1
|
Ün D, Kovalchuk V, El-Kasaby A, Kasture A, Koban F, Kudlacek O, Freissmuth M, Sucic S. Breaking the rules of SLC6 transporters: Export of the human creatine transporter-1 from the endoplasmic reticulum is supported by its N-terminus. J Neurochem 2024; 168:2007-2021. [PMID: 38419374 DOI: 10.1111/jnc.16088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 03/02/2024]
Abstract
Mutations in the human creatine transporter 1 (CRT1/SLC6A8) cause the creatine transporter deficiency syndrome, which is characterized by intellectual disability, epilepsy, autism, and developmental delay. The vast majority of mutations cause protein misfolding and hence reduce cell surface expression. Hence, it is important to understand the molecular machinery supporting folding and export of CRT1 from the endoplasmic reticulum (ER). All other SLC6 members thus far investigated rely on a C-terminal motif for binding the COPII-component SEC24 to drive their ER export; their N-termini are dispensable. Here, we show that, in contrast, in CRT1 the C-terminal ER-export motif is cryptic and it is the N-terminus, which supports ER export. This conclusion is based on the following observations: (i) siRNA-induced depletion of individual SEC24 isoforms revealed that CRT1 relied on SEC24C for ER export. However, mutations of the C-terminal canonical ER-export motif of CRT1 did not impair its cell surface delivery. (ii) Nevertheless, the C-terminal motif of CRT1 was operational in a chimeric protein comprising the serotonin transporter (SERT/SLC6A4) and the C-terminus of CRT1. (iii) Tagging of the N-terminus-but not the C-terminus-with yellow fluorescent protein (YFP) resulted in ER retention. (iv) Serial truncations of the N-terminus showed that removal of ≥51 residues of CRT1 impaired surface delivery, because the truncated CRT1 were confined to the ER. (v) Mutation of P51 to alanine also reduced cell surface delivery of CRT1 and relieved its dependence on SEC24C. Thus, the ER-export motif in the N-terminus of CRT1 overrides the canonical C-terminal motif.
Collapse
Affiliation(s)
- Didem Ün
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Vasylyna Kovalchuk
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Ali El-Kasaby
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Ameya Kasture
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria
| | - Florian Koban
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Oliver Kudlacek
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Michael Freissmuth
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Sonja Sucic
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
2
|
Sawant H, Selvaraj R, Manogaran P, Borthakur A. Intestinal Epithelial Creatine Transporter SLC6A8 Dysregulation in Inflammation and in Response to Adherent Invasive E. coli Infection. Int J Mol Sci 2024; 25:6537. [PMID: 38928243 PMCID: PMC11204174 DOI: 10.3390/ijms25126537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Creatine transporter (CrT1) mediates cellular uptake of creatine (Cr), a nutrient pivotal in maintaining energy homeostasis in various tissues including intestinal epithelial cells (IECs). The impact of CrT1 deficiency on the pathogenesis of various psychiatric and neurological disorders has been extensively investigated. However, there are no studies on its regulation in IECs in health and disease. Current studies have determined differential expression of CrT1 along the length of the mammalian intestine and its dysregulation in inflammatory bowel disease (IBD)-associated inflammation and Adherent Invasive E. coli (AIEC) infection. CrT1 mRNA and protein levels in normal intestines and their alterations in inflammation and following AIEC infection were determined in vitro in model IECs (Caco-2/IEC-6) and in vivo in SAMP1/YitFc mice, a model of spontaneous ileitis resembling human IBD. CrT1 is differentially expressed in different regions of mammalian intestines with its highest expression in jejunum. In vitro, CrT1 function (Na+-dependent 14C-Cr uptake), expression and promoter activity significantly decreased following TNFα/IL1β treatments and AIEC infection. SAMP1 mice and ileal organoids generated from SAMP1 mice also showed decreased CrT1 mRNA and protein compared to AKR controls. Our studies suggest that Cr deficiency in IECs secondary to CrT1 dysregulation could be a key factor contributing to IBD pathogenesis.
Collapse
Affiliation(s)
| | | | | | - Alip Borthakur
- Department of Clinical and Translational Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (H.S.); (R.S.); (P.M.)
| |
Collapse
|
3
|
Clarke A, Farr CV, El‐Kasaby A, Szöllősi D, Freissmuth M, Sucic S, Stockner T. Probing binding and occlusion of substrate in the human creatine transporter-1 by computation and mutagenesis. Protein Sci 2024; 33:e4842. [PMID: 38032325 PMCID: PMC10751730 DOI: 10.1002/pro.4842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/16/2023] [Accepted: 11/18/2023] [Indexed: 12/01/2023]
Abstract
In chordates, energy buffering is achieved in part through phosphocreatine, which requires cellular uptake of creatine by the membrane-embedded creatine transporter (CRT1/SLC6A8). Mutations in human slc6a8 lead to creatine transporter deficiency syndrome, for which there is only limited treatment. Here, we used a combined homology modeling, molecular dynamics, and experimental approach to generate a structural model of CRT1. Our observations support the following conclusions: contrary to previous proposals, C144, a key residue in the substrate binding site, is not present in a charged state. Similarly, the side chain D458 must be present in a protonated form to maintain the structural integrity of CRT1. Finally, we identified that the interaction chain Y148-creatine-Na+ is essential to the process of occlusion, which occurs via a "hold-and-pull" mechanism. The model should be useful to study the impact of disease-associated point mutations on the folding of CRT1 and identify approaches which correct folding-deficient mutants.
Collapse
Affiliation(s)
- Amy Clarke
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and PharmacologyMedical University of ViennaViennaAustria
| | - Clemens V. Farr
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and PharmacologyMedical University of ViennaViennaAustria
| | - Ali El‐Kasaby
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and PharmacologyMedical University of ViennaViennaAustria
| | - Daniel Szöllősi
- Department of Theoretical and Computational BiophysicsMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
| | - Michael Freissmuth
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and PharmacologyMedical University of ViennaViennaAustria
| | - Sonja Sucic
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and PharmacologyMedical University of ViennaViennaAustria
| | - Thomas Stockner
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and PharmacologyMedical University of ViennaViennaAustria
| |
Collapse
|
4
|
Chang H, Leem YH. The potential role of creatine supplementation in neurodegenerative diseases. Phys Act Nutr 2023; 27:48-54. [PMID: 38297476 PMCID: PMC10844727 DOI: 10.20463/pan.2023.0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 12/25/2023] [Accepted: 12/29/2023] [Indexed: 02/02/2024] Open
Abstract
PURPOSE The maintenance of energy balance in the body, especially in energy-demanding tissues like the muscles and the central nervous system, depends on creatine (Cr). In addition to improving muscle function, Cr is necessary for the bioenergetics of the central nervous system because it replenishes adenosine triphosphate without needing oxygen. Furthermore, Cr possesses anti-oxidant, anti-apoptotic, and anti-excitotoxic properties. Clinical research on neurodegenerative illnesses has shown that Cr supplementation results in less effective outcomes. With a brief update on the possible role of Cr in human, animal, and in vitro experiments, this review seeks to offer insights into the ideal dosage regimen. METHODS Using specified search phrases, such as "creatine and neurological disorder," "creatine supplementation and neurodegenerative disorders," and "creatine and brain," we searched articles in the PubMed database and Google Scholar. We investigated the association between creatine supplementation and neurodegenerative illnesses by examining references. RESULTS The neuroprotective effects of Cr were observed in in vitro and animal models of certain neurodegenerative diseases, while clinical trials failed to reproduce favorable outcomes. CONCLUSION Determining the optimal creatinine regime for increasing brain creatinine levels is essential for maintaining brain health and treating neurodegeneration.
Collapse
Affiliation(s)
- Hyukki Chang
- Department of Sport and Exercise Science, Seoul Women’s University, Seoul, Republic of Korea
| | - Yea-Hyun Leem
- Department of Molecular Medicine and Tissue Injury Defense Research Center, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
5
|
Colgan SP, Wang RX, Hall CH, Bhagavatula G, Lee JS. Revisiting the "starved gut" hypothesis in inflammatory bowel disease. IMMUNOMETABOLISM (COBHAM, SURREY) 2023; 5:e0016. [PMID: 36644501 PMCID: PMC9831042 DOI: 10.1097/in9.0000000000000016] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/22/2022] [Indexed: 01/17/2023]
Abstract
Active episodes of inflammatory bowel disease (IBD), which include ulcerative colitis and Crohn's disease, coincide with profound shifts in the composition of the microbiota and host metabolic energy demand. Intestinal epithelial cells (IEC) that line the small intestine and colon serve as an initial point for contact for the microbiota and play a central role in innate immunity. In the 1980s, Roediger et al proposed the hypothesis that IBD represented a disease of diminished mucosal nutrition and energy deficiency ("starved gut") that strongly coincided with the degree of inflammation. These studies informed the scientific community about the important contribution of microbial-derived metabolites, particularly short-chain fatty acids (SCFA) such as butyrate, to overall energy homeostasis. Decades later, it is appreciated that disease-associated shifts in the microbiota, termed dysbiosis, places inordinate demands on energy acquisition within the mucosa, particularly during active inflammation. Here, we review the topic of tissue energetics in mucosal health and disease from the original perspective of that proposed by the starved gut hypothesis.
Collapse
Affiliation(s)
- Sean P. Colgan
- Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, CO, USA
- Rocky Mountain Veterans Hospital, Aurora, CO, USA
| | - Ruth X. Wang
- Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, CO, USA
| | - Caroline H.T. Hall
- Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, CO, USA
- Division of Gastroenterology, Hepatology and Nutrition, Children’s Hospital Colorado, Aurora, CO, USA
| | - Geetha Bhagavatula
- Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, CO, USA
- Division of Gastroenterology, Hepatology and Nutrition, Children’s Hospital Colorado, Aurora, CO, USA
| | - J. Scott Lee
- Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
6
|
Jomura R, Akanuma SI, Tachikawa M, Hosoya KI. SLC6A and SLC16A family of transporters: Contribution to transport of creatine and creatine precursors in creatine biosynthesis and distribution. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183840. [PMID: 34921896 DOI: 10.1016/j.bbamem.2021.183840] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/06/2021] [Accepted: 12/09/2021] [Indexed: 11/16/2022]
Abstract
Creatine (Cr) is needed to maintain high energy levels in cells. Since Cr plays reportedly a critical role in neurodevelopment and the immune system, Cr dynamics should be strictly regulated to control these physiological events. This review focuses on the role of transporters that recognize Cr and/or Cr precursors. Our previous studies revealed physiological roles of SLC6A and SLC16A family transporters in Cr dynamics. Creatine transporter (CRT/SLC6A8) contributes to the influx transport of Cr in Cr distribution. γ-Aminobutyric acid transporter 2 (GAT2/SLC6A13) mediates incorporation of guanidinoacetate (GAA), a Cr precursor, in the process of Cr biosynthesis. Monocarboxylate transporter 12 (MCT12/SLC16A12) functions as an efflux transporter for Cr and GAA, and contributes to the process of Cr biosynthesis. Accordingly, the SLC6A and SLC16A family of transporters play important roles in the process of Cr biosynthesis and distribution via permeation of Cr and Cr precursors across the plasma membrane.
Collapse
Affiliation(s)
- Ryuta Jomura
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - Shin-Ichi Akanuma
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - Masanori Tachikawa
- Graduate School of Biomedical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima 770-8505, Japan.
| | - Ken-Ichi Hosoya
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| |
Collapse
|
7
|
Post A, Kremer D, Swarte JC, Sokooti S, Vogelpohl FA, Groothof D, Kema I, Garcia E, Connelly MA, Wallimann T, Dullaart RP, Franssen CF, Bakker SJ. Plasma creatine concentration is associated with incident hypertension in a cohort enriched for the presence of high urinary albumin concentration: the Prevention of Renal and Vascular Endstage Disease study. J Hypertens 2022; 40:229-239. [PMID: 34371517 PMCID: PMC8728759 DOI: 10.1097/hjh.0000000000002996] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/22/2021] [Accepted: 07/24/2021] [Indexed: 11/27/2022]
Abstract
OBJECTIVE : Hypertension is a major risk factor for cardiovascular disease, kidney disease, and premature death. Increased levels of creatine kinase are associated with development of hypertension. However, it is unknown if creatine, a substrate of CK, is associated with the development of hypertension. We therefore, aimed to investigate the association between plasma creatine concentration and incident hypertension. METHODS We measured fasting plasma creatine concentrations by nuclear magnetic resonance spectroscopy in participants of the population-based PREVEND study. The study outcome was incident hypertension, defined as either a SBP of at least 140 mmHg, a DBP of at least 90 mmHg, or the new usage of antihypertensive drugs. Participants with hypertension at baseline were excluded. RESULTS We included 3135 participants (46% men) aged 49 ± 10 years. Mean plasma creatine concentrations were 36.2 ± 17.5 μmol/l, with higher concentrations in women than in men (42.2 ± 17.6 versus 29.2 ± 17.6 μmol/l; P < 0.001). During a median of 7.1 [interquartile range: 3.6-7.6] years of follow-up, 927 participants developed incident hypertension. Higher plasma creatine concentrations were associated with an increased risk of incident hypertension [HR per doubling of plasma creatine: 1.21 (95% confidence interval: 1.10-1.34); P < 0.001], which remained significant after adjustment for potential confounders. Sex-stratified analyses demonstrated higher plasma creatine that was independently associated with an increased risk of incident hypertension in men [hazard ratio: 1.26 (95% CI 1.11-1.44); P < 0.001], but not in women (hazard ratio: 1.13 (95% CI 0.96-1.33); P = 0.14]. Causal pathway analyses demonstrate that the association was not explained by sodium or protein intake. CONCLUSION Higher plasma creatine is associated with an increased risk of hypertension in men. Future studies are warranted to determine the underlying mechanisms.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ido.P. Kema
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Erwin Garcia
- Laboratory Corporation of America Holdings (Labcorp), Morrisville, North Carolina, USA
| | - Margery A. Connelly
- Laboratory Corporation of America Holdings (Labcorp), Morrisville, North Carolina, USA
| | | | | | | | | |
Collapse
|
8
|
Anders JPV, Neltner TJ, Smith RW, Keller JL, Housh TJ, Daugherty FJ, Tempesta MS, Dash AK, Munt DJ, Schmidt RJ, Johnson GO. The effects of phosphocreatine disodium salts plus blueberry extract supplementation on muscular strength, power, and endurance. J Int Soc Sports Nutr 2021; 18:60. [PMID: 34503541 PMCID: PMC8427883 DOI: 10.1186/s12970-021-00456-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/01/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Numerous studies have demonstrated the efficacy of creatine supplementation for improvements in exercise performance. Few studies, however, have examined the effects of phosphocreatine supplementation on exercise performance. Furthermore, while polyphenols have antioxidant and anti-inflammatory properties, little is known regarding the influence of polyphenol supplementation on muscular strength, power, and endurance. Thus, the purpose of the present study was to compare the effects of 28 days of supplementation with phosphocreatine disodium salts plus blueberry extract (PCDSB), creatine monohydrate (CM), and placebo on measures of muscular strength, power, and endurance. METHODS Thirty-three men were randomly assigned to consume either PCDSB, CM, or placebo for 28 days. Peak torque (PT), average power (AP), and percent decline for peak torque (PT%) and average power (AP%) were assessed from a fatigue test consisting of 50 maximal, unilateral, isokinetic leg extensions at 180°·s- 1 before and after the 28 days of supplementation. Individual responses were assessed to examine the proportion of subjects that exceeded a minimal important difference (MID). RESULTS The results demonstrated significant (p < 0.05) improvements in PT for the PCDSB and CM groups from pre- (99.90 ± 22.47 N·m and 99.95 ± 22.50 N·m, respectively) to post-supplementation (119.22 ± 29.87 N·m and 111.97 ± 24.50 N·m, respectively), but no significant (p = 0.112) change for the placebo group. The PCDSB and CM groups also exhibited significant improvements in AP from pre- (140.18 ± 32.08 W and 143.42 ± 33.84 W, respectively) to post-supplementation (170.12 ± 42.68 W and 159.78 ± 31.20 W, respectively), but no significant (p = 0.279) change for the placebo group. A significantly (p < 0.05) greater proportion of subjects in the PCDSB group exceeded the MID for PT compared to the placebo group, but there were no significant (p > 0.05) differences in the proportion of subjects exceeding the MID between the CM and placebo groups or between the CM and PCDSB groups. CONCLUSIONS These findings indicated that for the group mean responses, 28 days of supplementation with both PCDSB and CM resulted in increases in PT and AP. The PCDSB, however, may have an advantage over CM when compared to the placebo group for the proportion of individuals that respond favorably to supplementation with meaningful increases in muscular strength.
Collapse
Affiliation(s)
- John Paul V Anders
- Department of Nutrition and Human Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68510, USA.
| | - Tyler J Neltner
- Department of Nutrition and Human Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68510, USA
| | - Robert W Smith
- Department of Nutrition and Human Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68510, USA
| | - Joshua L Keller
- Department of Health, Kinesiology and Sport, University of South Alabama, Mobile, AL, 36688, USA
| | - Terry J Housh
- Department of Nutrition and Human Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68510, USA
| | | | | | - Alekha K Dash
- Department of Pharmacy Sciences, School of Pharmacy and Health Professions, Omaha, NE, 68178, USA
| | - Daniel J Munt
- Department of Pharmacy Sciences, School of Pharmacy and Health Professions, Omaha, NE, 68178, USA
| | - Richard J Schmidt
- Department of Nutrition and Human Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68510, USA
| | - Glen O Johnson
- Department of Nutrition and Human Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68510, USA
| |
Collapse
|
9
|
Chloride-dependent conformational changes in the GlyT1 glycine transporter. Proc Natl Acad Sci U S A 2021; 118:2017431118. [PMID: 33658361 DOI: 10.1073/pnas.2017431118] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The human GlyT1 glycine transporter requires chloride for its function. However, the mechanism by which Cl- exerts its influence is unknown. To examine the role that Cl- plays in the transport cycle, we measured the effect of Cl- on both glycine binding and conformational changes. The ability of glycine to displace the high-affinity radioligand [3H]CHIBA-3007 required Na+ and was potentiated over 1,000-fold by Cl- We generated GlyT1b mutants containing reactive cysteine residues in either the extracellular or cytoplasmic permeation pathways and measured changes in the reactivity of those cysteine residues as indicators of conformational changes in response to ions and substrate. Na+ increased accessibility in the extracellular pathway and decreased it in the cytoplasmic pathway, consistent with stabilizing an outward-open conformation as observed in other members of this transporter family. In the presence of Na+, both glycine and Cl- independently shifted the conformation of GlyT1b toward an outward-closed conformation. Together, Na+, glycine, and Cl- stabilized an inward-open conformation of GlyT1b. We then examined whether Cl- acts by interacting with a conserved glutamine to allow formation of an ion pair that stabilizes the closed state of the extracellular pathway. Molecular dynamics simulations of a GlyT1 homolog indicated that this ion pair is formed more frequently as that pathway closes. Mutation of the glutamine blocked the effect of Cl-, and substituting it with glutamate or lysine resulted in outward- or inward-facing transporter conformations, respectively. These results provide an unexpected insight into the role of Cl- in this family of transporters.
Collapse
|
10
|
Jomura R, Tanno Y, Akanuma SI, Kubo Y, Tachikawa M, Hosoya KI. Contribution of monocarboxylate transporter 12 to blood supply of creatine on the sinusoidal membrane of the hepatocytes. Am J Physiol Gastrointest Liver Physiol 2021; 321:G113-G122. [PMID: 34075817 DOI: 10.1152/ajpgi.00143.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Creatine (Cr)/phosphocreatine has the ability to buffer the high-energy phosphate, thereby contributing to intracellular energy homeostasis. As Cr biosynthetic enzyme deficiency is reported to increase susceptibility to colitis under conditions of inflammatory stress, Cr is critical for maintaining intestinal homeostasis under inflammatory stress. Cr is mainly produced in the hepatocytes and then distributed to other organs of the body by the circulatory system. Since monocarboxylate transporter 9 (MCT9) and monocarboxylate transporter 12 (MCT12) have been reported to accept Cr as a substrate, these transporters are proposed as candidates for Cr efflux transporter in the liver. The aim of this study was to elucidate the transport mechanism on Cr supply from the hepatocytes. Immunohistochemical staining of the rat liver sections revealed that both MCT9 and MCT12 were localized on the sinusoidal membrane of the hepatocytes. In the transport studies using Xenopus laevis oocyte expression system, [14C]Cr efflux from MCT9- or MCT12-expressing oocytes was significantly greater than that from water-injected oocytes. [14C]Cr efflux from primary cultured hepatocytes was significantly decreased following MCT12 mRNA knockdown, whereas this efflux was not decreased after mRNA knockdown of MCT9. Based on the extent of MCT12 protein downregulation and Cr efflux after knockdown of MCT12 in primary cultured rat hepatocytes, the contribution ratio of MCT12 in Cr efflux was calculated as 76.4%. Our study suggests that MCT12 substantially contributes to the efflux of Cr at the sinusoidal membrane of the hepatocytes.NEW & NOTEWORTHY Our study is the first to identify the role of monocarboxylate transporter 12 (MCT12) as a transporter of creatine (Cr) in the liver. MCT12 was found to significantly contribute to the efflux of Cr on the sinusoidal membrane of the hepatocytes. Since hepatocytes are known to be involved in creatine biosynthesis, the present findings can be beneficial for the regulation of Cr biosynthesis and supply.
Collapse
Affiliation(s)
- Ryuta Jomura
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Yu Tanno
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Shin-Ichi Akanuma
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Yoshiyuki Kubo
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Masanori Tachikawa
- Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Ken-Ichi Hosoya
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| |
Collapse
|
11
|
Creatine Supplementation for Patients with Inflammatory Bowel Diseases: A Scientific Rationale for a Clinical Trial. Nutrients 2021; 13:nu13051429. [PMID: 33922654 PMCID: PMC8145094 DOI: 10.3390/nu13051429] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/18/2021] [Accepted: 04/22/2021] [Indexed: 12/12/2022] Open
Abstract
Based on theoretical considerations, experimental data with cells in vitro, animal studies in vivo, as well as a single case pilot study with one colitis patient, a consolidated hypothesis can be put forward, stating that “oral supplementation with creatine monohydrate (Cr), a pleiotropic cellular energy precursor, is likely to be effective in inducing a favorable response and/or remission in patients with inflammatory bowel diseases (IBD), like ulcerative colitis and/or Crohn’s disease”. A current pilot clinical trial that incorporates the use of oral Cr at a dose of 2 × 7 g per day, over an initial period of 2 months in conjunction with ongoing therapies (NCT02463305) will be informative for the proposed larger, more long-term Cr supplementation study of 2 × 3–5 g of Cr per day for a time of 3–6 months. This strategy should be insightful to the potential for Cr in reducing or alleviating the symptoms of IBD. Supplementation with chemically pure Cr, a natural nutritional supplement, is well tolerated not only by healthy subjects, but also by patients with diverse neuromuscular diseases. If the outcome of such a clinical pilot study with Cr as monotherapy or in conjunction with metformin were positive, oral Cr supplementation could then be used in the future as potentially useful adjuvant therapeutic intervention for patients with IBD, preferably together with standard medication used for treating patients with chronic ulcerative colitis and/or Crohn’s disease.
Collapse
|
12
|
Bonilla DA, Kreider RB, Stout JR, Forero DA, Kerksick CM, Roberts MD, Rawson ES. Metabolic Basis of Creatine in Health and Disease: A Bioinformatics-Assisted Review. Nutrients 2021; 13:nu13041238. [PMID: 33918657 PMCID: PMC8070484 DOI: 10.3390/nu13041238] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/01/2021] [Accepted: 04/07/2021] [Indexed: 02/06/2023] Open
Abstract
Creatine (Cr) is a ubiquitous molecule that is synthesized mainly in the liver, kidneys, and pancreas. Most of the Cr pool is found in tissues with high-energy demands. Cr enters target cells through a specific symporter called Na+/Cl−-dependent Cr transporter (CRT). Once within cells, creatine kinase (CK) catalyzes the reversible transphosphorylation reaction between [Mg2+:ATP4−]2− and Cr to produce phosphocreatine (PCr) and [Mg2+:ADP3−]−. We aimed to perform a comprehensive and bioinformatics-assisted review of the most recent research findings regarding Cr metabolism. Specifically, several public databases, repositories, and bioinformatics tools were utilized for this endeavor. Topics of biological complexity ranging from structural biology to cellular dynamics were addressed herein. In this sense, we sought to address certain pre-specified questions including: (i) What happens when creatine is transported into cells? (ii) How is the CK/PCr system involved in cellular bioenergetics? (iii) How is the CK/PCr system compartmentalized throughout the cell? (iv) What is the role of creatine amongst different tissues? and (v) What is the basis of creatine transport? Under the cellular allostasis paradigm, the CK/PCr system is physiologically essential for life (cell survival, growth, proliferation, differentiation, and migration/motility) by providing an evolutionary advantage for rapid, local, and temporal support of energy- and mechanical-dependent processes. Thus, we suggest the CK/PCr system acts as a dynamic biosensor based on chemo-mechanical energy transduction, which might explain why dysregulation in Cr metabolism contributes to a wide range of diseases besides the mitigating effect that Cr supplementation may have in some of these disease states.
Collapse
Affiliation(s)
- Diego A. Bonilla
- Research Division, Dynamical Business & Science Society–DBSS International SAS, Bogotá 110861, Colombia
- Research Group in Biochemistry and Molecular Biology, Universidad Distrital Francisco José de Caldas, Bogotá 110311, Colombia
- Research Group in Physical Activity, Sports and Health Sciences (GICAFS), Universidad de Córdoba, Montería 230002, Colombia
- kDNA Genomics, Joxe Mari Korta Research Center, University of the Basque Country UPV/EHU, 20018 Donostia-San Sebastián, Spain
- Correspondence: ; Tel.: +57-320-335-2050
| | - Richard B. Kreider
- Exercise & Sport Nutrition Laboratory, Human Clinical Research Facility, Texas A&M University, College Station, TX 77843, USA;
| | - Jeffrey R. Stout
- Physiology of Work and Exercise Response (POWER) Laboratory, Institute of Exercise Physiology and Rehabilitation Science, University of Central Florida, Orlando, FL 32816, USA;
| | - Diego A. Forero
- Professional Program in Sport Training, School of Health and Sport Sciences, Fundación Universitaria del Área Andina, Bogotá 111221, Colombia;
| | - Chad M. Kerksick
- Exercise and Performance Nutrition Laboratory, School of Health Sciences, Lindenwood University, Saint Charles, MO 63301, USA;
| | - Michael D. Roberts
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA;
- Edward via College of Osteopathic Medicine, Auburn, AL 36849, USA
| | - Eric S. Rawson
- Department of Health, Nutrition and Exercise Science, Messiah University, Mechanicsburg, PA 17055, USA;
| |
Collapse
|
13
|
The Potential Role of Creatine in Vascular Health. Nutrients 2021; 13:nu13030857. [PMID: 33807747 PMCID: PMC7999364 DOI: 10.3390/nu13030857] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/24/2021] [Accepted: 03/04/2021] [Indexed: 12/11/2022] Open
Abstract
Creatine is an organic compound, consumed exogenously in the diet and synthesized endogenously via an intricate inter-organ process. Functioning in conjunction with creatine kinase, creatine has long been known for its pivotal role in cellular energy provision and energy shuttling. In addition to the abundance of evidence supporting the ergogenic benefits of creatine supplementation, recent evidence suggests a far broader application for creatine within various myopathies, neurodegenerative diseases, and other pathologies. Furthermore, creatine has been found to exhibit non-energy related properties, contributing as a possible direct and in-direct antioxidant and eliciting anti-inflammatory effects. In spite of the new clinical success of supplemental creatine, there is little scientific insight into the potential effects of creatine on cardiovascular disease (CVD), the leading cause of mortality. Taking into consideration the non-energy related actions of creatine, highlighted in this review, it can be speculated that creatine supplementation may serve as an adjuvant therapy for the management of vascular health in at-risk populations. This review, therefore, not only aims to summarize the current literature surrounding creatine and vascular health, but to also shed light onto the potential mechanisms in which creatine may be able to serve as a beneficial supplement capable of imparting vascular-protective properties and promoting vascular health.
Collapse
|
14
|
Treibmann S, Händler S, Hofmann T, Henle T. MG-HCr, the Methylglyoxal-Derived Hydroimidazolone of Creatine, a Biomarker for the Dietary Intake of Animal Source Food. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4966-4972. [PMID: 32233480 DOI: 10.1021/acs.jafc.0c00907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In the course of the Maillard reaction in vivo or in food, creatine reacts with the 1,2-dicarbonyl compound methylglyoxal to N-(4-methyl-5-oxo-1-imidazolin-2-yl)sarcosine (MG-HCr). We studied whether the urinary excretion of MG-HCr is affected by its intake with meat or by the intake of creatine and subsequent in vivo formation of MG-HCr. Therefore, 24 h urine of 30 subjects with different dietary habits was analyzed with HPLC-MS/MS. The daily MG-HCr excretion via urine varied between omnivores (0.39-9.67 μmol/day, n = 24), vegetarians (0.18-0.97 μmol/day, n = 19), and vegans (0.10-0.27 μmol/day, n = 8). An intervention study with 18 subjects demonstrated the bioavailability of MG-HCr (ca. 54%) from 200 g of heated meat and its quick excretion with urine. A creatine intervention of 0.44 g did not increase MG-HCr excretion. Thus, the differences in MG-HCr excretion between different diets are mainly caused by the dietary uptake of MG-HCr. We additionally found MG-HCr in milk and egg products, where it is formed during heat treatment. This partly explains differences in MG-HCr excretion of vegetarians and vegans. Hence, MG-HCr in urine is a short-term marker for the intake of heat-processed animal source food.
Collapse
Affiliation(s)
- Stephanie Treibmann
- Institute of Food Chemistry, Technische Universität Dresden, Dresden D-01062, Germany
| | - Sindy Händler
- Institute of Food Chemistry, Technische Universität Dresden, Dresden D-01062, Germany
| | - Thomas Hofmann
- Institute of Food Chemistry, Technische Universität Dresden, Dresden D-01062, Germany
| | - Thomas Henle
- Institute of Food Chemistry, Technische Universität Dresden, Dresden D-01062, Germany
| |
Collapse
|
15
|
Reicher N, Epstein T, Gravitz D, Cahaner A, Rademacher M, Braun U, Uni Z. From broiler breeder hen feed to the egg and embryo: The molecular effects of guanidinoacetate supplementation on creatine transport and synthesis. Poult Sci 2020; 99:3574-3582. [PMID: 32616254 PMCID: PMC7597819 DOI: 10.1016/j.psj.2020.03.052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 01/26/2020] [Accepted: 03/27/2020] [Indexed: 01/25/2023] Open
Abstract
Supplementation of broiler breeder hens with beneficial additives bears great potential for affecting nutrient deposition into the fertile egg. Guanidinoacetate (GAA) is the endogenous precursor of creatine that is used as a feed additive for improving cellular energy metabolism in animal nutrition. In the present study, we have investigated whether GAA supplementation in broiler breeder feed affects creatine deposition into the hatching egg and molecular mechanisms of creatine transport and synthesis within hens and their progeny. For this, broiler breeder hens of 47 wk of age were supplemented with 0.15% GAA for 15 wk, and samples from their tissues, hatching eggs and progeny were compared with those of control, nonsupplemented hens. A significant increase in creatine content was found within the yolk and albumen of hatching eggs obtained from the GAA group, compared with the control group. The GAA group exhibited a significant increased creatine transporter gene expression compared with the control group in their small intestines and oviduct. In GAA group progeny, a significant decrease in creatine transporter expression at embryonic day 19 and day of hatch was found, compared with control group progeny. At the day of hatch, creatine synthesis genes (arginine glycine amidinotransferase and guanidinoacetate N-methyltransferase) exhibited significant decrease in expression in the GAA group progeny compared with control group progeny. These results indicate that GAA supplementation in broiler breeder feed increases its absorbance and deposition into hatching eggs, subsequently affecting GAA and creatine absorbance and synthesis within broiler progeny.
Collapse
Affiliation(s)
- Naama Reicher
- Department of Animal Science, The Robert H. Smith, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Tomer Epstein
- Department of Animal Science, The Robert H. Smith, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Dor Gravitz
- Department of Animal Science, The Robert H. Smith, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Avigdor Cahaner
- Department of Animal Science, The Robert H. Smith, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | | | - Ulrike Braun
- AlzChem Trostberg GmbH, Trostberg 83308, Germany
| | - Zehava Uni
- Department of Animal Science, The Robert H. Smith, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel.
| |
Collapse
|
16
|
Abstract
With an ever aging population, identifying interventions that can alleviate age-related functional declines has become increasingly important. Dietary supplements have taken center stage based on various health claims and have become a multi-million dollar business. One such supplement is creatine, a major contributor to normal cellular physiology. Creatine, an energy source that can be endogenously synthesized or obtained through diet and supplement, is involved primarily in cellular metabolism via ATP replenishment. The goal of this chapter is to summarize how creatine and its associated enzyme, creatine kinase, act under normal physiological conditions, and how altered levels of either may lead to detrimental functional outcomes. Furthermore, we will focus on the effect of aging on the creatine system and how supplementation may affect the aging process and perhaps reverse it.
Collapse
Affiliation(s)
- Nathalie Sumien
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Ritu A Shetty
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Eric B Gonzales
- Department of Medical Education, TCU and UNTHSC School of Medicine, Fort Worth, TX, USA.
| |
Collapse
|
17
|
Hummer E, Suprak DN, Buddhadev HH, Brilla L, San Juan JG. Creatine electrolyte supplement improves anaerobic power and strength: a randomized double-blind control study. J Int Soc Sports Nutr 2019; 16:24. [PMID: 31126306 PMCID: PMC6534934 DOI: 10.1186/s12970-019-0291-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/19/2019] [Indexed: 12/02/2022] Open
Abstract
Background Creatine supplementation aids the Phosphagen system by increasing the amount of free creatine and phosphocreatine available to replenish adenosine triphosphate. The purpose of this study was to investigate the effects of a creatine and electrolyte formulated multi-ingredient performance supplement (MIPS) on strength and power performance compared to a placebo. Maximal strength along with total concentric work, mean rate of force development (mRFD), mean power, peak power, and peak force for both bench press and back squat were determined at pre-test and post-test separated by 6 weeks of supplementation. Methods Twenty-two subjects (6 females, 21 ± 2 yrs., 72.46 ± 11.18 kg, 1.72 ± 0.09 m) performed a one-repetition maximum (1RM) for back squat and bench press. Eighty percent of the subject’s pre-test 1RM was used for a maximal repetition test to assess performance variables. Testing was separated by 6 weeks of supplementation of a MIPS dose per day in a double-blind fashion for comparison. A two-way mixed analysis of covariance (ANCOVA) was applied with an alpha level of 0.05. Results For their back squat 1RM, the MIPS group displayed significant increase of 13.4% (95% CI: 2.77, 23.8%) while placebo displayed a decrease of − 0.2% (95% CI: − 1.46, 2.87%) (p = 0.047, ηp2 = 0.201). The MIPS displayed a significant increase of 5.9% (95% CI: 2.5, 10.1%) and placebo displayed a non-significant increase of 0.7% (95% CI: − 3.49, 3.9%) in bench press maximal strength (p = 0.033,0.217). The MIPS group displayed a significant increase as well in total concentric work (26.5, 95% CI: 6.07, 46.87%, p = 0.008, ηp2 = 0.330) and mean power (17.9, 95% CI: 3.42, 32.46%, p = 0.003, ηp2 = 0.402) for the maximal repetition bench press test at 80% of their 1RM. Conclusions The MIPS was found to be beneficial to recreationally trained individuals compared to a placebo. The greatest benefits are seen in bench press and back squat maximal strength as well as multiple repetition tests to fatigue during the bench press exercise.
Collapse
Affiliation(s)
- Erik Hummer
- The University of Tennessee, 1914 Andy Holt Ave, Knoxville, TN, 37996, USA
| | - David N Suprak
- Western Washington University, 516 High St, Bellingham, WA, 98225-9067, USA
| | - Harsh H Buddhadev
- Western Washington University, 516 High St, Bellingham, WA, 98225-9067, USA
| | - Lorrie Brilla
- Western Washington University, 516 High St, Bellingham, WA, 98225-9067, USA.
| | - Jun G San Juan
- Western Washington University, 516 High St, Bellingham, WA, 98225-9067, USA
| |
Collapse
|
18
|
Marques EP, Wyse ATS. Creatine as a Neuroprotector: an Actor that Can Play Many Parts. Neurotox Res 2019; 36:411-423. [PMID: 31069754 DOI: 10.1007/s12640-019-00053-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 04/12/2019] [Accepted: 04/23/2019] [Indexed: 12/11/2022]
Abstract
Creatine is a nitrogenous organic acid that plays a central role as an energy buffer in high energy demanding systems, including the muscular and the central nervous system. It can be acquired from diet or synthesized endogenously, and its main destination is the system creatine/phosphocreatine that strengthens cellular energetics via a temporal and spatial energy buffer that can restore cellular ATP without a reliance on oxygen. This compound has been proposed to possess secondary roles, such as direct and indirect antioxidant, immunomodulatory agent, and possible neuromodulator. However, these effects may be associated with its bioenergetic role in the mitochondria. Given the fundamental roles that creatine plays in the CNS, several preclinical and clinical studies have tested the potential that creatine has to treat degenerative disorders. However, although in vitro and in vivo animal models are highly encouraging, most clinical trials fail to reproduce positive results suggesting that the prophylactic use for neuroprotection in at-risk populations or patients is the most promising field. Nonetheless, the only clearly positive data of the creatine supplementation in human beings are related to the (rare) creatine deficiency syndromes. It seems critical that future studies must establish the best dosage regime to increase brain creatine in a way that can relate to animal studies, provide new ways for creatine to reach the brain, and seek larger experimental groups with biomarkers for prediction of efficacy.
Collapse
Affiliation(s)
- Eduardo Peil Marques
- Laboratory of Neuroprotection and Metabolic Disease, Biochemistry Department, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
- Post graduate program in Biological Science - Biochemistry, Biochemistry Department, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Angela T S Wyse
- Laboratory of Neuroprotection and Metabolic Disease, Biochemistry Department, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil.
- Post graduate program in Biological Science - Biochemistry, Biochemistry Department, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil.
| |
Collapse
|
19
|
Kinjo A, Sassa M, Koito T, Suzuki M, Inoue K. Functional characterization of the GABA transporter GAT-1 from the deep-sea mussel Bathymodiolus septemdierum. Comp Biochem Physiol A Mol Integr Physiol 2018; 227:1-7. [PMID: 30195015 DOI: 10.1016/j.cbpa.2018.08.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/27/2018] [Accepted: 08/28/2018] [Indexed: 10/28/2022]
Abstract
Mammalian γ-aminobutyric acid (GABA) transporter subtype 1 (GAT-1) is a specific transporter for GABA, an inhibitory neurotransmitter in GABA-ergic neurons. GAT-1 belongs to the GAT group, in which five related transporters, GAT-2, GAT-3, GAT-4, CT1, and TAUT are known in mammals. By contrast, the deep-sea mussel, Bathymodiolus septemdierum has only two GAT group members, BsGAT-1 and BsTAUT, and their function in environmental adaptation is of interest to better understand the physiology of deep-sea organisms. Compared with BsTAUT, the function of BsGAT-1 is unknown. Here, we report the functional characterization of BsGAT-1. Analyses of BsGAT-1 expressed in Xenopus oocytes showed that it could transport GABA in a Na+- and Cl--dependent manner, with Km and Vmax values of 0.58 μM and 1.97 pmol/oocyte/h, respectively. BsGAT-1 activity was blocked by the GAT-1 selective inhibitors SKF89976A and ACHC. Competition assays indicated that BsGAT-1 has no affinity for taurine and thiotaurine. These characteristics were common with those of mammalian GAT-1, suggesting its conserved function in the nervous system. However, BsGAT-1 showed a certain affinity for hypotaurine, which is involved in sulfide detoxification in hydrothermal vent-specific animals. This result suggests an additional role for BsGAT-1 in sulfide detoxification, which may be specific to the deep-sea mussel. In a tissue distribution analysis, BsGAT-1 mRNA expression was observed in various tissues. The expression in the adductor and byssus retractor muscles, labial palp, and foot, which possibly contain ganglia, suggested a function in the neural system, while BsGAT-1 expression in other tissues might be related to sulfide detoxification.
Collapse
Affiliation(s)
- Azusa Kinjo
- Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8564, Japan.
| | - Mieko Sassa
- Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8564, Japan; Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8563, Japan
| | - Tomoko Koito
- College of Bioresource Sciences, Nihon University, Fujisawa 252-0880, Japan
| | - Miwa Suzuki
- College of Bioresource Sciences, Nihon University, Fujisawa 252-0880, Japan
| | - Koji Inoue
- Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8564, Japan
| |
Collapse
|
20
|
Creatine-loading preserves intestinal barrier function during organ preservation. Cryobiology 2018; 84:69-76. [PMID: 30076796 DOI: 10.1016/j.cryobiol.2018.07.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/30/2018] [Accepted: 07/31/2018] [Indexed: 11/24/2022]
Abstract
We have developed a novel, intraluminal preservation solution that is tailored to the metabolic requirements of the intestine. This organ-specific solution addresses many of the problems associated with low temperature organ storage including energy, oxidative and osmotic stresses. However, conservation of energy levels remains one of the most difficult obstacles to overcome due to the inherent sensitivity of the mucosa to ischemia. Creatine-loading has become a popular and scientifically proven method of augmenting energy reserves in athletes performing anaerobic burst work activities. We hypothesized that if we could develop a method that was able to augment cellular energy levels, the structure and function of the mucosa would be more effectively preserved. The purpose of this study was to determine if creatine-loading is a feasible and effective strategy for preserving the intestine. Our data indicate that creatine loading has significant impact on energy levels during storage with corresponding improvements in mucosal structure and function. Both of our rodent models, a) continuous perfusion for 4 h and b) a single flush with our intraluminal preservation solution supplemented with 50 mM creatine, demonstrated significant improvements in creatine phosphate, ATP, Energy Charge and ATP/AMP following cold storage (P < 0.05). Notably, after 10 h creatine phosphate was 324% greater in Creatine-treated tissues compared to Controls (P < 0.05). Preferential utilization of glutathione in the Creatine group was effective at controlling oxidative injury after 10 h storage (P < 0.05). Improvements in barrier function and electrophysiology with creatine-treatment reflected superior mucosal integrity after 10 h storage; Permeability and Transepithelial resistance measurements remained at fresh tissue values. This was in stark contrast to Control tissues in which permeability rose to >300% of fresh tissue values (P < 0.005) and transepithelial resistance dropped by 95% (P < 0.005). After 10 h storage, Park's grading of histologic injury reflected extensive villus denudation (grade 4) in control tissues compared to healthy tissue (grade 0) in the Creatine group. This study demonstrates that a strategy of creatine supplementation of our intraluminal preservation solution facilitates the preservation of the intestinal mucosa during storage.
Collapse
|
21
|
Crisafulli DL, Buddhadev HH, Brilla LR, Chalmers GR, Suprak DN, San Juan JG. Creatine-electrolyte supplementation improves repeated sprint cycling performance: A double blind randomized control study. J Int Soc Sports Nutr 2018; 15:21. [PMID: 29743825 PMCID: PMC5930494 DOI: 10.1186/s12970-018-0226-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 04/24/2018] [Indexed: 11/10/2022] Open
Abstract
Background Creatine supplementation is recommended as an ergogenic aid to improve repeated sprint cycling performance. Furthermore, creatine uptake is increased in the presence of electrolytes. Prior research examining the effect of a creatine-electrolyte (CE) supplement on repeated sprint cycling performance, however, did not show post-supplementation improvement. The purpose of this double blind randomized control study was to investigate the effect of a six-week CE supplementation intervention on overall and repeated peak and mean power output during repeated cycling sprints with recovery periods of 2 min between sprints. Methods Peak and mean power generated by 23 male recreational cyclists (CE group: n = 12; 24.0 ± 4.2 years; placebo (P) group: n = 11; 23.3 ± 3.1 years) were measured on a Velotron ergometer as they completed five 15-s cycling sprints, with 2 min of recovery between sprints, pre- and post-supplementation. Mixed-model ANOVAs were used for statistical analyses. Results A supplement-time interaction showed a 4% increase in overall peak power (pre: 734 ± 75 W; post: 765 ± 71 W; p = 0.040; ηp2 = 0.187) and a 5% increase in overall mean power (pre: 586 ± 72 W; post: 615 ± 74 W; p = 0.019; ηp2 = 0.234) from pre- to post-supplementation for the CE group. For the P group, no differences were observed in overall peak (pre: 768 ± 95 W; post: 772 ± 108 W; p = 0.735) and overall mean power (pre: 638 ± 77 W; post: 643 ± 92 W; p = 0.435) from pre- to post-testing. For repeated sprint analysis, peak (pre: 737 ± 88 W; post: 767 ± 92 W; p = 0.002; ηp2 = 0.380) and mean (pre: 650 ± 92 W; post: 694 ± 87 W; p < 0.001; ηp2 = 0.578) power output were significantly increased only in the first sprint effort in CE group from pre- to post-supplementation testing. For the P group, no differences were observed for repeated sprint performance. Conclusion A CE supplement improves overall and repeated short duration sprint cycling performance when sprints are interspersed with adequate recovery periods.
Collapse
Affiliation(s)
- Daniel L Crisafulli
- Kinesiology Program, Department of Health and Human Development, Western Washington University, Carver 201L, MS 9067, 516 High Street, Bellingham, WA 98225 USA
| | - Harsh H Buddhadev
- Kinesiology Program, Department of Health and Human Development, Western Washington University, Carver 201L, MS 9067, 516 High Street, Bellingham, WA 98225 USA
| | - Lorrie R Brilla
- Kinesiology Program, Department of Health and Human Development, Western Washington University, Carver 201L, MS 9067, 516 High Street, Bellingham, WA 98225 USA
| | - Gordon R Chalmers
- Kinesiology Program, Department of Health and Human Development, Western Washington University, Carver 201L, MS 9067, 516 High Street, Bellingham, WA 98225 USA
| | - David N Suprak
- Kinesiology Program, Department of Health and Human Development, Western Washington University, Carver 201L, MS 9067, 516 High Street, Bellingham, WA 98225 USA
| | - Jun G San Juan
- Kinesiology Program, Department of Health and Human Development, Western Washington University, Carver 201L, MS 9067, 516 High Street, Bellingham, WA 98225 USA
| |
Collapse
|
22
|
Bhattacharya P. Can an Organoid Recapitulate the Metabolome of its Parent Tissue? A Pilot NMR Spectroscopy Study. ACTA ACUST UNITED AC 2017. [DOI: 10.15406/jcpcr.2017.08.00307] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
23
|
Uemura T, Ito S, Ohta Y, Tachikawa M, Wada T, Terasaki T, Ohtsuki S. Abnormal N-Glycosylation of a Novel Missense Creatine Transporter Mutant, G561R, Associated with Cerebral Creatine Deficiency Syndromes Alters Transporter Activity and Localization. Biol Pharm Bull 2017; 40:49-55. [PMID: 28049948 DOI: 10.1248/bpb.b16-00582] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cerebral creatine deficiency syndromes (CCDSs) are caused by loss-of-function mutations in creatine transporter (CRT, SLC6A8), which transports creatine at the blood-brain barrier and into neurons of the central nervous system (CNS). This results in low cerebral creatine levels, and patients exhibit mental retardation, poor language skills and epilepsy. We identified a novel human CRT gene missense mutation (c.1681 G>C, G561R) in Japanese CCDSs patients. The purpose of the present study was to evaluate the reduction of creatine transport in G561R-mutant CRT-expressing 293 cells, and to clarify the mechanism of its functional attenuation. G561R-mutant CRT exhibited greatly reduced creatine transport activity compared to wild-type CRT (WT-CRT) when expressed in 293 cells. Also, the mutant protein is localized mainly in intracellular membrane fraction, while WT-CRT is localized in plasma membrane. Western blot analysis revealed a 68 kDa band of WT-CRT protein in plasma membrane fraction, while G561R-mutant CRT protein predominantly showed bands at 55, 110 and 165 kDa in crude membrane fraction. The bands of both WT-CRT and G561R-mutant CRT were shifted to 50 kDa by N-glycosidase treatment. Our results suggest that the functional impairment of G561R-mutant CRT was probably caused by incomplete N-linked glycosylation due to misfolding during protein maturation, leading to oligomer formation and changes of cellular localization.
Collapse
Affiliation(s)
- Tatsuki Uemura
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University
| | | | | | | | | | | | | |
Collapse
|
24
|
Wallimann T, Riek U, Möddel M. Intradialytic creatine supplementation: A scientific rationale for improving the health and quality of life of dialysis patients. Med Hypotheses 2017; 99:1-14. [DOI: 10.1016/j.mehy.2016.12.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 12/03/2016] [Indexed: 12/19/2022]
|
25
|
Kitzenberg D, Colgan SP, Glover LE. Creatine kinase in ischemic and inflammatory disorders. Clin Transl Med 2016; 5:31. [PMID: 27527620 PMCID: PMC4987751 DOI: 10.1186/s40169-016-0114-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 08/02/2016] [Indexed: 12/20/2022] Open
Abstract
The creatine/phosphocreatine pathway plays a conserved and central role in energy metabolism. Compartmentalization of specific creatine kinase enzymes permits buffering of local high energy phosphates in a thermodynamically favorable manner, enabling both rapid energy storage and energy transfer within the cell. Augmentation of this metabolic pathway by nutritional creatine supplementation has been shown to elicit beneficial effects in a number of diverse pathologies, particularly those that incur tissue ischemia, hypoxia or oxidative stress. In these settings, creatine and phosphocreatine prevent depletion of intracellular ATP and internal acidification, enhance post-ischemic recovery of protein synthesis and promote free radical scavenging and stabilization of cellular membranes. The creatine kinase energy system is itself further regulated by hypoxic signaling, highlighting the existence of endogenous mechanisms in mammals that can enhance creatine metabolism during oxygen deprivation to promote tissue resolution and homeostasis. Here, we review recent insights into the creatine kinase pathway, and provide rationale for dietary creatine supplementation in human ischemic and inflammatory pathologies.
Collapse
Affiliation(s)
- David Kitzenberg
- Mucosal Inflammation Program, University of Colorado, Anschutz Medical Campus, 12700 East 19th Ave. MS B-146, Aurora, CO, 80045, USA.,Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Sean P Colgan
- Mucosal Inflammation Program, University of Colorado, Anschutz Medical Campus, 12700 East 19th Ave. MS B-146, Aurora, CO, 80045, USA.,Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Louise E Glover
- Mucosal Inflammation Program, University of Colorado, Anschutz Medical Campus, 12700 East 19th Ave. MS B-146, Aurora, CO, 80045, USA. .,Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
26
|
Zhong H, Li H, Liu G, Wan H, Mercier Y, Zhang X, Lin Y, Che L, Xu S, Tang L, Tian G, Chen D, Wu D, Fang Z. Increased maternal consumption of methionine as its hydroxyl analog promoted neonatal intestinal growth without compromising maternal energy homeostasis. J Anim Sci Biotechnol 2016; 7:46. [PMID: 27499853 PMCID: PMC4975900 DOI: 10.1186/s40104-016-0103-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 07/18/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To determine responses of neonatal intestine to maternal increased consumption of DL-methionine (DLM) or DL-2-hydroxy-4-methylthiobutanoic acid (HMTBA), eighteen primiparous sows (Landrace × Yorkshire) were allocated based on body weight and backfat thickness to the control, DLM and HMTBA groups (n = 6), with the nutritional treatments introduced from postpartum d0 to d14. RESULTS The DLM-fed sows showed negative energy balance manifested by lost bodyweight, lower plasma glucose, subdued tricarboxylic acid cycle, and increased plasma lipid metabolites levels. Both villus height and ratio of villus height to crypt depth averaged across the small intestine of piglets were higher in the DLM and HMTBA groups than in the control group. Piglet jejunal oxidized glutathione concentration and ratio of oxidized to reduced glutathione were lower in the HMTBA group than in the DLM and control groups. However, piglet jejunal aminopeptidase A, carnitine transporter 2 and IGF-II precursor mRNA abundances were higher in the DLM group than in the HMTBA and control groups. CONCLUSION Increasing maternal consumption of methionine as DLM and HMTBA promoted neonatal intestinal growth by increasing morphological development or up-regulating expression of genes responsible for nutrient metabolism. And increasing maternal consumption of HMTBA promoted neonatal intestinal antioxidant capacity without compromising maternal energy homeostasis during early lactation.
Collapse
Affiliation(s)
- Heju Zhong
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an, 625014 China
| | - Hao Li
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an, 625014 China
| | - Guangmang Liu
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an, 625014 China
| | - Haifeng Wan
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an, 625014 China
| | | | - Xiaoling Zhang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an, 625014 China
| | - Yan Lin
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an, 625014 China
| | - Lianqiang Che
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an, 625014 China
| | - Shengyu Xu
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an, 625014 China
| | - Li Tang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an, 625014 China
| | - Gang Tian
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an, 625014 China
| | - Daiwen Chen
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an, 625014 China
| | - De Wu
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an, 625014 China
| | - Zhengfeng Fang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an, 625014 China
| |
Collapse
|
27
|
Riesberg LA, Weed SA, McDonald TL, Eckerson JM, Drescher KM. Beyond muscles: The untapped potential of creatine. Int Immunopharmacol 2016; 37:31-42. [PMID: 26778152 PMCID: PMC4915971 DOI: 10.1016/j.intimp.2015.12.034] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 12/15/2015] [Accepted: 12/22/2015] [Indexed: 12/12/2022]
Abstract
Creatine is widely used by both elite and recreational athletes as an ergogenic aid to enhance anaerobic exercise performance. Older individuals also use creatine to prevent sarcopenia and, accordingly, may have therapeutic benefits for muscle wasting diseases. Although the effect of creatine on the musculoskeletal system has been extensively studied, less attention has been paid to its potential effects on other physiological systems. Because there is a significant pool of creatine in the brain, the utility of creatine supplementation has been examined in vitro as well as in vivo in both animal models of neurological disorders and in humans. While the data are preliminary, there is evidence to suggest that individuals with certain neurological conditions may benefit from exogenous creatine supplementation if treatment protocols can be optimized. A small number of studies that have examined the impact of creatine on the immune system have shown an alteration in soluble mediator production and the expression of molecules involved in recognizing infections, specifically toll-like receptors. Future investigations evaluating the total impact of creatine supplementation are required to better understand the benefits and risks of creatine use, particularly since there is increasing evidence that creatine may have a regulatory impact on the immune system.
Collapse
Affiliation(s)
- Lisa A Riesberg
- Department of Medical Microbiology and Immunology, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| | - Stephanie A Weed
- Department of Medical Microbiology and Immunology, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| | - Thomas L McDonald
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 986495, Nebraska Medical Center, Omaha, NE 68198-6495, USA
| | - Joan M Eckerson
- Department of Exercise Science and Pre-Health Professions, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| | - Kristen M Drescher
- Department of Medical Microbiology and Immunology, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA.
| |
Collapse
|
28
|
Cheng Y, El-Kattan A, Zhang Y, Ray AS, Lai Y. Involvement of Drug Transporters in Organ Toxicity: The Fundamental Basis of Drug Discovery and Development. Chem Res Toxicol 2016; 29:545-63. [DOI: 10.1021/acs.chemrestox.5b00511] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Yaofeng Cheng
- Pharmaceutical
Candidate Optimization, Bristol-Myers Squibb Company, 3551 Lawrenceville
Road, Princeton, New Jersey 08540, United States
| | - Ayman El-Kattan
- Department
of Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., 610 Main
Street, Cambridge, Massachusetts 02139, United States
| | - Yan Zhang
- Drug
Metabolism and Biopharmaceutics, Incyte Corporation, 1801 Augustine
Cutoff, Wilmington, Delaware 19803, United States
| | - Adrian S. Ray
- Department
of Drug Metabolism, Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Yurong Lai
- Pharmaceutical
Candidate Optimization, Bristol-Myers Squibb Company, 3551 Lawrenceville
Road, Princeton, New Jersey 08540, United States
| |
Collapse
|
29
|
Rojo D, Gosalbes MJ, Ferrari R, Pérez-Cobas AE, Hernández E, Oltra R, Buesa J, Latorre A, Barbas C, Ferrer M, Moya A. Clostridium difficile heterogeneously impacts intestinal community architecture but drives stable metabolome responses. THE ISME JOURNAL 2015; 9:2206-2220. [PMID: 25756679 PMCID: PMC4579473 DOI: 10.1038/ismej.2015.32] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 01/12/2015] [Accepted: 02/06/2015] [Indexed: 02/07/2023]
Abstract
Clostridium difficile-associated diarrhoea (CDAD) is caused by C. difficile toxins A and B and represents a serious emerging health problem. Yet, its progression and functional consequences are unclear. We hypothesised that C. difficile can drive major measurable metabolic changes in the gut microbiota and that a relationship with the production or absence of toxins may be established. We tested this hypothesis by performing metabolic profiling on the gut microbiota of patients with C. difficile that produced (n=6) or did not produce (n=4) toxins and on non-colonised control patients (n=6), all of whom were experiencing diarrhoea. We report a statistically significant separation (P-value <0.05) among the three groups, regardless of patient characteristics, duration of the disease, antibiotic therapy and medical history. This classification is associated with differences in the production of distinct molecules with presumptive global importance in the gut environment, disease progression and inflammation. Moreover, although severe impaired metabolite production and biological deficits were associated with the carriage of C. difficile that did not produce toxins, only previously unrecognised selective features, namely, choline- and acetylputrescine-deficient gut environments, characterised the carriage of toxin-producing C. difficile. Additional results showed that the changes induced by C. difficile become marked at the highest level of the functional hierarchy, namely the metabolic activity exemplified by the gut microbial metabolome regardless of heterogeneities that commonly appear below the functional level (gut bacterial composition). We discuss possible explanations for this effect and suggest that the changes imposed by CDAD are much more defined and predictable than previously thought.
Collapse
Affiliation(s)
- David Rojo
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad CEU San Pablo, Campus Montepríncipe, Madrid, Spain
| | - María J Gosalbes
- Unidad Mixta de Investigación en Genómica y Salud de la Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO) and Instituto Cavanilles de Biodiversidad y Biología Evolutiva de la Universidad de Valencia, Valencia, Spain
- CIBER en Epidemiología y Salud Pública (CIBEResp), Madrid, Spain
| | - Rafaela Ferrari
- Unidad Mixta de Investigación en Genómica y Salud de la Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO) and Instituto Cavanilles de Biodiversidad y Biología Evolutiva de la Universidad de Valencia, Valencia, Spain
- CIBER en Epidemiología y Salud Pública (CIBEResp), Madrid, Spain
| | - Ana E Pérez-Cobas
- Unidad Mixta de Investigación en Genómica y Salud de la Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO) and Instituto Cavanilles de Biodiversidad y Biología Evolutiva de la Universidad de Valencia, Valencia, Spain
- CIBER en Epidemiología y Salud Pública (CIBEResp), Madrid, Spain
| | | | - Rosa Oltra
- Unidad Enfermedades Infecciosas, Servicio Medicina Interna, Hospital Clínico Universitario de Valencia-INCLIVA, Valencia, Spain
| | - Javier Buesa
- Departamento de Microbiología, Facultad de Medicina, Universidad de Valencia and Hospital Clínico Universitario de Valencia-INCLIVA, Valencia, Spain
| | - Amparo Latorre
- Unidad Mixta de Investigación en Genómica y Salud de la Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO) and Instituto Cavanilles de Biodiversidad y Biología Evolutiva de la Universidad de Valencia, Valencia, Spain
- CIBER en Epidemiología y Salud Pública (CIBEResp), Madrid, Spain
| | - Coral Barbas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad CEU San Pablo, Campus Montepríncipe, Madrid, Spain
| | | | - Andrés Moya
- Unidad Mixta de Investigación en Genómica y Salud de la Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO) and Instituto Cavanilles de Biodiversidad y Biología Evolutiva de la Universidad de Valencia, Valencia, Spain
- CIBER en Epidemiología y Salud Pública (CIBEResp), Madrid, Spain
| |
Collapse
|
30
|
Kolpakova ME, Veselkina OS, Vlasov TD. Creatine in Cell Metabolism and Its Protective Action in Cerebral Ischemia. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s11055-015-0098-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
31
|
van de Kamp JM, Mancini GM, Salomons GS. X-linked creatine transporter deficiency: clinical aspects and pathophysiology. J Inherit Metab Dis 2014; 37:715-33. [PMID: 24789340 DOI: 10.1007/s10545-014-9713-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 03/27/2014] [Accepted: 04/01/2014] [Indexed: 12/22/2022]
Abstract
Creatine transporter deficiency was discovered in 2001 as an X-linked cause of intellectual disability characterized by cerebral creatine deficiency. This review describes the current knowledge regarding creatine metabolism, the creatine transporter and the clinical aspects of creatine transporter deficiency. The condition mainly affects the brain while other creatine requiring organs, such as the muscles, are relatively spared. Recent studies have provided strong evidence that creatine synthesis also occurs in the brain, leading to the intriguing question of why cerebral creatine is deficient in creatine transporter deficiency. The possible mechanisms explaining the cerebral creatine deficiency are discussed. The creatine transporter knockout mouse provides a good model to study the disease. Over the past years several treatment options have been explored but no treatment has been proven effective. Understanding the pathogenesis of creatine transporter deficiency is of paramount importance in the development of an effective treatment.
Collapse
MESH Headings
- Amino Acid Metabolism, Inborn Errors/diagnosis
- Amino Acid Metabolism, Inborn Errors/drug therapy
- Amino Acid Metabolism, Inborn Errors/genetics
- Amino Acid Metabolism, Inborn Errors/pathology
- Animals
- Brain Diseases, Metabolic, Inborn/complications
- Brain Diseases, Metabolic, Inborn/genetics
- Brain Diseases, Metabolic, Inborn/physiopathology
- Creatine/deficiency
- Creatine/genetics
- Genetic Diseases, X-Linked/genetics
- Humans
- Intellectual Disability/etiology
- Intellectual Disability/genetics
- Membrane Transport Proteins/deficiency
- Membrane Transport Proteins/genetics
- Mental Retardation, X-Linked/complications
- Mental Retardation, X-Linked/genetics
- Mental Retardation, X-Linked/physiopathology
- Mice
- Plasma Membrane Neurotransmitter Transport Proteins/deficiency
- Plasma Membrane Neurotransmitter Transport Proteins/genetics
Collapse
Affiliation(s)
- Jiddeke M van de Kamp
- Department of Clinical Genetics, VU University Medical Center, P.O. Box 7057, 1007 MB, Amsterdam, The Netherlands,
| | | | | |
Collapse
|
32
|
Vázquez-Carretero MD, García-Miranda P, Calonge ML, Peral MJ, Ilundain AA. Dab1 and reelin participate in a common signal pathway that controls intestinal crypt/villus unit dynamics. Biol Cell 2014; 106:83-96. [PMID: 24313315 DOI: 10.1111/boc.201300078] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 12/03/2013] [Indexed: 01/20/2023]
Abstract
BACKGROUND INFORMATION The myofibroblasts placed underneath the epithelium of the rodent small intestine express reelin, and the reelin absence modifies both the morphology and the cell renewal processes of the crypt-villus unit. In the developing central nervous system, the reelin effects are mediated by the disabled-1 (Dab1) protein. The present work explores whether Dab1 mediates the reelin control of the crypt-villus unit dynamics by examining in the mouse small intestine the consequences of the absence of (i) Dab1 (scrambler mutation) on crypt-villus unit cell renewal processes and morphology and (ii) reelin (reeler mutation) on the intestinal expression of Dab1. RESULTS The effects of the scrambler mutation on the crypt-villus unit renewal processes are remarkably similar to those caused by the lack of reelin. Thus, both mutations significantly reduce epithelial cell proliferation, migration and apoptosis, and the number of Paneth cells; affect the morphology of the villus, and expand the intercellular space of the adherens junctions and desmosomes. The Western blot assays reveal that the Dab1 isoform present in the enterocytes has a molecular weight of ∼63 kDa and that in the brain of ∼82 kDa. They also reveal that the absence of reelin increases Dab1 abundance in both brain and enterocytes. CONCLUSIONS All together, the current findings link reelin with Dab1 and suggest that Dab1 functions downstream of reelin action on the homeostasis of the crypt-villus unit.
Collapse
|
33
|
Hageböck M, Stahl U, Bader J. Stability of creatine derivatives during simulated digestion in an in vitro model. Food Funct 2013; 5:359-63. [PMID: 24366174 DOI: 10.1039/c3fo60453e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Newly developed forms of creatine are often claimed to exhibit improved bioavailability and efficacy. They are of great interest for sports nutrition and therapeutic uses. However, for most newer creatine forms stability after ingestion under physiological conditions is insufficiently documented, relevant data are inconsistent or even missing. Therefore, we developed a controlled simulated digestion system for testing different creatine derivatives in specific simulated parts of the human digestive system. All derivatives showed high stability with negligible formation of creatinine.
Collapse
Affiliation(s)
- Martin Hageböck
- Research and Teaching Institute for Brewing in Berlin, Seestraße 13, 13353 Berlin, Germany.
| | | | | |
Collapse
|
34
|
Kinjo A, Koito T, Kawaguchi S, Inoue K. Evolutionary history of the GABA transporter (GAT) group revealed by marine invertebrate GAT-1. PLoS One 2013; 8:e82410. [PMID: 24312660 PMCID: PMC3849432 DOI: 10.1371/journal.pone.0082410] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 10/23/2013] [Indexed: 11/30/2022] Open
Abstract
The GABA transporter (GAT) group is one of the major subgroups in the solute career 6 (SLC6) family of transmembrane proteins. The GAT group, which has been well studied in mammals, has 6 known members, i.e., a taurine transporter (TAUT), four GABA transporters (GAT-1, -2, -3, - 4), and a creatine transporter (CT1), which have important roles in maintaining physiological homeostasis. However, the GAT group has not been extensively investigated in invertebrates; only TAUT has been reported in marine invertebrates such as bivalves and krills, and GAT-1 has been reported in several insect species and nematodes. Thus, it is unknown how transporters in the GAT group arose during the course of animal evolution. In this study, we cloned GAT-1 cDNAs from the deep-sea mussel, Bathymodiolus septemdierum, and the Antarctic krill, Euphausia superba, whose TAUT cDNA has already been cloned. To understand the evolutionary history of the GAT group, we conducted phylogenetic and synteny analyses on the GAT group transporters of vertebrates and invertebrates. Our findings suggest that transporters of the GAT group evolved through the following processes. First, GAT-1 and CT1 arose by tandem duplication of an ancestral transporter gene before the divergence of Deuterostomia and Protostomia; next, the TAUT gene arose and GAT-3 was formed by the tandem duplication of the TAUT gene; and finally, GAT-2 and GAT-4 evolved from a GAT-3 gene by chromosomal duplication in the ancestral vertebrates. Based on synteny and phylogenetic evidence, the present naming of the GAT group members does not accurately reflect the evolutionary relationships.
Collapse
Affiliation(s)
- Azusa Kinjo
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Tomoko Koito
- College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| | - So Kawaguchi
- Australian Antarctic Division, Kingston, Tasmania, Australia
| | - Koji Inoue
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, Japan
| |
Collapse
|
35
|
Ferraro V, Ferreira Jorge R, Cruz IB, Antunes F, Sarmento B, Castro PML, Pintado ME. In vitrointestinal absorption of amino acid mixtures extracted from codfish (Gadus morhuaL.) salting wastewater. Int J Food Sci Technol 2013. [DOI: 10.1111/ijfs.12269] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Vincenza Ferraro
- CBQF - Centro de Biotecnologia e Química Fina; Escola Superior de Biotecnologia; Universidade Católica Portuguesa; Rua Dr. António Bernardino de Almeida Porto 4200-072 Portugal
- WeDoTech - Companhia de Ideias e Tecnologias, Lda./CiDEB; Escola Superior de Biotecnologia; Universidade Católica Portuguesa; Rua Dr. António Bernardino de Almeida Porto 4200-072 Portugal
| | - Ruben Ferreira Jorge
- WeDoTech - Companhia de Ideias e Tecnologias, Lda./CiDEB; Escola Superior de Biotecnologia; Universidade Católica Portuguesa; Rua Dr. António Bernardino de Almeida Porto 4200-072 Portugal
| | - Isabel B. Cruz
- CBQF - Centro de Biotecnologia e Química Fina; Escola Superior de Biotecnologia; Universidade Católica Portuguesa; Rua Dr. António Bernardino de Almeida Porto 4200-072 Portugal
- WeDoTech - Companhia de Ideias e Tecnologias, Lda./CiDEB; Escola Superior de Biotecnologia; Universidade Católica Portuguesa; Rua Dr. António Bernardino de Almeida Porto 4200-072 Portugal
| | - Filipa Antunes
- INEB-Instituto de Engenharia Biomédica; NEWTherapiesGroup; Universidade do Porto; Rua do Campo Alegre 823 Porto 4050-048 Portugal
| | - Bruno Sarmento
- INEB-Instituto de Engenharia Biomédica; NEWTherapiesGroup; Universidade do Porto; Rua do Campo Alegre 823 Porto 4050-048 Portugal
- CICS; HealthSciences Research Center; Instituto Superior de Ciências da Saúde Norte; Rua Central de Gandra 1317 4585-116 Gandra Portugal
| | - Paula M. L. Castro
- CBQF - Centro de Biotecnologia e Química Fina; Escola Superior de Biotecnologia; Universidade Católica Portuguesa; Rua Dr. António Bernardino de Almeida Porto 4200-072 Portugal
| | - Manuela E. Pintado
- CBQF - Centro de Biotecnologia e Química Fina; Escola Superior de Biotecnologia; Universidade Católica Portuguesa; Rua Dr. António Bernardino de Almeida Porto 4200-072 Portugal
| |
Collapse
|
36
|
Abplanalp J, Laczko E, Philp NJ, Neidhardt J, Zuercher J, Braun P, Schorderet DF, Munier FL, Verrey F, Berger W, Camargo SM, Kloeckener-Gruissem B. The cataract and glucosuria associated monocarboxylate transporter MCT12 is a new creatine transporter. Hum Mol Genet 2013. [DOI: 78495111110.1093/hmg/ddt175' target='_blank'>'"<>78495111110.1093/hmg/ddt175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [78495111110.1093/hmg/ddt175','', '10.1113/jphysiol.2002.026377')">Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
78495111110.1093/hmg/ddt175" />
|
37
|
Abplanalp J, Laczko E, Philp NJ, Neidhardt J, Zuercher J, Braun P, Schorderet DF, Munier FL, Verrey F, Berger W, Camargo SMR, Kloeckener-Gruissem B. The cataract and glucosuria associated monocarboxylate transporter MCT12 is a new creatine transporter. Hum Mol Genet 2013; 22:3218-26. [PMID: 23578822 DOI: 10.1093/hmg/ddt175] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Creatine transport has been assigned to creatine transporter 1 (CRT1), encoded by mental retardation associated SLC6A8. Here, we identified a second creatine transporter (CRT2) known as monocarboxylate transporter 12 (MCT12), encoded by the cataract and glucosuria associated gene SLC16A12. A non-synonymous alteration in MCT12 (p.G407S) found in a patient with age-related cataract (ARC) leads to a significant reduction of creatine transport. Furthermore, Slc16a12 knockout (KO) rats have elevated creatine levels in urine. Transport activity and expression characteristics of the two creatine transporters are distinct. CRT2 (MCT12)-mediated uptake of creatine was not sensitive to sodium and chloride ions or creatine biosynthesis precursors, breakdown product creatinine or creatine phosphate. Increasing pH correlated with increased creatine uptake. Michaelis-Menten kinetics yielded a Vmax of 838.8 pmol/h/oocyte and a Km of 567.4 µm. Relative expression in various human tissues supports the distinct mutation-associated phenotypes of the two transporters. SLC6A8 was predominantly found in brain, heart and muscle, while SLC16A12 was more abundant in kidney and retina. In the lens, the two transcripts were found at comparable levels. We discuss the distinct, but possibly synergistic functions of the two creatine transporters. Our findings infer potential preventive power of creatine supplementation against the most prominent age-related vision impaired condition.
Collapse
Affiliation(s)
- Jeannette Abplanalp
- Institute of Medical Molecular Genetics, University of Zurich, Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
García-Miranda P, Vázquez-Carretero MD, Sesma P, Peral MJ, Ilundain AA. Reelin is involved in the crypt-villus unit homeostasis. Tissue Eng Part A 2012; 19:188-98. [PMID: 22897172 DOI: 10.1089/ten.tea.2012.0050] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Intestinal myofibroblasts secrete substances that control organogenesis and wound repair of the intestine. The myofibroblasts of the rat small intestine express reelin and the present work explores whether reelin regulates crypt-villus unit homeostasis using normal mice and mice with the reelin gene disrupted (reeler). The results reveal that mouse small intestine expresses reelin, its receptors apolipoprotein E receptor 2 (ApoER2) and very low-density lipoprotein receptor (VldlR) and the reelin effector protein Disabled-1 (Dab1) and that reelin expression is restricted to myofibroblasts. The absence of reelin significantly reduces epithelial cell proliferation, migration, and apoptosis and the number of Paneth cells. These effects are observed during the suckling, weaning, and adult periods. The number of Goblet cells is increased in the 2-month-old reeler mice. The absence of reelin also expands the extracellular space of the adherens junctions and desmosomes without significantly affecting either the tight-junction structure or the epithelial paracellular permeability. In conclusion, this is the first in vivo work showing that the absence of reelin alters intestinal epithelium homeostasis.
Collapse
Affiliation(s)
- Pablo García-Miranda
- Department of Physiology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | | | | | | | | |
Collapse
|
39
|
Ravera S, Adriano E, Balestrino M, Panfoli I. Creatine ethyl ester: A new substrate for creatine kinase. Mol Biol 2012. [DOI: 10.1134/s0026893312010190] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Tian Y, Zhang L, Wang Y, Tang H. Age-related topographical metabolic signatures for the rat gastrointestinal contents. J Proteome Res 2011; 11:1397-411. [PMID: 22129435 DOI: 10.1021/pr2011507] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Symbiotic gut microbiota is essential for mammalian physiology and analyzing the metabolite compositions of gastrointestinal contents is vital for understanding the microbiome-host interactions. To understand the developmental dependence of the topographical metabolic signatures for the rat gastrointestinal contents, we systematically characterized the metabolite compositional variations of the contents in rat jejunum, ileum, cecum, and colon for two age-groups using (1)H NMR spectroscopy and multivariate analysis. Significant topographical metabolic variations were present for the jejunal, ileal, cecal, colonic contents, and feces, reflecting the absorption functions for each intestinal region and the gut microbiota therein. The concentrations of amino acids, lactate, creatine, choline, bile acids, uracil and urocanate decreased drastically from jejunal to ileal contents followed with steady decreases from cecal content to feces. Short-chain fatty acids (SCFAs) and arabinoxylan-related carbohydrates had highest levels in cecal content and feces, respectively. Such topographical metabolic signatures for the intestinal contents varied with animal age highlighted by the level changes for lactate, choline, taurine, amino acids, carbohydrates, keto-acids, and SCFAs. These findings provided essential information for the topographical metabolic variations in the gastrointestinal tract and demonstrated metabolic profiling as a useful approach for understanding host-microbiome interactions and functional status of the gastrointestinal regions.
Collapse
Affiliation(s)
- Yuan Tian
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, the Chinese Academy of Sciences, Wuhan 430071, PR China
| | | | | | | |
Collapse
|
41
|
Vázquez-Carretero MD, García-Miranda P, Calonge ML, Peral MJ, Ilundáin AA. Regulation of Dab2 expression in intestinal and renal epithelia by development. J Cell Biochem 2011; 112:354-61. [DOI: 10.1002/jcb.22931] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
42
|
Sano Y, Shimizu F, Abe M, Maeda T, Kashiwamura Y, Ohtsuki S, Terasaki T, Obinata M, Kajiwara K, Fujii M, Suzuki M, Kanda T. Establishment of a new conditionally immortalized human brain microvascular endothelial cell line retaining an in vivo blood-brain barrier function. J Cell Physiol 2010; 225:519-28. [PMID: 20458752 DOI: 10.1002/jcp.22232] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The breakdown of the blood-brain barrier (BBB) has been considered to be a key step in the disease process of a number of neurological disorders such as cerebral ischemia and Alzheimer's disease. Many in vitro BBB models derived from animal tissues have been established to elucidate the mechanism of BBB insufficiency. However, only a few human immortalized in vitro BBB models have been reported. In the present study, a temperature-sensitive SV40-T antigen was introduced to immortalize cells using a retrovirus to obtain a better human in vitro BBB model which sustains physiological properties. This endothelial cell (EC) line, termed TY08, showed a spindle-shaped morphology. The cells expressed all key tight junctional proteins, such as occludin, claudin-5, zonula occludens (ZO)-1 and ZO-2 at their cell-to-cell boundaries, and had low permeability to inulin across its monolayer. The cells also expressed various influx and efflux transporters and exhibited the functional expression of p-glycoprotein. Furthermore, the TY08 cells grew and proliferated well under the permissive temperature and stopped growing under the non-permissive temperature to serve as physiological ECs forming the BBB. Thus, conditionally immortalized TY08 cells retaining the in vivo BBB functions should facilitate analyses for determining the pathophysiology of various neurological diseases.
Collapse
Affiliation(s)
- Yasuteru Sano
- Department of Neurology and Clinical Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Dodd JR, Birch NP, Waldvogel HJ, Christie DL. Functional and immunocytochemical characterization of the creatine transporter in rat hippocampal neurons. J Neurochem 2010; 115:684-93. [DOI: 10.1111/j.1471-4159.2010.06957.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
44
|
Béard E, Braissant O. Synthesis and transport of creatine in the CNS: importance for cerebral functions. J Neurochem 2010; 115:297-313. [DOI: 10.1111/j.1471-4159.2010.06935.x] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
45
|
Li H, Thali RF, Smolak C, Gong F, Alzamora R, Wallimann T, Scholz R, Pastor-Soler NM, Neumann D, Hallows KR. Regulation of the creatine transporter by AMP-activated protein kinase in kidney epithelial cells. Am J Physiol Renal Physiol 2010; 299:F167-77. [PMID: 20462973 PMCID: PMC2904179 DOI: 10.1152/ajprenal.00162.2010] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Accepted: 05/06/2010] [Indexed: 11/22/2022] Open
Abstract
The metabolic sensor AMP-activated protein kinase (AMPK) regulates several transport proteins, potentially coupling transport activity to cellular stress and energy levels. The creatine transporter (CRT; SLC6A8) mediates creatine uptake into several cell types, including kidney epithelial cells, where it has been proposed that CRT is important for reclamation of filtered creatine, a process critical for total body creatine homeostasis. Creatine and phosphocreatine provide an intracellular, high-energy phosphate-buffering system essential for maintaining ATP supply in tissues with high energy demands. To test our hypothesis that CRT is regulated by AMPK in the kidney, we examined CRT and AMPK distribution in the kidney and the regulation of CRT by AMPK in cells. By immunofluorescence staining, we detected CRT at the apical pole in a polarized mouse S3 proximal tubule cell line and in native rat kidney proximal tubules, a distribution overlapping with AMPK. Two-electrode voltage-clamp (TEV) measurements of Na(+)-dependent creatine uptake into CRT-expressing Xenopus laevis oocytes demonstrated that AMPK inhibited CRT via a reduction in its Michaelis-Menten V(max) parameter. [(14)C]creatine uptake and apical surface biotinylation measurements in polarized S3 cells demonstrated parallel reductions in creatine influx and CRT apical membrane expression after AMPK activation with the AMP-mimetic compound 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside. In oocyte TEV experiments, rapamycin and the AMPK activator 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranosyl 5'-monophosphate (ZMP) inhibited CRT currents, but there was no additive inhibition of CRT by ZMP, suggesting that AMPK may inhibit CRT indirectly via the mammalian target of rapamycin pathway. We conclude that AMPK inhibits apical membrane CRT expression in kidney proximal tubule cells, which could be important in reducing cellular energy expenditure and unnecessary creatine reabsorption under conditions of local and whole body metabolic stress.
Collapse
Affiliation(s)
- Hui Li
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
García-Miranda P, Peral MJ, Ilundain AA. Rat small intestine expresses the reelin-Disabled-1 signalling pathway. Exp Physiol 2010; 95:498-507. [DOI: 10.1113/expphysiol.2009.050682] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
47
|
Peral M, Vázquez-Carretero M, Ilundain A. Na+/Cl−/creatine transporter activity and expression in rat brain synaptosomes. Neuroscience 2010; 165:53-60. [DOI: 10.1016/j.neuroscience.2009.10.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 10/01/2009] [Accepted: 10/01/2009] [Indexed: 10/20/2022]
|
48
|
Abstract
This review summarizes the current view of amino acid transport by epithelial cells of vertebrates. A wide variety of transporter proteins are expressed in apical and basolateral membranes and collectively play complex interactive roles in controlling the entire organism’s overall metabolism of amino acids. Regulation of the transport systems can be manifested at many levels, including gene splicing and promoter regulation, interactions between requisite subunits of oligomers, thermodynamic electrochemical gradients contributed by ion exchangers, overlap of substrate specificity, selective tissue distribution, and specific spatial distribution of transporters leading to net vectorial flow of the amino acids. The next frontier for workers in this field is to uncover a comprehensive molecular understanding of the manner by which epithelial cells signal gene expression of transporters as triggered by substrates, hormones or other triggers, in order to further understand the trafficking and interactions among multimeric transport system proteins, to extend discoveries of novel small drug substrates for oral and ocular delivery, and to examine gene therapy or nanotherapy of diseases using small molecules delivered via amino acid transporters.
Collapse
Affiliation(s)
- George A. Gerencser
- College of Medicine, University of Florida, SW. Archer Road 1600, Gainesville, 32610-0274 U.S.A
| |
Collapse
|
49
|
Immunohistochemical localisation of the creatine transporter in the rat brain. Neuroscience 2009; 163:571-85. [DOI: 10.1016/j.neuroscience.2009.06.065] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2009] [Revised: 06/26/2009] [Accepted: 06/29/2009] [Indexed: 11/22/2022]
|
50
|
Metzner L, Dorn M, Markwardt F, Brandsch M. The Orally Active Antihyperglycemic Drug β-Guanidinopropionic Acid Is Transported by the Human Proton-Coupled Amino Acid Transporter hPAT1. Mol Pharm 2009; 6:1006-11. [DOI: 10.1021/mp9000684] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Linda Metzner
- Membrane Transport Group, Biozentrum, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany, and Julius Bernstein Institute for Physiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Madlen Dorn
- Membrane Transport Group, Biozentrum, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany, and Julius Bernstein Institute for Physiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Fritz Markwardt
- Membrane Transport Group, Biozentrum, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany, and Julius Bernstein Institute for Physiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Matthias Brandsch
- Membrane Transport Group, Biozentrum, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany, and Julius Bernstein Institute for Physiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|