1
|
Schlattmann B, Kiyono K, Kelty-Stephen DG, Mangalam M. Angular distribution of fractal temporal correlations supports adaptive responses to wobble board instability. J R Soc Interface 2025; 22:20240664. [PMID: 39904365 PMCID: PMC11793983 DOI: 10.1098/rsif.2024.0664] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/17/2024] [Accepted: 12/02/2024] [Indexed: 02/06/2025] Open
Abstract
Contemporary dynamical models of human postural control propose an intermittent controller regulating the postural centre of pressure (CoP) about a stable saddle-shaped manifold along anatomical anteroposterior (AP) and mediolateral (ML) axes, releasing CoP in an outwards spiral when inactive. Experimental manipulations can evoke this saddle-type topology in fractal temporal correlations along the AP axis and reducing correlations along the ML axis. However, true effects of task demands may often manifest within angular space between anatomical AP and ML axes-a space not typically modelled explicitly. We tested how instability and attentional load influence postural control across the full angular range of fractal variability along the two-dimensional (2D) support surface. Forty-eight healthy young adults performed a suprapostural Trail Making Test (TMT) while standing on a wobble board, inducing continuous perturbations along the ML axis. Stable, quiet standing exhibited classic saddle-like topology, with stronger fractal temporal correlations in CoP displacements along AP axes. The attentional demand of the TMT did not affect angular variation or strength of fractal temporal correlations across the 2Dsupport surface. However, maintaining upright balance on the wobble board reshaped and reoriented the angular distribution of fractal temporal correlations, accentuating saddle-like angular variation and rotating the strongest fractal temporal correlations predominantly along the ML axis. Stabilizing posture in the face of wobble board instability prompted the saddle-type angular distribution of fractal temporal correlations. These findings challenge the traditional dependence of postural control theories exclusively on external force-plate axes and underscore the significance of multifractality in defining control parameters that govern postural stability across the full angular range of the 2D support surface.
Collapse
Affiliation(s)
- Brian Schlattmann
- Department of Biomechanics, Center for Research in Human Movement Variability, Division of Biomechanics and Research Development, University of Nebraska at Omaha, Omaha, NE68182, USA
| | - Ken Kiyono
- Graduate School of Engineering Science, Osaka University, Osaka560-8531, Japan
| | - Damian G. Kelty-Stephen
- Department of Psychology, State University of New York at New Paltz, New Paltz, NY12561, USA
| | - Madhur Mangalam
- Department of Biomechanics, Center for Research in Human Movement Variability, Division of Biomechanics and Research Development, University of Nebraska at Omaha, Omaha, NE68182, USA
| |
Collapse
|
2
|
Sangari S, Lackmy-Vallee A, Preuilh A, Peyre I, Pradat PF, Marchand-Pauvert V. Synaptic dynamics linked to widespread elevation of H-reflex before peripheral denervation in amyotrophic lateral sclerosis. J Neurophysiol 2024; 132:1541-1560. [PMID: 39412565 DOI: 10.1152/jn.00144.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 09/18/2024] [Accepted: 10/11/2024] [Indexed: 11/13/2024] Open
Abstract
Changes in Hoffmann reflex (H-reflex) exhibit heterogeneity among patients with amyotrophic lateral sclerosis (ALS), likely due to phenotype diversity. Current knowledge primarily focuses on soleus H-reflex, which may demonstrate an initial increase before subsequent decline throughout the disease course. The main objective was to investigate other muscles, to determine whether H-reflex changes could be associated with patient phenotype (onset site, functional disabilities). Additional experiments were performed to elucidate the neurophysiological mechanisms underlying H-reflex modifications. In age- and sex-matched groups of control subjects and patients, we compared H-reflex recruitment curves in soleus, quadriceps, and forearm flexors. Additionally, we examined H-reflex and motor evoked potential (MEP) recruitment curves in quadriceps. Last, to assess potential changes in monosynaptic excitatory postsynaptic potentials (EPSPs) of both peripheral and cortical origins, we analyzed peristimulus time histograms (PSTHs) and peristimulus frequencygrams (PSFs) of single motor units, along with H-reflex occurrence after paired-pulse stimuli. The ratio between maximal amplitudes of H-reflex and direct motor response increased in all muscles, irrespective of disease onset, and was found positively correlated with exaggerated osteotendinous reflexes and spasticity but depressed in patients on riluzole. This finding was accompanied by a reduction in MEP size and no changes in PSTH, PSF, and paired-pulse H-reflex probability. It is speculated that spinal interneurons may compensate for potential depression of monosynaptic EPSPs in ALS. From a clinical perspective, although the added value of H-reflex to osteotendinous reflex evaluation may be limited, it can serve as a valuable quantitative biomarker of pyramidal dysfunction in clinical trials.NEW & NOTEWORTHY Without significant evidence of peripheral denervation, H-reflex enhancement appears to be a widespread phenomenon, regardless of disease onset site. This increase is likely associated with a decrease in inhibitory control over presynaptic transmission of the synapse between muscle group Ia afferents and motoneurons. Although the link to exaggerated osteotendinous reflexes and spasticity implies a restricted role in identifying a pyramidal syndrome, its quantitative aspect positions the H-reflex as a valuable biomarker in clinical trials.
Collapse
Affiliation(s)
- Sina Sangari
- INSERM, CNRS, Laboratoire d'Imagerie Biomédicale (LIB), Sorbonne Université, Paris, France
- Shirley Ryan AbilityLab, Chicago, Illinois, United States
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, Illinois, United States
| | | | - Arnaud Preuilh
- INSERM, CNRS, Laboratoire d'Imagerie Biomédicale (LIB), Sorbonne Université, Paris, France
| | - Iseline Peyre
- INSERM, CNRS, Laboratoire d'Imagerie Biomédicale (LIB), Sorbonne Université, Paris, France
| | - Pierre-François Pradat
- INSERM, CNRS, Laboratoire d'Imagerie Biomédicale (LIB), Sorbonne Université, Paris, France
- Maladies du Système Nerveux, AP-HP, Hôpital Pitié-Salpêtrière, Paris, France
| | | |
Collapse
|
3
|
Alsaeed MI, Ben Waer F. Music and Caffeine Intake Effects on Gait, and Its Relationship with Psychological Parameters, in Middle-Aged Women. J Multidiscip Healthc 2024; 17:4043-4052. [PMID: 39165256 PMCID: PMC11334914 DOI: 10.2147/jmdh.s474951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/07/2024] [Indexed: 08/22/2024] Open
Abstract
Purpose This study aimed to explore the combined effects of caffeine intake and listening to music on walking parameters, and its relationship with psychological variables (fatigue and exercise enjoyment) in middle-aged women. Patients and Methods Sixteen healthy middle-aged women, aged between 50 and 60 years old, participated in this study. Their walking parameters (distance, number of steps, steps number/minute, cadence and walking speed) were assessed using the 6-minute walking test (6MWT) in four task conditions: in no-music/no-caffeine, no-music/with caffeine, with music/no-caffeine, and with music/with caffeine conditions. Besides, exercise enjoyment and fatigue were evaluated using the Physical Activity Enjoyment Scale (PACES-8) and rating of perceived exertion (RPE) questionnaires, respectively. Results As a result, we found that 100 mg of caffeine intake significantly (p < 0.05) improved walking parameters such as distance, cadence and number of steps during both simple (p < 0.05) and dual-task, while listening to preferred music, where optimal results were found (p < 0.01) with a large effect size (η2p >0.14). Listening to music was sufficient to significantly improve the distance (p < 0.001), cadence (p < 0.001), and walking speed (p < 0.05) values. Besides, both caffeine intake and/or listening to music significantly (p < 0.05 with large effect size (η2p >0.14)) decreased the feeling of fatigue and increased exercise enjoyment while walking in healthy middle-aged women. Conclusion In conclusion, caffeine intake seems to positively influence gait capacities, and its combined effects with listening to music, mainly preferred ones, would boost these beneficial effects in middle-aged women.
Collapse
Affiliation(s)
- Mohammed Issa Alsaeed
- Department of Biomechanics & Motor Behavior, College of Sport Science & Physical Activity, King Saud University, Riyadh, Saudi Arabia
| | - Fatma Ben Waer
- Research Laboratory Education, Motricité, Sport et Santé, LR19JS01, High Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax, Tunisia
| |
Collapse
|
4
|
Guo Y, Jones EJ, Škarabot J, Inns TB, Phillips BE, Atherton PJ, Piasecki M. Common synaptic inputs and persistent inward currents of vastus lateralis motor units are reduced in older male adults. GeroScience 2024; 46:3249-3261. [PMID: 38238546 PMCID: PMC11009172 DOI: 10.1007/s11357-024-01063-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 01/02/2024] [Indexed: 04/13/2024] Open
Abstract
Although muscle atrophy may partially account for age-related strength decline, it is further influenced by alterations of neural input to muscle. Persistent inward currents (PIC) and the level of common synaptic inputs to motoneurons influence neuromuscular function. However, these have not yet been described in the aged human quadriceps. High-density surface electromyography (HDsEMG) signals were collected from the vastus lateralis of 15 young (mean ± SD, 23 ± 5 y) and 15 older (67 ± 9 y) men during submaximal sustained and 20-s ramped contractions. HDsEMG signals were decomposed to identify individual motor unit discharges, from which PIC amplitude and intramuscular coherence were estimated. Older participants produced significantly lower knee extensor torque (p < 0.001) and poorer force tracking ability (p < 0.001) than young. Older participants also had lower PIC amplitude (p = 0.001) and coherence estimates in the alpha frequency band (p < 0.001) during ramp contractions when compared to young. Persistent inward currents and common synaptic inputs are lower in the vastus lateralis of older males when compared to young. These data highlight altered neural input to the clinically and functionally important quadriceps, further underpinning age-related loss of function which may occur independently of the loss of muscle mass.
Collapse
Affiliation(s)
- Yuxiao Guo
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research &, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Royal Derby Hospital Centre (Room 3011), Derby, DE22 3DT, UK
| | - Eleanor J Jones
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research &, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Royal Derby Hospital Centre (Room 3011), Derby, DE22 3DT, UK
| | - Jakob Škarabot
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Thomas B Inns
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research &, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Royal Derby Hospital Centre (Room 3011), Derby, DE22 3DT, UK
| | - Bethan E Phillips
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research &, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Royal Derby Hospital Centre (Room 3011), Derby, DE22 3DT, UK
| | - Philip J Atherton
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research &, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Royal Derby Hospital Centre (Room 3011), Derby, DE22 3DT, UK
| | - Mathew Piasecki
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research &, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Royal Derby Hospital Centre (Room 3011), Derby, DE22 3DT, UK.
| |
Collapse
|
5
|
Arin-Bal G, Livanelioglu A, Leardini A, Belvedere C. Correlations between plantar pressure and postural balance in healthy subjects and their comparison according to gender and limb dominance: A cross-sectional descriptive study. Gait Posture 2024; 108:124-131. [PMID: 38039867 DOI: 10.1016/j.gaitpost.2023.11.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/07/2023] [Accepted: 11/22/2023] [Indexed: 12/03/2023]
Abstract
BACKGROUND Lower extremity injuries rank among the most common injuries affecting young population, and numerous factors affect the outcomes of plantar pressure and balance assessment. RESEARCH QUESTION Does a correlation exist between plantar pressure and postural balance in healthy subjects and are there any difference in the results based on gender and limb dominance? METHODS This study involved thirty healthy recreationally active young adults (15 females, 15 males). Plantar pressures were analyzed using the MatScan Pressure Mat System, and postural balance was evaluated using Biodex Balance System. All assessments conducted under both static and dynamic conditions. Correlations were tested by Spearman Correlation Coefficient, and comparative tests were performed for gender and limb dominance. RESULTS Correlations were observed between plantar pressure parameters and balance scores, particularly in the dynamic conditions (p < 0.05). Gender-based differences were noted in plantar pressure parameters (p < 0.05), with females demonstrating improved balance stability scores. No significant differences were found based on limb dominance in plantar pressure and postural balance data (p > 0.05). SIGNIFICANCE This study provides valuable detailed insights into the existing literature concerning plantar pressure and postural balance assessments within the healthy population. A strong correlation was observed between plantar pressure and postural balance, and the comparisons of these assessments were affected by gender but not by limb dominance. These results could lead the way for better rehabilitation approaches by considering the correlations and differences across diverse populations.
Collapse
Affiliation(s)
- Gamze Arin-Bal
- Hacettepe University, Faculty of Physical Therapy and Rehabilitation, Ankara, Turkey.
| | - Ayse Livanelioglu
- Hacettepe University, Faculty of Physical Therapy and Rehabilitation, Ankara, Turkey
| | - Alberto Leardini
- Movement Analysis Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Claudio Belvedere
- Movement Analysis Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
6
|
Cohen JW, Vieira TM, Ivanova TD, Garland SJ. Regional recruitment and differential behavior of motor units during postural control in older adults. J Neurophysiol 2023; 130:1321-1333. [PMID: 37877159 PMCID: PMC10972635 DOI: 10.1152/jn.00068.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 10/23/2023] [Accepted: 10/23/2023] [Indexed: 10/26/2023] Open
Abstract
Aging is associated with neuromuscular system changes that may have implications for the recruitment and firing behaviors of motor units (MUs). In previous studies, we observed that young adults recruit subpopulations of triceps surae MUs during tasks that involved leaning in five directions: common units that were active during different leaning directions and unique units that were active in only one leaning direction. Furthermore, the MU subpopulation firing behaviors [average firing rate (AFR), coefficient of variation (CoVISI), and intermittent firing] modulated with leaning direction. The purpose of this study was to examine whether older adults exhibited this regional recruitment of MUs and firing behaviors. Seventeen older adults (aged 74.8 ± 5.3 yr) stood on a force platform and maintained their center of pressure leaning in five directions. High-density surface electromyography recordings from the triceps surae were decomposed into single MU action potentials. A MU tracking analysis identified groups of MUs as being common or unique across the leaning directions. Although leaning in different directions did not affect the AFR and CoVISI of common units (P > 0.05), the unique units responded to the leaning directions by increasing AFR and CoVISI, albeit modestly (F = 18.51, P < 0.001). The unique units increased their intermittency with forward leaning (F = 9.22, P = 0.003). The mediolateral barycenter positions of MU activity in both subpopulations were found in similar locations for all leaning directions (P > 0.05). These neuromuscular changes may contribute to the reduced balance performance seen in older adults.NEW & NOTEWORTHY In this study, we observed differences in motor unit recruitment and firing behaviors of distinct subpopulations of motor units in the older adult triceps surae muscle from those observed in the young adult. Our results suggest that the older adult central nervous system may partially lose the ability to regionally recruit and differentially control motor units. This finding may be an underlying cause of balance difficulties in older adults during directionally challenging leaning tasks.
Collapse
Affiliation(s)
- Joshua W Cohen
- School of Kinesiology, Western University, London, Ontario, Canada
- Faculty of Health Sciences, School of Physical Therapy, Western University, London, Ontario, Canada
| | - Taian M Vieira
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Tanya D Ivanova
- Faculty of Health Sciences, School of Physical Therapy, Western University, London, Ontario, Canada
| | - S Jayne Garland
- Faculty of Health Sciences, School of Physical Therapy, Western University, London, Ontario, Canada
- Collaborative Specialization in Musculoskeletal Health Research, Bone and Joint Institute, Western University, London, Ontario, Canada
| |
Collapse
|
7
|
Kim K, Akbas T, Lee R, Manella K, Sulzer J. Self-modulation of rectus femoris reflex excitability in humans. Sci Rep 2023; 13:8134. [PMID: 37208394 DOI: 10.1038/s41598-023-34709-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 05/05/2023] [Indexed: 05/21/2023] Open
Abstract
Hyperreflexia is common after neurological injury such as stroke, yet clinical interventions have had mixed success. Our previous research has shown that hyperreflexia of the rectus femoris (RF) during pre-swing is closely associated with reduced swing phase knee flexion in those with post-stroke Stiff-Knee gait (SKG). Thus, reduction of RF hyperreflexia may improve walking function in those with post-stroke SKG. A non-pharmacological procedure for reducing hyperreflexia has emerged based on operant conditioning of H-reflex, an electrical analog of the spinal stretch reflex. It is currently unknown whether operant conditioning can be applied to the RF. This feasibility study trained 7 participants (5 neurologically intact, 2 post-stroke) to down-condition the RF H-reflex using visual feedback. We found an overall decrease in average RF H-reflex amplitude among all 7 participants (44% drop, p < 0.001, paired t-test), of which the post-stroke individuals contributed (49% drop). We observed a generalized training effect across quadriceps muscles. Post-stroke individuals exhibited improvements in peak knee-flexion velocity, reflex excitability during walking, and clinical measures of spasticity. These outcomes provide promising initial results that operant RF H-reflex conditioning is feasible, encouraging expansion to post-stroke individuals. This procedure could provide a targeted alternative in spasticity management.
Collapse
Affiliation(s)
| | | | - Robert Lee
- St. David's Medical Center, Austin, TX, USA
| | | | - James Sulzer
- University of Texas at Austin, Austin, TX, USA.
- MetroHealth Hospital and Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
8
|
Theodosiadou A, Henry M, Duchateau J, Baudry S. Revisiting the use of Hoffmann reflex in motor control research on humans. Eur J Appl Physiol 2023; 123:695-710. [PMID: 36571622 DOI: 10.1007/s00421-022-05119-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/17/2022] [Indexed: 12/27/2022]
Abstract
Research in movement science aims at unravelling mechanisms and designing methods for restoring and maximizing human functional capacity, and many techniques provide access to neural adjustments (acute changes) or long-term adaptations (chronic changes) underlying changes in movement capabilities. First described by Paul Hoffmann over a century ago, when an electrical stimulus is applied to a peripheral nerve, this causes action potentials in afferent axons, primarily the Ia afferents of the muscle spindles, which recruit homonymous motor neurons, thereby causing an electromyographic response known as the Hoffmann (H) reflex. This technique is a valuable tool in the study of the neuromuscular function in humans and has provided relevant information in the neural control of movement. The large use of the H reflex in motor control research on humans relies in part to its relative simplicity. However, such simplicity masks subtleties that require rigorous experimental protocols and careful data interpretation. After highlighting basic properties and methodological aspects that should be considered for the correct use of the H-reflex technique, this brief narrative review discusses the purpose of the H reflex and emphasizes its use as a tool to assess the effectiveness of Ia afferents in discharging motor neurones. The review also aims to reconsider the link between H-reflex modulation and Ia presynaptic inhibition, the use of the H-reflex technique in motor control studies, and the effects of ageing. These aspects are summarized as recommendations for the use of the H reflex in motor control research on humans.
Collapse
Affiliation(s)
- Anastasia Theodosiadou
- Laboratory of Applied Biology, Research Unit in Applied Neurophysiology (LABNeuro), Faculty of Motor Sciences, ULB-Neurosciences Institute (UNI), Université Libre de Bruxelles (ULB), 808 Route de Lennik, CP 640, 1070, Brussels, Belgium
| | - Mélanie Henry
- Laboratory of Applied Biology, Research Unit in Applied Neurophysiology (LABNeuro), Faculty of Motor Sciences, ULB-Neurosciences Institute (UNI), Université Libre de Bruxelles (ULB), 808 Route de Lennik, CP 640, 1070, Brussels, Belgium
| | - Jacques Duchateau
- Laboratory of Applied Biology, Research Unit in Applied Neurophysiology (LABNeuro), Faculty of Motor Sciences, ULB-Neurosciences Institute (UNI), Université Libre de Bruxelles (ULB), 808 Route de Lennik, CP 640, 1070, Brussels, Belgium
| | - Stéphane Baudry
- Laboratory of Applied Biology, Research Unit in Applied Neurophysiology (LABNeuro), Faculty of Motor Sciences, ULB-Neurosciences Institute (UNI), Université Libre de Bruxelles (ULB), 808 Route de Lennik, CP 640, 1070, Brussels, Belgium.
| |
Collapse
|
9
|
Imrani L, Boudaoud S, Lahaye C, Moreau C, Ghezal M, Ben Manaa S, Doulazmi M, Laforêt J, Marin F, Kinugawa K. High-density Surface Electromyography as Biomarker of Muscle Aging. J Gerontol A Biol Sci Med Sci 2023; 78:25-33. [PMID: 35876634 DOI: 10.1093/gerona/glac143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Indexed: 01/31/2023] Open
Abstract
Sarcopenia is a muscle disease with adverse changes that increase throughout the lifetime but with different chronological scales between individuals. Addressing "early muscle aging" is becoming a critical issue for prevention. Through the CHRONOS study, we demonstrated the ability of the high-density surface electromyography (HD-sEMG), a noninvasive, wireless, portable technology, to detect both healthy muscle aging and accelerated muscle aging related to a sedentary lifestyle, one of the risk factors of sarcopenia. The HD-sEMG signals were analyzed in 91 healthy young, middle-aged, and old subjects (25-75 years) distributed according to their physical activity status (82 active and 9 sedentary; International Physical Activity Questionnaire) and compared with current methods for muscle evaluation, including muscle mass (dual-energy X-ray absorptiometry [DXA], ultrasonography), handgrip strength, and physical performance. The HD-sEMG signals were recorded from the rectus femoris during sit-to-stand trials, and 2 indexes were analyzed: muscular contraction intensity and muscle contraction dynamics. The clinical parameters did not differ significantly across the aging and physical activity levels. Inversely, the HD-sEMG indexes were correlated to age and were different significantly through the age categories of the 82 active subjects. They were significantly different between sedentary subjects aged 45-54 years and active ones at the same age. The HD-sEMG indexes of sedentary subjects were not significantly different from those of older active subjects (≥55 years). The muscle thicknesses evaluated using ultrasonography were significantly different between the 5 age decades but did not show a significant difference with physical activity. The HD-sEMG technique can assess muscle aging and physical inactivity-related "early aging," outperforming clinical and DXA parameters.
Collapse
Affiliation(s)
- Loubna Imrani
- Université de Technologie de Compiègne (UTC), CNRS UMR 7338 Biomechanics and Bioengineering, Centre de Recherche de Royallieu- Alliance Sorbonne Université, Compiegne, France
| | - Sofiane Boudaoud
- Université de Technologie de Compiègne (UTC), CNRS UMR 7338 Biomechanics and Bioengineering, Centre de Recherche de Royallieu- Alliance Sorbonne Université, Compiegne, France
| | - Clément Lahaye
- Université Clermont Auvergne, INRAE UMR 1019 Human Nutrition Research Unit, CRNH Auvergne, CHU Clermont-Ferrand, Geriatrics Department, Clermont-Ferrand, France
| | - Caroline Moreau
- Sorbonne Université, CNRS, UMR Biological Adaptation and Aging, AP-HP, Charles Foix Hospital, Functional Exploration Unit for Older Patients, Ivry-sur-Seine, France
| | - Myriam Ghezal
- Sorbonne Université, CNRS, UMR Biological Adaptation and Aging, AP-HP, Charles Foix Hospital, Functional Exploration Unit for Older Patients, Ivry-sur-Seine, France
| | - Safa Ben Manaa
- Sorbonne Université, CNRS, UMR Biological Adaptation and Aging, AP-HP, Charles Foix Hospital, Functional Exploration Unit for Older Patients, Ivry-sur-Seine, France
| | - Mohamed Doulazmi
- Sorbonne University, CNRS, UMR 8256 Biological Adaptation and Aging, Paris, France
| | - Jérémy Laforêt
- Université de Technologie de Compiègne (UTC), CNRS UMR 7338 Biomechanics and Bioengineering, Centre de Recherche de Royallieu- Alliance Sorbonne Université, Compiegne, France
| | - Frédéric Marin
- Université de Technologie de Compiègne (UTC), CNRS UMR 7338 Biomechanics and Bioengineering, Centre de Recherche de Royallieu- Alliance Sorbonne Université, Compiegne, France
| | - Kiyoka Kinugawa
- Sorbonne Université, CNRS, UMR Biological Adaptation and Aging, AP-HP, Charles Foix Hospital, Functional Exploration Unit for Older Patients, Ivry-sur-Seine, France
| |
Collapse
|
10
|
Batista-Ferreira L, Rabelo NF, da Cruz GM, Costa JNDA, Elias LA, Mezzarane RA. Effects of voluntary contraction on the soleus H-reflex of different amplitudes in healthy young adults and in the elderly. Front Hum Neurosci 2022; 16:1039242. [PMID: 36590063 PMCID: PMC9797586 DOI: 10.3389/fnhum.2022.1039242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
A number of H-reflex studies used a moderate steady voluntary contraction in an attempt to keep the motoneuron pool excitability relatively constant. However, it is not clear whether the voluntary muscle activation itself represents a confounding factor for the elderly, as a few ongoing mechanisms of reflex modulation might be compromised. Further, it is well-known that the amount of either inhibition or facilitation from a given conditioning depends on the size of the test H-reflex. The present study aimed at evaluating the effects of voluntary contraction over a wide range of reflex amplitudes. A significant reflex facilitation during an isometric voluntary contraction of the soleus muscle (15% of the maximal voluntary isometric contraction-MVC) was found for both young adults and the elderly (p < 0.05), regardless of their test reflex amplitudes (considering the ascending limb of the H-reflex recruitment curve-RC). No significant difference was detected in the level of reflex facilitation between groups for all the amplitude parameters extracted from the RC. Simulations with a computational model of the motoneuron pool driven by stationary descending commands yielded qualitatively similar amount of reflex facilitation, as compared to human experiments. Both the experimental and modeling results suggest that possible age-related differences in spinal cord mechanisms do not significantly influence the reflex modulation during a moderate voluntary muscle activation. Therefore, a background voluntary contraction of the ankle extensors (e.g., similar to the one necessary to maintain upright stance) can be used in experiments designed to compare the RCs of both populations. Finally, in an attempt to elucidate the controversy around changes in the direct motor response (M-wave) during contraction, the maximum M-wave (Mmax) was compared between groups and conditions. It was found that the Mmax significantly increases (p < 0.05) during contraction and decreases (p < 0.05) with age arguably due to muscle fiber shortening and motoneuron loss, respectively.
Collapse
Affiliation(s)
- Leandra Batista-Ferreira
- Laboratory of Signal Processing and Motor Control, Faculty of Physical Education, University of Brasília, Brasília, Goiás, Brazil
| | - Natielle Ferreira Rabelo
- Neural Engineering Research Laboratory, Center for Biomedical Engineering, University of Campinas, Campinas, São Paulo, Brazil,Department of Electronics and Biomedical Engineering, School of Electrical and Computer Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Gabriel Menezes da Cruz
- Laboratory of Signal Processing and Motor Control, Faculty of Physical Education, University of Brasília, Brasília, Goiás, Brazil
| | | | - Leonardo Abdala Elias
- Neural Engineering Research Laboratory, Center for Biomedical Engineering, University of Campinas, Campinas, São Paulo, Brazil,Department of Electronics and Biomedical Engineering, School of Electrical and Computer Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Rinaldo André Mezzarane
- Laboratory of Signal Processing and Motor Control, Faculty of Physical Education, University of Brasília, Brasília, Goiás, Brazil,Postgraduate Program in Biomedical Engineering, University of Brasília, Brasília, Goiás, Brazil,*Correspondence: Rinaldo André Mezzarane,
| |
Collapse
|
11
|
Sun Y, Hurd CL, Barnes MM, Yang JF. Neural Plasticity in Spinal and Corticospinal Pathways Induced by Balance Training in Neurologically Intact Adults: A Systematic Review. Front Hum Neurosci 2022; 16:921490. [PMID: 36061497 PMCID: PMC9428930 DOI: 10.3389/fnhum.2022.921490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/20/2022] [Indexed: 12/02/2022] Open
Abstract
Balance training, defined here as training of postural equilibrium, improves postural control and reduces the rate of falls especially in older adults. This systematic review aimed to determine the neuroplasticity induced by such training in younger (18–30 years old) and older adults (≥65 years old). We focused on spinal and corticospinal pathways, as studied with electrophysiology, in people without neurological or other systemic disorders. We were specifically interested in the change in the excitability of these pathways before and after training. Searches were conducted in four databases: MEDLINE, CINAHL, Scopus, and Embase. A total of 1,172 abstracts were screened, and 14 articles were included. Quality of the studies was evaluated with the Downs and Black checklist. Twelve of the studies measured spinal reflexes, with ten measuring the soleus H-reflex. The H-reflex amplitude was consistently reduced in younger adults after balance training, while mixed results were found in older adults, with many showing an increase in the H-reflex after training. The differences in results between studies of younger vs. older adults may be related to the differences in their H-reflexes at baseline, with older adults showing much smaller H-reflexes than younger adults. Five studies measured corticospinal and intracortical excitability using transcranial magnetic stimulation. Younger adults showed reduced corticospinal excitability and enhanced intracortical inhibition after balance training. Two studies on older adults reported mixed results after training. No conclusions could be drawn for corticospinal and intracortical plasticity given the small number of studies. Overall, balance training induced measurable change in spinal excitability, with different changes seen in younger compared to older adults.
Collapse
Affiliation(s)
- Yao Sun
- Department of Physical Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada
| | - Caitlin L. Hurd
- Department of Physical Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada
| | - Michelle M. Barnes
- Department of Physical Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada
| | - Jaynie F. Yang
- Department of Physical Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada
- Neuroscience & Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- *Correspondence: Jaynie F. Yang
| |
Collapse
|
12
|
Wu Z, Wang Y, Ye Z, Guan Y, Ye X, Chen Z, Li C, Chen G, Zhu Y, Du J, Chen G, Liu W, Xu X. Effects of Age and Sex on Properties of Lumbar Erector Spinae in Healthy People: Preliminary Results From a Pilot Study. Front Physiol 2021; 12:718068. [PMID: 34616306 PMCID: PMC8488426 DOI: 10.3389/fphys.2021.718068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/17/2021] [Indexed: 12/04/2022] Open
Abstract
Background: The influences of age and sex on properties of lumbar erector spinae have not been previously studied. Changes in the performance of lumbar erector spinae properties associated with age represent a valuable indicator of risk for lower-back-related disease. Objective: To investigate the lumbar erector spinae properties with regard to age and sex to provide a reference dataset. Methods: We measured muscle tone and stiffness of the lumbar erector spinae (at the L3–4 level) in healthy men and women (50 young people, aged 20–30 years; 50 middle-aged people, aged 40–50 years; and 50 elderly people, aged 65–75 years) using a MyotonPRO device. Results: In general, there are significant differences in muscle tone and stiffness among young, middle-aged, and elderly participants, and there were significant differences in muscle tone and stiffness between men and women, and there was no interaction between age and sex. The muscle tone and stiffness of the elderly participants were significantly higher than those of the middle-aged and young participants (P < 0.01), and the muscle tone and stiffness of the middle-aged participants were significantly higher than those of the young participants (P < 0.01). In addition, the muscle tone and stiffness of men participants were significantly higher than that of women participants (P < 0.01). Conclusion: Our results indicate that muscle tone and stiffness of the lumbar erector spinae increase with age. The muscle tone and stiffness of the lumbar erector spinae in men are significantly higher than in women. The present study highlights the importance of considering age and sex differences when assessing muscle characteristics of healthy people or patients.
Collapse
Affiliation(s)
- Zugui Wu
- The Fifth Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yi Wang
- The Fifth Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zixuan Ye
- The Fifth Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yingxing Guan
- The Fifth Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiangling Ye
- The Fifth Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zehua Chen
- The Fifth Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Congcong Li
- The Fifth Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guoqian Chen
- Zhejiang Provincial Hospital of Chinese Medicine, Hangzhou, China
| | - Yue Zhu
- Baishui Health Center, Qujing, China
| | - Jianping Du
- Guangdong Second Traditional Chinese Medicine Hospital, Guangzhou, China
| | - Guocai Chen
- Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wengang Liu
- The Fifth Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Second Traditional Chinese Medicine Hospital, Guangzhou, China
| | - Xuemeng Xu
- The Fifth Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Second Traditional Chinese Medicine Hospital, Guangzhou, China
| |
Collapse
|
13
|
Suzuki A, Ishii K, Igawa T, Isogai N, Ui H, Urata R, Ideura K, Sasao Y, Funao H. Effect of the short and intensive rehabilitation (SHAiR) program on dynamic alignment in patients with dropped head syndrome during level walking. J Clin Neurosci 2021; 91:93-98. [PMID: 34373067 DOI: 10.1016/j.jocn.2021.06.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/07/2021] [Accepted: 06/12/2021] [Indexed: 11/18/2022]
Abstract
The purpose of this study was to assess the change of dynamic alignment after the short and intensive rehabilitation (SHAiR) program in patients with dropped head syndrome (DHS). Eighteen patients with DHS patients who complained of their inability to maintain horizontal gaze and underwent the SHAiR program. Patients performed level walking at a self-selected speed. Spatiotemporal, kinematic, and kinetic data were recorded using a three-dimensional motion analysis system. Statistical analysis was performed to compare these data before and after the SHAiR program. Those who underwent the SHAiR program showed a significant increase in the head angle and stride length compared to pre-treatment measurements (p < 0.05). The SHAiR program modifies the malalignment of the head and neck and spatiotemporal parameters in DHS patients during level walking.
Collapse
Affiliation(s)
- Akifumi Suzuki
- Department of Orthopaedic Surgery, School of Medicine, International University of Health and Welfare, 852 Hatakeda, Narita City, Chiba 286-8520, Japan; Spine and Spinal Cord Center, International University of Health and Welfare Mita Hospital, 1-4-3, Mita, Minato-ku, Tokyo 108-8329, Japan; Department of Rehabilitation, International University of Health and Welfare Mita Hospital, 1-4-3, Mita, Minato-ku, Tokyo 108-8329, Japan
| | - Ken Ishii
- Department of Orthopaedic Surgery, School of Medicine, International University of Health and Welfare, 852 Hatakeda, Narita City, Chiba 286-8520, Japan; Spine and Spinal Cord Center, International University of Health and Welfare Mita Hospital, 1-4-3, Mita, Minato-ku, Tokyo 108-8329, Japan.
| | - Tatsuya Igawa
- Department of Orthopaedic Surgery, School of Medicine, International University of Health and Welfare, 852 Hatakeda, Narita City, Chiba 286-8520, Japan; Spine and Spinal Cord Center, International University of Health and Welfare Mita Hospital, 1-4-3, Mita, Minato-ku, Tokyo 108-8329, Japan; Department of Rehabilitation, International University of Health and Welfare Mita Hospital, 1-4-3, Mita, Minato-ku, Tokyo 108-8329, Japan; Department of Physical Therapy, School of Health Science, International University of Health and Welfare, 2600-1, Kitakanemaru, Ohtawara, Tochigi 323-8501, Japan
| | - Norihiro Isogai
- Department of Orthopaedic Surgery, School of Medicine, International University of Health and Welfare, 852 Hatakeda, Narita City, Chiba 286-8520, Japan; Spine and Spinal Cord Center, International University of Health and Welfare Mita Hospital, 1-4-3, Mita, Minato-ku, Tokyo 108-8329, Japan
| | - Hideto Ui
- Department of Rehabilitation, International University of Health and Welfare Mita Hospital, 1-4-3, Mita, Minato-ku, Tokyo 108-8329, Japan
| | - Ryunosuke Urata
- Department of Rehabilitation, International University of Health and Welfare Mita Hospital, 1-4-3, Mita, Minato-ku, Tokyo 108-8329, Japan
| | - Kentaro Ideura
- Department of Rehabilitation, International University of Health and Welfare Mita Hospital, 1-4-3, Mita, Minato-ku, Tokyo 108-8329, Japan
| | - Yutaka Sasao
- Department of Orthopaedic Surgery, School of Medicine, International University of Health and Welfare, 852 Hatakeda, Narita City, Chiba 286-8520, Japan; Spine and Spinal Cord Center, International University of Health and Welfare Mita Hospital, 1-4-3, Mita, Minato-ku, Tokyo 108-8329, Japan
| | - Haruki Funao
- Department of Orthopaedic Surgery, School of Medicine, International University of Health and Welfare, 852 Hatakeda, Narita City, Chiba 286-8520, Japan; Spine and Spinal Cord Center, International University of Health and Welfare Mita Hospital, 1-4-3, Mita, Minato-ku, Tokyo 108-8329, Japan.
| |
Collapse
|
14
|
Jeong H, Johnson AW, Feland JB, Petersen SR, Staten JM, Bruening DA. Added body mass alters plantar shear stresses, postural control, and gait kinetics: Implications for obesity. PLoS One 2021; 16:e0246605. [PMID: 33544773 PMCID: PMC7864670 DOI: 10.1371/journal.pone.0246605] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/21/2021] [Indexed: 12/25/2022] Open
Abstract
Context Obesity is a growing global health concern. The increased body mass and altered mass distribution associated with obesity may be related to increases in plantar shear that putatively leads to physical functional deficits. Therefore, measurement of plantar shear may provide unique insights on the effects of body mass and body distribution on physical function or performance. Purpose 1) To investigate the effects of body mass and distribution on plantar shear. 2) To examine how altered plantar shear influences postural control and gait kinetics. Hypothesis 1) a weighted vest forward distributed (FV) would shift the center of pressure (CoP) location forward during standing compared with a weighted vest evenly distributed (EV), 2) FV would increase plantar shear spreading forces more than EV during standing, 3) FV would increase postural sway during standing while EV would not, and 4) FV would elicit greater compensatory changes during walking than EV. Methods Twenty healthy young males participated in four different tests: 1) static test (for measuring plantar shear and CoP location without acceleration, 2) bilateral-foot standing postural control test, 3) single-foot standing postural test, and 4) walking test. All tests were executed in three different weight conditions: 1) unweighted (NV), 2) EV with 20% added body mass, and 3) FV, also with 20% added body mass. Plantar shear stresses were measured using a pressure/shear device, and several shear and postural control metrics were extracted. Repeated measures ANOVAs with Holms post hoc test were used to compare each metric among the three conditions (α = 0.05). Results FV and EV increased both AP and ML plantar shear forces compared to NV. FV shifted CoP forward in single-foot trials. FV and EV showed decreased CoP range and velocity and increased Time-to-Boundary (TTB) during postural control compared to NV. EV and FV showed increased breaking impulse and propulsive impulse compared to NV. In addition, EV showed even greater impulses than FV. While EV increased ML plantar shear spreading force, FV increased AP plantar shear spreading force during walking. Conclusion Added body mass increases plantar shear spreading forces. Body mass distribution had greater effects during dynamic tasks. In addition, healthy young individuals seem to quickly adapt to external stimuli to control postural stability. However, as this is a first step study, follow-up studies are necessary to further support the clinical role of plantar shear in other populations such as elderly and individuals with obesity or diabetes.
Collapse
Affiliation(s)
- Hwigeum Jeong
- Department of Exercise Science, Brigham Young University, Provo, Utah, United States of America
- * E-mail:
| | - A. Wayne Johnson
- Department of Exercise Science, Brigham Young University, Provo, Utah, United States of America
| | - J. Brent Feland
- Department of Exercise Science, Brigham Young University, Provo, Utah, United States of America
| | - Spencer R. Petersen
- Department of Exercise Science, Brigham Young University, Provo, Utah, United States of America
| | - Jared M. Staten
- Department of Exercise Science, Brigham Young University, Provo, Utah, United States of America
| | - Dustin A. Bruening
- Department of Exercise Science, Brigham Young University, Provo, Utah, United States of America
| |
Collapse
|
15
|
Paulauskas H, Baranauskiene N, Wang J, Mikucioniene D, Eimantas N, Brazaitis M. Local knee heating increases spinal and supraspinal excitability and enhances plantar flexion and dorsiflexion torque production of the ankle in older adults. Eur J Appl Physiol 2020; 120:2259-2271. [PMID: 32776256 DOI: 10.1007/s00421-020-04449-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 07/25/2020] [Indexed: 12/28/2022]
Abstract
PURPOSE Aging is associated with progressive loss of active muscle mass and consequent decreases in resting metabolic rate and body temperature, and slowing of nerve conduction velocities and muscle contractility. These effectors compromise the ability of the elderly to maintain an upright posture during sudden balance perturbation, increase the risk of falls, and lead to self-imposed reduction in physical activity. Short-term superficial acute heating can modulate the neural drive transmission to exercising muscles without any marked change in deep-muscle temperature. METHODS To determine whether the short-term (5 min) application of local passive knee-surface heating (next-to-skin temperature, ~ 44 °C) in healthy older subjects of both sexes (64-74 years; eight men/eight women) enhances reflex excitability, we compared the voluntarily and electrically induced ankle muscle torque production and contractile properties with those of healthy younger subjects of both sexes (21-35 years, 10 men/10 women). RESULTS The application of local heating (vs. control) increased the maximal Hoffman reflex (Hmax), the maximal volitional wave (Vsup) amplitude, and the Hmax/Mmax amplitude ratio, and decreased Vsup latency only in older adults. In the older adults (vs. younger adults), the application of local heating (vs. control trial) was accompanied by a significant increase in maximal voluntary peak torque, rate of torque development, and isokinetic peak torque of plantar flexion/dorsiflexion muscle contraction. CONCLUSION The spinal and supraspinal reflex excitability of older adults increased during local knee-heating application. The improved motor drive transmission observed in older adults was accompanied by increased voluntarily induced torque production of the ankle muscles during isometric/isokinetic contractions.
Collapse
Affiliation(s)
- Henrikas Paulauskas
- Institute of Sports Science and Innovation, Lithuanian Sports University, Sporto 6, 44221, Kaunas, Lithuania
| | - Neringa Baranauskiene
- Institute of Sports Science and Innovation, Lithuanian Sports University, Sporto 6, 44221, Kaunas, Lithuania
| | - Junli Wang
- Institute of Sports Science and Innovation, Lithuanian Sports University, Sporto 6, 44221, Kaunas, Lithuania
| | - Daiva Mikucioniene
- Faculty of Mechanical Engineering and Design, Kaunas University of Technology, Studentu 56, 51424, Kaunas, Lithuania
| | - Nerijus Eimantas
- Institute of Sports Science and Innovation, Lithuanian Sports University, Sporto 6, 44221, Kaunas, Lithuania.
| | - Marius Brazaitis
- Institute of Sports Science and Innovation, Lithuanian Sports University, Sporto 6, 44221, Kaunas, Lithuania.
| |
Collapse
|
16
|
Hehl M, Swinnen SP, Cuypers K. Alterations of hand sensorimotor function and cortical motor representations over the adult lifespan. Aging (Albany NY) 2020; 12:4617-4640. [PMID: 32160591 PMCID: PMC7093194 DOI: 10.18632/aging.102925] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/02/2020] [Indexed: 12/14/2022]
Abstract
Using a cross sectional design, we aimed to identify the effect of aging on sensorimotor function and cortical motor representations of two intrinsic hand muscles, as well as the course and timing of those changes. Furthermore, the link between cortical motor representations, sensorimotor function, and intracortical inhibition and facilitation was investigated. Seventy-seven participants over the full adult lifespan were enrolled. For the first dorsal interosseus (FDI) and abductor digiti minimi (ADM) muscle, cortical motor representations, GABAA-mediated short-interval intracortical inhibition (SICI), and glutamate-mediated intracortical facilitation (ICF) were assessed using transcranial magnetic stimulation over the dominant primary motor cortex. Additionally, participants' dexterity and force were measured. Linear, polynomial, and piecewise linear regression analyses were conducted to identify the course and timing of age-related differences. Our results demonstrated variation in sensorimotor function over the lifespan, with a marked decline starting around the mid-thirties. Furthermore, an age-related reduction in cortical motor representation volume and maximal MEP of the FDI, but not for ADM, was observed, occurring mainly until the mid-forties. Area of the cortical motor representation did not change with advancing age. Furthermore, cortical motor representations, sensorimotor function, and measures of intracortical inhibition and facilitation were not interrelated.
Collapse
Affiliation(s)
- Melina Hehl
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Heverlee, Leuven, Belgium
| | - Stephan P. Swinnen
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Heverlee, Leuven, Belgium
- KU Leuven, Leuven Brain Institute (LBI), Leuven, Belgium
| | - Koen Cuypers
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Heverlee, Leuven, Belgium
- REVAL Research Institute, Hasselt University, Agoralaan, Diepenbeek, Belgium
| |
Collapse
|
17
|
Kim G, Ogawa T, Sekiguchi H, Nakazawa K. Acquisition and maintenance of motor memory through specific motor practice over the long term as revealed by stretch reflex responses in older ballet dancers. Physiol Rep 2020; 8:e14335. [PMID: 31960615 PMCID: PMC6971327 DOI: 10.14814/phy2.14335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The present study addressed whether motor memory acquired earlier in life through specific training can be maintained through later life with further training. To this end, the present study focused on the training effect of a specific ballet practice and investigated the spinally mediated stretch reflex responses of the soleus muscle in ballet dancers of upper-middle to old age (60.6 ± 5.4 years old) with experience levels of 28.4 ± 7.4 years ("older ballet" group). Comparisons were conducted with a group of young ballet dancers ("young ballet" group) and groups of both young and older individuals without weekly participation in physical activities ("young sedentary" and "older sedentary" groups). The results revealed natural age-dependent changes, with reflex responses being larger in older sedentary than in young sedentary individuals. A training-induced effect was also observed, with responses being smaller in ballet dancers than in sedentary groups of the same age. Furthermore, the responses were surprisingly smaller in the older ballet dancers than in the young sedentary group, at an equivalent level to that of the young ballet dancers. The influence of training, therefore, overcame the natural age-dependent changes. On the other hand, the onset latencies of the responses showed a solely age-dependent trend. Taken together, the present is the first to demonstrate that the motor memories in the spinal cord acquired through specific ballet training earlier in life can be maintained and carried forward in later life through further weekly participation in the same training.
Collapse
Affiliation(s)
- GeeHee Kim
- Graduate School of Arts and SciencesThe University of TokyoKomabaTokyoJapan
| | - Tetsuya Ogawa
- Graduate School of Arts and SciencesThe University of TokyoKomabaTokyoJapan
- Research InstituteNational Rehabilitation Center for Persons with DisabilitiesNamikiTokorozawaJapan
| | - Hirofumi Sekiguchi
- Sports Management ProgramFaculty of Business and Information SciencesJobu UniversityIsesakiGunmaJapan
| | - Kimitaka Nakazawa
- Graduate School of Arts and SciencesThe University of TokyoKomabaTokyoJapan
- Research InstituteNational Rehabilitation Center for Persons with DisabilitiesNamikiTokorozawaJapan
| |
Collapse
|
18
|
Le Mouel C, Brette R. Anticipatory coadaptation of ankle stiffness and sensorimotor gain for standing balance. PLoS Comput Biol 2019; 15:e1007463. [PMID: 31756199 PMCID: PMC6897426 DOI: 10.1371/journal.pcbi.1007463] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 12/06/2019] [Accepted: 10/07/2019] [Indexed: 12/30/2022] Open
Abstract
External perturbation forces may compromise standing balance. The nervous system can intervene only after a delay greater than 100 ms, during which the body falls freely. With ageing, sensorimotor delays are prolonged, posing a critical threat to balance. We study a generic model of stabilisation with neural delays to understand how the organism should adapt to challenging balance conditions. The model suggests that ankle stiffness should be increased in anticipation of perturbations, for example by muscle co-contraction, so as to slow down body fall during the neural response delay. Increased ankle muscle co-contraction is indeed observed in young adults when standing in challenging balance conditions, and in older relative to young adults during normal stance. In parallel, the analysis of the model shows that increases in either stiffness or neural delay must be coordinated with decreases in spinal sensorimotor gains, otherwise the feedback itself becomes destabilizing. Accordingly, a decrease in spinal feedback is observed in challenging conditions, and with age-related increases in neural delay. These observations have been previously interpreted as indicating an increased reliance on cortical rather than spinal control of balance, despite the fact that cortical responses have a longer latency. Our analysis challenges this interpretation by showing that these observations are consistent with a functional coadaptation of spinal feedback gains to functional changes in stiffness and neural delay. Being able to stand still can be difficult when faced with an unexpected push. It takes the nervous system more than a tenth of a second to respond to such a perturbation, and during this delay the body falls under the influence of its own weight. By co-contracting their ankle muscles in anticipation of a perturbation, subjects can increase their ankle stiffness, which slows down their fall during the neural delay. Young subjects indeed adopt this strategy when they need to remain particularly still (for example when they stand in front of a cliff). Older subjects adopt this strategy even during normal standing. We present a model of standing balance that shows that this postural strategy provides partial compensation for the increase in neural delays with ageing. According to our model, increasing ankle stiffness only improves balance if it is accompanied by a decrease in sensorimotor gain. This provides a novel and functional interpretation for the decrease in spinal feedback observed during ageing, and observed in young subjects when they stand in challenging balance conditions.
Collapse
Affiliation(s)
- Charlotte Le Mouel
- Max Planck Institute for Intelligent Systems, Stuttgart, Germany.,Sorbonne Université, INSERM, CNRS, Institut de la Vision, rue Moreau, Paris, France
| | - Romain Brette
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, rue Moreau, Paris, France
| |
Collapse
|
19
|
Recruitment gain of spinal motor neuron pools in cat and human. Exp Brain Res 2019; 237:2897-2909. [PMID: 31492990 DOI: 10.1007/s00221-019-05628-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 08/13/2019] [Indexed: 10/26/2022]
Abstract
The output from a motor nucleus is determined by the synaptic input to the motor neurons and their intrinsic properties. Here, we explore whether the source of synaptic inputs to the motor neurons (cats) and the age or post-stroke conditions (humans) may change the recruitment gain of the motor neuron pool. In cats, the size of Ia EPSPs in triceps surae motor neurons (input) and monosynaptic reflexes (MSRs; output) was recorded in the soleus and medial gastrocnemius motor nerves following graded stimulation of dorsal roots. The MSR was plotted against the EPSP thereby obtaining a measure of the recruitment gain. Conditioning stimulation of sural and peroneal cutaneous afferents caused significant increase in the recruitment gain of the medial gastrocnemius, but not the soleus motor neuron pool. In humans, the discharge probability of individual soleus motor units (input) and soleus H-reflexes (output) was performed. With graded stimulation of the tibial nerve, the gain of the motor neuron pool was assessed as the slope of the relation between probability of firing and the reflex size. The gain in young subjects was higher than in elderly subjects. The gain in post-stroke survivors was higher than in age-matched neurologically intact subjects. These findings provide experimental evidence that recruitment gain of a motor neuron pool contributes to the regulation of movement at the final output stage from the spinal cord and should be considered when interpreting changes in reflex excitability in relation to movement or injuries of the nervous system.
Collapse
|
20
|
Grosprêtre S, Bouguetoch A, Martin A. Cortical and spinal excitabilities are differently balanced in power athletes. Eur J Sport Sci 2019; 20:415-425. [PMID: 31203789 DOI: 10.1080/17461391.2019.1633414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
It is recognised that power-sport practices have a particular effect on lower-limb neuromuscular parameters. Less is known about corticospinal network adaptation, however, or whether these adaptations are specific to the lower limb. In the present study, the corticospinal and spinal excitabilities of upper and lower limbs have been examined in a group of untrained participants (UT, n = 10) and compared to those of a group of well-trained athletes practicing parkour (PK, n = 10). This activity, consisting of overcoming obstacles offered by the urban environment, was chosen as a model of power activity. The motor evoked potentials (MEPs) induced by transcranial magnetic stimulations and H-reflexes and maximal M-waves evoked by peripheral nerve stimulations were elicited in both upper- (flexor carpi radialis [FCR]) and lower-limb muscles (soleus [SOL] and gastrocnemius medialis [GM]). The results tended toward an overall greater corticospinal excitability in PK than in UT (as evidenced by greater MEP/Mmax ratio) and lower spinal excitability (lower Hmax/Mmax). H/MMAX ratio was lower for PK (0.32) than for UT (0.41) in SOL (p = 0.02), while MEP/MMAX was greater for PK than for UT in FCR (PK: 0.12; UT: 0.06; P = 0.04) and in GM (PK: 0.05, UT: 0.03, P = 0.02). In both limbs, the decrease of spinal excitability induced by parkour practice was counterbalanced by an increase in cortical excitability. Finally, the present study indicates that such long-term power practice leads to similar corticospinal plasticity in upper and lower limbs, explained by the similar solicitation of those muscles.
Collapse
Affiliation(s)
- Sidney Grosprêtre
- EA4660, C3S Culture Sport Health Society, University of Bourgogne Franche-Comté, Besançon, France
| | - Amandine Bouguetoch
- Cognition, Action and Sensorimotor Plasticity (CAPS), INSERM UMR1093, University of Bourgogne Franche-Comté, Dijon, France
| | - Alain Martin
- Cognition, Action and Sensorimotor Plasticity (CAPS), INSERM UMR1093, University of Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
21
|
Henry M, Baudry S. Age-related changes in leg proprioception: implications for postural control. J Neurophysiol 2019; 122:525-538. [PMID: 31166819 DOI: 10.1152/jn.00067.2019] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
In addition to being a prerequisite for many activities of daily living, the ability to maintain steady upright standing is a relevant model to study sensorimotor integrative function. Upright standing requires managing multimodal sensory inputs to produce finely tuned motor output that can be adjusted to accommodate changes in standing conditions and environment. The sensory information used for postural control mainly arises from the vestibular system of the inner ear, vision, and proprioception. Proprioception (sense of body position and movement) encompasses signals from mechanoreceptors (proprioceptors) located in muscles, tendons, and joint capsules. There is general agreement that proprioception signals from leg muscles provide the primary source of information for postural control. This is because of their exquisite sensitivity to detect body sway during unperturbed upright standing that mainly results from variations in leg muscle length induced by rotations around the ankle joint. However, aging is associated with alterations of muscle spindles and their neural pathways, which induce a decrease in the sensitivity, acuity, and integration of the proprioceptive signal. These alterations promote changes in postural control that reduce its efficiency and thereby may have deleterious consequences for the functional independence of an individual. This narrative review provides an overview of how aging alters the proprioceptive signal from the legs and presents compelling evidence that these changes modify the neural control of upright standing.
Collapse
Affiliation(s)
- Mélanie Henry
- Laboratory of Applied Biology and Research Unit in Applied Neurophysiology, ULB Neuroscience Institute, Université libre de Bruxelles, Brussels, Belgium
| | - Stéphane Baudry
- Laboratory of Applied Biology and Research Unit in Applied Neurophysiology, ULB Neuroscience Institute, Université libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
22
|
Škarabot J, Ansdell P, Brownstein CG, Hicks KM, Howatson G, Goodall S, Durbaba R. Reduced corticospinal responses in older compared with younger adults during submaximal isometric, shortening, and lengthening contractions. J Appl Physiol (1985) 2019; 126:1015-1031. [PMID: 30730812 DOI: 10.1152/japplphysiol.00987.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The aim of this study was to assess differences in motor performance, as well as corticospinal and spinal responses to transcranial magnetic and percutaneous nerve stimulation, respectively, during submaximal isometric, shortening, and lengthening contractions between younger and older adults. Fifteen younger [26 yr (SD 4); 7 women, 8 men] and 14 older [64 yr (SD 3); 5 women, 9 men] adults performed isometric and shortening and lengthening dorsiflexion on an isokinetic dynamometer (5°/s) at 25% and 50% of contraction type-specific maximums. Motor evoked potentials (MEPs) and H reflexes were recorded at anatomical zero. Maximal dorsiflexor torque was greater during lengthening compared with shortening and isometric contractions ( P < 0.001) but was not age dependent ( P = 0.158). However, torque variability was greater in older compared with young adults ( P < 0.001). Background electromyographic (EMG) activity was greater in older compared with younger adults ( P < 0.005) and was contraction type dependent ( P < 0.001). As evoked responses are influenced by both the maximal level of excitation and background EMG activity, the responses were additionally normalized {[MEP/maximum M wave (Mmax)]/root-mean-square EMG activity (RMS) and [H reflex (H)/Mmax]/RMS}. (MEP/Mmax)/RMS and (H/Mmax)/RMS were similar across contraction types but were greater in young compared with older adults ( P < 0.001). Peripheral motor conduction times were prolonged in older adults ( P = 0.003), whereas peripheral sensory conduction times and central motor conduction times were not age dependent ( P ≥ 0.356). These data suggest that age-related changes throughout the central nervous system serve to accommodate contraction type-specific motor control. Moreover, a reduction in corticospinal responses and increased torque variability seem to occur without a significant reduction in maximal torque-producing capacity during older age. NEW & NOTEWORTHY This is the first study to have explored corticospinal and spinal responses with aging during submaximal contractions of different types (isometric, shortening, and lengthening) in lower limb musculature. It is demonstrated that despite preserved maximal torque production capacity corticospinal responses are reduced in older compared with younger adults across contraction types along with increased torque variability during dynamic contractions. This suggests that the age-related corticospinal changes serve to accommodate contraction type-specific motor control.
Collapse
Affiliation(s)
- Jakob Škarabot
- Faculty of Health and Life Sciences, Northumbria University , Newcastle Upon Tyne , United Kingdom
| | - Paul Ansdell
- Faculty of Health and Life Sciences, Northumbria University , Newcastle Upon Tyne , United Kingdom
| | - Callum G Brownstein
- Faculty of Health and Life Sciences, Northumbria University , Newcastle Upon Tyne , United Kingdom.,Université Lyon, UJM-Saint-Etienne, Inter-university Laboratory of Human Movement Biology, Saint-Etienne, France
| | - Kirsty M Hicks
- Faculty of Health and Life Sciences, Northumbria University , Newcastle Upon Tyne , United Kingdom
| | - Glyn Howatson
- Faculty of Health and Life Sciences, Northumbria University , Newcastle Upon Tyne , United Kingdom.,Water Research Group, School of Environmental Sciences and Development, Northwest University , Potchefstroom , South Africa
| | - Stuart Goodall
- Faculty of Health and Life Sciences, Northumbria University , Newcastle Upon Tyne , United Kingdom
| | - Rade Durbaba
- Faculty of Health and Life Sciences, Northumbria University , Newcastle Upon Tyne , United Kingdom
| |
Collapse
|
23
|
Beylergil SB, Karmali F, Wang W, Bermúdez Rey MC, Merfeld DM. Vestibular roll tilt thresholds partially mediate age-related effects on balance. PROGRESS IN BRAIN RESEARCH 2019; 248:249-267. [DOI: 10.1016/bs.pbr.2019.04.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Brazaitis M, Paulauskas H, Eimantas N, Daniuseviciute L, Volungevicius G, Skurvydas A. Motor performance is preserved in healthy aged adults following severe whole-body hyperthermia. Int J Hyperthermia 2018; 36:65-74. [PMID: 30484343 DOI: 10.1080/02656736.2018.1533650] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Healthy aging is associated with a progressive decline in motor performance and thermoregulatory efficiency. Functional consequences of severe whole-body hyperthermia on neurophysiological functions in healthy aged men have not been investigated. To determine whether severe whole-body hyperthermia (increase in rectal temperature of about 2.5 °C) induced by lower-body heating in older men (64-80 years, n = 9) would suppress excitability of reflexes, voluntarily and electrically induced ankle plantar flexor contractile properties were compared with those in young men (19-21 years, n = 11). Though no aging effect on hyperthermia-induced reflex amplitudes was observed, a decrease in maximal H-reflex and V-wave latencies was found to be greater in older than in young men. In older men, lower-body heating was accompanied by a significant increase in twitch and tetani test torque in parallel with a greater decrease in muscle contraction time. There was no temperature-depended aging effect on the voluntary activation and maximal voluntary torque production. Despite delayed and weakened thermoregulation and age-related decline in neuromuscular function, motor performance in whole-body severe hyperthermia is apparently preserved in healthy aging.
Collapse
Affiliation(s)
- Marius Brazaitis
- a Institute of Sport Science and Innovations , Lithuanian Sports University , Kaunas , LT , Lithuania
| | - Henrikas Paulauskas
- a Institute of Sport Science and Innovations , Lithuanian Sports University , Kaunas , LT , Lithuania
| | - Nerijus Eimantas
- a Institute of Sport Science and Innovations , Lithuanian Sports University , Kaunas , LT , Lithuania
| | - Laura Daniuseviciute
- b Department of Educational Studies , Kaunas University of Technology , Kaunas , LT , Lithuania
| | - Gintautas Volungevicius
- a Institute of Sport Science and Innovations , Lithuanian Sports University , Kaunas , LT , Lithuania
| | - Albertas Skurvydas
- a Institute of Sport Science and Innovations , Lithuanian Sports University , Kaunas , LT , Lithuania
| |
Collapse
|
25
|
Cattagni T, Harnie J, Jubeau M, Hucteau E, Couturier C, Mignardot JB, Deschamps T, Berrut G, Cornu C. Neural and muscular factors both contribute to plantar-flexor muscle weakness in older fallers. Exp Gerontol 2018; 112:127-134. [DOI: 10.1016/j.exger.2018.09.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 09/12/2018] [Accepted: 09/17/2018] [Indexed: 11/16/2022]
|
26
|
Khosrawi S, Vahdatpour B, Ahmadi M. Evaluation of Relationship between Extensor Digitorum Communis Hoffmann-reflex Latency and Upper Limb Length and Age. Adv Biomed Res 2018; 7:65. [PMID: 29862214 PMCID: PMC5952532 DOI: 10.4103/abr.abr_106_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Background: The aim of this study was to evaluate the relation between normal values of extensor digitorum communis (EDC) Hoffmann-reflex (H-reflex) latency, upper limb length and age in normal participants, and to determine whether there is any regression equation between them. Materials and Methods: In this cross-sectional study, 120 upper limbs of 76 normal volunteers (55 limbs of 34 men and 65 limbs of 42 women) were participated in this study. The onset latency of EDC H-reflex was determined with standard electrodiagnostic techniques and was recorded. Results: The mean EDC H-reflex latency was 15.89 ± 1.41 ms. There was a positive significant correlation between EDC H-reflex latency and upper limb length (r = 0.749, P < 0.0001) and also arm length (r = 0.758, P < 0.0001), but there was a nonsignificant indirect correlation between age and EDC H-reflex latency (r = −0.111, P = 0.227). The relation between H-reflex and sex was not statistically significant (P = 0.46). Conclusion: According to our result, there are good predictive values between upper limb length and arm length for the estimation of normal EDC H-reflex latency.
Collapse
Affiliation(s)
- Saeid Khosrawi
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Babak Vahdatpour
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehdi Ahmadi
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
27
|
Kyguoliene L, Skurvydas A, Eimantas N, Baranauskiene N, Steponaviciute R, Daniuseviciute L, Paulauskas H, Cernych M, Brazaitis M. Three different motor task strategies to assess neuromuscular adjustments during fatiguing muscle contractions in young and older men. Exp Brain Res 2018; 236:2085-2096. [PMID: 29754195 DOI: 10.1007/s00221-018-5285-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 05/07/2018] [Indexed: 10/16/2022]
Abstract
Healthy aging is associated with a marked decline in motor performance. The functional consequences of applying varying novel or unexpected motor stimuli during intermittent isometric prolonged (fatiguing) motor tasks for lower limb neuromuscular fatigability and steadiness, perception of effort, and blood markers of stress in healthy aged men compared with young men have not been investigated. The participants in this study were 15 young men (aged 22 ± 4 years) and 10 older men (aged 67 ± 6 years). They performed 100 intermittent isometric knee extensions under three experimental conditions involving intermittent isometric contraction tasks according to constant, predictable, and unpredictable torque target sequences. The variability in maximal voluntary contraction averaged 50%, and was 25, 50, and 75% for the three strategies. All included a 5-s contraction and 20-s rest. The main variables were measured before exercise, after 100 repetitions, and 1 h after exercise. In all experimental trials, the decreases in the maximal voluntary contraction and central activation ratio, and the increases in effort sensation and muscle temperature, were smaller in older men than in younger men. The coefficient of variation during the motor performance did not differ between age groups. However, in all three strategies, the dopamine concentration was significantly higher in older than in younger men. The prolactin concentration did not differ significantly between age groups or conditions, although its decrease during loading correlated negatively with the central activation ratio.
Collapse
Affiliation(s)
- Laura Kyguoliene
- Department of Applied Biology and Rehabilitation, Lithuanian Sports University, Sporto Str. 6, 44221, Kaunas, Lithuania
| | - Albertas Skurvydas
- Department of Applied Biology and Rehabilitation, Lithuanian Sports University, Sporto Str. 6, 44221, Kaunas, Lithuania.,Institute of Sports Science and Innovation, Lithuanian Sports University, Sporto Str. 6, 44221, Kaunas, Lithuania
| | - Nerijus Eimantas
- Institute of Sports Science and Innovation, Lithuanian Sports University, Sporto Str. 6, 44221, Kaunas, Lithuania
| | - Neringa Baranauskiene
- Institute of Sports Science and Innovation, Lithuanian Sports University, Sporto Str. 6, 44221, Kaunas, Lithuania
| | - Rasa Steponaviciute
- Department of Laboratory Medicines, Medical Academy, Lithuanian University of Health Science, Kaunas, Lithuania
| | - Laura Daniuseviciute
- Department of Physical Education, Kaunas University of Technology, Kaunas, Lithuania
| | - Henrikas Paulauskas
- Institute of Sports Science and Innovation, Lithuanian Sports University, Sporto Str. 6, 44221, Kaunas, Lithuania
| | - Margarita Cernych
- Institute of Sports Science and Innovation, Lithuanian Sports University, Sporto Str. 6, 44221, Kaunas, Lithuania
| | - Marius Brazaitis
- Department of Applied Biology and Rehabilitation, Lithuanian Sports University, Sporto Str. 6, 44221, Kaunas, Lithuania. .,Institute of Sports Science and Innovation, Lithuanian Sports University, Sporto Str. 6, 44221, Kaunas, Lithuania.
| |
Collapse
|
28
|
Marusic U, Grosprêtre S. Non-physical approaches to counteract age-related functional deterioration: Applications for rehabilitation and neural mechanisms. Eur J Sport Sci 2018; 18:639-649. [PMID: 29557276 DOI: 10.1080/17461391.2018.1447018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Normal and pathological ageing are associated with several motor impairments that reduce quality of life and represent a general challenge for public healthcare systems. Consequently, over the past decades, many scientists and physiotherapists dedicated their research to the development and improvement of safe and costless methods to counteract the progressive decline of motor functions with age. The urgency of finding new and easy to implement methods is even more paramount in case of acute pathologies (e.g. stroke or hip surgery). The frailty of older population makes it difficult or even impossible to use traditional physical therapy at an early stage after the occurrence of a pathology. To that purpose, non-physical approaches such as cognitive training (e.g. memory, attention training) and mental techniques (e.g. motor imagery) have grown in popularity for the elderly. Such methods, involving individual and/or group exercises, have shown particular effects on increasing or maintaining cognitive functions, as well as physical performances. Improving the motor function (especially in older age) requires an improvement of motor execution, i.e. the pathway from the brain motor areas to the muscle but also higher cognitive control. The present work reviews different non-physical interventions that can be used as a complementary approach by asymptomatic or frail older adults, and the effects thereof on functional performance. The use of cognitive training or motor imagery protocols is recommended when physical practice is limited or not possible. Finally, insights into the underlying neurophysiological mechanisms are proposed.
Collapse
Affiliation(s)
- Uros Marusic
- a Institute for Kinesiology Research, Science and Research Centre Koper , Koper , Slovenia (EU).,b Department of Health Sciences , Alma Mater Europaea - ECM , Maribor , Slovenia (EU).,c Department of Kinesiology and Physiotherapy, Faculty of Health Sciences , University of Primorska , Izola , Slovenia (EU)
| | - Sidney Grosprêtre
- d EA4660, C3S Culture Sport Health Society, Université de Franche - Comté , Besançon , France (EU)
| |
Collapse
|
29
|
Reliability of the twitch evoked skeletal muscle electromechanical efficiency: A ratio between tensiomyogram and M-wave amplitudes. J Electromyogr Kinesiol 2017; 37:108-116. [DOI: 10.1016/j.jelekin.2017.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 09/25/2017] [Accepted: 10/11/2017] [Indexed: 12/28/2022] Open
|
30
|
Geertsen SS, Willerslev-Olsen M, Lorentzen J, Nielsen JB. Development and aging of human spinal cord circuitries. J Neurophysiol 2017; 118:1133-1140. [PMID: 28566459 DOI: 10.1152/jn.00103.2017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/25/2017] [Accepted: 05/25/2017] [Indexed: 01/25/2023] Open
Abstract
The neural motor circuitries in the spinal cord receive information from our senses and the rest of the nervous system and translate it into purposeful movements, which allow us to interact with the rest of the world. In this review, we discuss how these circuitries are established during early development and the extent to which they are shaped according to the demands of the body that they control and the environment with which the body has to interact. We also discuss how aging processes and physiological changes in our body are reflected in adaptations of activity in the spinal cord motor circuitries. The complex, multifaceted connectivity of the spinal cord motor circuitries allows them to generate vastly different movements and to adapt their activity to meet new challenges imposed by bodily changes or a changing environment. There are thus plenty of possibilities for adaptive changes in the spinal motor circuitries both early and late in life.
Collapse
Affiliation(s)
- Svend Sparre Geertsen
- Neural Control of Movement Research Group, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen N, Denmark.,Department of Nutrition, Exercise, and Sports, University of Copenhagen, Copenhagen N, Denmark; and
| | - Maria Willerslev-Olsen
- Neural Control of Movement Research Group, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen N, Denmark.,Elsass Institute, Charlottenlund, Denmark
| | - Jakob Lorentzen
- Neural Control of Movement Research Group, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen N, Denmark.,Elsass Institute, Charlottenlund, Denmark
| | - Jens Bo Nielsen
- Neural Control of Movement Research Group, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen N, Denmark; .,Elsass Institute, Charlottenlund, Denmark
| |
Collapse
|
31
|
Cattagni T, Merlet AN, Cornu C, Jubeau M. H-reflex and M-wave recordings: effect of pressure application to the stimulation electrode on the assessment of evoked potentials and subject's discomfort. Clin Physiol Funct Imaging 2017; 38:416-424. [PMID: 28444940 DOI: 10.1111/cpf.12431] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 03/03/2017] [Indexed: 11/26/2022]
Abstract
This study aimed to compare the effect of different types of pressure applied to the stimulation electrode on assessing the efficiency of Ia-α-motoneuron transmission of the soleus muscle and the associated discomfort using electrical nerve stimulation. Twelve healthy young adults participated in three experimental sessions (one for each knee angle). The amplitudes of the maximal Hoffmann reflex (Hmax ) and motor potential (Mmax ) were recorded from the soleus muscle at 0°, 30° and 90° knee angles (0° full extension) through three pressure applications to the stimulation electrode: no pressure, pressure with manual application and pressure using adhesive tape. The soleus Hmax /Mmax were calculated to assess the efficiency of Ia-α-motoneuron transmission during varied knee angles and pressure application to the stimulation electrode. At the stimulation intensity evoking soleus Hmax and Mmax , subjects were asked to orally provide a value between 'no discomfort' (0) and 'worst possible discomfort' (10). The application of pressure on the stimulation electrode, particularly using adhesive tape, decreased both the stimulation intensity needed to evoke an electrophysiological response and the associated self-reported discomfort (P<0·05), while the Hmax /Mmax remained constant. At the stimulation intensity evoking Mmax , the electrical stimulation appeared to be more painful at 0° knee angle compared with 30° and 90° angles (P<0·01). To conclude, this study showed that a knee flexion and a pressure application to the stimulation electrode, especially using tape pressure, are recommended in the objective to reduce the patient/subjects' discomfort when eliciting evoked potentials on soleus muscle.
Collapse
Affiliation(s)
- Thomas Cattagni
- Laboratory "Movement, Interactions, Performance" (EA 4334), Faculty of Sport Sciences, University of Nantes, Nantes, France
| | - Angèle N Merlet
- Laboratory "Movement, Interactions, Performance" (EA 4334), Faculty of Sport Sciences, University of Nantes, Nantes, France
| | - Christophe Cornu
- Laboratory "Movement, Interactions, Performance" (EA 4334), Faculty of Sport Sciences, University of Nantes, Nantes, France
| | - Marc Jubeau
- Laboratory "Movement, Interactions, Performance" (EA 4334), Faculty of Sport Sciences, University of Nantes, Nantes, France
| |
Collapse
|
32
|
Unhjem R, Nygård M, van den Hoven LT, Sidhu SK, Hoff J, Wang E. Lifelong strength training mitigates the age-related decline in efferent drive. J Appl Physiol (1985) 2016; 121:415-23. [DOI: 10.1152/japplphysiol.00117.2016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 06/17/2016] [Indexed: 12/31/2022] Open
Abstract
Recently, we documented age-related attenuation of efferent drive to contracting skeletal muscle. It remains elusive if this indication of reduced muscle strength is present with lifelong strength training. For this purpose, we examined evoked potentials in the calf muscles of 11 [71 ± 4 (SD) yr] strength-trained master athletes (MA) contrasted with 10 (71 ± 4 yr) sedentary (SO) and 11 (73 ± 6 yr) recreationally active (AO) old subjects, as well as 9 (22 ± 2 yr) young controls. As expected, MA had higher leg press maximal strength (MA, 185 ± 32 kg; AO, 128 ± 15 kg; SO, 106 ± 11 kg; young, 147 ± 22 kg, P < 0.01) and rate of force development (MA, 5,588 ± 2,488 N/s; AO, 2,156 ± 1,100 N/s; SO, 2,011 ± 825 N/s; young, 3,663 ± 1,140 N/s, P < 0.05) than the other groups. MA also exhibited higher musculus soleus normalized V waves during maximal voluntary contractions (MVC) [maximal V wave amplitude/maximal M wave during MVC (Vsup/Msup); 0.28 ± 0.15] than AO (0.13 ± 0.06, P < 0.01) and SO (0.11 ± 0.05, P < 0.01), yet lower than young (0.45 ± 0.12, P < 0.01). No differences were apparent between the old groups in H reflex recorded at rest or during MVC [maximal H reflex amplitude/maximal M wave during rest (Hmax/Mmax); maximal H reflex amplitude during MVC/maximal M wave during MVC (Hsup/Msup)], and all were lower ( P < 0.01) than young. MA (34.4 ± 2.1 ms) had shorter ( P < 0.05) H reflex latency compared with AO (36.4 ± 3.7 ms) and SO (37.3 ± 3.2 ms), but longer ( P < 0.01) than young (30.7 ± 2.0 ms). Using interpolated twitch analysis, MA (89 ± 7%) had plantar flexion voluntary activation similar to young (90 ± 6%), and this was higher ( P < 0.05), or tended to be higher ( P = 0.06–0.09), than SO (83 ± 10%) and AO (84 ± 5%). These observations suggest that lifelong strength training has a protective effect against age-related attenuation of efferent drive. In contrast, no beneficial effect seems to derive from habitual recreational activity, indicating that strength training may be particularly beneficial for counteracting age-related loss of neuromuscular function.
Collapse
Affiliation(s)
- Runar Unhjem
- Department of Circulation and Medical Imaging, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Mona Nygård
- Department of Circulation and Medical Imaging, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Lene T. van den Hoven
- Department of Circulation and Medical Imaging, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Simranjit K. Sidhu
- Discipline of Physiology, School of Medicine, The University of Adelaide, Adelaide, Australia
| | - Jan Hoff
- Department of Circulation and Medical Imaging, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Physical Medicine and Rehabilitation, St. Olav's University Hospital, Trondheim, Norway
| | - Eivind Wang
- Department of Circulation and Medical Imaging, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Research and Development, St. Olav's University Hospital, Trondheim, Norway; and
- Department of Medicine, University of Utah, Salt Lake City, Utah
| |
Collapse
|
33
|
Kirk EA, Copithorne DB, Dalton BH, Rice CL. Motor unit firing rates of the gastrocnemii during maximal and sub-maximal isometric contractions in young and old men. Neuroscience 2016; 330:376-85. [DOI: 10.1016/j.neuroscience.2016.05.059] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 05/30/2016] [Accepted: 05/31/2016] [Indexed: 11/16/2022]
|
34
|
Baudry S. Aging Changes the Contribution of Spinal and Corticospinal Pathways to Control Balance. Exerc Sport Sci Rev 2016; 44:104-9. [DOI: 10.1249/jes.0000000000000080] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
35
|
Bhandari A, Radhu N, Farzan F, Mulsant BH, Rajji TK, Daskalakis ZJ, Blumberger DM. A meta-analysis of the effects of aging on motor cortex neurophysiology assessed by transcranial magnetic stimulation. Clin Neurophysiol 2016; 127:2834-2845. [PMID: 27417060 DOI: 10.1016/j.clinph.2016.05.363] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 05/13/2016] [Accepted: 05/31/2016] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Transcranial magnetic stimulation (TMS) is a non-invasive tool used for studying cortical excitability and plasticity in the human brain. This review aims to quantitatively synthesize the literature on age-related differences in cortical excitability and plasticity, examined by TMS. METHODS A literature search was conducted using MEDLINE, Embase, and PsycINFO from 1980 to December 2015. We extracted studies with healthy old (50-89years) versus young (16-49years) individuals that utilized the following TMS measures: resting motor threshold (RMT), short-interval cortical inhibition (SICI), short-latency afferent inhibition (SAI), cortical silent period (CSP), intracortical facilitation (ICF), and paired associative stimulation (PAS). RESULTS We found a significant increase in RMT (g=0.414, 95% confidence interval (CI) [0.284, 0.544], p<0.001), a significant decrease in SAI (g=0.778, 95% CI [0.478, 1.078], p<0.001), and a trending decrease in LTP-like plasticity (g=-0.528, 95% CI [-1.157, 0.100] p<0.1) with age. CONCLUSIONS Our findings suggest an age-dependent reduction in cortical excitability and sensorimotor integration within the human motor cortex. SIGNIFICANCE Alterations in the ability to regulate cortical excitability, sensorimotor integration and plasticity may underlie several age-related motor deficits.
Collapse
Affiliation(s)
- Apoorva Bhandari
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario M6J 1H4, Canada
| | - Natasha Radhu
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario M6J 1H4, Canada
| | - Faranak Farzan
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario M6J 1H4, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario M5T 1R8, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario M5T 1R8, Canada
| | - Benoit H Mulsant
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario M6J 1H4, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario M5T 1R8, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario M5T 1R8, Canada
| | - Tarek K Rajji
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario M6J 1H4, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario M5T 1R8, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario M5T 1R8, Canada
| | - Zafiris J Daskalakis
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario M6J 1H4, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario M5T 1R8, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario M5T 1R8, Canada
| | - Daniel M Blumberger
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Ontario M6J 1H4, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario M5T 1R8, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario M5T 1R8, Canada.
| |
Collapse
|
36
|
Elsayed SEB, Raoof NAA, Elsayed OM. Effect of whole-body vibration on motor neuron excitability in healthy young men. BULLETIN OF FACULTY OF PHYSICAL THERAPY 2016. [DOI: 10.4103/1110-6611.188027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
37
|
Scaglioni G, Narici MV, Martin A. Neural Activation During Submaximal Contractions Seems More Reflective of Neuromuscular Ageing than Maximal Voluntary Activation. Front Aging Neurosci 2016; 8:19. [PMID: 26941638 PMCID: PMC4766308 DOI: 10.3389/fnagi.2016.00019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 01/26/2016] [Indexed: 11/24/2022] Open
Abstract
This study aimed at testing the hypothesis that differences in neural activation strategy during submaximal but not maximal plantarflexions exist between young and older men. Eleven young men (YM, 26 ± 4 years) and thirteen old men (OM, 76 ± 3 years) volunteered for the investigation. Maximal voluntary torque (MVT) was 38.2%, lower (p < 0.001) in OM than in YM, while voluntary activation was equivalent (~97%). The relationship between the interpolated twitch-torque and the voluntary torque (IT-VT relationship) was composite (curvilinear + exponential) for both age-groups. However, the OM showed accentuated concavity, as attested by the occurrence of the deviation from linearity at a lower contraction intensity (OM: 54.9 vs. YM: 71.9% MVT). In conclusion, ageing does not affect the capacity to fully activate the plantar flexors during maximal performances, but it alters the activation pattern for submaximal levels of effort. The greater age-related concavity of the IT-VT relationship suggests that, during submaximal contractions, OM need to reach a level of activation higher than YM to develop an equivalent relative torque.
Collapse
Affiliation(s)
- Gil Scaglioni
- Université de Bourgogne Franche-Comté (UBFC), Cognition Action et Plasticité Sensorimotrice (CAPS) UMR1093Dijon, France; Institut National de la Santé et de la Recherche Médicale (INSERM U1093), Cognition Action et Plasticité Sensorimotrice (CAPS) UMR1093Dijon, France
| | - Marco V Narici
- School of Graduate Entry to Medicine and Health, Faculty of Medicine, MRC-Arthritis Research UK Centre of Excellence for Musculoskeletal Ageing Research, University of Nottingham Derby, UK
| | - Alain Martin
- Université de Bourgogne Franche-Comté (UBFC), Cognition Action et Plasticité Sensorimotrice (CAPS) UMR1093Dijon, France; Institut National de la Santé et de la Recherche Médicale (INSERM U1093), Cognition Action et Plasticité Sensorimotrice (CAPS) UMR1093Dijon, France
| |
Collapse
|
38
|
Toledo DR, Manzano GM, Barela JA, Kohn AF. Cortical correlates of response time slowing in older adults: ERP and ERD/ERS analyses during passive ankle movement. Clin Neurophysiol 2016; 127:655-663. [DOI: 10.1016/j.clinph.2015.05.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 04/25/2015] [Accepted: 05/02/2015] [Indexed: 11/25/2022]
|
39
|
Agyapong-Badu S, Warner M, Samuel D, Stokes M. Measurement of ageing effects on muscle tone and mechanical properties of rectus femoris and biceps brachii in healthy males and females using a novel hand-held myometric device. Arch Gerontol Geriatr 2016; 62:59-67. [DOI: 10.1016/j.archger.2015.09.011] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 09/25/2015] [Accepted: 09/28/2015] [Indexed: 01/25/2023]
|
40
|
Rozand V, Grosprêtre S, Stapley PJ, Lepers R. Assessment of Neuromuscular Function Using Percutaneous Electrical Nerve Stimulation. J Vis Exp 2015. [PMID: 26436986 DOI: 10.3791/52974] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Percutaneous electrical nerve stimulation is a non-invasive method commonly used to evaluate neuromuscular function from brain to muscle (supra-spinal, spinal and peripheral levels). The present protocol describes how this method can be used to stimulate the posterior tibial nerve that activates plantar flexor muscles. Percutaneous electrical nerve stimulation consists of inducing an electrical stimulus to a motor nerve to evoke a muscular response. Direct (M-wave) and/or indirect (H-reflex) electrophysiological responses can be recorded at rest using surface electromyography. Mechanical (twitch torque) responses can be quantified with a force/torque ergometer. M-wave and twitch torque reflect neuromuscular transmission and excitation-contraction coupling, whereas H-reflex provides an index of spinal excitability. EMG activity and mechanical (superimposed twitch) responses can also be recorded during maximal voluntary contractions to evaluate voluntary activation level. Percutaneous nerve stimulation provides an assessment of neuromuscular function in humans, and is highly beneficial especially for studies evaluating neuromuscular plasticity following acute (fatigue) or chronic (training/detraining) exercise.
Collapse
Affiliation(s)
- Vianney Rozand
- INSERM U1093, Faculty of Sport Sciences, Univ. Bourgogne Franche-Comté;
| | - Sidney Grosprêtre
- INSERM U1093, Faculty of Sport Sciences, Univ. Bourgogne Franche-Comté
| | - Paul J Stapley
- Neural Control of Movement Laboratory, School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong
| | - Romuald Lepers
- INSERM U1093, Faculty of Sport Sciences, Univ. Bourgogne Franche-Comté
| |
Collapse
|
41
|
Vangsgaard S, Hansen EA, Madeleine P. Between-day reliability of the trapezius muscle H-reflex and M-wave. Muscle Nerve 2015; 52:1066-71. [PMID: 25762463 DOI: 10.1002/mus.24645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 02/19/2015] [Accepted: 03/03/2015] [Indexed: 11/10/2022]
Abstract
INTRODUCTION The aim of this study was to investigate the between-day reliability of the trapezius muscle H-reflex and M-wave. METHODS Sixteen healthy subjects were studied on 2 consecutive days. Trapezius muscle H-reflexes were evoked by electrical stimulation of the C3/4 cervical nerves; M-waves were evoked by electrical stimulation of the accessory nerve. Relative reliability was estimated by intraclass correlation coefficients (ICC2,1 ). Absolute reliability was estimated by computing the standard error of measurement (SEM) and the smallest real difference (SRD). Bland-Altman plots were constructed to detect any systematic bias. RESULTS Variables showed substantial to excellent relative reliability (ICC = 0.70-0.99). The relative SEM ranged from 1.4% to 34.8%; relative SRD ranged from 3.8% to 96.5%. No systematic bias was present in the data. CONCLUSIONS The amplitude and latency of the trapezius muscle H-reflex and M-wave in healthy young subjects can be measured reliably across days.
Collapse
Affiliation(s)
- Steffen Vangsgaard
- Physical Activity and Human Performance group, SMI, Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 7 D-3, DK-9220, Aalborg, Denmark
| | - Ernst A Hansen
- Physical Activity and Human Performance group, SMI, Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 7 D-3, DK-9220, Aalborg, Denmark
| | - Pascal Madeleine
- Physical Activity and Human Performance group, SMI, Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 7 D-3, DK-9220, Aalborg, Denmark
| |
Collapse
|
42
|
Influence of age and posture on spinal and corticospinal excitability. Exp Gerontol 2015; 69:62-9. [DOI: 10.1016/j.exger.2015.06.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Revised: 06/03/2015] [Accepted: 06/04/2015] [Indexed: 11/21/2022]
|
43
|
Unhjem R, Lundestad R, Fimland MS, Mosti MP, Wang E. Strength training-induced responses in older adults: attenuation of descending neural drive with age. AGE (DORDRECHT, NETHERLANDS) 2015; 37:9784. [PMID: 25940749 PMCID: PMC4418975 DOI: 10.1007/s11357-015-9784-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 04/17/2015] [Indexed: 05/28/2023]
Abstract
Although reductions in resting H-reflex responses and maximal firing frequency suggest that reduced efferent drive may limit muscle strength in elderly, there are currently no reports of V-wave measurements in elderly, reflecting the magnitude of efferent output to the muscle during maximal contraction. Furthermore, it is uncertain whether potential age-related neural deficiencies can be restored by resistance training. We assessed evoked reflex recordings in the triceps surae muscles during rest and maximal voluntary contraction (MVC), rate of force development (RFD), and muscle mass in seven elderly (74 ± 6 years) males before and after 8 weeks of heavy resistance training, contrasted by seven young (24 ± 4 years) male controls. At baseline, m. soleus (SOL) V/M ratio (0.124 ± 0.082 vs. 0.465 ± 0.197, p < 0.05) and H/M ratio (0.379 ± 0.044 vs. 0.486 ± 0.101 p = 0.07) were attenuated in elderly compared to young. Also, SOL H-reflex latency (33.29 ± 2.41 vs. 30.29 ± 0.67 ms, p < 0.05) was longer in elderly. The reduced neural drive was, despite similar leg muscle mass (10.7 ± 1.2 vs. 11.5 ± 1.4 kg), mirrored by lower MVC (158 ± 48 vs. 240 ± 54 Nm, p < 0.05) and RFD (294 ± 126 vs. 533 ± 123 Nm s(-1), p < 0.05) in elderly. In response to training SOL V/M ratio (0.184 ± 0.092, p < 0.05) increased in the elderly, yet only to a level ~40 % of the young. This was accompanied by increased MVC (190 ± 70 Nm, p < 0.05) and RFD (401 ± 147 Nm[Symbol: see text]s(-1), p < 0.05) to levels of ~80 % and ~75 % of the young. H/M ratio remained unchanged. These findings suggest that changes in supraspinal activation play a significant role in the age-related changes in muscle strength. Furthermore, this motor system impairment can to some extent be improved by heavy resistance training.
Collapse
Affiliation(s)
- Runar Unhjem
- Department of Circulation and Medical Imaging, Faculty of Medicine, Norwegian University of Science and Technology, Prinsesse Kristinas gt. 3, 7006, Trondheim, Norway,
| | | | | | | | | |
Collapse
|
44
|
Cramer JT, Jenkins NDM, Mustad VA, Weir JP. Isokinetic Dynamometry in Healthy Versus Sarcopenic and Malnourished Elderly: Beyond Simple Measurements of Muscle Strength. J Appl Gerontol 2015; 36:709-732. [DOI: 10.1177/0733464815584669] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
This study quantified systematic and intraindividual variability among three repetitions of concentric isokinetic knee extension and flexion tests to determine velocity-related differences in peak torque (PT) and mean power (MP) in healthy elderly (HE) versus sarcopenic and malnourished elderly (SME). In total, 107 HE ( n = 54 men, n = 53 women) and 261 SME ( n = 101 men, n = 160 women) performed three maximal concentric isokinetic knee extension and flexion repetitions at 60°·s−1 and 180°·s−1. PT for Repetition 3 was lower than Repetitions 1 and 2, while MP for Repetition 1 was lower than Repetitions 2 and 3 in SME. Intraindividual variability among repetitions was correlated with strength, but not age, and was greater in SME, during knee flexion, and at 180°·s−1. Velocity-related decreases in PT from 60°·s−1 to 180°·s−1 were more pronounced in SME. In summary, (a) the repetition with the highest PT value may be the best indicator of maximal strength, while the average may indicate strength maintenance in SME; (b) intraindividual variability among repetitions reflects functional decrements from HE to SME; and (c) decreases in PT from 60°·s−1 to 180°·s−1 may reflect greater losses of fast-twitch (type II) fiber function.
Collapse
|
45
|
Pollock RD, Carter S, Velloso CP, Duggal NA, Lord JM, Lazarus NR, Harridge SDR. An investigation into the relationship between age and physiological function in highly active older adults. J Physiol 2015; 593:657-80; discussion 680. [PMID: 25565071 DOI: 10.1113/jphysiol.2014.282863] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Accepted: 11/18/2014] [Indexed: 01/27/2023] Open
Abstract
KEY POINTS The relationship between age and physiological function remains poorly defined and there are no physiological markers that can be used to reliably predict the age of an individual. This could be due to a variety of confounding genetic and lifestyle factors, and in particular to ill-defined and low levels of physical activity. This study assessed the relationship between age and a diverse range of physiological functions in a cohort of highly active older individuals (cyclists) aged 55-79 years in whom the effects of lifestyle factors would be ameliorated. Significant associations between age and function were observed for many functions. V̇O2max was most closely associated with age, but even here the variance in age for any given level was high, precluding the clear identification of the age of any individual. The data suggest that the relationship between human ageing and physiological function is highly individualistic and modified by inactivity. ABSTRACT Despite extensive research, the relationship between age and physiological function remains poorly characterised and there are currently no reliable markers of human ageing. This is probably due to a number of confounding factors, particularly in studies of a cross-sectional nature. These include inter-subject genetic variation, as well as inter-generational differences in nutrition, healthcare and insufficient levels of physical activity as well as other environmental factors. We have studied a cohort of highly and homogeneously active older male (n = 84) and female (n = 41) cyclists aged 55-79 years who it is proposed represent a model for the study of human ageing free from the majority of confounding factors, especially inactivity. The aim of the study was to identify physiological markers of ageing by assessing the relationship between function and age across a wide range of indices. Each participant underwent a detailed physiological profiling which included measures of cardiovascular, respiratory, neuromuscular, metabolic, endocrine and cognitive functions, bone strength, and health and well-being. Significant associations between age and function were observed for many functions. The maximal rate of oxygen consumption (V̇O2max) showed the closest association with age (r = -0.443 to -0.664; P < 0.001), but even here the variance in age for any given level was high, precluding the clear identification of the age of any individual. The results of this cross-sectional study suggest that even when many confounding variables are removed the relationship between function and healthy ageing is complex and likely to be highly individualistic and that physical activity levels must be taken into account in ageing studies.
Collapse
Affiliation(s)
- Ross D Pollock
- Centre of Human and Aerospace Physiological Sciences, King's College London, London, UK
| | | | | | | | | | | | | |
Collapse
|
46
|
Khosrawi S, Taheri P, Hashemi SH. Proposed equation between flexor carpi radialis H-reflex latency and upper limb length. IRANIAN JOURNAL OF NEUROLOGY 2015; 14:41-6. [PMID: 25874056 PMCID: PMC4395806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 12/12/2014] [Indexed: 11/24/2022]
Abstract
BACKGROUND H-reflex is a valuable electrophysiological technique for assessing nerve conduction through entire length of afferent and efferent pathways, especially nerve roots and proximal segments of peripheral nerves. The aim of this study was to investigate the relation between normal values of flexor carpi radialis (FCR) H-reflex latency, upper limb length and age in normal subjects, and to determine whether there is any regression equation between them. METHODS By considering the criteria of inclusion and exclusion, 120 upper limbs of 69 normal volunteers (68 hands of 39 men and 52 hands of 30 women) with the mean age of 39.8 ± 11.2 years participated in this study. FCR H-reflex was obtained by standard electrodiagnostic techniques, and its onset latency was recorded. Upper limb length and arm length were measured in defined position. The degree of association between these variables was determined with Pearson correlation and linear regression was used for obtaining the proposed relations. RESULTS Mean FCR H-reflex latency was found to be 15.88 ± 1.27 ms. There was a direct linear correlation between FCR H-reflex latency and upper limb length (r = 0.647) and also arm length (r = 0.574), but there was no significant correlation between age and FCR H-reflex latency (P = 0.260). Finally, based on our findings, we tried to formulate these relations by statistical methods. CONCLUSION We found that upper limb length and arm length are good predictive values for estimation of normal FCR H-reflex latency but age, in the range of 20-60 years old, has no correlation with its latency. This estimation could have practical indications in pathologic conditions.
Collapse
Affiliation(s)
- Saeid Khosrawi
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parisa Taheri
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyed Hasan Hashemi
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
47
|
Jenkins ND, Buckner SL, Cochrane KC, Bergstrom HC, Palmer TB, Johnson GO, Schmidt RJ, Housh TJ, Cramer JT. Age-related differences in rates of torque development and rise in EMG are eliminated by normalization. Exp Gerontol 2014; 57:18-28. [DOI: 10.1016/j.exger.2014.04.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 04/22/2014] [Accepted: 04/28/2014] [Indexed: 11/24/2022]
|
48
|
Christie AD, Tonson A, Larsen RG, DeBlois JP, Kent JA. Human skeletal muscle metabolic economy in vivo: effects of contraction intensity, age, and mobility impairment. Am J Physiol Regul Integr Comp Physiol 2014; 307:R1124-35. [PMID: 25163917 DOI: 10.1152/ajpregu.00083.2014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We tested the hypothesis that older muscle has greater metabolic economy (ME) in vivo than young, in a manner dependent, in part, on contraction intensity. Twenty young (Y; 24±1 yr, 10 women), 18 older healthy (O; 73±2, 9 women) and 9 older individuals with mild-to-moderate mobility impairment (OI; 74±1, 7 women) received stimulated twitches (2 Hz, 3 min) and performed nonfatiguing voluntary (20, 50, and 100% maximal; 12 s each) isometric dorsiflexion contractions. Torque-time integrals (TTI; Nm·s) were calculated and expressed relative to maximal fat-free muscle cross-sectional area (cm2), and torque variability during voluntary contractions was calculated as the coefficient of variation. Total ATP cost of contraction (mM) was determined from flux through the creatine kinase reaction, nonoxidative glycolysis and oxidative phosphorylation, and used to calculate ME (Nm·s·cm(-2)·mM ATP(-1)). While twitch torque relaxation was slower in O and OI compared with Y (P≤0.001), twitch TTI, ATP cost, and economy were similar across groups (P≥0.15), indicating comparable intrinsic muscle economy during electrically induced isometric contractions in vivo. During voluntary contractions, normalized TTI and total ATP cost did not differ significantly across groups (P≥0.20). However, ME was lower in OI than Y or O at 20% and 50% MVC (P≤0.02), and torque variability was greater in OI than Y or O at 20% MVC (P≤0.05). These results refute the hypothesis of greater muscle ME in old age, and provide support for lower ME in impaired older adults as a potential mechanism or consequence of age-related reductions in functional mobility.
Collapse
Affiliation(s)
- Anita D Christie
- Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts
| | - Anne Tonson
- Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts
| | - Ryan G Larsen
- Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts
| | - Jacob P DeBlois
- Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts
| | - Jane A Kent
- Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts
| |
Collapse
|
49
|
Cattagni T, Martin A, Scaglioni G. Is spinal excitability of the triceps surae mainly affected by muscle activity or body position? J Neurophysiol 2014; 111:2525-32. [DOI: 10.1152/jn.00455.2013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The aim of this study was to determine how muscle activity and body orientation contribute to the triceps surae spinal transmission modulation, when moving from a sitting to a standing position. Maximal Hoffmann-reflex (Hmax) and motor potential (Mmax) were evoked in the soleus (SOL), medial and lateral gastrocnemius in 10 male subjects and in three conditions, passive sitting, active sitting and upright standing, with the same SOL activity in active sitting and upright standing. Moreover volitional wave (V) was evoked in the two active conditions (i.e., active sitting and upright standing). The results showed that SOL Hmax/Mmax was lower in active sitting than in passive sitting, while for the gastrocnemii it was not significantly altered. For the three plantar flexors, Hmax/Mmax was lower in upright standing than in active sitting, whereas V/Mmax was not modulated. SOL H-reflex is therefore affected by the increase in muscle activity and change in body orientation, while, in the gastrocnemii, it was only affected by a change in posture. In conclusion, passing from a sitting to a standing position affects the Hmax/Mmax of the whole triceps surae, but the mechanisms responsible for this change differ among the synergist muscles. The V/Mmax does not change when upright stance is assumed. This means that the increased inhibitory activity in orthostatic position is compensated by an increased excitatory inflow to the α-motoneurons of central and/or peripheral origin.
Collapse
Affiliation(s)
- T. Cattagni
- Institut National de la Santé et de la Recherche Médicale 1093, Faculty of Sport Science, University of Burgundy, Dijon, France
| | - A. Martin
- Institut National de la Santé et de la Recherche Médicale 1093, Faculty of Sport Science, University of Burgundy, Dijon, France
| | - G. Scaglioni
- Institut National de la Santé et de la Recherche Médicale 1093, Faculty of Sport Science, University of Burgundy, Dijon, France
| |
Collapse
|
50
|
Billot M, Duclay J, Simoneau-Buessinger EM, Ballay Y, Martin A. Is co-contraction responsible for the decline in maximal knee joint torque in older males? AGE (DORDRECHT, NETHERLANDS) 2014; 36:899-910. [PMID: 24445962 PMCID: PMC4039254 DOI: 10.1007/s11357-014-9616-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 01/07/2014] [Indexed: 05/20/2023]
Abstract
While it is often reported that muscular coactivation increases with age, the mechanical impact of antagonist muscles, i.e., the antagonist torque, remains to be assessed. The aim of this study was to determine if the mechanical impact of the antagonist muscles may contribute to the age-related decline in the resultant torque during maximal voluntary contraction in knee flexion (KF) and knee extension (KE). Eight young (19-28 years old) and eight older (62-81 years old) healthy males participated in neuromuscular testing. Maximal resultant torque was simultaneously recorded with the electromyographic activity of quadriceps and hamstring muscles. The torque recorded in the antagonist muscles was estimated using a biofeedback technique. Resultant torques significantly decreased with age in both KF (-41 %, p < 0.005) and KE (-35 %, p < 0.01). Agonist and antagonist torques were significantly reduced in KF (-44 %, p < 0.05; -57 %, p < 0.05) and in KE (-37 %, p < 0.01; -50 %, p < 0.05). The torque elicited by double twitch stimulation (-37 %, p < 0.01) and the activation level (-12 %, p < 0.05) of quadriceps was significantly lower in older men compared to young men. This study showed that antagonist torques were not responsible for age-related declines in KF and KE resultant torques. Therefore, decreased resultant torques with age, in particular in KE, can primarily be explained by impairments of the peripheral factors (excitation-contraction coupling) as well as by decreased neural agonist activation.
Collapse
Affiliation(s)
- Maxime Billot
- Laboratoire INSERM U1093 Cognition, Action, et Plasticité Sensorimotrice, Faculté des Sciences du Sport, Université de Bourgogne, Campus Universitaire, BP 27877, F-21078, Dijon, France,
| | | | | | | | | |
Collapse
|