1
|
Shi W, Zhou J, He J, Gao X, Li Z, Shao S, Chen Y. Mechanism of folium polygoni cuspidati in liver-yang-hyperactivity hypertension based on network pharmacology, molecular docking and experimental pharmacological validation. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118763. [PMID: 39216773 DOI: 10.1016/j.jep.2024.118763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/14/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE At present,the global form of hypertension is severe,and liver-yang-hyperactivity hypertension(GYSK hypertension)is the most common type of hypertension.Folium Polygoni Cuspidati(HZY)are mainly used in Yunnan, China,to treat dizziness, headache,and hypertension caused by GYSK,and the content of the active ingredients of HZY and its efficacy varies in different periods.However,the mechanism of action and the effect of harvesting period are not clear. AIM OF THE STUDY The purpose of this research was to investigate the effect of HZY in April and September on GYSK hypertension. MATERIALS AND METHODS The model of GYSK hypertension was established with aconite decoction and L-NAME,and the blood pressure,the symptoms of GYSK,the cardiac index and the pathological changes of aorta were observed,to study the effect of HZY in April and September on GYSK hypertension.The chemical composition of HZY was analysed by UPLC-QTOF-MS and its mechanism for the treatment of GYSK hypertension was predicted by network pharmacological studies and experimentally validated using serum metabolomics and Western blot techniques. RESULTS April HZY and September HZY can significantly improve the GYSK symptoms of rats, inhibit the RAAS system, improve oxidative stress and regulate blood lipids so as to play a blood pressure lowering efficacy and have a protective effect on the vascular endothelial cells.UPLC-QTOF-MS yielded 29 components of HZY,and network pharmacology predicted that its mechanism may be related to Lipid and atherosclerosis,PI3K/Akt signaling pathway, MAPK signaling pathway and TNF signaling pathway,etc.Western Blot validation showed that HZY activated PI3K,p-Akt protein expression and inhibited p-erk,p-p38 and TNF-α protein expression.Serum metabolomics suggested that April HZY exerts its efficacy mainly by regulating amino acid metabolism and September HZY mainly by regulating lipid metabolism. CONCLUSIONS In GYSK hypertensive rats treated for three weeks, both April HZY and September HZY could have antihypertensive effects,but the mechanisms of action were different and similar, both could regulate metabolite disorders of sugars, lipids,amino acids and peptides,and regulate blood pressure through the PI3K/Akt-eNOS and MAPK signalling pathways, with the difference that April HZY had stronger regulatory effects on the metabolism of amino acids.metabolism.
Collapse
Affiliation(s)
- Wenxin Shi
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China; Hubei Provincial Chinese Medicine Health Food Engineering Research Center, Wuhan, 430065, China; Hubei Shizhen Laboratory, Wuhan, 430065, China
| | | | - Jiang He
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China; Hubei Provincial Chinese Medicine Health Food Engineering Research Center, Wuhan, 430065, China; Hubei Shizhen Laboratory, Wuhan, 430065, China
| | - Xinyu Gao
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China; Hubei Provincial Chinese Medicine Health Food Engineering Research Center, Wuhan, 430065, China; Hubei Shizhen Laboratory, Wuhan, 430065, China
| | - Zhengheng Li
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China; Hubei Provincial Chinese Medicine Health Food Engineering Research Center, Wuhan, 430065, China; Hubei Shizhen Laboratory, Wuhan, 430065, China
| | - Shijuan Shao
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China; Hubei Provincial Chinese Medicine Health Food Engineering Research Center, Wuhan, 430065, China; Hubei Shizhen Laboratory, Wuhan, 430065, China
| | - Yunzhong Chen
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China; Hubei Provincial Chinese Medicine Health Food Engineering Research Center, Wuhan, 430065, China; Hubei Shizhen Laboratory, Wuhan, 430065, China.
| |
Collapse
|
2
|
Liu Q, Chen Y, Wang B, Chen Y, Li B, Guan S, Du K, Liu X, Yu Y, Liu J, Wang Z. Arginine Biosynthesis Pathway Found to Play a Key Role in the Neuroprotective Effect of Liu-Wei-Luo-Bi (LWLB) Granules in Diabetic db/db Mice with Peripheral Neuropathy Using an Untargeted Metabolomics Strategy. Diabetes Metab Syndr Obes 2023; 16:4065-4080. [PMID: 38106622 PMCID: PMC10723181 DOI: 10.2147/dmso.s423388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/01/2023] [Indexed: 12/19/2023] Open
Abstract
Aim Liu-Wei-Luo-Bi (LWLB) granules was a Chinese compound prescription for treating diabetic peripheral neuropathy (DPN). The aim of this study was to investigate the effect of LWLB granules on diabetic mice with peripheral neuropathy and to elucidate the potential mechanism based on an untargeted metabolomics approach. Methods One hundred forty db/db mice were randomly divided into seven groups: the Control group, DPN group, Mudan (MD) granules group, Epalrestat (Epa) group, and the LWLB low, medium, or high dose (LW-l, LW-m, or LW-h) group. After 12 weeks of treatment, body weight, blood glucose, mechanical pain threshold, motor conduction velocity (MCV), sensory conduction velocity (SCV), and Pathological Organization of the Sciatic and Caudal Nerves in mice were measured. Serum samples were collected for untargeted metabolomics analysis using liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) and multivariate statistics. Disease-related pathways were screened out with function enrichment analyses of candidate biomarkers. Results LWLB granules can improve the peripheral neuropathy of type 2 diabetic mice with peripheral nerve conduction disorders, mainly through significantly improving the nerve conduction velocity (P < 0.05) and lowering the mechanical pain threshold (P < 0.05). A total of 43 metabolites were identified as potential biomarkers related to the therapeutic effect of LWLB granules. Fifty, 4, and 26; 23, 4, and 22; and 24, 1, and 16 biomarkers were discovered in the LW-l, LW-m, and LW-h groups at the 4th, 6th, and 12th weeks, respectively. Five, three, seven, five, and four metabolic pathways were found in MD, Epa, LW-l, LW-m, and LW-h groups, respectively. The arginine biosynthesis pathway is the overlapping pathway in LW-l, LW-m, and LW-h groups. Conclusion LWLB granules have an obvious neuroprotective effect on diabetic peripheral neuropathy, and the metabolism mechanism of LWLB is mainly related to the arginine biosynthesis pathway on diabetic db/db mice with peripheral neuropathy.
Collapse
Affiliation(s)
- Qiong Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
- Postdoctoral Research Station, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Yafei Chen
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Bo Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Yinying Chen
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Bing Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Shuang Guan
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Kehe Du
- iPhase Pharma Services, Beijing, People’s Republic of China
| | - Xiaoyang Liu
- iPhase Pharma Services, Beijing, People’s Republic of China
| | - Yanan Yu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Jun Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Zhong Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| |
Collapse
|
3
|
Yang CC, Wang MH, Soung HS, Tseng HC, Lin FH, Chang KC, Tsai CC. Through Its Powerful Antioxidative Properties, L-Theanine Ameliorates Vincristine-Induced Neuropathy in Rats. Antioxidants (Basel) 2023; 12:antiox12040803. [PMID: 37107178 PMCID: PMC10135327 DOI: 10.3390/antiox12040803] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
L-theanine (LT), which is a major amino acid found in green tea, was shown to alleviate Vincristine (VCR)-induced peripheral neuropathy and associated neuronal functional changes in rats. To induce peripheral neuropathy, rats were administered VCR at a dose of 100 mg/kg/day intraperitoneally on days 1–5 and 8–12, while control rats received LT at doses of 30, 100, and 300 mg/kg/day intraperitoneally for 21 days or saline solution. Electrophysiological measurements were taken to evaluate the nerve functional loss and recovery through motor and sensory nerve conduction velocities. The sciatic nerve was examined for several biomarkers, including nitric oxide (NO), malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), total calcium, IL-6, IL-10, MPO, and caspase-3. The results showed that VCR caused significant hyperalgesia and allodynia in rats; decreased nerve conduction velocity; increased NO and MDA levels; and decreased GSH, SOD, CAT, and IL-10 levels. LT was found to significantly reduce VCR-induced nociceptive pain thresholds, decrease oxidative stress levels (NO, MDA), increase antioxidative strength (GSH, SOD, CAT), and reduce neuroinflammatory activity and apoptosis markers (caspase-3). LT’s antioxidant, calcium homeostasis, anti-inflammatory, anti-apoptotic, and neuroprotective properties make it a potential adjuvant to conventional treatment in VCR-induced neuropathy in rats.
Collapse
Affiliation(s)
- Chih-Chuan Yang
- Department of Neurosurgery, Mackay Memorial Hospital, Taipei 10449, Taiwan;
- Department of Nursing, Mackay Junior College of Medicine, Nursing and Management, Taipei 11260, Taiwan
| | - Mao-Hsien Wang
- Department of Anesthesia, En Chu Kon Hospital, Sanshia District, New Taipei City 23702, Taiwan
| | - Hung-Sheng Soung
- Department of Psychiatry, Yuan-Shan Br. of Taipei Veteran General Hospital, Yilan County 26604, Taiwan
- Department of Biomedical Engineering, National Defense Medical Center, Taipei 11490, Taiwan
| | - Hsiang-Chien Tseng
- Department of Anesthesiology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei 11101, Taiwan
- School of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| | - Feng-Huei Lin
- Institute of Biomedical Engineering, National Taiwan University, Taipei 10051, Taiwan
- Institute of Biomedical Engineering and Nanomedicine, National Health Research, Zhunan Town, Miaoli County 35053, Taiwan
| | - Kuo-Chi Chang
- Institute of Taiwan Instrument Research, National Applied Research Laboratories, Hsinchu 300092, Taiwan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Cheng-Chia Tsai
- Department of Neurosurgery, Mackay Memorial Hospital, Taipei 10449, Taiwan;
- Department of Medicine, Mackay Medical College, New Taipei City 252, Taiwan
- Correspondence: ; Tel.: +886-928260400
| |
Collapse
|
4
|
Chen SM, Wang MH, Soung HS, Tseng HC, Fang CH, Lin YW, Yang CC, Tsai CC. Neuroprotective effect of l-theanine in a rat model of chronic constriction injury of sciatic nerve-induced neuropathic pain. J Formos Med Assoc 2021; 121:802-814. [PMID: 34531102 DOI: 10.1016/j.jfma.2021.08.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND/PURPOSE We investigated the protective efficacy of l-theanine (LT), the major amino acid components of green tea, on chronic constriction injury (CCI) of sciatic nerve-induced neuropathic pain (NP) development and neuronal functional changes in rats. METHODS Rats with NP induced by CCI of the left sciatic nerve and sham-operated rats received LT or saline solution, with pain sensitive tests of thermal hyperalgesia and mechanical allodynia. Motor and sensory nerve conduction velocities were measured after surgery. Subsequently, the rats were sacrificed; the sciatic nerve was excised, homogenized, prepared and subjected for estimation of nitric oxide (NO), malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), myeloperoxidase (MPO), and caspase-3. RESULTS CCI produced a significant increase in hyperalgesia and allodynia, an increase in SFI, a decrease in nerve conduction velocity, increases in NO, MDA, TNF-α, IL-1β, IL-6, MPO, and caspase-3 levels, as well as reduction of GSH, SOD, and CAT in the rat sciatic nerve. LT treatment significantly and dose-dependently alleviated CCI-induced nociceptive pain thresholds and ameliorated abnormal nerve conduction and functional loss in rats with CCI. Moreover, LT treatment reduced NO and MDA levels, increased antioxidative strength, and markedly suppressed the levels of neuroinflammatory and apoptotic markers in injured sciatic nerves. CONCLUSION This is the first report on the ameliorative effect of LT in CCI-induced NP in rats. This effect might be attributed to its anti-oxidative, anti-inflammatory, anti-apoptotic, and neuroprotective, thus making it potentially useful as an adjuvant to conventional treatment.
Collapse
Affiliation(s)
- Shu-Mei Chen
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei Medical University, Taipei, 110, Taiwan, ROC; Department of Surgery, School of Medicine, Taipei Medical University, Taipei, 110, Taiwan, ROC
| | - Mao-Hsien Wang
- Department of Anesthesia, En Chu Kon Hospital, Sanshia District, New Taipei City, 23702, Taiwan, ROC
| | - Hung-Sheng Soung
- Department of Psychiatry, Yuan-Shan Br. of Taipei Veteran General Hospital, Yilan County, 26604, Taiwan, ROC; Department of Biomedical Engineering, National Defense Medical Center, Taipei, 11490, Taiwan, ROC
| | - Hsiang-Chien Tseng
- Department of Anesthesiology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, 11101, Taiwan, ROC; School of Medicine, Fu Jen Catholic University, New Taipei City, 24205, Taiwan, ROC
| | - Chih-Hsiang Fang
- China Medical University Hospital, Taichung City, 404332, Taiwan, ROC; Trauma and Emergency Center, China Medical University Hospital, Taichung City, 404018, Taiwan, ROC
| | - Yi-Wen Lin
- Institute of Biomedical Engineering, National Taiwan University, Taipei, 10051, Taiwan, ROC
| | - Chih-Chuan Yang
- Department of Neurosurgery, Mackay Memorial Hospital, Taipei, 10449, Taiwan, ROC; Department of Nursing, Mackay Junior College of Medicine, Nursing and Management, Taipei, 11260, Taiwan, ROC
| | - Cheng-Chia Tsai
- Department of Neurosurgery, Mackay Memorial Hospital, Taipei, 10449, Taiwan, ROC; Department of Medicine, Mackay Medical College, New Taipei City, 252, Taiwan, ROC.
| |
Collapse
|
5
|
Prophylactic Effects of Polymethoxyflavone-Rich Orange Peel Oil on Nω-Nitro-L-Arginine-Induced Hypertensive Rats. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8050752] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
6
|
Gardenia jasminoides has therapeutic effects on L‑NNA‑induced hypertension in vivo. Mol Med Rep 2017; 15:4360-4373. [PMID: 28487985 DOI: 10.3892/mmr.2017.6542] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 03/03/2017] [Indexed: 12/18/2022] Open
Abstract
Gardenia jasminoides is a plant that has been used in traditional Chinese medicine. It has four key active components (genipin gentiobioside, geniposide, crocin 1 and crocin 2). The aim of the present study was to determine the anti‑hypertension effects of Gardenia jasminoidesin vivo. The chemical composition of Gardenia jasminoides was determined using liquid chromatography. The anti‑hypertensive effects of Gardenia jasminoides were determined by a L‑NG‑nitroarginine (L‑NNA)‑induced hypertension animal model. Both Gardenia jasminoides plants of the Jiangjin County variety (CJGJ) and the Lichuan City variety (HLGJ) were used. HLGJ contained more geniposide than CJGJ. L‑NNA was used to induce hypertension in mice, and the mice were subsequently treated with CJGJ and HLGJ. The Gardenia jasminoides‑treated mice exhibited lower systolic (SBP), diastolic (DBP) and mean blood pressure (MBP) than the experimental control mice. Additionally, HLGL has a more potent effect on SBP, MBP and DBP than CJGJ. Following Gardenia jasminoides treatment, the nitric oxide contents in serum, heart, liver, kidney and stomach of mice were higher than the L‑NNA‑induced control mice, and the malondialdehyde contents were lower; the levels in HLGJ‑treated mice were closer to those normal mice than the levels in CJGJ‑treated mice were. Serum levels of endothelin‑1 and vascular endothelial growth factor were reduced by HLGJ treatment in hypertensive mice, whereas the calcitonin gene‑related peptide level was raised. Reverse transcription‑polymerase chain reaction analysis of mouse heart and vessel tissue demonstrated that HLGJ‑treated mice exhibited higher heme oxygenase‑1, neuronal nitric oxide synthase (nNOS), endothelial NOS, Bax, caspase‑3, caspase‑8, caspase‑9 mRNA expression levels and lower adrenomedullin, receptor activity modifying protein, interleukin‑1β, tumor necrosis factor‑α, inducible NOS, Bcl‑2, monocyte chemoattractant protein‑1, nuclear factor‑κB and matrix metalloproteinase‑2 and ‑9 mRNA expression compared with control hypertensive mice and CJGJ‑treated mice. In conclusion, Gardenia jasminoides has anti‑hypertensive effects, and these effects may be associated with the active component, geniposide.
Collapse
|
7
|
Sun P, Zhu K, Wang C, Liu WW, Peng DG, Zhao X. Prophylactic effects of alkaloids from Ba lotus seeds on L-NNA-induced hypertension in mice. Chin J Nat Med 2017; 14:835-843. [PMID: 27914527 DOI: 10.1016/s1875-5364(16)30100-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Indexed: 12/25/2022]
Abstract
Alkaloids from Ba lotus seeds (ABLS) are a kind of important functional compounds in lotus seeds. The present study was designed to determine its hypertension prophylactic effects in the L-NNA-induced mouse hypertension model. The mice were treated with ABLS, the serum and tissues levels of NO, MDA, ET-1, VEGF, and CGRP were determined using the experimental kits, the mRNA levels of various genes in the heart muscle and blood vessel tissues were further determined by RT-PCR assay. ABLS could reduce the systolic blood pressure (SBP), mean blood pressure (MBP), and diastolic blood pressure (DBP), compared to that of the model control group. After ABLS treatment, the NO (nitric oxide) contents in serum, heart, liver, kidney and stomach of the mice were higher than that of the control mice, but the MDA (malonaldehyde) contents were lower than that of the control mice. The serum levels of ET-1 (endothelin-1), VEGF (vascular endothelial growth factor) were decreased after ABLS treatment, but CGRP (calcium gene related peptide) level was increased. The ABLS treated mice had higher mRNA expressions of HO-1, nNOS, and eNOS and lower expressions of ADM, RAMP2, IL-1β, TNF-α, and iNOS than the control mice. Higher concentration of ABLS had greater prophylactic effects, which were close to that of the hypertension drug captopril. These results indicated the hypertension prophylactic effects of ABLS could be further explored as novel medicine or functional food in the future.
Collapse
Affiliation(s)
- Peng Sun
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing 400067, China; Chongqing Enterprise Engineering Research Center of Ba-lotus Breeding and Deep Processing, Chongqing 400041, China; Department of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China; Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing 400067, China; Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing 400067, China
| | - Kai Zhu
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing 400067, China
| | - Cun Wang
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing 400067, China; Department of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China
| | - Wei-Wei Liu
- School of Public Health and Management, Chongqing Medical University, Chongqing 400016, China
| | - De-Guang Peng
- Chongqing Enterprise Engineering Research Center of Ba-lotus Breeding and Deep Processing, Chongqing 400041, China.
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing 400067, China; Chongqing Enterprise Engineering Research Center of Ba-lotus Breeding and Deep Processing, Chongqing 400041, China; Department of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China; Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing 400067, China; Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing 400067, China.
| |
Collapse
|
8
|
Muthuraman A, Ramesh M. Ischemic-reperfusion of unilateral external iliac artery in rat: A new model for vasculitic femoral neuropathy. Neurosci Lett 2016; 628:10-6. [PMID: 27288016 DOI: 10.1016/j.neulet.2016.06.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 05/14/2016] [Accepted: 06/07/2016] [Indexed: 01/14/2023]
Abstract
Clinically, ischemic environment during gynecological surgery at lithotomy position is most common causative factor for the development of vasculitic femoral neuropathy (VFN). The present study was designed to induce the clinically relevant rat model of VFN by ischemic-reperfusion (I/R) injury of unilateral external iliac artery (uEIA). The VFN was induced by 3, 4 and 5h occlusion of uEIA followed by reperfusion. The I/R of uEIA induced VFN was evaluated by (i) behavioral parameters i.e., hind limb temperature; weight bearing capacity; (ii) kinematic analysis i.e., paw posture, splay angle, static sciatic index (SSI), and ankle-angle tests; (iii) evaluation of pain perception i.e., plantar and pin prick; (iv) serum biochemical estimation i.e., nitrate, lipid peroxidation, TNF-α and calcium level; (v) evaluation of motor and sensory nerve conduction velocity; and (vi) measurement of nerve fiber density. The 4 and 5h occlusion of uEIA has produced the potential changes in behavioral, functional, electrophysiological, biochemical and histopathological assessment. The 5h occlusion of uEIA has shown to produce the mortality. Whereas, 3h occlusion does not produce the significant changes in the development of VFN. The 4h ischemic occlusion of uEIA has shown potential rat model of VFN due to its close mimicking capacity of VFN in human. Therefore, it can be useful to explore the newer anti-neuralgic medicine and with their pharmacodynamic action in the field of various neurovascular disorders.
Collapse
Affiliation(s)
- Arunachalam Muthuraman
- Department of Pharmacology, Neuropharmacology Division, Akal Toxicology Research Centre, A Unit of Akal College of Pharmacy & Technical Education, Mastuana Sahib, Sangrur 148001, Punjab, India.
| | - Muthusamy Ramesh
- Department of Pharmacology, Neuropharmacology Division, Akal Toxicology Research Centre, A Unit of Akal College of Pharmacy & Technical Education, Mastuana Sahib, Sangrur 148001, Punjab, India; School of Health Sciences, University of KwaZulu-Natal (UKZN), Durban 4001 South Africa.
| |
Collapse
|
9
|
Zochodne DW. Sensory Neurodegeneration in Diabetes: Beyond Glucotoxicity. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 127:151-80. [PMID: 27133149 DOI: 10.1016/bs.irn.2016.03.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Diabetic polyneuropathy in humans is of gradual, sometimes insidious onset, and is more likely to occur if glucose control is poor. Arguments that the disorder arises chiefly from glucose toxicity however ignore the greater complexity of a unique neurodegenerative disorder. For example, sensory neurons regularly thrive in media with levels of glucose at or exceeding those of poorly controlled diabetic persons. Also, all of the linkages between hyperglycemia and neuropathy develop in the setting of altered insulin availability or sensitivity. Insulin itself is recognized as a potent growth, or trophic factor for adult sensory neurons. Low doses of insulin, insufficient to alter blood glucose levels, reverse features of diabetic neurodegeneration in animal models. Insulin resistance, as occurs in diabetic adipose tissue, liver, and muscle, also develops in sensory neurons, offering a mechanism for neurodegeneration in the setting of normal or elevated insulin levels. Other interventions that "shore up" sensory neurons prevent features of diabetic polyneuropathy from developing despite persistent hyperglycemia. More recently evidence has emerged that a series of subtle molecular changes in sensory neurons can be linked to neurodegeneration including epigenetic changes in the control of gene expression. Understanding the new complexity of sensory neuron degeneration may give rise to therapeutic strategies that have a higher chance of success in the clinical trial arena.
Collapse
Affiliation(s)
- D W Zochodne
- Neuroscience and Mental Health Institute and Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
10
|
van den Born JC, Hammes HP, Greffrath W, van Goor H, Hillebrands JL. Gasotransmitters in Vascular Complications of Diabetes. Diabetes 2016; 65:331-45. [PMID: 26798119 DOI: 10.2337/db15-1003] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In the past decades three gaseous signaling molecules-so-called gasotransmitters-have been identified: nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S). These gasotransmitters are endogenously produced by different enzymes in various cell types and play an important role in physiology and disease. Despite their specific functions, all gasotransmitters share the capacity to reduce oxidative stress, induce angiogenesis, and promote vasorelaxation. In patients with diabetes, a lower bioavailability of the different gasotransmitters is observed when compared with healthy individuals. As yet, it is unknown whether this reduction precedes or results from diabetes. The increased risk for vascular disease in patients with diabetes, in combination with the extensive clinical, financial, and societal burden, calls for action to either prevent or improve the treatment of vascular complications. In this Perspective, we present a concise overview of the current data on the bioavailability of gasotransmitters in diabetes and their potential role in the development and progression of diabetes-associated microvascular (retinopathy, neuropathy, and nephropathy) and macrovascular (cerebrovascular, coronary artery, and peripheral arterial diseases) complications. Gasotransmitters appear to have both inhibitory and stimulatory effects in the course of vascular disease development. This Perspective concludes with a discussion on gasotransmitter-based interventions as a therapeutic option.
Collapse
Affiliation(s)
- Joost C van den Born
- Department of Pathology and Medical Biology, Division of Pathology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Hans-Peter Hammes
- 5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Wolfgang Greffrath
- Department of Neurophysiology, Centre for Biomedicine and Medical Technology Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Harry van Goor
- Department of Pathology and Medical Biology, Division of Pathology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Jan-Luuk Hillebrands
- Department of Pathology and Medical Biology, Division of Pathology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | | |
Collapse
|
11
|
Muthuraman A, Singh N. Neuroprotective effect of saponin rich extract of Acorus calamus L. in rat model of chronic constriction injury (CCI) of sciatic nerve-induced neuropathic pain. JOURNAL OF ETHNOPHARMACOLOGY 2012; 142:723-731. [PMID: 22706151 DOI: 10.1016/j.jep.2012.05.049] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 05/06/2012] [Accepted: 05/25/2012] [Indexed: 06/01/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditionally, Acorus calamus has been used for the treatment and management of headache, migraine, body ache and severe inflammatory pain in the Unani, Ayurveda and Indian system of medicine. AIM OF THE STUDY Present study focuses on the evaluation of saponin rich extract of Acorus calamus (SRE-AC) in chronic constriction injury (CCI) of sciatic nerve induced neuropathic pain and neuronal functional changes in rats. MATERIALS AND METHODS The pain sensitive tests, i.e., thermal and mechanical hyperalgesia and sciatic functional index test, were performed on the different days, i.e., days 0, 1, 7, 14, and 21. The motor and sensory nerve conduction velocity was also measured on the 21st day. Tissue total protein, superoxide anion generation, total calcium, myeloperoxidase and TNF-α levels were estimated to assess biochemical changes. Histopathological evaluations were also performed. SRE-AC (20 and 40 mg/kg) and pregabalin (10mg/kg, serving as a positive control) were administered orally for 14 consecutive days from the day of surgery. RESULTS CCI produced significant (P<0.05) increase in thermal and mechanical hyperalgesia, rise in sciatic functional index, decrease in nerve conduction velocity, along with biochemical and histopathological changes. Oral administration of SRE-AC and pregabalin significantly (P<0.05) ameliorated CCI-induced nociceptive pain threshold, sciatic functional and electrophysiological changes in a dose dependent manner. Further, tissue biochemical and histopathological changes were also attenuated. CONCLUSION SRE-AC has shown ameliorative effect in CCI-induced neuropathic pain which may be attributed to its multiple actions including anti-oxidative, anti-inflammatory and neuroprotective actions.
Collapse
Affiliation(s)
- Arunachalam Muthuraman
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, India
| | | |
Collapse
|
12
|
|
13
|
Bohlen HG. Microvascular Consequences of Obesity and Diabetes. Microcirculation 2008. [DOI: 10.1016/b978-0-12-374530-9.00021-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Bujalska M, Tatarkiewicz J, de Cordé A, Gumułka SW. Effect of Cyclooxygenase and Nitric Oxide Synthase Inhibitors on Streptozotocin-Induced Hyperalgesia in Rats. Pharmacology 2007; 81:151-7. [DOI: 10.1159/000110787] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Accepted: 06/29/2007] [Indexed: 01/11/2023]
|
15
|
Dorenkamp M, Riad A, Stiehl S, Spillmann F, Westermann D, Du J, Pauschinger M, Noutsias M, Adams V, Schultheiss HP, Tschöpe C. Protection against oxidative stress in diabetic rats: role of angiotensin AT(1) receptor and beta 1-adrenoceptor antagonism. Eur J Pharmacol 2006; 520:179-87. [PMID: 16139267 DOI: 10.1016/j.ejphar.2005.07.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2005] [Revised: 05/19/2005] [Accepted: 07/19/2005] [Indexed: 02/07/2023]
Abstract
Oxidative stress and low-grade inflammation are hallmarks of diabetes mellitus. We explored protective, blood pressure-independent effects of the angiotensin II type 1 (AT(1)) receptor antagonist candesartan and the selective beta(1)-adrenoceptor antagonist metoprolol. Diabetes mellitus was induced in 8-week-old Sprague-Dawley rats after injection of streptozotocin. Diabetic rats were randomized to treatment with candesartan or metoprolol in sub-antihypertensive doses or to placebo treatment. In the quadriceps, musculature markers of oxidative stress and inflammation were determined. Function of the inherent vascular bed was measured in vivo in the autoperfused hindlimb. Increases in NAD(P)H activity, expression of its cytosolic subunit p22(phox) and of endothelial NO synthase e(NOS) displayed enhanced oxidative stress. Upregulated intercellular (ICAM)-1 and vascular cell adhesion molecule (VCAM)-1 and of inducible NOS (iNOS) revealed inflammatory processes. Diabetes was associated with severe impairment of endothelium-dependent and -independent vasodilatation. Candesartan, but not metoprolol, reduced NAD(P)H activity, attenuated diabetes-induced over-expression of p22(phox) and eNOS mRNA as well as ICAM-1, VCAM-1, iNOS and eNOS immunoreactivity and led to a substantial improvement of endothelium-dependent vasodilatation (+46.3% vs. placebo treatment; P<0.05). Angiotensin AT(1) receptor antagonism, but not beta(1)-adrenoceptor antagonism, ameliorates diabetes-generated oxidative stress, indicating a pivotal role of the renin-angiotensin system in the development of diabetic complications.
Collapse
Affiliation(s)
- Marc Dorenkamp
- Department of Cardiology and Pneumonology, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12200 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Uribe-Querol E, Martínez-Martínez E, Tapia-Rodríguez M, Hernández LR, Toscano-Márquez B, Padilla P, Gutiérrez-Ospina G. Metabolic indices shift in the hypothalamic-neurohypophysial system during lactation: implications for interpreting their relationship with neuronal activity. Neuroscience 2005; 134:1217-22. [PMID: 16054766 DOI: 10.1016/j.neuroscience.2005.05.059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2004] [Revised: 04/11/2005] [Accepted: 05/12/2005] [Indexed: 11/28/2022]
Abstract
Metabolic indices of neuronal activity are thought to predict changes in the frequency of action potentials. There are stimuli that do not shift action potential frequency but change the temporal organization of neuronal firing following modifications of excitatory inputs by inhibitory synaptic activation. To our knowledge it is unknown whether this kind of stimulus associates with adjustments of metabolic markers of neuronal activity. Here, we used the hypothalamic-neurohypophysial system of lactating rats to address whether shifts in the temporal organization of neuronal firing relate with modifications of metabolic markers of neuronal activity. Cytochrome oxidase activity, (3)H-2-deoxyglucose uptake, and the area occupied by blood vessels increased in the paraventricular nucleus and neurohypophysis of lactating rats, as compared with their virgin counterparts. Taken together, these results suggest that metabolic demands denote shifts in the temporal organization of action potentials related with the adjustment of excitatory synaptic activation, and support that changes in metabolic markers do not necessarily reflect shifts in the frequency of action potentials.
Collapse
Affiliation(s)
- E Uribe-Querol
- Laboratory of Evolutionary and Developmental Neurobiology, Department of Cell Biology and Physiology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México
| | | | | | | | | | | | | |
Collapse
|
17
|
Sandow SL, Goto K, Rummery NM, Hill CE. Developmental changes in myoendothelial gap junction mediated vasodilator activity in the rat saphenous artery. J Physiol 2004; 556:875-86. [PMID: 14766938 PMCID: PMC1665009 DOI: 10.1113/jphysiol.2003.058669] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
A role for myoendothelial gap junctions (MEGJs) has been proposed in the action of the vasodilator endothelium-derived hyperpolarizing factor (EDHF). EDHF activity varies in disease and during ageing, but little is known of the role of EDHF during development when, in many organ systems, gap junctions are up-regulated. The aims of the present study were therefore to determine whether an up-regulation of heterocellular gap junctional coupling occurs during arterial development and whether this change is reflected functionally through an increased action of EDHF. Results demonstrated that in the saphenous artery of juvenile WKY rats, MEGJs were abundant and application of acetylcholine (ACh) evoked EDHF-mediated hyperpolarization and relaxation in the presence of N(omega)-nitro-l-arginine methyl ester (L-NAME) and indomethacin to inhibit nitric oxide and prostaglandins, respectively. Responses were blocked by a combination of charybdotoxin plus apamin, or 1-[(2-chlorophenyl)diphenylmethyl]-1H-pyrazole (TRAM-34) plus apamin, or by blockade of gap junctions with the connexin (Cx)-mimetic peptides, (43)Gap26, (40)Gap27 and (37,43)Gap27. On the other hand, we found no evidence for the involvement of the putative chemical mediators of EDHF, eicosanoids, L-NAME-insensitive nitric oxide, hydrogen peroxide or potassium ions, since 14,15-epoxyeicosa-5(Z)-enoic acid (14,15-EEZE), hydroxocobalamin, catalase or barium and ouabain were without effect. In contrast, in the adult saphenous artery, MEGJs were rare, EDHF-mediated relaxation was absent and hyperpolarizations were small and unstable. The present study demonstrates that MEGJs and EDHF are up-regulated during arterial development. Furthermore, the data show for the first time that this developmentally regulated EDHF is dependent on direct electrotonic coupling via MEGJs.
Collapse
MESH Headings
- 8,11,14-Eicosatrienoic Acid/analogs & derivatives
- 8,11,14-Eicosatrienoic Acid/pharmacology
- Acetylcholine/pharmacology
- Animals
- Apamin/pharmacology
- Arteries/drug effects
- Arteries/physiology
- Barium/pharmacology
- Biological Factors/physiology
- Catalase/pharmacology
- Charybdotoxin/pharmacology
- Connexin 26
- Connexins/chemistry
- Connexins/pharmacology
- Endothelium, Vascular/cytology
- Endothelium, Vascular/physiology
- Femoral Artery/drug effects
- Femoral Artery/physiology
- Gap Junctions/physiology
- Gap Junctions/ultrastructure
- Hydroxocobalamin/pharmacology
- Immunohistochemistry
- In Vitro Techniques
- Indomethacin/pharmacology
- Male
- Membrane Potentials/drug effects
- Microscopy, Electron
- Models, Biological
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/physiology
- NG-Nitroarginine Methyl Ester/pharmacology
- Oligopeptides
- Ouabain/pharmacology
- Patch-Clamp Techniques
- Peptide Fragments/pharmacology
- Phenylephrine/pharmacology
- Pyrazoles/pharmacology
- Rats
- Rats, Inbred WKY
- Vasodilation/drug effects
- Vasodilation/physiology
Collapse
Affiliation(s)
- Shaun L Sandow
- Division of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia.
| | | | | | | |
Collapse
|
18
|
|