1
|
Sensitized by a sea slug: site-specific short-term and general long-term sensitization in Aplysia following Navanax attack. Neurobiol Learn Mem 2021; 187:107542. [PMID: 34748927 DOI: 10.1016/j.nlm.2021.107542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 10/13/2021] [Accepted: 10/22/2021] [Indexed: 11/23/2022]
Abstract
Neurobiological studies of the model species, Aplysia californica (Mollusca, Gastropoda, Euopisthobranchia), have helped advance our knowledge of the neural bases of different forms of learning, including sensitization, a non-associative increase in withdrawal behaviors in response to mild innocuous stimuli However, our understanding of the natural context for this learning has lagged behind the mechanistic studies. Because previous studies of sensitization used electric shock, or other artificial stimulus to produce sensitization, they left unaddressed the question of what stimuli in nature might cause sensitization, until our laboratory demonstrated short and long-term sensitization after predatory attack by spiny lobsters. In the present study, we tested for sensitization after attack by a very different predator, the predacious sea-slug, Navanax inermis (Mollusca, Gastropoda, Euopisthobranchia). Unlike the biting and prodding action of lobster attack, Navanax uses a rapid strike that sucks and squeezes its prey in an attempt to swallow it whole. We found that Navanax attack to the head of Aplysia caused strong immediate sensitization of head withdrawal, and weaker, delayed, sensitization of tail-mantle withdrawal. By contrast, attack to the tail of Aplysia resulted in no sensitization of either reflex. We also developed an artificial attack stimulus that allowed us to mimick a more consistently strong attack. This artificial attack produced stronger but qualitatively similar sensitization: Strong immediate sensitization of head withdrawal and weaker sensitization of tail-mantle withdrawal after head attack, immediate sensitization in tail-mantle withdrawal, but no sensitization of head withdrawal after tail attack. We conclude that Navanax attack causes robust site-specific sensitization (enhanced sensitization near the site of attack), and weaker general sensitization (sensitization of responses to stimuli distal to the attack site). We also tested for long-term sensitization (lasting longer than 24 hours) after temporally-spaced delivery of four natural Navanax attacks to the head of subject Aplysia. Surprisingly, these head attacks, any one of which strongly sensitizes head withdrawal in the short term, failed to sensitize head-withdrawal in the long term. Paradoxically, these repeated head attacks produced long-term sensitization in tail-mantle withdrawal. These experiments and observations confirm that Navanax attack causes short, and long-term sensitization of withdrawal reflexes of Aplysia. Together with the observation of sensitization after lobster attack, they strongly support the premise that sensitization in Aplysia is an adaptive response to sub-lethal predator attack. They also add site-specific sensitization to the list of naturally induced learning phenotypes, as well as paradoxical long-term sensitization of tail-mantle withdrawal (but not head withdrawal) after multiple head attacks.
Collapse
|
2
|
Bronfman ZZ, Ginsburg S, Jablonka E. The Transition to Minimal Consciousness through the Evolution of Associative Learning. Front Psychol 2016; 7:1954. [PMID: 28066282 PMCID: PMC5177968 DOI: 10.3389/fpsyg.2016.01954] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 11/29/2016] [Indexed: 12/25/2022] Open
Abstract
The minimal state of consciousness is sentience. This includes any phenomenal sensory experience - exteroceptive, such as vision and olfaction; interoceptive, such as pain and hunger; or proprioceptive, such as the sense of bodily position and movement. We propose unlimited associative learning (UAL) as the marker of the evolutionary transition to minimal consciousness (or sentience), its phylogenetically earliest sustainable manifestation and the driver of its evolution. We define and describe UAL at the behavioral and functional level and argue that the structural-anatomical implementations of this mode of learning in different taxa entail subjective feelings (sentience). We end with a discussion of the implications of our proposal for the distribution of consciousness in the animal kingdom, suggesting testable predictions, and revisiting the ongoing debate about the function of minimal consciousness in light of our approach.
Collapse
Affiliation(s)
- Zohar Z Bronfman
- The Cohn Institute for the History and Philosophy of Science and Ideas, Tel Aviv UniversityTel Aviv, Israel; School of Psychology, Tel Aviv UniversityTel Aviv, Israel
| | - Simona Ginsburg
- Department of Natural Science, The Open University of Israel Raanana, Israel
| | - Eva Jablonka
- The Cohn Institute for the History and Philosophy of Science and Ideas, Tel Aviv UniversityTel Aviv, Israel; The Sagol School of Neuroscience, Tel Aviv UniversityTel Aviv, Israel
| |
Collapse
|
3
|
Moroz LL. Biodiversity Meets Neuroscience: From the Sequencing Ship (Ship-Seq) to Deciphering Parallel Evolution of Neural Systems in Omic's Era. Integr Comp Biol 2015; 55:1005-17. [PMID: 26163680 DOI: 10.1093/icb/icv084] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The origins of neural systems and centralized brains are one of the major transitions in evolution. These events might occur more than once over 570-600 million years. The convergent evolution of neural circuits is evident from a diversity of unique adaptive strategies implemented by ctenophores, cnidarians, acoels, molluscs, and basal deuterostomes. But, further integration of biodiversity research and neuroscience is required to decipher critical events leading to development of complex integrative and cognitive functions. Here, we outline reference species and interdisciplinary approaches in reconstructing the evolution of nervous systems. In the "omic" era, it is now possible to establish fully functional genomics laboratories aboard of oceanic ships and perform sequencing and real-time analyses of data at any oceanic location (named here as Ship-Seq). In doing so, fragile, rare, cryptic, and planktonic organisms, or even entire marine ecosystems, are becoming accessible directly to experimental and physiological analyses by modern analytical tools. Thus, we are now in a position to take full advantages from countless "experiments" Nature performed for us in the course of 3.5 billion years of biological evolution. Together with progress in computational and comparative genomics, evolutionary neuroscience, proteomic and developmental biology, a new surprising picture is emerging that reveals many ways of how nervous systems evolved. As a result, this symposium provides a unique opportunity to revisit old questions about the origins of biological complexity.
Collapse
Affiliation(s)
- Leonid L Moroz
- The Whitney Laboratory for Marine Bioscience and Department of Neuroscience and McKnight Brain Institute, University of Florida, 9505 Ocean Shore Blvd., St Augustine, FL 32080, USA
| |
Collapse
|
4
|
Parallel evolution of serotonergic neuromodulation underlies independent evolution of rhythmic motor behavior. J Neurosci 2013; 33:2709-17. [PMID: 23392697 DOI: 10.1523/jneurosci.4196-12.2013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neuromodulation can dynamically alter neuronal and synaptic properties, thereby changing the behavioral output of a neural circuit. It is therefore conceivable that natural selection might act upon neuromodulation as a mechanism for sculpting the behavioral repertoire of a species. Here we report that the presence of neuromodulation is correlated with the production of a behavior that most likely evolved independently in two species: Tritonia diomedea and Pleurobranchaea californica (Mollusca, Gastropoda, Opisthobranchia, Nudipleura). Individuals of both species exhibit escape swimming behaviors consisting of repeated dorsal-ventral whole-body flexions. The central pattern generator (CPG) circuits underlying these behaviors contain homologous identified neurons: DSI and C2 in Tritonia and As and A1 in Pleurobranchaea. Homologs of these neurons also can be found in Hermissenda crassicornis where they are named CPT and C2, respectively. However, members of this species do not exhibit an analogous swimming behavior. In Tritonia and Pleurobranchaea, but not in Hermissenda, the serotonergic DSI homologs modulated the strength of synapses made by C2 homologs. Furthermore, the serotonin receptor antagonist methysergide blocked this neuromodulation and the swimming behavior. Additionally, in Pleurobranchaea, the robustness of swimming correlated with the extent of the synaptic modulation. Finally, injection of serotonin induced the swimming behavior in Tritonia and Pleurobranchaea, but not in Hermissenda. This suggests that the analogous swimming behaviors of Tritonia and Pleurobranchaea share a common dependence on serotonergic neuromodulation. Thus, neuromodulation may provide a mechanism that enables species to acquire analogous behaviors independently using homologous neural circuit components.
Collapse
|
5
|
Shomrat T, Feinstein N, Klein M, Hochner B. Serotonin is a facilitatory neuromodulator of synaptic transmission and "reinforces" long-term potentiation induction in the vertical lobe of Octopus vulgaris. Neuroscience 2010; 169:52-64. [PMID: 20433903 DOI: 10.1016/j.neuroscience.2010.04.050] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 04/21/2010] [Accepted: 04/22/2010] [Indexed: 10/19/2022]
Abstract
The modern cephalopod mollusks (coleoids) are considered the most behaviorally advanced invertebrate, yet little is known about the neurophysiological basis of their behaviors. Previous work suggested that the vertical lobe (VL) of cephalopods is a crucial site for the learning and memory components of these behaviors. We are therefore studying the neurophysiology of the VL in Octopus vulgaris and have discovered a robust activity-dependent long-term potentiation (LTP) of the synaptic input to the VL. Moreover, we have shown that the VL and its LTP are involved in behavioral long-term memory acquisition. To advance our understanding of the VL as a learning neural network we explore the possible involvement of neuromodulation in VL function. Here we examine whether the well studied serotonergic modulation in simple models of learning in gastropods mollusks is conserved in the octopus VL. We demonstrate histochemically that the VL is innervated by afferent terminals containing 5-HT immunoreactivity (5-HT-IR). Physiologically, 5-HT has a robust facilitatory effect on synaptic transmission and activity-dependent LTP induction. These results suggest that serotonergic neuromodulation is a part of a reinforcing/reward signaling system conserved in both simple and complex learning systems of mollusks. However, there are notable functional differences. First, the effective concentration of 5-HT in the VL is rather high (100 microM); secondly, only neuropilar regions but not cell bodies in the VL are innervated by terminals containing 5-HT-IR. Thirdly, repetitive or long exposures to 5-HT do not lead to a clear long-term facilitation. We propose that in the octopus VL, while the basic facilitatory properties of molluscan 5-HT system are conserved, the system has adapted to convey signals from other brain areas to reinforce the activity-dependent associations at specific sites in the large connections matrix in the VL.
Collapse
Affiliation(s)
- T Shomrat
- Department of Neurobiology, Institute of Life Sciences and the Interdisciplinary Center for Neural Computation, Edmond J Safra Campus, Givat Ram Hebrew University, Jerusalem, Israel
| | | | | | | |
Collapse
|
6
|
Zimmerman TA, Rubakhin SS, Romanova EV, Tucker KR, Sweedler JV. MALDI mass spectrometric imaging using the stretched sample method to reveal neuropeptide distributions in aplysia nervous tissue. Anal Chem 2009; 81:9402-9. [PMID: 19835365 PMCID: PMC2837479 DOI: 10.1021/ac901820v] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Neuropeptides are a diverse set of complex cell-cell signaling molecules that modulate behavior, learning, and memory. Their spatially heterogeneous distributions, large number of post-translational modifications, and wide range of physiologically active concentrations make their characterization challenging. Matrix-assisted laser desorption/ionization (MALDI) mass spectrometric imaging is well-suited to characterizing and mapping neuropeptides in the central nervous system. Because matrix application can cause peptide migration within tissue samples, application parameters for MALDI typically represent a compromise between attaining the highest signal quality and preserving native spatial distributions. The stretched sample approach minimizes this trade-off by fragmenting the tissue section into thousands of spatially isolated islands, each approximately 40 mum in size. This inhibits analyte migration between the pieces and, at the same time, reduces analyte-salt adduct formation. Here, we present methodological improvements that enable the imaging of stretched tissues and reveal neuropeptide distributions in nervous tissue from Aplysia californica. The distributions of known neuropeptides are shown to correspond with previous immunohistochemical results, demonstrating that the stretched imaging method is well-suited for working with easily redistributed molecules and heterogeneous tissues and reduces adducts from physiological salts.
Collapse
Affiliation(s)
- Tyler A. Zimmerman
- Department of Chemistry and the Beckman Institute, University of Illinois, Urbana, Illinois 61801
| | - Stanislav S. Rubakhin
- Department of Chemistry and the Beckman Institute, University of Illinois, Urbana, Illinois 61801
| | - Elena V. Romanova
- Department of Chemistry and the Beckman Institute, University of Illinois, Urbana, Illinois 61801
| | - Kevin R. Tucker
- Department of Chemistry and the Beckman Institute, University of Illinois, Urbana, Illinois 61801
| | - Jonathan V. Sweedler
- Department of Chemistry and the Beckman Institute, University of Illinois, Urbana, Illinois 61801
| |
Collapse
|
7
|
Orr MV, Hittel K, Lukowiak K. 'Different strokes for different folks': geographically isolated strains of Lymnaea stagnalis only respond to sympatric predators and have different memory forming capabilities. ACTA ACUST UNITED AC 2009; 212:2237-47. [PMID: 19561213 DOI: 10.1242/jeb.031575] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Gaining insight into how natural trait variation is manifest in populations shaped by differential environmental factors is crucial to understanding the evolution, ecology and sensory biology of natural populations. We have demonstrated that lab-reared Lymnaea detect and respond to the scent of a crayfish predator with specific, appropriate anti-predator behavioral responses, including enhanced long-term memory (LTM) formation, and that such predator detection significantly alters the electrophysiological activity of RPeD1, a neuron that is a necessary site for LTM formation. Here we ask: (1) do distinct populations of wild Lymnaea stagnalis respond only to sympatric predators and if so, can these traits be quantified at both the behavioral and neurophysiological levels, and (2) does the presence of a non-sympatric predator elicit anti-predator behaviors including augmentation of LTM? We tested three different populations of wild (i.e. not lab-reared) snails freshly collected from their natural habitat: (1) polders near Utrecht in The Netherlands, (2) six seasonally isolated ponds in the Belly River drainage in southern Alberta, Canada and (3) a 20-year-old human-made dugout pond in southern Alberta. We found strain-specific variations in the ability to form LTM and that only a sympatric predator evoked anti-predatory behaviors, including enhanced LTM formation and changes in RPeD1 activity.
Collapse
Affiliation(s)
- Michael V Orr
- Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | | | | |
Collapse
|
8
|
Hoover BA, Nguyen H, Thompson L, Wright WG. Associative memory in three aplysiids: correlation with heterosynaptic modulation. Learn Mem 2007; 13:820-6. [PMID: 17142308 PMCID: PMC1783637 DOI: 10.1101/lm.284006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Much recent research on mechanisms of learning and memory focuses on the role of heterosynaptic neuromodulatory signaling. Such neuromodulation appears to stabilize Hebbian synaptic changes underlying associative learning, thereby extending memory. Previous comparisons of three related sea-hares (Mollusca, Opisthobranchia) uncovered interspecific variation in neuromodulatory signaling: strong in Aplysia californica, immeasureable in Dolabrifera dolabrifera, and intermediate in Phyllaplysia taylori. The present study addressed whether this interspecific variation in neuromodulation is correlated with memory of associative (classical conditioning) learning. We differentially conditioned the tail-mantle withdrawal reflex of each of the three species: Mild touch to one side of the tail was paired with a noxious electrical stimulus to the neck. Mild touch to the other side served as an internal control. Post-training reflex amplitudes were tested 15-30 min after training and compared with pre-test amplitudes. All three species showed conditioning: training increased the paired reflex more than the unpaired reflex. However, the temporal pattern of conditioning varied between species. Aplysia showed modest conditioning that grew across the post-test period. Dolabrifera showed distinctly short-lived conditioning, present only on the first post-test. The time course of memory in Phyllaplysia was intermediate, although not statistically distinguishable from the other two species. Taken together, these experiments suggest that evolutionary changes in nonassociative heterosynaptic modulation may contribute to evolutionary changes in the stability of the memory of classical conditioning.
Collapse
Affiliation(s)
- Brian A. Hoover
- Department of Biology, Chapman University, Orange, California 92866, USA
| | - Hoang Nguyen
- Department of Biology, Chapman University, Orange, California 92866, USA
| | - Laura Thompson
- Department of Pathology, Colorado State University, Fort Collins, Colorado 80521, USA
| | - William G. Wright
- Department of Biology, Chapman University, Orange, California 92866, USA
- Corresponding author.E-mail ; fax (714) 532-6048
| |
Collapse
|
9
|
Newcomb JM, Fickbohm DJ, Katz PS. Comparative mapping of serotonin-immunoreactive neurons in the central nervous systems of nudibranch molluscs. J Comp Neurol 2006; 499:485-505. [PMID: 16998939 DOI: 10.1002/cne.21111] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The serotonergic systems in nudibranch molluscs were compared by mapping the locations of serotonin-immunoreactive (5-HT-ir) neurons in 11 species representing all four suborders of the nudibranch clade: Dendronotoidea (Tritonia diomedea, Tochuina tetraquetra, Dendronotus iris, Dendronotus frondosus, and Melibe leonina), Aeolidoidea (Hermissenda crassicornis and Flabellina trophina), Arminoidea (Dirona albolineata, Janolus fuscus, and Armina californica), and Doridoidea (Triopha catalinae). A nomenclature is proposed to standardize reports of cell location in species with differing brain morphologies. Certain patterns of 5-HT immunoreactivity were found to be consistent for all species, such as the presence of 5-HT-ir neurons in the pedal and cerebral ganglia. Also, particular clusters of 5-HT-ir neurons in the anterior and posterior regions of the dorsal surface of the cerebral ganglion were always present. However, there were interspecies differences in the number of 5-HT-ir neurons in each cluster, and some clusters even exhibited strong intraspecies variability that was only weakly correlated with brain size. Phylogenetic analysis suggests that the presence of particular classes of 5-HT-ir neurons exhibits a great deal of homoplasy. The conserved features of the nudibranch serotonergic system presumably represent the shared ancestral structure, whereas the derived characters suggest substantial independent evolutionary changes in the number and presence of serotonergic neurons. Although a number of studies have demonstrated phylogenetic variability of peptidergic systems, this study suggests that serotonergic systems may also exhibit a high degree of homoplasy in some groups of organisms.
Collapse
Affiliation(s)
- James M Newcomb
- Department of Biology, Georgia State University, Atlanta, Georgia 30303, USA.
| | | | | |
Collapse
|
10
|
Gasull X, Liao X, Dulin MF, Phelps C, Walters ET. Evidence That Long-Term Hyperexcitability of the Sensory Neuron Soma Induced by Nerve Injury inAplysiaIs Adaptive. J Neurophysiol 2005; 94:2218-30. [PMID: 15944238 DOI: 10.1152/jn.00169.2005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Peripheral axotomy induces long-term hyperexcitability (LTH) of centrally located sensory neuron (SN) somata in diverse species. In mammals this LTH can promote spontaneous activity of pain-related SNs, and such activity may contribute to neuropathic pain and hyperalgesia. However, few axotomized SN somata begin to fire spontaneously in any species, and why so many SNs display soma LTH after axotomy remains a mystery. Is soma LTH a side effect of injury with pathological but no adaptive consequences, or was this response selected during evolution for particular functions? A hypothesis for one function of soma LTH in nociceptive SNs in Aplysia californica is proposed: after peripheral injury that produces partial axotomy of some SNs, compensation for sensory deficits and protective sensitization are achieved by facilitating afterdischarge near the soma, which amplifies sensory input from injured peripheral fields. Four predictions of this hypothesis were confirmed in SNs that innervate the tail. First, LTH of SN somata was induced by a relatively natural axotomizing event—a small cut across part of the tail in the absence of anesthesia. Second, soma LTH was selectively expressed in SNs having axons in cut or crushed nerves rather than nearby, uninjured nerves. Third, after several weeks soma LTH began to reverse when functional recovery of the interrupted afferent pathway was shown by reestablishment of a centrally mediated siphon reflex. Fourth, axotomized SNs developed central afterdischarge that amplified sensory discharge coming from the periphery, and the afterdepolarization underlying this afterdischarge was enhanced by previous axotomy.
Collapse
Affiliation(s)
- Xavier Gasull
- Department of Integrative Biology and Pharmacology, University of Texas-Houston Medical School, Houston, Texas, USA
| | | | | | | | | |
Collapse
|
11
|
Affiliation(s)
- Reuven Dukas
- Animal Behavior Group, Department of Psychology, McMaster University, Hamilton, Ontario, L8S 4K1, Canada;
| |
Collapse
|