1
|
Pliego-Arreaga R, Cervantes-Montelongo JA, Silva-Martínez GA, Tristán-Flores FE, Pantoja-Hernández MA, Maldonado-Coronado JR. Joint Hypermobility Syndrome and Membrane Proteins: A Comprehensive Review. Biomolecules 2024; 14:472. [PMID: 38672488 PMCID: PMC11048254 DOI: 10.3390/biom14040472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/03/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Ehlers-Danlos syndromes (EDSs) constitute a heterogeneous group of connective tissue disorders characterized by joint hypermobility, skin hyperextensibility, and tissue fragility. Asymptomatic EDSs, joint hypermobility without associated syndromes, EDSs, and hypermobility spectrum disorders are the commonest phenotypes associated with joint hypermobility. Joint hypermobility syndrome (JHS) is a connective tissue disorder characterized by extreme flexibility of the joints, along with pain and other symptoms. JHS can be a sign of a more serious underlying genetic condition, such as EDS, which affects the cartilage, bone, fat, and blood. The exact cause of JHS could be related to genetic changes in the proteins that add flexibility and strength to the joints, ligaments, and tendons, such as collagen. Membrane proteins are a class of proteins embedded in the cell membrane and play a crucial role in cell signaling, transport, and adhesion. Dysregulated membrane proteins have been implicated in a variety of diseases, including cancer, cardiovascular disease, and neurological disorders; recent studies have suggested that membrane proteins may also play a role in the pathogenesis of JHS. This article presents an exploration of the causative factors contributing to musculoskeletal pain in individuals with hypermobility, based on research findings. It aims to provide an understanding of JHS and its association with membrane proteins, addressing the clinical manifestations, pathogenesis, diagnosis, and management of JHS.
Collapse
Affiliation(s)
- Raquel Pliego-Arreaga
- Escuela de Medicina, Universidad de Celaya, Celaya 38080, Guanajuato, Mexico; (J.A.C.-M.); (M.A.P.-H.); (J.R.M.-C.)
| | - Juan Antonio Cervantes-Montelongo
- Escuela de Medicina, Universidad de Celaya, Celaya 38080, Guanajuato, Mexico; (J.A.C.-M.); (M.A.P.-H.); (J.R.M.-C.)
- Departamento de Ingeniería Bioquímica, Tecnológico Nacional de México en Celaya, Celaya 38010, Guanajuato, Mexico;
| | | | | | | | - Juan Raúl Maldonado-Coronado
- Escuela de Medicina, Universidad de Celaya, Celaya 38080, Guanajuato, Mexico; (J.A.C.-M.); (M.A.P.-H.); (J.R.M.-C.)
| |
Collapse
|
2
|
Role of Vitronectin and Its Receptors in Neuronal Function and Neurodegenerative Diseases. Int J Mol Sci 2022; 23:ijms232012387. [PMID: 36293243 PMCID: PMC9604229 DOI: 10.3390/ijms232012387] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022] Open
Abstract
Vitronectin (VTN), a multifunctional glycoprotein with various physiological functions, exists in plasma and the extracellular matrix. It is known to be involved in the cell attachment, spreading and migration through binding to the integrin receptor, mainly via the RGD sequence. VTN is also widely used in the maintenance and expansion of pluripotent stem cells, but its effects go beyond that. Recent evidence shows more functions of VTN in the nervous system as it participates in neural differentiation, neuronutrition and neurogenesis, as well as in regulating axon size, supporting and guiding neurite extension. Furthermore, VTN was proved to play a key role in protecting the brain as it can reduce the permeability of the blood-brain barrier by interacting with integrin receptors in vascular endothelial cells. Moreover, evidence suggests that VTN is associated with neurodegenerative diseases, such as Alzheimer's disease, but its function has not been fully understood. This review summarizes the functions of VTN and its receptors in neurons and describes the role of VTN in the blood-brain barrier and neurodegenerative diseases.
Collapse
|
3
|
Rayatpour A, Farhangi S, Verdaguer E, Olloquequi J, Ureña J, Auladell C, Javan M. The Cross Talk between Underlying Mechanisms of Multiple Sclerosis and Epilepsy May Provide New Insights for More Efficient Therapies. Pharmaceuticals (Basel) 2021; 14:ph14101031. [PMID: 34681255 PMCID: PMC8541630 DOI: 10.3390/ph14101031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/30/2021] [Accepted: 10/02/2021] [Indexed: 12/17/2022] Open
Abstract
Despite the significant differences in pathological background of neurodegenerative diseases, epileptic seizures are a comorbidity in many disorders such as Huntington disease (HD), Alzheimer's disease (AD), and multiple sclerosis (MS). Regarding the last one, specifically, it has been shown that the risk of developing epilepsy is three to six times higher in patients with MS compared to the general population. In this context, understanding the pathological processes underlying this connection will allow for the targeting of the common and shared pathological pathways involved in both conditions, which may provide a new avenue in the management of neurological disorders. This review provides an outlook of what is known so far about the bidirectional association between epilepsy and MS.
Collapse
Affiliation(s)
- Atefeh Rayatpour
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14117-13116, Iran; (A.R.); (S.F.)
- Institute for Brain and Cognition, Tarbiat Modares University, Tehran 14117-13116, Iran
| | - Sahar Farhangi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14117-13116, Iran; (A.R.); (S.F.)
- Institute for Brain and Cognition, Tarbiat Modares University, Tehran 14117-13116, Iran
| | - Ester Verdaguer
- Department of Cell Biology, Physiology and Immunology, Biology Faculty, Universitat de Barcelona, 08028 Barcelona, Spain; (E.V.); (J.U.)
- Centre for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Institute of Neuroscience, Universitat de Barcelona, 08035 Barcelona, Spain
| | - Jordi Olloquequi
- Laboratory of Cellular and Molecular Pathology, Biomedical Sciences Institute, Health Sciences Faculty, Universidad Autónoma de Chile, Talca 3460000, Chile;
| | - Jesus Ureña
- Department of Cell Biology, Physiology and Immunology, Biology Faculty, Universitat de Barcelona, 08028 Barcelona, Spain; (E.V.); (J.U.)
- Centre for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Institute of Neuroscience, Universitat de Barcelona, 08035 Barcelona, Spain
| | - Carme Auladell
- Department of Cell Biology, Physiology and Immunology, Biology Faculty, Universitat de Barcelona, 08028 Barcelona, Spain; (E.V.); (J.U.)
- Centre for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Institute of Neuroscience, Universitat de Barcelona, 08035 Barcelona, Spain
- Correspondence: (C.A.); (M.J.)
| | - Mohammad Javan
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14117-13116, Iran; (A.R.); (S.F.)
- Institute for Brain and Cognition, Tarbiat Modares University, Tehran 14117-13116, Iran
- Cell Science Research Center, Department of Brain and Cognitive Sciences, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 14117-13116, Iran
- Correspondence: (C.A.); (M.J.)
| |
Collapse
|
4
|
Dembitskaya Y, Gavrilov N, Kraev I, Doronin M, Tang Y, Li L, Semyanov A. Attenuation of the extracellular matrix increases the number of synapses but suppresses synaptic plasticity through upregulation of SK channels. Cell Calcium 2021; 96:102406. [PMID: 33848733 DOI: 10.1016/j.ceca.2021.102406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/01/2021] [Accepted: 04/03/2021] [Indexed: 01/01/2023]
Abstract
The effect of brain extracellular matrix (ECM) on synaptic plasticity remains controversial. Here, we show that targeted enzymatic attenuation with chondroitinase ABC (ChABC) of ECM triggers the appearance of new glutamatergic synapses on hippocampal pyramidal neurons, thereby increasing the amplitude of field EPSPs while decreasing both the mean miniature EPSC amplitude and AMPA/NMDA ratio. Although the increased proportion of 'unpotentiated' synapses caused by ECM attenuation should promote long-term potentiation (LTP), surprisingly, LTP was suppressed. The upregulation of small conductance Ca2+-activated K+ (SK) channels decreased the excitability of pyramidal neurons, thereby suppressing LTP. A blockade of SK channels restored cell excitability and enhanced LTP; this enhancement was abolished by a blockade of Rho-associated protein kinase (ROCK), which is involved in the maturation of dendritic spines. Thus, targeting ECM elicits the appearance of new synapses, which can have potential applications in regenerative medicine. However, this process is compensated for by a reduction in postsynaptic neuron excitability, preventing network overexcitation at the expense of synaptic plasticity.
Collapse
Affiliation(s)
- Yulia Dembitskaya
- Department of Molecular Neurobiology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street 16/10, Moscow, 117997, Russia
| | - Nikolay Gavrilov
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, 603950, Russia
| | - Igor Kraev
- Electron Microscopy Suite, Faculty of Science, Technology, Engineering and Mathematics, Open University, Milton Keynes MK7 6AA, UK
| | - Maxim Doronin
- Department of Molecular Neurobiology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street 16/10, Moscow, 117997, Russia
| | - Yong Tang
- School of Acupuncture and Tuina and International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Li
- Department of Physiology, Jiaxing University College of Medicine, Zhejiang, 314033 China
| | - Alexey Semyanov
- Department of Molecular Neurobiology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street 16/10, Moscow, 117997, Russia; Department of Physiology, Jiaxing University College of Medicine, Zhejiang, 314033 China; Sechenov First Moscow State Medical University, Bolshaya Pirogovskaya Str 19с1, Moscow, 119146, Russia.
| |
Collapse
|
5
|
Robel S, Sontheimer H. Glia as drivers of abnormal neuronal activity. Nat Neurosci 2016; 19:28-33. [PMID: 26713746 PMCID: PMC4966160 DOI: 10.1038/nn.4184] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 09/04/2015] [Indexed: 12/13/2022]
Abstract
Reactive astrocytes have been proposed to become incompetent bystanders in epilepsy as a result of cellular changes rendering them unable to perform important housekeeping functions. Indeed, successful surgical treatment of mesiotemporal lobe epilepsy hinges on the removal of the glial scar. New research now extends the role of astrocytes, suggesting that they may drive the disease process by impairing the inhibitory action of neuronal GABA receptors. Here we discuss studies that include hyperexcitability resulting from impaired supply of astrocytic glutamine for neuronal GABA synthesis, and epilepsy resulting from genetically induced astrogliosis or malignant transformation, both of which render the inhibitory neurotransmitter GABA excitatory. In these examples, glial cells alter the expression or function of neuronal proteins involved in excitability. Although epilepsy has traditionally been thought of as a disease caused by changes in neuronal properties exclusively, these new findings challenge us to consider the contribution of glial cells as drivers of epileptogenesis in acquired epilepsies.
Collapse
Affiliation(s)
- Stefanie Robel
- Virginia Tech Carilion Research Institute, Glial Biology in Health, Disease, and Cancer Center, Roanoke, Virginia, USA
| | - Harald Sontheimer
- Virginia Tech Carilion Research Institute, Glial Biology in Health, Disease, and Cancer Center, Roanoke, Virginia, USA
| |
Collapse
|
6
|
Lin CH, Yang CT, Tsai MC, Wu YT, MacDonald I, Wang ML, Wu CH, Leung YM, Chen YH. (±)3,4-Methylenedioxyamphetamine inhibits the TEA-sensitive K+ current in the hippocampal neuron and the Kv2.1 current expressed in H1355 cells. Neuropharmacology 2015; 89:100-12. [DOI: 10.1016/j.neuropharm.2014.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 08/20/2014] [Accepted: 09/04/2014] [Indexed: 10/24/2022]
|
7
|
Fabbro A, Sucapane A, Toma FM, Calura E, Rizzetto L, Carrieri C, Roncaglia P, Martinelli V, Scaini D, Masten L, Turco A, Gustincich S, Prato M, Ballerini L. Adhesion to carbon nanotube conductive scaffolds forces action-potential appearance in immature rat spinal neurons. PLoS One 2013; 8:e73621. [PMID: 23951361 PMCID: PMC3741175 DOI: 10.1371/journal.pone.0073621] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 07/29/2013] [Indexed: 12/19/2022] Open
Abstract
In the last decade, carbon nanotube growth substrates have been used to investigate neurons and neuronal networks formation in vitro when guided by artificial nano-scaled cues. Besides, nanotube-based interfaces are being developed, such as prosthesis for monitoring brain activity. We recently described how carbon nanotube substrates alter the electrophysiological and synaptic responses of hippocampal neurons in culture. This observation highlighted the exceptional ability of this material in interfering with nerve tissue growth. Here we test the hypothesis that carbon nanotube scaffolds promote the development of immature neurons isolated from the neonatal rat spinal cord, and maintained in vitro. To address this issue we performed electrophysiological studies associated to gene expression analysis. Our results indicate that spinal neurons plated on electro-conductive carbon nanotubes show a facilitated development. Spinal neurons anticipate the expression of functional markers of maturation, such as the generation of voltage dependent currents or action potentials. These changes are accompanied by a selective modulation of gene expression, involving neuronal and non-neuronal components. Our microarray experiments suggest that carbon nanotube platforms trigger reparative activities involving microglia, in the absence of reactive gliosis. Hence, future tissue scaffolds blended with conductive nanotubes may be exploited to promote cell differentiation and reparative pathways in neural regeneration strategies.
Collapse
Affiliation(s)
| | | | - Francesca Maria Toma
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Enrica Calura
- Department of Biology, University of Padua, Padova, Italy
| | - Lisa Rizzetto
- Department of Neuroscience, Psychology, Drug Research and Child's Health, University of Florence, Florence, Italy
- Innovation and Research Center, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
| | - Claudia Carrieri
- European Molecular Biology Laboratory, Mouse Biology Unit, Monterotondo (Rome), Italy
| | - Paola Roncaglia
- International School for Advanced Studies (SISSA), Trieste, Italy
- European Bioinformatics Institute (EMBL-EBI), Hinxton, United Kingdom
| | - Valentina Martinelli
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Denis Scaini
- Life Science Department, University of Trieste, Trieste, Italy
- SENIL, ELETTRA Synchrotron Light Source, Trieste, Italy
| | - Lara Masten
- Life Science Department, University of Trieste, Trieste, Italy
| | - Antonio Turco
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | | | - Maurizio Prato
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Laura Ballerini
- Life Science Department, University of Trieste, Trieste, Italy
| |
Collapse
|
8
|
Furutani Y, Kawasaki M, Matsuno H, Mitsui S, Mori K, Yoshihara Y. Vitronectin induces phosphorylation of ezrin/radixin/moesin actin-binding proteins through binding to its novel neuronal receptor telencephalin. J Biol Chem 2012; 287:39041-9. [PMID: 23019340 DOI: 10.1074/jbc.m112.383851] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vitronectin (VN) is an extracellular matrix protein abundantly present in blood and a wide variety of tissues and plays important roles in a number of biological phenomena mainly through its binding to αV integrins. However, its definite function in the brain remains largely unknown. Here we report the identification of telencephalin (TLCN/ICAM-5) as a novel VN receptor on neuronal dendrites. VN strongly binds to TLCN, a unique neuronal member of the ICAM family, which is specifically expressed on dendrites of spiny neurons in the mammalian telencephalon. VN-coated microbeads induce the formation of phagocytic cup-like plasma membrane protrusions on dendrites of cultured hippocampal neurons and trigger the activation of TLCN-dependent intracellular signaling cascade including the phosphorylation of ezrin/radixin/moesin actin-binding proteins and recruitment of F-actin and phosphatidylinositol 4,5-bisphosphate for morphological transformation of the dendritic protrusions. These results suggest that the extracellular matrix molecule VN and its neuronal receptor TLCN play a pivotal role in the phosphorylation of ezrin/radixin/moesin proteins and the formation of phagocytic cup-like structures on neuronal dendrites.
Collapse
Affiliation(s)
- Yutaka Furutani
- Laboratory for Neurobiology of Synapse, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | | | | | | | | | | |
Collapse
|
9
|
Kudryashova IV. Structural and functional characteristics of potassium channels and their role in neuroplasticity. NEUROCHEM J+ 2010. [DOI: 10.1134/s1819712410030013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Gundelfinger ED, Frischknecht R, Choquet D, Heine M. Converting juvenile into adult plasticity: a role for the brain’s extracellular matrix. Eur J Neurosci 2010; 31:2156-65. [DOI: 10.1111/j.1460-9568.2010.07253.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
11
|
Hoffmann EK, Lambert IH, Pedersen SF. Physiology of cell volume regulation in vertebrates. Physiol Rev 2009; 89:193-277. [PMID: 19126758 DOI: 10.1152/physrev.00037.2007] [Citation(s) in RCA: 1060] [Impact Index Per Article: 66.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The ability to control cell volume is pivotal for cell function. Cell volume perturbation elicits a wide array of signaling events, leading to protective (e.g., cytoskeletal rearrangement) and adaptive (e.g., altered expression of osmolyte transporters and heat shock proteins) measures and, in most cases, activation of volume regulatory osmolyte transport. After acute swelling, cell volume is regulated by the process of regulatory volume decrease (RVD), which involves the activation of KCl cotransport and of channels mediating K(+), Cl(-), and taurine efflux. Conversely, after acute shrinkage, cell volume is regulated by the process of regulatory volume increase (RVI), which is mediated primarily by Na(+)/H(+) exchange, Na(+)-K(+)-2Cl(-) cotransport, and Na(+) channels. Here, we review in detail the current knowledge regarding the molecular identity of these transport pathways and their regulation by, e.g., membrane deformation, ionic strength, Ca(2+), protein kinases and phosphatases, cytoskeletal elements, GTP binding proteins, lipid mediators, and reactive oxygen species, upon changes in cell volume. We also discuss the nature of the upstream elements in volume sensing in vertebrate organisms. Importantly, cell volume impacts on a wide array of physiological processes, including transepithelial transport; cell migration, proliferation, and death; and changes in cell volume function as specific signals regulating these processes. A discussion of this issue concludes the review.
Collapse
Affiliation(s)
- Else K Hoffmann
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | | | | |
Collapse
|
12
|
Growth-inhibiting extracellular matrix proteins also inhibit electrical activity by reducing calcium and increasing potassium conductances. Neuroscience 2009; 158:592-601. [DOI: 10.1016/j.neuroscience.2008.10.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Revised: 09/30/2008] [Accepted: 10/07/2008] [Indexed: 11/22/2022]
|
13
|
Abstract
Cell volume perturbation initiates a wide array of intracellular signalling cascades, leading to protective and adaptive events and, in most cases, activation of volume-regulatory osmolyte transport, water loss, and hence restoration of cell volume and cellular function. Cell volume is challenged not only under physiological conditions, e.g. following accumulation of nutrients, during epithelial absorption/secretion processes, following hormonal/autocrine stimulation, and during induction of apoptosis, but also under pathophysiological conditions, e.g. hypoxia, ischaemia and hyponatremia/hypernatremia. On the other hand, it has recently become clear that an increase or reduction in cell volume can also serve as a specific signal in the regulation of physiological processes such as transepithelial transport, cell migration, proliferation and death. Although the mechanisms by which cell volume perturbations are sensed are still far from clear, significant progress has been made with respect to the nature of the sensors, transducers and effectors that convert a change in cell volume into a physiological response. In the present review, we summarize recent major developments in the field, and emphasize the relationship between cell volume regulation and organism physiology/pathophysiology.
Collapse
Affiliation(s)
- I H Lambert
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | | | | |
Collapse
|
14
|
Biella G, Di Febo F, Goffredo D, Moiana A, Taglietti V, Conti L, Cattaneo E, Toselli M. Differentiating embryonic stem–derived neural stem cells show a maturation-dependent pattern of voltage-gated sodium current expression and graded action potentials. Neuroscience 2007; 149:38-52. [PMID: 17870247 DOI: 10.1016/j.neuroscience.2007.07.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Revised: 07/06/2007] [Accepted: 07/18/2007] [Indexed: 10/23/2022]
Abstract
A population of mouse embryonic stem (ES)-derived neural stem cells (named NS cells) that exhibits traits reminiscent of radial glia-like cell population and that can be homogeneously expanded in monolayer while remaining stable and highly neurogenic over multiple passages has been recently discovered. This novel population has provided a unique in vitro system in which to investigate physiological events occurring as stem cells lose multipotency and terminally differentiate. Here we analysed the timing, quality and quantity of the appearance of the excitability properties of differentiating NS cells which have been long-term expanded in vitro. To this end, we studied the biophysical properties of voltage-dependent Na(+) currents as an electrophysiological readout for neuronal maturation stages of differentiating NS cells toward the generation of fully functional neurons, since the expression of neuronal voltage-gated Na(+) channels is an essential hallmark of neuronal differentiation and crucial for signal transmission in the nervous system. Using the whole cell and single-channel cell-attached variations of the patch-clamp technique we found that the Na(+) currents in NS cells showed substantial electrophysiological changes during in vitro neuronal differentiation, consisting mainly in an increase of Na(+) current density and in a shift of the steady-state activation and inactivation curves toward more negative and more positive potentials respectively. The changes in the Na(+) channel system were closely related with the ability of differentiating NS cells to generate action potentials, and could therefore be exploited as an appropriate electrophysiological marker of ES-derived NS cells undergoing functional neuronal maturation.
Collapse
Affiliation(s)
- G Biella
- Department of Cellular and Molecular Physiological and Pharmacological Sciences, University of Pavia, Via Forlanini 6, I-27100 Pavia, Italy
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Gui P, Wu X, Ling S, Stotz SC, Winkfein RJ, Wilson E, Davis GE, Braun AP, Zamponi GW, Davis MJ. Integrin Receptor Activation Triggers Converging Regulation of Cav1.2 Calcium Channels by c-Src and Protein Kinase A Pathways. J Biol Chem 2006; 281:14015-25. [PMID: 16554304 DOI: 10.1074/jbc.m600433200] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
L-type, voltage-gated Ca2+ channels (CaL) play critical roles in brain and muscle cell excitability. Here we show that currents through heterologously expressed neuronal and smooth muscle CaL channel isoforms are acutely potentiated following alpha5beta1 integrin activation. Only the alpha1C pore-forming channel subunit is critical for this process. Truncation and site-directed mutagenesis strategies reveal that regulation of Cav1.2 by alpha5beta1 integrin requires phosphorylation of alpha1C C-terminal residues Ser1901 and Tyr2122. These sites are known to be phosphorylated by protein kinase A (PKA) and c-Src, respectively, and are conserved between rat neuronal (Cav1.2c) and smooth muscle (Cav1.2b) isoforms. Kinase assays are consistent with phosphorylation of these two residues by PKA and c-Src. Following alpha5beta1 integrin activation, native CaL channels in rat arteriolar smooth muscle exhibit potentiation that is completely blocked by combined PKA and Src inhibition. Our results demonstrate that integrin-ECM interactions are a common mechanism for the acute regulation of CaL channels in brain and muscle. These findings are consistent with the growing recognition of the importance of integrin-channel interactions in cellular responses to injury and the acute control of synaptic and blood vessel function.
Collapse
Affiliation(s)
- Peichun Gui
- Department of Medical Pharmacology & Physiology, University of Missouri School of Medicine, Columbia, Missouri 65212, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
The heart is a rhythmic electromechanical pump, the functioning of which depends on action potential generation and propagation, followed by relaxation and a period of refractoriness until the next impulse is generated. Myocardial action potentials reflect the sequential activation and inactivation of inward (Na(+) and Ca(2+)) and outward (K(+)) current carrying ion channels. In different regions of the heart, action potential waveforms are distinct, owing to differences in Na(+), Ca(2+), and K(+) channel expression, and these differences contribute to the normal, unidirectional propagation of activity and to the generation of normal cardiac rhythms. Changes in channel functioning, resulting from inherited or acquired disease, affect action potential repolarization and can lead to the generation of life-threatening arrhythmias. There is, therefore, considerable interest in understanding the mechanisms that control cardiac repolarization and rhythm generation. Electrophysiological studies have detailed the properties of the Na(+), Ca(2+), and K(+) currents that generate cardiac action potentials, and molecular cloning has revealed a large number of pore forming (alpha) and accessory (beta, delta, and gamma) subunits thought to contribute to the formation of these channels. Considerable progress has been made in defining the functional roles of the various channels and in identifying the alpha-subunits encoding these channels. Much less is known, however, about the functioning of channel accessory subunits and/or posttranslational processing of the channel proteins. It has also become clear that cardiac ion channels function as components of macromolecular complexes, comprising the alpha-subunits, one or more accessory subunit, and a variety of other regulatory proteins. In addition, these macromolecular channel protein complexes appear to interact with the actin cytoskeleton and/or the extracellular matrix, suggesting important functional links between channel complexes, as well as between cardiac structure and electrical functioning. Important areas of future research will be the identification of (all of) the molecular components of functional cardiac ion channels and delineation of the molecular mechanisms involved in regulating the expression and the functioning of these channels in the normal and the diseased myocardium.
Collapse
Affiliation(s)
- Jeanne M Nerbonne
- Dept. of Molecular Biology and Pharmacology, Washington University Medical School, 660 South Euclid Avenue, St. Louis, MO 63110, USA.
| | | |
Collapse
|
17
|
Jerng HH, Pfaffinger PJ, Covarrubias M. Molecular physiology and modulation of somatodendritic A-type potassium channels. Mol Cell Neurosci 2005; 27:343-69. [PMID: 15555915 DOI: 10.1016/j.mcn.2004.06.011] [Citation(s) in RCA: 239] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2004] [Revised: 05/22/2004] [Accepted: 06/08/2004] [Indexed: 11/23/2022] Open
Abstract
The somatodendritic subthreshold A-type K+ current (ISA) in nerve cells is a critical component of the ensemble of voltage-gated ionic currents that determine somatodendritic signal integration. The underlying K+ channel belongs to the Shal subfamily of voltage-gated K+ channels. Most Shal channels across the animal kingdom share a high degree of structural conservation, operate in the subthreshold range of membrane potentials, and exhibit relatively fast inactivation and recovery from inactivation. Mammalian Shal K+ channels (Kv4) undergo preferential closed-state inactivation with features that are generally inconsistent with the classical mechanisms of inactivation typical of Shaker K+ channels. Here, we review (1) the physiological and genetic properties of ISA, 2 the molecular mechanisms of Kv4 inactivation and its remodeling by a family of soluble calcium-binding proteins (KChIPs) and a membrane-bound dipeptidase-like protein (DPPX), and (3) the modulation of Kv4 channels by protein phosphorylation.
Collapse
Affiliation(s)
- Henry H Jerng
- Division of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | |
Collapse
|
18
|
Vasilyev DV, Barish ME. Regulation of the hyperpolarization-activated cationic current Ih in mouse hippocampal pyramidal neurones by vitronectin, a component of extracellular matrix. J Physiol 2004; 560:659-75. [PMID: 15319414 PMCID: PMC1665273 DOI: 10.1113/jphysiol.2004.069104] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Because the hyperpolarization-activated cation-selective current I(h) makes important contributions to neural excitability, we examined its long-term regulation by vitronectin, an extracellular matrix component commonly elevated at injury sites and detected immunochemically in activated microglia. Focusing on mouse hippocampal pyramidal neurones in organotypic slice cultures established at postnatal day 0 or 1 and examined after 3-4 days in vitro, we observed differences in the amplitude and activation rate of I(h) between neurones in naive and vitronectin-exposed slices (10 microg ml(-1) added to serum-free medium), and between neurones in slices derived from wild-type and vitronectin-deficient mice. The potassium inward rectifier I(K(ir)), activated at similar voltages to I(h), was not affected by vitronectin. In CA1, differences in I(h) amplitude primarily reflected changes in maximum conductance (G(max)): a 23.3% increase to 3.18 +/- 0.64 nS from 2.58 +/- 0.96 nS (P < 0.05) in vitronectin-exposed neurones, and a 17.9% decrease to 2.24 +/- 0.26 nS from 2.73 +/- 0.64 nS (P < 0.05) in neurones from vitronectin-deficient slices. The voltage of one-half maximum activation (V(1/2)) was not significantly affected by vitronectin exposure (-78.1 +/- 2.3 mV versus -80.0 +/- 4.9 mV in naive neurones; P > 0.05) or vitronectin deficiency (-83.8 +/- 3.1 mV versus -82.0 +/- 2.9 mV in wild-type neurones; P > 0.05). In CA3 neurones, changes in I(h) reflected differences in both G(max) and V(1/2): in vitronectin-exposed neurones there was a 35.4% increase in G(max) to 1.30 +/- 0.49 nS from 0.96 +/- 0.26 nS (P < 0.01), and a +3.0 mV shift in V(1/2) to -89.8 mV from -92.8 mV (P < 0.05). The time course of I(h) activation could be fitted by the sum of two exponential functions, fast and slow. In both CA1 and CA3 neurones the fast component amplitude was preferentially sensitive to vitronectin, with its relatively larger contribution to total current in vitronectin-exposed cells contributing to the acceleration of I(h) activation. Further, HCN1 immunoreactivity appeared elevated in vitronectin-exposed slices, while HCN2 levels appeared unaltered. We suggest that vitronectin-stimulated increases in I(h) may potentially affect excitability under pathological conditions.
Collapse
Affiliation(s)
- Dmitry V Vasilyev
- Division of Neurosciences, Beckman Research Institute of the City of Hope, 1450 East Duarte Road, Duarte, CA 91010, USA
| | | |
Collapse
|
19
|
Birnbaum SG, Varga AW, Yuan LL, Anderson AE, Sweatt JD, Schrader LA. Structure and function of Kv4-family transient potassium channels. Physiol Rev 2004; 84:803-33. [PMID: 15269337 DOI: 10.1152/physrev.00039.2003] [Citation(s) in RCA: 268] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Shal-type (Kv4.x) K(+) channels are expressed in a variety of tissue, with particularly high levels in the brain and heart. These channels are the primary subunits that contribute to transient, voltage-dependent K(+) currents in the nervous system (A currents) and the heart (transient outward current). Recent studies have revealed an enormous degree of complexity in the regulation of these channels. In this review, we describe the surprisingly large number of ancillary subunits and scaffolding proteins that can interact with the primary subunits, resulting in alterations in channel trafficking and kinetic properties. Furthermore, we discuss posttranslational modification of Kv4.x channel function with an emphasis on the role of kinase modulation of these channels in regulating membrane properties. This concept is especially intriguing as Kv4.2 channels may integrate a variety of intracellular signaling cascades into a coordinated output that dynamically modulates membrane excitability. Finally, the pathophysiology that may arise from dysregulation of these channels is also reviewed.
Collapse
Affiliation(s)
- Shari G Birnbaum
- Div. of Neuroscience, S607, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Larkin D, Murphy D, Reilly DF, Cahill M, Sattler E, Harriott P, Cahill DJ, Moran N. ICln, a Novel Integrin αIIbβ3-Associated Protein, Functionally Regulates Platelet Activation. J Biol Chem 2004; 279:27286-93. [PMID: 15075326 DOI: 10.1074/jbc.m402159200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A critical role for the conserved alpha-integrin cytoplasmic motif, KVGFFKR, is recognized in the regulation of activation of the platelet integrin alpha(IIb)beta(3). To understand the molecular mechanisms of this regulation, we sought to determine the nature of the protein interactions with this cytoplasmic motif. We used a tagged synthetic peptide, biotin-KVGFFKR, to probe a high density protein expression array (37,200 recombinant human proteins) for high affinity interactions. A number of potential integrin-binding proteins were identified. One such protein, a chloride channel regulatory protein, ICln, was characterized further because its affinity for the integrin peptide was highest as was its expression in platelets. We verified the presence of ICln in human platelets by PCR, Western blots, immunohistochemistry, and its co-association with alpha(IIb)beta(3) by surface plasmon resonance. The affinity of this interaction was 82.2 +/- 24.4 nm in a cell free assay. ICln co-immunoprecipitates with alpha(IIb)beta(3) in platelet lysates demonstrating that this interaction is physiologically relevant. Furthermore, immobilized KVGFFKR peptides, but not control KAAAAAR peptides, specifically extract ICln from platelet lysates. Acyclovir (100 microm to 5 mm), a pharmacological inhibitor of the ICln chloride channel, specifically inhibits integrin activation (PAC-1 expression) and platelet aggregation without affecting CD62 P expression confirming a specific role for ICln in integrin activation. In parallel, a cell-permeable peptide corresponding to the potential integrin-recognition domain on ICln (AKFEEE, 10-100 microm) also inhibits platelet function. Thus, we have identified, verified, and characterized a novel functional interaction between the platelet integrin and ICln, in the platelet membrane.
Collapse
Affiliation(s)
- Deirdre Larkin
- Department of Clinical Pharmacology, Royal College of Surgeons in Ireland, Dublin
| | | | | | | | | | | | | | | |
Collapse
|