporting the potential clinical repurposing of these drugs as neuroprotectors for glaucoma and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Arseniy S Zhigulin
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, Saint-Petersburg, Russia
| | - Oleg I Barygin
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, Saint-Petersburg, Russia.
| |
Collapse
|
22
|
Nesbit MO, Chai A, Axerio-Cilies P, Phillips AG, Wang YT, Held K. The selective dopamine D 1 receptor agonist SKF81297 modulates NMDA receptor currents independently of D 1 receptors. Neuropharmacology 2022; 207:108967. [PMID: 35077763 DOI: 10.1016/j.neuropharm.2022.108967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/07/2022] [Accepted: 01/18/2022] [Indexed: 11/24/2022]
Abstract
Dopamine D1 receptor (D1R) agonists are frequently used to study the role of D1Rs in neurotransmission and behaviour. They have been repeatedly shown to modulate glutamatergic NMDAR currents in the prefrontal cortex (PFC), giving rise to the idea that D1R activation tunes glutamatergic networks by regulating NMDAR activity. We report that the widely used D1R agonist SKF81297 potentiates NMDAR currents in a dose-dependent manner, independently of D1R activation in mPFC slices, cortical neuron cultures and NMDAR-expressing recombinant HEK293 cells. SKF81297 potentiated NMDAR currents through both GluN2A and GluN2B subtypes in the absence of D1R expression, while inhibiting NMDAR currents through GluN2C and GluN2D subtypes. In contrast, the D1R ligands SKF38393, dopamine and SCH23390 inhibited GluN2A- and GluN2B-containing NMDAR currents. SKF81297 also inhibited GluN2A- and GluN2B-containing NMDAR currents at higher concentrations and when glutamate/glycine levels were high, exhibiting bidirectional modulation. To our knowledge, these findings are the first report of a D1R-independent positive modulatory effect of a D1R ligand on NMDA receptors. Importantly, our results further emphasize the possibility of off-target effects of many D1R ligands, which has significant implications for interpreting the large body of research relying on these compounds to examine dopamine functions.
Collapse
Affiliation(s)
- Maya O Nesbit
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Anping Chai
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC V6T 2B5, Canada; The Brain Cognition and Brain Disease Institute, Shenzhen Key Laboratory of Translational Research for Brain Diseases, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Peter Axerio-Cilies
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC V6T 2B5, Canada
| | - Anthony G Phillips
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Yu Tian Wang
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC V6T 2B5, Canada; The Brain Cognition and Brain Disease Institute, Shenzhen Key Laboratory of Translational Research for Brain Diseases, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Katharina Held
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC V6T 2B5, Canada; Laboratory of Endometrium, Endometriosis and Reproductive Medicine, Department of Development and Regeneration and Laboratory of Ion Channel Research, Department of Molecular Medicine, VIB-KU Leuven Center for Brain and Disease Research, KU Leuven, Leuven, Belgium.
| |
Collapse
|
23
|
Vujović KS, Vučković S, Stojanović R, Divac N, Medić B, Vujović A, Srebro D, Prostran M. Interactions between Ketamine and Magnesium for the Treatment of Pain: Current State of the Art. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2022; 20:392-400. [PMID: 33475079 DOI: 10.2174/1871527320666210121144216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 08/20/2020] [Accepted: 09/11/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND Over the past three decades, NMDA-receptor antagonists have been shown to be efficient drugs for treating pain, particularly pain resistant to conventional analgesics. Emphasis will be on the old-new drugs, ketamine and magnesium, and their combination as a novel approach for treating chronic pain. METHODS The MEDLINE database was searched via PubMed for articles that were published up to March 1, 2020, with the keywords 'ketamine', 'magnesium', and 'pain' (in the title/abstract). RESULTS Studies in animals, as well as humans, have shown that interactions of ketamine and magnesium can be additive, antagonistic, and synergistic. These discrepancies might be due to differences in magnesium and ketamine dosage, administration times, and the chronological order of drug administration. Different kinds of pain can also be the source of divergent results. CONCLUSION This review explains why studies performed with a combination of ketamine and magnesium have given inconsistent results. Because of the lack of efficacy of drugs available for pain, ketamine and magnesium in combination provide a novel therapeutic approach that needs to be standardized with a suitable dosing regimen, including the chronological order of drug administration.
Collapse
Affiliation(s)
- Katarina S Vujović
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Sonja Vučković
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Radan Stojanović
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Nevena Divac
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Branislava Medić
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | | | - Dragana Srebro
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Milica Prostran
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
24
|
Laha K, Zhu M, Gemperline E, Rau V, Li L, Fanselow MS, Lennertz R, Pearce RA. CPP impairs contextual learning at concentrations below those that block pyramidal neuron NMDARs and LTP in the CA1 region of the hippocampus. Neuropharmacology 2022; 202:108846. [PMID: 34687710 PMCID: PMC8627488 DOI: 10.1016/j.neuropharm.2021.108846] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/29/2021] [Accepted: 10/15/2021] [Indexed: 01/03/2023]
Abstract
Drugs that block N-methyl-d-aspartate receptors (NMDARs) suppress hippocampus-dependent memory formation; they also block long-term potentiation (LTP), a cellular model of learning and memory. However, the fractional block that is required to achieve these effects is unknown. Here, we measured the dose-dependent suppression of contextual memory in vivo by systemic administration of the competitive antagonist (R,S)-3-(2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP); in parallel, we measured the concentration-dependent block by CPP of NMDAR-mediated synapses and LTP of excitatory synapses in hippocampal brain slices in vitro. We found that the dose of CPP that suppresses contextual memory in vivo (EC50 = 2.3 mg/kg) corresponds to a free concentration of 53 nM. Surprisingly, applying this concentration of CPP to hippocampal brain slices had no effect on the NMDAR component of evoked field excitatory postsynaptic potentials (fEPSPNMDA), or on LTP. Rather, the IC50 for blocking the fEPSPNMDA was 434 nM, and for blocking LTP was 361 nM - both nearly an order of magnitude higher. We conclude that memory impairment produced by systemically administered CPP is not due primarily to its blockade of NMDARs on hippocampal pyramidal neurons. Rather, systemic CPP suppresses memory formation by actions elsewhere in the memory-encoding circuitry.
Collapse
Affiliation(s)
- Kurt Laha
- Department of Anesthesiology, University of Wisconsin-Madison, Madison, WI, USA.
| | - Mengwen Zhu
- Department of Anesthesiology, University of Wisconsin-Madison, Madison, WI, USA.
| | - Erin Gemperline
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA.
| | - Vinuta Rau
- Department of Anesthesiology, University of California-San Francisco, San Francisco, CA, USA.
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA; School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA.
| | - Michael S Fanselow
- Departments of Psychology and Psychiatry, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Richard Lennertz
- Department of Anesthesiology, University of Wisconsin-Madison, Madison, WI, USA.
| | - Robert A Pearce
- Department of Anesthesiology, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
25
|
Palkovic B, Marchenko V, Zuperku EJ, Stuth EAE, Stucke AG. Multi-Level Regulation of Opioid-Induced Respiratory Depression. Physiology (Bethesda) 2021; 35:391-404. [PMID: 33052772 DOI: 10.1152/physiol.00015.2020] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Opioids depress minute ventilation primarily by reducing respiratory rate. This results from direct effects on the preBötzinger Complex as well as from depression of the Parabrachial/Kölliker-Fuse Complex, which provides excitatory drive to preBötzinger Complex neurons mediating respiratory phase-switch. Opioids also depress awake drive from the forebrain and chemodrive.
Collapse
Affiliation(s)
- Barbara Palkovic
- Medical College of Wisconsin, Milwaukee, Wisconsin.,Faculty of Medicine, University of Osijek, Osijek, Croatia
| | | | - Edward J Zuperku
- Medical College of Wisconsin, Milwaukee, Wisconsin.,Zablocki VA Medical Center, Milwaukee, Wisconsin
| | - Eckehard A E Stuth
- Medical College of Wisconsin, Milwaukee, Wisconsin.,Children's Hospital of Wisconsin, Milwaukee, Wisconsin
| | - Astrid G Stucke
- Medical College of Wisconsin, Milwaukee, Wisconsin.,Children's Hospital of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
26
|
Remya C, Dileep KV, Koti Reddy E, Mantosh K, Lakshmi K, Sarah Jacob R, Sajith AM, Jayadevi Variyar E, Anwar S, Zhang KYJ, Sadasivan C, Omkumar RV. Neuroprotective derivatives of tacrine that target NMDA receptor and acetyl cholinesterase - Design, synthesis and biological evaluation. Comput Struct Biotechnol J 2021; 19:4517-4537. [PMID: 34471497 PMCID: PMC8379669 DOI: 10.1016/j.csbj.2021.07.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/24/2022] Open
Abstract
The complex and multifactorial nature of neuropsychiatric diseases demands multi-target drugs that can intervene with various sub-pathologies underlying disease progression. Targeting the impairments in cholinergic and glutamatergic neurotransmissions with small molecules has been suggested as one of the potential disease-modifying approaches for Alzheimer’s disease (AD). Tacrine, a potent inhibitor of acetylcholinesterase (AChE) is the first FDA approved drug for the treatment of AD. Tacrine is also a low affinity antagonist of N-methyl-D-aspartate receptor (NMDAR). However, tacrine was withdrawn from its clinical use later due to its hepatotoxicity. With an aim to develop novel high affinity multi-target directed ligands (MTDLs) against AChE and NMDAR, with reduced hepatotoxicity, we performed in silico structure-based modifications on tacrine, chemical synthesis of the derivatives and in vitro validation of their activities. Nineteen such derivatives showed inhibition with IC50 values in the range of 18.53 ± 2.09 – 184.09 ± 19.23 nM against AChE and 0.27 ± 0.05 – 38.84 ± 9.64 μM against NMDAR. Some of the selected compounds also protected rat primary cortical neurons from glutamate induced excitotoxicity. Two of the tacrine derived MTDLs, 201 and 208 exhibited in vivo efficacy in rats by protecting against behavioral impairment induced by administration of the excitotoxic agent, monosodium glutamate. Additionally, several of these synthesized compounds also exhibited promising inhibitory activitiy against butyrylcholinesterase. MTDL-201 was also devoid of hepatotoxicity in vivo. Given the therapeutic potential of MTDLs in disease-modifying therapy, our studies revealed several promising MTDLs among which 201 appears to be a potential candidate for immediate preclinical evaluations.
Collapse
Key Words
- AChE, acetylcholinesterase
- AChEIs, acetylcholinesterase inhibitors
- AChT, acetylthiocholine
- AD, Alzheimer’s disease
- ADME, absorption, distribution, metabolism and excretion
- Acetylcholinesterase
- Alzheimer’s disease
- BBB, blood brain barrier
- Ca2+, calcium
- ChE, Cholinesterases
- DMEM, Dulbecco’s modified Eagle’s medium
- DTNB, 5,5-dithiobis-(2-nitrobenzoic acid)
- ENM, elastic network modeling
- ER, endoplasmic reticulum
- FRET, fluorescence resonance energy transfer
- G6PD, glucose-6-phosphate dehydrogenase
- HBSS, Hank's balanced salt solution
- IP, intraperitoneal
- LBD, Ligand binding domain
- LC-MS, Liquid chromatography-mass spectrometry
- LiCABEDS, Ligand Classifier of Adaptively Boosting Ensemble Decision Stumps
- MAP2, microtubule associated protein 2
- MD, Molecular dynamics
- MTDLs
- MTDLs, multi-target directed ligands
- MWM, Morris water maze
- NBM, neurobasal medium
- NMA, normal mode analysis
- NMDA receptor
- NMDAR, N-methyl-D-aspartate receptor
- Neuroprotection
- OPLS, Optimized potential for liquid simulations
- PBS, phosphate-buffered saline
- PFA, paraformaldehyde
- Polypharmacology
- RMSD, root mean square deviation
- SAR, structure-activity relationships
- SD, standard deviation
- SVM, support vector machine
- Structure-based drug design
- TBI, traumatic brain injury
- TMD, transmembrane domain
- Tacrine
- h-NMDAR, human NMDAR
- hAChE, human AChE
- ppm, parts per million
Collapse
Affiliation(s)
- Chandran Remya
- Department of Biotechnology and Microbiology, Kannur University, Dr. Janaki Ammal Campus, Thalassery, Kerala 670661, India
| | - K V Dileep
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan.,Laboratory for Computational and Structural Biology, Jubilee Center for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur, Kerala 680005, India
| | - Eeda Koti Reddy
- Division of Chemistry, Department of Sciences and Humanities, Vignan's Foundation for Sciences, Technology and Research -VFSTR (Deemed to be University), Vadlamudi, Guntur, Andhra Pradesh 522 213, India
| | - Kumar Mantosh
- Molecular Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Thiruvananthapuram, Kerala 695014, India
| | - Kesavan Lakshmi
- Molecular Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Thiruvananthapuram, Kerala 695014, India
| | - Reena Sarah Jacob
- Molecular Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Thiruvananthapuram, Kerala 695014, India
| | - Ayyiliyath M Sajith
- Post Graduate and Research Department of Chemistry, Kasargod Govt. College, Kannur University, Kasaragod, India
| | - E Jayadevi Variyar
- Department of Biotechnology and Microbiology, Kannur University, Dr. Janaki Ammal Campus, Thalassery, Kerala 670661, India
| | - Shaik Anwar
- Division of Chemistry, Department of Sciences and Humanities, Vignan's Foundation for Sciences, Technology and Research -VFSTR (Deemed to be University), Vadlamudi, Guntur, Andhra Pradesh 522 213, India
| | - Kam Y J Zhang
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - C Sadasivan
- Department of Biotechnology and Microbiology, Kannur University, Dr. Janaki Ammal Campus, Thalassery, Kerala 670661, India
| | - R V Omkumar
- Molecular Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Thiruvananthapuram, Kerala 695014, India
| |
Collapse
|
27
|
Platholi J, Hemmings HC. Effects of general anesthetics on synaptic transmission and plasticity. Curr Neuropharmacol 2021; 20:27-54. [PMID: 34344292 PMCID: PMC9199550 DOI: 10.2174/1570159x19666210803105232] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/26/2021] [Accepted: 08/02/2021] [Indexed: 11/22/2022] Open
Abstract
General anesthetics depress excitatory and/or enhance inhibitory synaptic transmission principally by modulating the function of glutamatergic or GABAergic synapses, respectively, with relative anesthetic agent-specific mechanisms. Synaptic signaling proteins, including ligand- and voltage-gated ion channels, are targeted by general anesthetics to modulate various synaptic mechanisms, including presynaptic neurotransmitter release, postsynaptic receptor signaling, and dendritic spine dynamics to produce their characteristic acute neurophysiological effects. As synaptic structure and plasticity mediate higher-order functions such as learning and memory, long-term synaptic dysfunction following anesthesia may lead to undesirable neurocognitive consequences depending on the specific anesthetic agent and the vulnerability of the population. Here we review the cellular and molecular mechanisms of transient and persistent general anesthetic alterations of synaptic transmission and plasticity.
Collapse
Affiliation(s)
- Jimcy Platholi
- Cornell University Joan and Sanford I Weill Medical College Ringgold standard institution - Anesthesiology New York, New York. United States
| | - Hugh C Hemmings
- Cornell University Joan and Sanford I Weill Medical College Ringgold standard institution - Anesthesiology New York, New York. United States
| |
Collapse
|
28
|
Seemiller LR, Gould TJ. Adult and adolescent C57BL/6J and DBA/2J mice are differentially susceptible to fear learning deficits after acute ethanol or MK-801 treatment. Behav Brain Res 2021; 410:113351. [PMID: 33974921 PMCID: PMC8403488 DOI: 10.1016/j.bbr.2021.113351] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 04/19/2021] [Accepted: 05/06/2021] [Indexed: 12/31/2022]
Abstract
Ethanol and other drugs of abuse disrupt learning and memory processes, creating problems associated with drug use and addiction. Understanding individual factors that determine susceptibility to drug-induced cognitive deficits, such as genetic background, age, and sex, is important for prevention and treatment. Comparison of adolescent and adult mice of both sexes across inbred mouse strains can reveal age, sex, and genetic contributions to phenotypes. We treated adolescent and adult, male and female, C57BL/6J and DBA/2J inbred mice with ethanol (1 g/kg or 1.5 g/kg) or MK-801 (0.05 mg/kg or 0.1 mg/kg), an NMDA receptor antagonist, prior to fear conditioning training. Contextual and cued fear retention were tested one day and eight or nine days after training. After ethanol exposure, adult C57BL/6J mice experienced greater deficits in contextual learning than adult DBA/2J mice. C57BL/6 J adolescents were less susceptible to ethanol-induced contextual learning disruptions than C57BL/6J adults, and adolescent males of both strains exhibited greater ethanol-induced contextual learning deficits than adolescent females. After MK-801 exposure, adolescent C57BL/6J mice experienced more severe contextual learning deficits than adolescent DBA/2J mice. Both ethanol and MK-801 had greater effects on contextual learning than cued learning. Collectively, we demonstrate that genetic background contributes to contextual and cued learning outcomes after ethanol or MK-801 exposure. Further, we report age-dependent drug sensitivities that are strain-, sex-, and drug-specific, suggesting that age, sex, and genetic background interact to determine contextual and cued learning impairments after ethanol or MK-801 exposure.
Collapse
Affiliation(s)
- L R Seemiller
- Department of Biobehavioral Health, Penn State University, 219 Biobehavioral Health Building, University Park, PA, 16801, United States
| | - T J Gould
- Department of Biobehavioral Health, Penn State University, 219 Biobehavioral Health Building, University Park, PA, 16801, United States.
| |
Collapse
|
29
|
Irwin MN, VandenBerg A. Retracing our steps to understand ketamine in depression: A focused review of hypothesized mechanisms of action. Ment Health Clin 2021; 11:200-210. [PMID: 34026396 PMCID: PMC8120982 DOI: 10.9740/mhc.2021.05.200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Introduction MDD represents a significant burden worldwide, and while a number of approved treatments exist, there are high rates of treatment resistance and refractoriness. Ketamine, an N-methyl-d-aspartate receptor (NMDAR) antagonist, is a novel, rapid-acting antidepressant, however the mechanisms underlying the efficacy of ketamine are not well understood and many other mechanisms outside of NMDAR antagonism have been postulated based on preclinical data. This focused review aims to present a summary of the proposed mechanisms of action by which ketamine functions in depressive disorders supported by preclinical data and clinical studies in humans. Methods A literature search was completed using the PubMed and Google Scholar databases. Results were limited to clinical trials and case studies in humans that were published in English. The findings were used to compile this article. Results The antidepressant effects associated with ketamine are mediated via a complex interplay of mechanisms; key steps include NMDAR blockade on γ-aminobutyric acid interneurons, glutamate surge, and subsequent activation and upregulation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor. Discussion Coadministration of ketamine for MDD with other psychotropic agents, for example benzodiazepines, may attenuate antidepressant effects. Limited evidence exists for these effects and should be evaluated on a case-by-case basis.
Collapse
Affiliation(s)
- Madison N Irwin
- Clinical Pharmacist Specialist in Psychology and Neurology, Department of Pharmacy, Michigan Medicine, Ann Arbor, Michigan
| | - Amy VandenBerg
- Clinical Pharmacist Specialist in Psychology and Neurology, Department of Pharmacy, Michigan Medicine, Ann Arbor, Michigan
| |
Collapse
|
30
|
Natoli S. The multiple faces of ketamine in anaesthesia and analgesia. Drugs Context 2021; 10:dic-2020-12-8. [PMID: 33995542 PMCID: PMC8074779 DOI: 10.7573/dic.2020-12-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/08/2021] [Indexed: 12/12/2022] Open
Abstract
Objective Ketamine is an anaesthetic agent with a unique dissociative profile and pharmacological effects ranging from the induction and maintenance of anaesthesia to analgesia and sedation, depending on the dose. This article provides information for the clinical use of ketamine in anaesthesia, in both conventional and special circumstances. Methods This is a non-systematic review of the literature, through a PubMed search up to February 2021. Results With a favourable pharmacokinetic profile, ketamine is used in hospital and prehospital settings for emergency situations. It is suitable for patients with many heart conditions and, unlike other anaesthetics, its potential for cardiorespiratory depression is low. Furthermore, it may be used when venous access is difficult as it may be administered through various routes. Ketamine is the anaesthetic of choice for patients with bronchospasm thanks to its bronchodilatory and anti-inflammatory properties. Conclusion With a favourable pharmacokinetic profile, ketamine is used in hospital and prehospital settings for emergency situations and is suitable for patients with many cardiac and respiratory conditions.
Collapse
Affiliation(s)
- Silvia Natoli
- Department of Clinical Science and Translational Medicine and Unit of Pain Therapy, Polyclinic of Tor Vergata, University of Rome, Tor Vergata, Rome, Italy
| |
Collapse
|
31
|
Kohtala S. Ketamine-50 years in use: from anesthesia to rapid antidepressant effects and neurobiological mechanisms. Pharmacol Rep 2021; 73:323-345. [PMID: 33609274 PMCID: PMC7994242 DOI: 10.1007/s43440-021-00232-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 02/03/2021] [Accepted: 02/06/2021] [Indexed: 12/11/2022]
Abstract
Over the past 50 years, ketamine has solidified its position in both human and veterinary medicine as an important anesthetic with many uses. More recently, ketamine has been studied and used for several new indications, ranging from chronic pain to drug addiction and post-traumatic stress disorder. The discovery of the rapid-acting antidepressant effects of ketamine has resulted in a surge of interest towards understanding the precise mechanisms driving its effects. Indeed, ketamine may have had the largest impact for advancements in the research and treatment of psychiatric disorders in the past few decades. While intense research efforts have been aimed towards uncovering the molecular targets underlying ketamine's effects in treating depression, the underlying neurobiological mechanisms remain elusive. These efforts are made more difficult by ketamine's complex dose-dependent effects on molecular mechanisms, multiple pharmacologically active metabolites, and a mechanism of action associated with the facilitation of synaptic plasticity. This review aims to provide a brief overview of the different uses of ketamine, with an emphasis on examining ketamine's rapid antidepressant effects spanning molecular, cellular, and network levels. Another focus of the review is to offer a perspective on studies related to the different doses of ketamine used in antidepressant research. Finally, the review discusses some of the latest hypotheses concerning ketamine's action.
Collapse
Affiliation(s)
- Samuel Kohtala
- Laboratory of Neurotherapeutics, Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, P. O. Box 56, 00014, Helsinki, Finland.
- SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Feil Family Brain and Mind Research Institute, Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
32
|
Tikhonov DB. Channel Blockers of Ionotropic Glutamate
Receptors. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021020149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Phillips MB, Nigam A, Johnson JW. Interplay between Gating and Block of Ligand-Gated Ion Channels. Brain Sci 2020; 10:brainsci10120928. [PMID: 33271923 PMCID: PMC7760600 DOI: 10.3390/brainsci10120928] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/21/2020] [Accepted: 11/26/2020] [Indexed: 02/03/2023] Open
Abstract
Drugs that inhibit ion channel function by binding in the channel and preventing current flow, known as channel blockers, can be used as powerful tools for analysis of channel properties. Channel blockers are used to probe both the sophisticated structure and basic biophysical properties of ion channels. Gating, the mechanism that controls the opening and closing of ion channels, can be profoundly influenced by channel blocking drugs. Channel block and gating are reciprocally connected; gating controls access of channel blockers to their binding sites, and channel-blocking drugs can have profound and diverse effects on the rates of gating transitions and on the stability of channel open and closed states. This review synthesizes knowledge of the inherent intertwining of block and gating of excitatory ligand-gated ion channels, with a focus on the utility of channel blockers as analytic probes of ionotropic glutamate receptor channel function.
Collapse
Affiliation(s)
- Matthew B. Phillips
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA; (M.B.P.); (A.N.)
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Aparna Nigam
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA; (M.B.P.); (A.N.)
| | - Jon W. Johnson
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA; (M.B.P.); (A.N.)
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Correspondence: ; Tel.: +1-(412)-624-4295
| |
Collapse
|
34
|
Abbott JA, Popescu GK. Hydroxynorketamine Blocks N-Methyl-d-Aspartate Receptor Currents by Binding to Closed Receptors. Mol Pharmacol 2020; 98:203-210. [PMID: 32606205 PMCID: PMC7406986 DOI: 10.1124/mol.120.119784] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 06/11/2020] [Indexed: 12/19/2022] Open
Abstract
Ketamine, a dissociative anesthetic, is experiencing a clinical resurgence as a fast-acting antidepressant. In the central nervous system, ketamine acts primarily by blocking NMDA receptor currents. Although it is generally safe in a clinical setting, it can be addictive, and several of its derivatives are being investigated as preferable alternatives. 2R,6R-Hydroxynorketamine (HNK), a ketamine metabolite, reproduces some of the therapeutic effects of ketamine and appears to lack abuse liability. Here, we report a systematic investigation of the effects of HNK on macroscopic responses elicited from recombinant NMDA receptors expressed in human embryonic kidney 293 cells. We found that, like ketamine, HNK reduced NMDA receptor currents in a dose-, pH-, and voltage-dependent manner. Relative to ketamine, it had 100-fold-lower potency (46 µM at pH 7.2), 10-fold-slower inhibition onset, slower apparent dissociation rate, weaker voltage dependence, and complete competition by magnesium. Notably, HNK inhibition was fully effective when applied to resting receptors. These results revealed unexpected properties of hydroxynorketamine that warrant its further investigation as a possible therapeutic in pathologies associated with NMDA receptor dysfunction. SIGNIFICANCE STATEMENT: NMDA receptors are excitatory ion channels with fundamental roles in synaptic transmission and plasticity, and their dysfunction associates with severe neuropsychiatric disorders. 2R,6R-Hydroxynorketamine, a metabolite of ketamine, mimics some of the neuroactive properties of ketamine and may lack its abuse liability. Results show that 2R,6R-hydroxynorketamine blocks NMDA receptor currents with low affinity and weak voltage dependence and is effective when applied to resting receptors. These properties highlight its effectiveness to a subset of NMDA receptor responses and recommend it for further investigation.
Collapse
Affiliation(s)
- Jamie A Abbott
- Departments of Biochemistry and Anesthesiology, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York
| | - Gabriela K Popescu
- Departments of Biochemistry and Anesthesiology, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York
| |
Collapse
|
35
|
McDougall SA, Apodaca MG, Park GI, Teran A, Baum TJ, Montejano NR. MK801-induced locomotor activity in preweanling and adolescent male and female rats: role of the dopamine and serotonin systems. Psychopharmacology (Berl) 2020; 237:2469-2483. [PMID: 32445054 PMCID: PMC7354898 DOI: 10.1007/s00213-020-05547-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 05/05/2020] [Indexed: 01/01/2023]
Abstract
RATIONALE MK801, like other NMDA receptor open-channel blockers (e.g., ketamine and phencyclidine), increases the locomotor activity of rats and mice. Whether this behavioral effect ultimately relies on monoamine neurotransmission is of dispute. OBJECTIVE The purpose of this study was to determine whether these psychopharmacological effects and underlying neural mechanisms vary according to sex and age. METHODS Across four experiments, male and female preweanling and adolescent rats were pretreated with vehicle, the monoamine-depleting agent reserpine (1 or 5 mg/kg), the dopamine (DA) synthesis inhibitor ∝-methyl-DL-p-tyrosine (AMPT), the serotonin (5-HT) synthesis inhibitor 4-chloro-DL-phenylalanine methyl ester hydrochloride (PCPA), or both AMPT and PCPA. The locomotor activity of preweanling and adolescent rats was then measured after saline or MK801 (0.3 mg/kg) treatment. RESULTS As expected, MK801 increased the locomotor activity of all age groups and both sexes, but the stimulatory effects were significantly less pronounced in male adolescent rats. Preweanling rats and adolescent female rats were more sensitive to the effects of DA and 5-HT synthesis inhibitors, as AMPT and PCPA caused only small reductions in the MK801-induced locomotor activity of male adolescent rats. Co-administration of AMPT+PCPA or high-dose reserpine (5 mg/kg) treatment substantially reduced MK801-induced locomotor activity in both age groups and across both sexes. CONCLUSIONS These results, when combined with other recent studies, show that NMDA receptor open-channel blockers cause pronounced age-dependent behavioral effects that can vary according to sex. The neural changes underlying these sex and age differences appear to involve monoamine neurotransmission.
Collapse
Affiliation(s)
- Sanders A McDougall
- Department of Psychology, California State University, 5500 University Parkway, San Bernardino, CA, 92407, USA.
| | - Matthew G Apodaca
- Department of Psychology, California State University, 5500 University Parkway, San Bernardino, CA, 92407, USA
| | - Ginny I Park
- Department of Psychology, California State University, 5500 University Parkway, San Bernardino, CA, 92407, USA
| | - Angie Teran
- Department of Psychology, California State University, 5500 University Parkway, San Bernardino, CA, 92407, USA
| | - Timothy J Baum
- Department of Psychology, California State University, 5500 University Parkway, San Bernardino, CA, 92407, USA
| | - Nazaret R Montejano
- Department of Psychology, California State University, 5500 University Parkway, San Bernardino, CA, 92407, USA
| |
Collapse
|
36
|
Petrosyan H, Liang L, Tesfa A, Sisto SA, Fahmy M, Arvanian VL. Modulation of H-reflex responses and frequency-dependent depression by repetitive spinal electromagnetic stimulation: From rats to humans and back to chronic spinal cord injured rats. Eur J Neurosci 2020; 52:4875-4889. [PMID: 32594554 PMCID: PMC7818466 DOI: 10.1111/ejn.14885] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/15/2020] [Accepted: 06/12/2020] [Indexed: 11/30/2022]
Abstract
The lack of propagation of signals through survived fibers is among the major reasons for functional loss after incomplete spinal cord injury (SCI). Our recent results of animal studies demonstrate that spinal electromagnetic stimulation (SEMS) can enhance transmission in damaged spinal cord, and this type of modulation depends on the function of NMDA receptors at the neuronal networks below the injury level. Here, our pilot human study revealed that administration of repetitive SEMS induced long‐lasting modulation of H‐responses in both healthy and participants with chronic SCI. In order to understand the mechanisms underlying these effects, we have used an animal model and examined effects of SEMS on H‐responses. Effects of SEMS on H‐responses, frequency‐dependent depression (FDD) of H‐reflex, and possible underlying mechanisms have been examined in both naïve and rats with SCI. Our results demonstrate that consistent with the effects of SEMS on H‐reflex seen in humans, repetitive SEMS induced similar modulation in excitability of peripheral nerve responses in both non‐injured and rats with SCI. Importantly, our results confirmed the reduced FDD of H‐reflex in SCI animals and revealed that SEMS was able to recover FDD in rats with chronic SCI. Using intraspinal injections of the NMDA receptor blocker MK‐801, we have identified NMDA receptors as an important contributor to these SEMS‐induced effects in rats with SCI. These results identify SEMS as a novel non‐invasive technique for modulation of neuro‐muscular circuits and, importantly, modulation of spinal networks after chronic SCI.
Collapse
Affiliation(s)
- Hayk Petrosyan
- Research Services, Northport Veterans Affairs Medical Center, Northport, New York, USA.,Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York, USA
| | - Li Liang
- Research Services, Northport Veterans Affairs Medical Center, Northport, New York, USA.,Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York, USA
| | - Asrat Tesfa
- Research Services, Northport Veterans Affairs Medical Center, Northport, New York, USA
| | - Sue A Sisto
- Department of Physical Therapy, Division of Rehabilitation Sciences, Stony Brook University, Stony Brook, New York, USA.,Department of Rehabilitation Science, School of Public Health and Health Professions, University at Buffalo, Buffalo, New York, USA
| | - Magda Fahmy
- Physical Medicine and Rehabilitation Services, Northport Veterans Affairs Medical Center, Northport, New York, USA
| | - Victor L Arvanian
- Research Services, Northport Veterans Affairs Medical Center, Northport, New York, USA.,Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
37
|
Abstract
Anesthetics are used every day in thousands of hospitals to induce loss of consciousness, yet scientists and the doctors who administer these compounds lack a molecular understanding for their action. The chemical properties of anesthetics suggest that they could target the plasma membrane. Here the authors show anesthetics directly target a subset of plasma membrane lipids to activate an ion channel in a two-step mechanism. Applying the mechanism, the authors mutate a fruit fly to be less sensitive to anesthetics and convert a nonanesthetic-sensitive channel into a sensitive one. These findings suggest a membrane-mediated mechanism will be an important consideration for other proteins of which direct binding of anesthetic has yet to explain conserved sensitivity to chemically diverse anesthetics. Inhaled anesthetics are a chemically diverse collection of hydrophobic molecules that robustly activate TWIK-related K+ channels (TREK-1) and reversibly induce loss of consciousness. For 100 y, anesthetics were speculated to target cellular membranes, yet no plausible mechanism emerged to explain a membrane effect on ion channels. Here we show that inhaled anesthetics (chloroform and isoflurane) activate TREK-1 through disruption of phospholipase D2 (PLD2) localization to lipid rafts and subsequent production of signaling lipid phosphatidic acid (PA). Catalytically dead PLD2 robustly blocks anesthetic TREK-1 currents in whole-cell patch-clamp recordings. Localization of PLD2 renders the TRAAK channel sensitive, a channel that is otherwise anesthetic insensitive. General anesthetics, such as chloroform, isoflurane, diethyl ether, xenon, and propofol, disrupt lipid rafts and activate PLD2. In the whole brain of flies, anesthesia disrupts rafts and PLDnull flies resist anesthesia. Our results establish a membrane-mediated target of inhaled anesthesia and suggest PA helps set thresholds of anesthetic sensitivity in vivo.
Collapse
|
38
|
Lavender E, Hirasawa-Fujita M, Domino EF. Ketamine's dose related multiple mechanisms of actions: Dissociative anesthetic to rapid antidepressant. Behav Brain Res 2020; 390:112631. [PMID: 32437885 DOI: 10.1016/j.bbr.2020.112631] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 03/19/2020] [Accepted: 03/29/2020] [Indexed: 01/15/2023]
Abstract
Ketamine induces safe and effective anesthesia and displays unusual cataleptic properties that gave rise to the term dissociative anesthesia. Since 1970, clinicians only utilized the drug as an anesthetic or analgesic for decades, but ketamine was found to have rapid acting antidepressant effects in 1990s. Accumulated evidence exhibits NMDAR antagonism may not be the only mechanism of ketamine. The contributions of AMPA receptor, mTor signal pathway, monoaminergic system, sigma-1 receptor, cholinergic, opioid and cannabinoid systems, as well as voltage-gated calcium channels and hyperpolarization cyclic nucleotide gated channels are discussed for the antidepressant effects. Also the effects of ketamine's enantiomers and metabolites are reviewed. Furthermore ketamine's anesthetic and analgesic mechanisms are briefly revisited. Overall, pharmacology of ketamine, its enantiomers and metabolites is very unique. Insight into multiple mechanisms of action will provide further development and desirable clinical effects of ketamine.
Collapse
Affiliation(s)
- Eli Lavender
- University of Michigan Medical School, Department of Pharmacology, 1150 W Medical Center Dr, Ann Arbor, MI 48109, USA
| | - Mika Hirasawa-Fujita
- University of Michigan Medical School, Department of Pharmacology, 1150 W Medical Center Dr, Ann Arbor, MI 48109, USA
| | - Edward F Domino
- University of Michigan Medical School, Department of Pharmacology, 1150 W Medical Center Dr, Ann Arbor, MI 48109, USA.
| |
Collapse
|
39
|
Dual action of amitriptyline on NMDA receptors: enhancement of Ca-dependent desensitization and trapping channel block. Sci Rep 2019; 9:19454. [PMID: 31857688 PMCID: PMC6923474 DOI: 10.1038/s41598-019-56072-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 12/04/2019] [Indexed: 12/18/2022] Open
Abstract
Although the tricyclic antidepressant amitriptyline (ATL) is widely used in the clinic, the mechanism underlying its high therapeutic efficacy against neuropathic pain remains unclear. NMDA receptors (NMDARs) represent a target for ATL and are involved in sensitization of neuropathic pain. Here we describe two actions of ATL on NMDARs: 1) enhancement of Ca2+-dependent desensitization and 2) trapping channel block. Inhibition of NMDARs by ATL was found to be dependent upon external Ca2+ concentration ([Ca2+]) in a voltage-independent manner, with an IC50 of 0.72 μM in 4 mM [Ca2+]. The ATL IC50 value increased exponentially with decreasing [Ca2+], with an e-fold change observed per 0.69 mM decrease in [Ca2+]. Loading neurons with BAPTA abolished Ca2+-dependent inhibition, suggesting that Ca2+ affects NMDARs from the cytosol. Since there is one known Ca2+-dependent process in gating of NMDARs, we conclude that ATL most likely promotes Ca2+-dependent desensitization. We also found ATL to be a trapping open-channel blocker of NMDARs with an IC50 of 220 µM at 0 mV. An e-fold change in ATL IC50 was observed to occur with a voltage shift of 50 mV in 0.25 mM [Ca2+]. Thus, we disclose here a robust dependence of ATL potency on extracellular [Ca2+], and demonstrate that ATL bound in the NMDAR pore can be trapped by closure of the channel.
Collapse
|
40
|
Bera K, Kamajaya A, Shivange AV, Muthusamy AK, Nichols AL, Borden PM, Grant S, Jeon J, Lin E, Bishara I, Chin TM, Cohen BN, Kim CH, Unger EK, Tian L, Marvin JS, Looger LL, Lester HA. Biosensors Show the Pharmacokinetics of S-Ketamine in the Endoplasmic Reticulum. Front Cell Neurosci 2019; 13:499. [PMID: 31798415 PMCID: PMC6874132 DOI: 10.3389/fncel.2019.00499] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 10/22/2019] [Indexed: 12/20/2022] Open
Abstract
The target for the “rapid” (<24 h) antidepressant effects of S-ketamine is unknown, vitiating programs to rationally develop more effective rapid antidepressants. To describe a drug’s target, one must first understand the compartments entered by the drug, at all levels—the organ, the cell, and the organelle. We have, therefore, developed molecular tools to measure the subcellular, organellar pharmacokinetics of S-ketamine. The tools are genetically encoded intensity-based S-ketamine-sensing fluorescent reporters, iSKetSnFR1 and iSKetSnFR2. In solution, these biosensors respond to S-ketamine with a sensitivity, S-slope = delta(F/F0)/(delta[S-ketamine]) of 0.23 and 1.9/μM, respectively. The iSKetSnFR2 construct allows measurements at <0.3 μM S-ketamine. The iSKetSnFR1 and iSKetSnFR2 biosensors display >100-fold selectivity over other ligands tested, including R-ketamine. We targeted each of the sensors to either the plasma membrane (PM) or the endoplasmic reticulum (ER). Measurements on these biosensors expressed in Neuro2a cells and in human dopaminergic neurons differentiated from induced pluripotent stem cells (iPSCs) show that S-ketamine enters the ER within a few seconds after appearing in the external solution near the PM, then leaves as rapidly after S-ketamine is removed from the extracellular solution. In cells, S-slopes for the ER and PM-targeted sensors differ by <2-fold, indicating that the ER [S-ketamine] is less than 2-fold different from the extracellular [S-ketamine]. Organelles represent potential compartments for the engagement of S-ketamine with its antidepressant target, and potential S-ketamine targets include organellar ion channels, receptors, and transporters.
Collapse
Affiliation(s)
- Kallol Bera
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Aron Kamajaya
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Amol V Shivange
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Anand K Muthusamy
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States.,Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Aaron L Nichols
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States.,Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Philip M Borden
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, United States
| | - Stephen Grant
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Janice Jeon
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Elaine Lin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Ishak Bishara
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Theodore M Chin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Bruce N Cohen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Charlene H Kim
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Elizabeth K Unger
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, CA, United States
| | - Lin Tian
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, CA, United States
| | - Jonathan S Marvin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, United States
| | - Loren L Looger
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, United States
| | - Henry A Lester
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
41
|
Rasys AM, Divers SJ, Lauderdale JD, Menke DB. A systematic study of injectable anesthetic agents in the brown anole lizard ( Anolis sagrei ). Lab Anim 2019; 54:281-294. [PMID: 31345120 DOI: 10.1177/0023677219862841] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Anolis lizards have served as important research models in fields ranging from evolution and ecology to physiology and biomechanics. However, anoles are also emerging as important models for studies of embryo development and tissue regeneration. The increased use of anoles in the laboratory has produced a need to establish effective methods of anesthesia, both for routine veterinary procedures and for research procedures. Therefore, we tested the efficacy of different anesthetic treatments in adult female Anolis sagrei. Alfaxalone, dexmedetomidine, hydromorphone, ketamine and tribromoethanol were administered subcutaneously (SC), either alone or combined at varying doses in a total of 64 female anoles. Drug induction time, duration, anesthesia level and adverse effects were assessed. Differences in anesthesia level were observed depending on injection site and drug combination. Alfaxalone/dexmedetomidine and tribromoethanol/dexmedetomidine were the most effective drug combinations for inducing a surgical plane of anesthesia in anoles. Brown anoles injected SC with alfaxalone (30 mg/kg) plus dexmedetomidine (0.1 mg/kg) or with tribromoethanol (400 mg/kg) plus dexmedetomidine (0.1 mg/kg) experienced mean durations of surgical anesthesia levels of 31.2 ± 5.3 and 87.5 ± 19.8 min with full recovery after another 10.9 ± 2.9 and 46.2 ± 41.8 min, respectively. Hydromorphone given with alfaxalone/dexmedetomidine resulted in deep anesthesia with respiratory depression, while ketamine/hydromorphone/dexmedetomidine produced only light to moderate sedation. We determined that alfaxalone/dexmedetomidine or tribromoethanol/dexmedetomidine combinations were sufficient to maintain a lizard under general anesthesia for coeliotomy. This study represents a significant step towards understanding the effects of anesthetic agents in anole lizards and will benefit both veterinary care and research on these animals.
Collapse
Affiliation(s)
- Ashley M Rasys
- Department of Genetics, University of Georgia, Athens, GA, USA.,Department of Cellular Biology, University of Georgia, Athens, GA, USA
| | - Stephen J Divers
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | | | - Douglas B Menke
- Department of Genetics, University of Georgia, Athens, GA, USA
| |
Collapse
|
42
|
Gözüaçık N, Türkmen AZ, Nurten A, Enginar N. Ketamine and its combinations with valproate and carbamazepine are ineffective against convulsions induced by atropine treatment and food intake in fasted mice. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2019; 22:310-314. [PMID: 31156793 PMCID: PMC6528710 DOI: 10.22038/ijbms.2019.33890.8062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVES Fasted rodents treated with antimuscarinics develop convulsions after refeeding. Food deprivation for 48 hr produces changes in [3H]glutamate binding suggesting glutamatergic contribution to the underlying mechanism of the seizures that are somewhat unresponsive to antiepileptics. Studies in animals and epileptic patients yielded considerable information regarding the anticonvulsant effect of the noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist ketamine. Thus, this study evaluated the efficacy of ketamine and its combinations with valproate and carbamazepine on convulsions in fasted animals. MATERIALS AND METHODS Following 24 hr of fasting, mice were given saline, 5 or 10 mg/kg ketamine, 250 mg/kg sodium valproate, 24 mg/kg carbamazepine, 5 mg/kg ketamine+sodium valproate, or 5 mg/kg ketamine+carbamazepine and then were treated with saline or 2.4 mg/kg atropine (5-9 mice per group). The animals were observed for the occurrence of convulsions after being allowed to eat ad libitum. RESULTS Ketamine, valproate and carbamazepine pretreatments were ineffective in preventing the convulsions developed after atropine treatment and food intake in fasted animals. The incidence of convulsions was significantly higher in 5 and 10 mg/kg ketamine, carbamazepine, and carbamazepine+ketamine groups, but not in the valproate and valproate+ketamine treated animals. CONCLUSION In contrast to previous findings obtained with the NMDA antagonist dizocilpine (MK-801), ketamine lacks activity against convulsions developed after fasting. The drug does not enhance the efficacy of valproate and carbamazepine either. Using different doses of ketamine or other NMDA antagonists, further studies may better clarify the anticonvulsant effect of ketamine and/or role of glutamate in these seizures.
Collapse
Affiliation(s)
- Neriman Gözüaçık
- Department of Medical Pharmacology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Aslı Zengin Türkmen
- Department of Physiology, Faculty of Medicine, Istanbul Yeni Yuzyil University, Istanbul, Turkey
| | - Asiye Nurten
- Department of Physiology, Faculty of Medicine, Istanbul Yeni Yuzyil University, Istanbul, Turkey
| | - Nurhan Enginar
- Department of Medical Pharmacology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey,Corresponding author: Nurhan Enginar. Department of Medical Pharmacology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey. Tel: +90-2124142240; Fax: +90-2124142052;
| |
Collapse
|
43
|
Opportunities and Challenges for Single-Unit Recordings from Enteric Neurons in Awake Animals. MICROMACHINES 2018; 9:mi9090428. [PMID: 30424361 PMCID: PMC6187697 DOI: 10.3390/mi9090428] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/17/2018] [Accepted: 08/23/2018] [Indexed: 12/18/2022]
Abstract
Advanced electrode designs have made single-unit neural recordings commonplace in modern neuroscience research. However, single-unit resolution remains out of reach for the intrinsic neurons of the gastrointestinal system. Single-unit recordings of the enteric (gut) nervous system have been conducted in anesthetized animal models and excised tissue, but there is a large physiological gap between awake and anesthetized animals, particularly for the enteric nervous system. Here, we describe the opportunity for advancing enteric neuroscience offered by single-unit recording capabilities in awake animals. We highlight the primary challenges to microelectrodes in the gastrointestinal system including structural, physiological, and signal quality challenges, and we provide design criteria recommendations for enteric microelectrodes.
Collapse
|
44
|
Hansen KB, Yi F, Perszyk RE, Furukawa H, Wollmuth LP, Gibb AJ, Traynelis SF. Structure, function, and allosteric modulation of NMDA receptors. J Gen Physiol 2018; 150:1081-1105. [PMID: 30037851 PMCID: PMC6080888 DOI: 10.1085/jgp.201812032] [Citation(s) in RCA: 366] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/03/2018] [Indexed: 12/22/2022] Open
Abstract
Hansen et al. review recent structural data that have provided insight into the function and allosteric modulation of NMDA receptors. NMDA-type glutamate receptors are ligand-gated ion channels that mediate a Ca2+-permeable component of excitatory neurotransmission in the central nervous system (CNS). They are expressed throughout the CNS and play key physiological roles in synaptic function, such as synaptic plasticity, learning, and memory. NMDA receptors are also implicated in the pathophysiology of several CNS disorders and more recently have been identified as a locus for disease-associated genomic variation. NMDA receptors exist as a diverse array of subtypes formed by variation in assembly of seven subunits (GluN1, GluN2A-D, and GluN3A-B) into tetrameric receptor complexes. These NMDA receptor subtypes show unique structural features that account for their distinct functional and pharmacological properties allowing precise tuning of their physiological roles. Here, we review the relationship between NMDA receptor structure and function with an emphasis on emerging atomic resolution structures, which begin to explain unique features of this receptor.
Collapse
Affiliation(s)
- Kasper B Hansen
- Department of Biomedical and Pharmaceutical Sciences and Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT
| | - Feng Yi
- Department of Biomedical and Pharmaceutical Sciences and Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT
| | - Riley E Perszyk
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA
| | - Hiro Furukawa
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
| | - Lonnie P Wollmuth
- Departments of Neurobiology & Behavior and Biochemistry & Cell Biology, Stony Brook University, Stony Brook, NY
| | - Alasdair J Gibb
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Stephen F Traynelis
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
45
|
Glasgow NG, Wilcox MR, Johnson JW. Effects of Mg 2+ on recovery of NMDA receptors from inhibition by memantine and ketamine reveal properties of a second site. Neuropharmacology 2018; 137:344-358. [PMID: 29793153 PMCID: PMC6050087 DOI: 10.1016/j.neuropharm.2018.05.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/18/2018] [Accepted: 05/11/2018] [Indexed: 01/19/2023]
Abstract
Memantine and ketamine are NMDA receptor (NMDAR) open channel blockers that are thought to act via similar mechanisms at NMDARs, but exhibit divergent clinical effects. Both drugs act by entering open NMDARs and binding at a site deep within the ion channel (the deep site) at which the endogenous NMDAR channel blocker Mg2+ also binds. Under physiological conditions, Mg2+ increases the IC50s of memantine and ketamine through competition for binding at the deep site. Memantine also can inhibit NMDARs after associating with a second site accessible in the absence of agonist, a process termed second site inhibition (SSI) that is not observed with ketamine. Here we investigated the effects of 1 mM Mg2+ on recovery from inhibition by memantine and ketamine, and on memantine SSI, of the four main diheteromeric NMDAR subtypes. We found that: recovery from memantine inhibition depended strongly on the concentration of memantine used to inhibit the NMDAR response; Mg2+ accelerated recovery from memantine and ketamine inhibition through distinct mechanisms and in an NMDAR subtype-dependent manner; and Mg2+ occupation of the deep site disrupted memantine SSI in a subtype-dependent manner. Our results support the hypothesis that memantine associates with, but does not inhibit at the second site. After associating with the second site, memantine can either slowly dissociate directly to the extracellular solution, or transit to the deep site, resulting in typical channel block. Memantine's relatively slow dissociation from the second site underlies the dependence of NMDAR recovery from inhibition on both memantine concentration and on Mg2+.
Collapse
Affiliation(s)
- Nathan G Glasgow
- Department of Neuroscience and Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Madeleine R Wilcox
- Department of Neuroscience and Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Jon W Johnson
- Department of Neuroscience and Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
46
|
Temporally dissociable effects of ketamine on neuronal discharge and gamma oscillations in rat thalamo-cortical networks. Neuropharmacology 2018; 137:13-23. [DOI: 10.1016/j.neuropharm.2018.04.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/19/2018] [Accepted: 04/21/2018] [Indexed: 12/28/2022]
|
47
|
Zanos P, Moaddel R, Morris PJ, Riggs LM, Highland JN, Georgiou P, Pereira EFR, Albuquerque EX, Thomas CJ, Zarate CA, Gould TD. Ketamine and Ketamine Metabolite Pharmacology: Insights into Therapeutic Mechanisms. Pharmacol Rev 2018; 70:621-660. [PMID: 29945898 PMCID: PMC6020109 DOI: 10.1124/pr.117.015198] [Citation(s) in RCA: 745] [Impact Index Per Article: 106.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Ketamine, a racemic mixture consisting of (S)- and (R)-ketamine, has been in clinical use since 1970. Although best characterized for its dissociative anesthetic properties, ketamine also exerts analgesic, anti-inflammatory, and antidepressant actions. We provide a comprehensive review of these therapeutic uses, emphasizing drug dose, route of administration, and the time course of these effects. Dissociative, psychotomimetic, cognitive, and peripheral side effects associated with short-term or prolonged exposure, as well as recreational ketamine use, are also discussed. We further describe ketamine's pharmacokinetics, including its rapid and extensive metabolism to norketamine, dehydronorketamine, hydroxyketamine, and hydroxynorketamine (HNK) metabolites. Whereas the anesthetic and analgesic properties of ketamine are generally attributed to direct ketamine-induced inhibition of N-methyl-D-aspartate receptors, other putative lower-affinity pharmacological targets of ketamine include, but are not limited to, γ-amynobutyric acid (GABA), dopamine, serotonin, sigma, opioid, and cholinergic receptors, as well as voltage-gated sodium and hyperpolarization-activated cyclic nucleotide-gated channels. We examine the evidence supporting the relevance of these targets of ketamine and its metabolites to the clinical effects of the drug. Ketamine metabolites may have broader clinical relevance than was previously considered, given that HNK metabolites have antidepressant efficacy in preclinical studies. Overall, pharmacological target deconvolution of ketamine and its metabolites will provide insight critical to the development of new pharmacotherapies that possess the desirable clinical effects of ketamine, but limit undesirable side effects.
Collapse
Affiliation(s)
- Panos Zanos
- Departments of Psychiatry (P.Z., L.M.R., J.N.H., P.G., T.D.G.), Pharmacology (E.F.R.P., E.X.A., T.D.G.), Anatomy and Neurobiology (T.D.G.), Epidemiology and Public Health, Division of Translational Toxicology (E.F.R.P., E.X.A.), Medicine (E.X.A.), and Program in Neuroscience (L.M.R.) and Toxicology (J.N.H.), University of Maryland School of Medicine, Baltimore, Maryland; Biomedical Research Center, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, Maryland (R.M.); Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Intramural Research Program, National Institutes of Health, Rockville, Maryland (P.J.M., C.J.T.); and Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.)
| | - Ruin Moaddel
- Departments of Psychiatry (P.Z., L.M.R., J.N.H., P.G., T.D.G.), Pharmacology (E.F.R.P., E.X.A., T.D.G.), Anatomy and Neurobiology (T.D.G.), Epidemiology and Public Health, Division of Translational Toxicology (E.F.R.P., E.X.A.), Medicine (E.X.A.), and Program in Neuroscience (L.M.R.) and Toxicology (J.N.H.), University of Maryland School of Medicine, Baltimore, Maryland; Biomedical Research Center, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, Maryland (R.M.); Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Intramural Research Program, National Institutes of Health, Rockville, Maryland (P.J.M., C.J.T.); and Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.)
| | - Patrick J Morris
- Departments of Psychiatry (P.Z., L.M.R., J.N.H., P.G., T.D.G.), Pharmacology (E.F.R.P., E.X.A., T.D.G.), Anatomy and Neurobiology (T.D.G.), Epidemiology and Public Health, Division of Translational Toxicology (E.F.R.P., E.X.A.), Medicine (E.X.A.), and Program in Neuroscience (L.M.R.) and Toxicology (J.N.H.), University of Maryland School of Medicine, Baltimore, Maryland; Biomedical Research Center, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, Maryland (R.M.); Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Intramural Research Program, National Institutes of Health, Rockville, Maryland (P.J.M., C.J.T.); and Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.)
| | - Lace M Riggs
- Departments of Psychiatry (P.Z., L.M.R., J.N.H., P.G., T.D.G.), Pharmacology (E.F.R.P., E.X.A., T.D.G.), Anatomy and Neurobiology (T.D.G.), Epidemiology and Public Health, Division of Translational Toxicology (E.F.R.P., E.X.A.), Medicine (E.X.A.), and Program in Neuroscience (L.M.R.) and Toxicology (J.N.H.), University of Maryland School of Medicine, Baltimore, Maryland; Biomedical Research Center, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, Maryland (R.M.); Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Intramural Research Program, National Institutes of Health, Rockville, Maryland (P.J.M., C.J.T.); and Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.)
| | - Jaclyn N Highland
- Departments of Psychiatry (P.Z., L.M.R., J.N.H., P.G., T.D.G.), Pharmacology (E.F.R.P., E.X.A., T.D.G.), Anatomy and Neurobiology (T.D.G.), Epidemiology and Public Health, Division of Translational Toxicology (E.F.R.P., E.X.A.), Medicine (E.X.A.), and Program in Neuroscience (L.M.R.) and Toxicology (J.N.H.), University of Maryland School of Medicine, Baltimore, Maryland; Biomedical Research Center, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, Maryland (R.M.); Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Intramural Research Program, National Institutes of Health, Rockville, Maryland (P.J.M., C.J.T.); and Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.)
| | - Polymnia Georgiou
- Departments of Psychiatry (P.Z., L.M.R., J.N.H., P.G., T.D.G.), Pharmacology (E.F.R.P., E.X.A., T.D.G.), Anatomy and Neurobiology (T.D.G.), Epidemiology and Public Health, Division of Translational Toxicology (E.F.R.P., E.X.A.), Medicine (E.X.A.), and Program in Neuroscience (L.M.R.) and Toxicology (J.N.H.), University of Maryland School of Medicine, Baltimore, Maryland; Biomedical Research Center, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, Maryland (R.M.); Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Intramural Research Program, National Institutes of Health, Rockville, Maryland (P.J.M., C.J.T.); and Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.)
| | - Edna F R Pereira
- Departments of Psychiatry (P.Z., L.M.R., J.N.H., P.G., T.D.G.), Pharmacology (E.F.R.P., E.X.A., T.D.G.), Anatomy and Neurobiology (T.D.G.), Epidemiology and Public Health, Division of Translational Toxicology (E.F.R.P., E.X.A.), Medicine (E.X.A.), and Program in Neuroscience (L.M.R.) and Toxicology (J.N.H.), University of Maryland School of Medicine, Baltimore, Maryland; Biomedical Research Center, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, Maryland (R.M.); Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Intramural Research Program, National Institutes of Health, Rockville, Maryland (P.J.M., C.J.T.); and Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.)
| | - Edson X Albuquerque
- Departments of Psychiatry (P.Z., L.M.R., J.N.H., P.G., T.D.G.), Pharmacology (E.F.R.P., E.X.A., T.D.G.), Anatomy and Neurobiology (T.D.G.), Epidemiology and Public Health, Division of Translational Toxicology (E.F.R.P., E.X.A.), Medicine (E.X.A.), and Program in Neuroscience (L.M.R.) and Toxicology (J.N.H.), University of Maryland School of Medicine, Baltimore, Maryland; Biomedical Research Center, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, Maryland (R.M.); Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Intramural Research Program, National Institutes of Health, Rockville, Maryland (P.J.M., C.J.T.); and Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.)
| | - Craig J Thomas
- Departments of Psychiatry (P.Z., L.M.R., J.N.H., P.G., T.D.G.), Pharmacology (E.F.R.P., E.X.A., T.D.G.), Anatomy and Neurobiology (T.D.G.), Epidemiology and Public Health, Division of Translational Toxicology (E.F.R.P., E.X.A.), Medicine (E.X.A.), and Program in Neuroscience (L.M.R.) and Toxicology (J.N.H.), University of Maryland School of Medicine, Baltimore, Maryland; Biomedical Research Center, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, Maryland (R.M.); Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Intramural Research Program, National Institutes of Health, Rockville, Maryland (P.J.M., C.J.T.); and Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.)
| | - Carlos A Zarate
- Departments of Psychiatry (P.Z., L.M.R., J.N.H., P.G., T.D.G.), Pharmacology (E.F.R.P., E.X.A., T.D.G.), Anatomy and Neurobiology (T.D.G.), Epidemiology and Public Health, Division of Translational Toxicology (E.F.R.P., E.X.A.), Medicine (E.X.A.), and Program in Neuroscience (L.M.R.) and Toxicology (J.N.H.), University of Maryland School of Medicine, Baltimore, Maryland; Biomedical Research Center, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, Maryland (R.M.); Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Intramural Research Program, National Institutes of Health, Rockville, Maryland (P.J.M., C.J.T.); and Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.)
| | - Todd D Gould
- Departments of Psychiatry (P.Z., L.M.R., J.N.H., P.G., T.D.G.), Pharmacology (E.F.R.P., E.X.A., T.D.G.), Anatomy and Neurobiology (T.D.G.), Epidemiology and Public Health, Division of Translational Toxicology (E.F.R.P., E.X.A.), Medicine (E.X.A.), and Program in Neuroscience (L.M.R.) and Toxicology (J.N.H.), University of Maryland School of Medicine, Baltimore, Maryland; Biomedical Research Center, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, Maryland (R.M.); Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Intramural Research Program, National Institutes of Health, Rockville, Maryland (P.J.M., C.J.T.); and Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.)
| |
Collapse
|
48
|
Involvement of serotonergic, noradrenergic and gabaergic systems in the antinociceptive effect of a ketamine-magnesium sulfate combination in acute pain. ACTA VET-BEOGRAD 2018. [DOI: 10.2478/acve-2018-0009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Abstract
Ketamine and magnesium can interact in additive, supra-additive and antagonistic manners in analgesia or anesthesia. Ketamine is a non-competitive NMDA receptor antagonist. Magnesium is an endogenous non-competitive NMDA antagonist that causes anion channel blockade in a dose-dependent manner. It has been established that ketamine and magnesium interact synergistically in the tail-immersion test in rats.
To determine the role of serotonergic, GABAergic and noradrenergic systems in analgesia induced by the ketamine-magnesium sulfate combination.
Experiments were performed on male Wistar albino rats (200-250 g). Antinociception was evaluated by the tail-immersion test.
Methysergide (0.5 and 1 mg/kg, sc) administered alone did not affect nociception in rats. Methysergide (0.5 and 1 mg/kg, sc) antagonized the antinociceptive effect of the ketamine (5 mg/kg)-magnesium sulfate (5mg/kg) combination. Bicuculline (0.5 and 1 mg/kg, sc) given alone did not change the threshold to thermal stimuli in rats. Bicuculline (0.5 and 1 mg/kg, sc) antagonized the antinociceptive effect of the ketamine (5 mg/kg)-magnesium sulfate (5 mg/kg) combination. Yohimbine (0.5, 1 and 3 mg/kg, sc) applied alone did not change nociception. Yohimbine at a dose of 0.5 mg/kg did not influence the effect of ketamine (5 mg/kg)-magnesium sulfate (5 mg/kg), while yohimbine at doses of 1 and 3 mg/kg antagonized the antinociceptive effect of this combination.
Serotonergic, noradrenergic and GABAergic systems participate, at least in part, in the antinociceptive effect of the ketamine-magnesium sulfate combination in acute pain in rats.
Collapse
|
49
|
Schoenberger M, Schroeder FA, Placzek MS, Carter RL, Rosen BR, Hooker JM, Sander CY. In Vivo [ 18F]GE-179 Brain Signal Does Not Show NMDA-Specific Modulation with Drug Challenges in Rodents and Nonhuman Primates. ACS Chem Neurosci 2018; 9:298-305. [PMID: 29050469 PMCID: PMC5894869 DOI: 10.1021/acschemneuro.7b00327] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
As one of the major excitatory ion channels in the brain, NMDA receptors have been a leading research target for neuroscientists, physicians, medicinal chemists, and pharmaceutical companies for decades. Molecular imaging of NMDA receptors by means of positron emission tomography (PET) with [18F]GE-179 quickly progressed to clinical PET studies, but a thorough understanding of its binding specificity has been missing and has thus limited signal interpretation. Here a preclinical study with [18F]GE-179 in rodents and nonhuman primates (NHPs) is presented in an attempt to characterize [18F]GE-179 signal specificity. Rodent PET/CT was used to study drug occupancy and functional manipulation in rats by pretreating animals with NMDA targeted blocking/modulating drug doses followed by a single bolus of [18F]GE-179. Binding competition with GE-179, MK801, PCP, and ketamine, allosteric inhibition by ifenprodil, and brain activation with methamphetamine did not alter the [18F]GE-179 brain signal in rats. In addition, multimodal imaging with PET/MRI in NHPs was used to evaluate changes in radiotracer binding as a function of pharmacological challenges. Drug-induced hemodynamic changes were monitored simultaneously using functional MRI (fMRI). Comparisons of baseline and signal after drug challenge in NHPs demonstrated that the [18F]GE-179 signal cannot be manipulated in a predictable fashion in vivo. fMRI data acquired simultaneously with PET data supported this finding and provided evidence that radiotracer delivery is not altered by blood flow changes. In conclusion, the [18F]GE-179 brain signal is not readily interpretable in the context of NMDA receptor binding on the basis of the results shown in this study.
Collapse
Affiliation(s)
- Matthias Schoenberger
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital , Charlestown, Massachusetts 02129, United States
- Chemical Biology and Imaging, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven , BE-3000 Leuven, Belgium
| | - Frederick A Schroeder
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital , Charlestown, Massachusetts 02129, United States
| | - Michael S Placzek
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital , Charlestown, Massachusetts 02129, United States
- Department of Psychiatry, McLean Imaging Center, McLean Hospital , Belmont, Massachusetts 02478, United States
- Harvard Medical School , Boston, Massachusetts 02115, United States
| | | | - Bruce R Rosen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital , Charlestown, Massachusetts 02129, United States
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Jacob M Hooker
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital , Charlestown, Massachusetts 02129, United States
- Harvard Medical School , Boston, Massachusetts 02115, United States
| | - Christin Y Sander
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital , Charlestown, Massachusetts 02129, United States
- Harvard Medical School , Boston, Massachusetts 02115, United States
| |
Collapse
|
50
|
The Role of GluN2C-Containing NMDA Receptors in Ketamine's Psychotogenic Action and in Schizophrenia Models. J Neurosci 2017; 36:11151-11157. [PMID: 27807157 DOI: 10.1523/jneurosci.1203-16.2016] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 09/14/2016] [Indexed: 11/21/2022] Open
Abstract
The NMDA receptor (NMDAR) hypofunction hypothesis of schizophrenia is supported by multiple lines of evidence. Notably, administration of the NMDAR antagonist, ketamine, to healthy human subjects has psychotogenic action, producing both positive and negative symptoms associated with schizophrenia. NMDARs have multiple subtypes, but the subtypes through which ketamine produces its psychotogenic effects are not known. Here we address this question using quantitative data that characterize ketamine's ability to block different NMDAR subtypes. Our calculations indicate that, at a concentration that has psychotogenic action in humans, ketamine blocks a substantial fraction of GluN2C subunit-containing receptors but has less effect on GluN2A-, GluN2B-, and GluN2D-containing receptors. Thus, GluN2C-containing receptors may have preferential involvement in psychotic states produced by ketamine. A separate line of experiments also points to a special role for GluN2C. That work demonstrates the ability of NMDAR antagonists to mimic the elevation in the awake-state δ frequency EEG power that occurs in schizophrenia. Physiological experiments in rodents show that NMDAR antagonists generate δ oscillations by their action on the GluN2C-containing NMDARs that are prevalent in the thalamus. Optogenetic experiments suggest that such oscillations could contribute to symptoms of schizophrenia.
Collapse
|