1
|
Asirvatham-Jeyaraj N, Anselmo M, Chantigian DP, Larson M, Lee EJ, Keller-Ross ML. Influence of endogenous and exogenous hormones on the cardiovascular response to lower extremity exercise and group III/IV activation in young females. Am J Physiol Regul Integr Comp Physiol 2024; 327:R379-R388. [PMID: 39034814 PMCID: PMC11483072 DOI: 10.1152/ajpregu.00017.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024]
Abstract
Oral contraceptive (OC) use can increase resting blood pressure (BP) in females as well as contribute to greater activation of group III/IV afferents during upper body exercise. It is unknown, however, whether an exaggerated BP response occurs during lower limb exercise in OC users. We sought to elucidate the group III/IV afferent activity-mediated BP and heart rate responses while performing lower extremity tasks during early and late follicular phases in young, healthy females. Females not taking OCs (NOC: n = 8; age: 25 ± 4 yr) and those taking OCs (OC: n = 10; age: 23 ± 2 yr) completed a continuous knee extension/flexion passive stretch (mechanoreflex) and cycling exercise with subsystolic cuff occlusion (exercise pressor reflex), which was followed by a 2-min postexercise circulatory occlusion (PECO) (metaboreflex). Data collection occurred on two occasions: once during the early follicular phase (days 1-4) and once during the late follicular phase (days 10-14) of their menstrual cycle (NOC) or during the placebo and active pill phases (OC). Resting mean arterial BP and heart rate were not different between phases in NOC and OC participants (P > 0.05). Hemodynamic responses to metaboreflex, mechanoreflex, and collective exercise pressor reflex activation were not different between phases in both groups (P > 0.05). In conclusion, although OCs are known to increase BP at rest, our findings indicate that neither endogenous nor exogenous (OC) sex hormones modulate BP during large, lower limb muscle exercise with or without group III/IV afferent activation in young, healthy females.NEW & NOTEWORTHY Sex differences in the cardiovascular response to exercise have been demonstrated and may be dependent on sex hormone levels. Furthermore, oral contraceptives (OCs) have been shown to exaggerate the blood pressure response to upper extremity exercise. The results of this study indicate that neither endogenous nor exogenous (OC) sex hormones modulate BP during lower extremity dynamic exercise or with group III/IV afferent activation in young, healthy females.
Collapse
Affiliation(s)
- Ninitha Asirvatham-Jeyaraj
- Cardiometabolic and Neuromodulation Research Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Miguel Anselmo
- Division of Physical Therapy and Rehabilitation Science, University of Minnesota, Minneapolis, Minnesota, United States
| | - Daniel P Chantigian
- Division of Physical Therapy and Rehabilitation Science, University of Minnesota, Minneapolis, Minnesota, United States
| | - Mia Larson
- Lillehei Clinical Research Unit, University of Minnesota, Cancer and Cardiovascular Research Center, Minnesota, United States
| | - Emma J Lee
- Division of Physical Therapy and Rehabilitation Science, University of Minnesota, Minneapolis, Minnesota, United States
| | - Manda L Keller-Ross
- Division of Physical Therapy and Rehabilitation Science, University of Minnesota, Minneapolis, Minnesota, United States
| |
Collapse
|
2
|
Shiozawa K, Saito M, Lee JB, Kashima H, Endo MY, Ishida K, Millar PJ, Katayama K. Effects of sex and menstrual cycle phase on celiac artery blood flow during dynamic moderate-intensity leg exercise in young individuals. J Appl Physiol (1985) 2023; 135:956-967. [PMID: 37675470 DOI: 10.1152/japplphysiol.00472.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/23/2023] [Accepted: 09/06/2023] [Indexed: 09/08/2023] Open
Abstract
The purpose of this study was to clarify the effect of sex and menstrual cycle phase on celiac artery blood flow during dynamic exercise in healthy young humans. Eleven healthy young females (21 ± 2 yr, means ± SD) and 10 males (23 ± 3 yr) performed dynamic knee-extension and -flexion exercises at 30% of heart rate reserve for 4 min. The percent changes from baseline (Δ) for mean arterial blood pressure (MAP), mean blood flow (celMBF) in the celiac artery, and celiac vascular conductance (celVC) during exercise were calculated. Arterial blood pressure was measured using an automated sphygmomanometer, and celiac artery blood flow was recorded by Doppler ultrasonography. Female subjects performed the exercise test in the early follicular phase (EF) and in the midluteal phase (ML) of their menstrual cycle. The increase in MAP during exercise was not significantly (P > 0.05) different between sexes or between menstrual cycle phases (ΔMAP, EF in females: +16.6 ± 6.4%, ML in females: +20.2 ± 11.7%, and males: +19.9 ± 12.2%). The celMBF decreased during exercise in each group, but the response was not significantly (P > 0.05) different between sexes or between menstrual cycle phases (ΔcelMBF, EF in females: -24.6 ± 15.5%, ML in females: -25.2 ± 18.7%, and males: -29.2 ± 4.0%). The celVC decreased during dynamic exercise in each group, with no significant (P > 0.05) difference in the responses between sexes or between menstrual cycle phases (ΔcelVC, EF in females: -38.3 ± 15.0%, ML in females: -41.5 ± 19.1%, and males: -43.4 ± 7.2%). These results suggest that sex and menstrual cycle phase have minimal influence on hemodynamic responses in the splanchnic artery during dynamic moderate-intensity exercise in young healthy individuals.NEW & NOTEWORTHY During dynamic exercise, splanchnic organ blood flow is reduced from resting values. Whether sex and menstrual cycle phase influence splanchnic blood flow responses during exercise remains unknown. We show that the decrease in celiac artery blood flow during dynamic leg exercise does not differ between young females and males or between menstrual cycle phases. In young individuals, sex and menstrual cycle have minimal influence on splanchnic artery hemodynamic responses during dynamic moderate-intensity leg exercise.
Collapse
Affiliation(s)
- Kana Shiozawa
- Graduate School of Medicine, Nagoya University, Nagoya, Japan
- Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Mitsuru Saito
- Applied Physiology Laboratory, Toyota Technological Institute, Nagoya, Japan
| | - Jordan B Lee
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Canada
| | - Hideaki Kashima
- Department of Health Science, Prefectural University of Hiroshima, Hiroshima, Japan
| | - Masako Yamaoka Endo
- Department of Health Science, Prefectural University of Hiroshima, Hiroshima, Japan
| | - Koji Ishida
- Graduate School of Medicine, Nagoya University, Nagoya, Japan
- Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya, Japan
| | - Philip J Millar
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Canada
| | - Keisho Katayama
- Graduate School of Medicine, Nagoya University, Nagoya, Japan
- Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya, Japan
| |
Collapse
|
3
|
Restaino RM, Cradock K, Barlow MA. Effects of the Follicular Menstrual Phase on Forearm Vascular Conductance in Abdominal Obese Premenopausal Women During Graded Handgrip Exercise. Artery Res 2022. [DOI: 10.1007/s44200-022-00017-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Abstract
Purpose
Previous studies have reported a sympatholytic action of estrogen on the vasculature in response to increased sympathetic outflow, an effect most notable during exercise, providing for necessary increases in blood flow to working muscle. In contrast, elevated concentrations of progesterone can inhibit this action of estrogen, impairing increases in blood flow. We hypothesize that the peak concentration of estrogen during the proliferative portion of the follicular phase of the menstrual cycle in female humans will increase vascular conductance during exercise when the effects of progesterone are negligible. In addition, we hypothesize that overweight abdominally obese females will have an attenuated conductance response to dynamic exercise during the same menstrual phase.
Methods
Participants engaged in graded forearm exercise using an isotonic handgrip dynometer with sequential increases in resistance at a cadence of 30 contractions/minute until task failure. They performed exercise at time points of the menstrual cycle corresponding to low concentrations of both sex hormones and elevated estrogen, while progesterone remained low. Blood flow and vascular conductance were measured using Doppler ultrasound.
Results
This revealed a trend that abdominal obese women during a phase of low estrogen had a lower overall blood flow and vascular conductance response than healthy controls at matching resistance stages during rest and exercise. This group difference was attenuated during the proliferative phase with elevated circulating estrogen. There is not a statistically significant interaction between Ovarian Phase and Weight group (P = 0.778).
Conclusion
The results indicate that overweight women are at a disadvantage during exercise in increasing blood flow to working muscles, which can be detrimental to overall fitness improvement during the early and potentially late follicular phase of the menstrual cycle.
Collapse
|
4
|
DeLorey DS. Sympathetic vasoconstriction in skeletal muscle: Modulatory effects of aging, exercise training, and sex. Appl Physiol Nutr Metab 2021; 46:1437-1447. [PMID: 34348066 DOI: 10.1139/apnm-2021-0399] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The sympathetic nervous system (SNS) is a critically important regulator of the cardiovascular system. The SNS controls cardiac output and its distribution, as well as peripheral vascular resistance and blood pressure at rest and during exercise. Aging is associated with increased blood pressure and decreased skeletal muscle blood flow at rest and in response to exercise. The mechanisms responsible for the blunted skeletal muscle blood flow response to dynamic exercise with aging have not been fully elucidated; however, increased muscle sympathetic nerve activity (MSNA), elevated vascular resistance and a decline in endothelium-dependent vasodilation are commonly reported in older adults. In contrast to aging, exercise training has been shown to reduce blood pressure and enhance skeletal muscle vascular function. Exercise training has been shown to enhance nitric oxide-dependent vascular function and may improve the vasodilatory capacity of the skeletal muscle vasculature; however, surprisingly little is known about the effect of exercise training on the neural control of circulation. The control of blood pressure and skeletal muscle blood flow also differs between males and females. Blood pressure and MSNA appear to be lower in young females compared to males. However, females experience a larger increase in MSNA with aging compared to males. The mechanism(s) for the altered SNS control of vascular function in females remain to be determined. Novelty: • This review will summarize our current understanding of the effects of aging, exercise training and sex on sympathetic vasoconstriction at rest and during exercise. • Areas where additional research is needed are also identified.
Collapse
Affiliation(s)
- Darren S DeLorey
- University of Alberta, Faculty of Kinesiology, Sport, and Recreation, Edmonton, Alberta, Canada;
| |
Collapse
|
5
|
Tabuchi A, Craig JC, Hirai DM, Colburn TD, Kano Y, Poole DC, Musch TI. Systemic NOS inhibition reduces contracting muscle oxygenation more in intact female than male rats. Nitric Oxide 2020; 100-101:38-44. [PMID: 32371102 DOI: 10.1016/j.niox.2020.04.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/14/2020] [Accepted: 04/22/2020] [Indexed: 10/24/2022]
Abstract
Females respond to baroreceptor stimulation with enhanced modulation of heart rate (HR) to regulate blood pressure and also express greater reliance on nitric oxide (NO) for vascular control compared to males. Sex differences in muscle oxygenation consequent to central hemodynamic challenge induced by systemic NO synthase (NOS) inhibition are unknown. We tested the hypotheses that systemic NOS inhibition would induce lower contracting skeletal muscle oxygenation in females compared to males. The spinotrapezius of Sprague-Dawley rats (females (♀) = 9, males (♂) = 9) was surgically exposed and contracted by electrical stimulation (180s, 1 Hz, ~6 V) under pentobarbital sodium anesthesia. Oxyphor G4 was injected into the muscle and phosphorescence quenching was used to measure the interstitial PO2 (PO2is, determined by O2 delivery-to-utilization matching) under control (Krebs-Henseleit solution) and after intra-arterial infusion of nitro-l-arginine methyl ester (l-NAME; NOS blockade; 10 mg kg-1). At rest, females showed a greater PO2is increase (ΔPO2is/ΔMAP) and HR (ΔHR/ΔMAP) reduction than males in response to the elevated MAP induced by systemic NOS inhibition (both p < 0.05). Following l-NAME, during the contracting steady-state, females exhibited lower PO2is than males (♂: 17.1 ± 1.4 vs ♀: 10.8 ± 1.4 mmHg, p < 0.05). The rate pressure product was lower in females than males (♂: 482 ± 14 vs ♀: 392 ± 29, p < 0.05) and correlated with the steady-state PO2is (r = 0.66, p < 0.05). These results support that females express greater reductions in HR than males in response to l-NAME-induced elevation of MAP via the baroreceptor reflex and provide new insights on how central hemodynamics affect skeletal muscle oxygenation in a sex-specific manner.
Collapse
Affiliation(s)
- Ayaka Tabuchi
- Departments of Kinesiology and Anatomy & Physiology, Kansas State University, Manhattan, KS, USA; Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Tokyo, Japan
| | - Jesse C Craig
- Departments of Kinesiology and Anatomy & Physiology, Kansas State University, Manhattan, KS, USA
| | - Daniel M Hirai
- Departments of Kinesiology and Anatomy & Physiology, Kansas State University, Manhattan, KS, USA
| | - Trenton D Colburn
- Departments of Kinesiology and Anatomy & Physiology, Kansas State University, Manhattan, KS, USA
| | - Yutaka Kano
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Tokyo, Japan
| | - David C Poole
- Departments of Kinesiology and Anatomy & Physiology, Kansas State University, Manhattan, KS, USA
| | - Timothy I Musch
- Departments of Kinesiology and Anatomy & Physiology, Kansas State University, Manhattan, KS, USA.
| |
Collapse
|
6
|
Kusayama T, Wong J, Liu X, He W, Doytchinova A, Robinson EA, Adams DE, Chen LS, Lin SF, Davoren K, Victor RG, Cai C, Dai MY, Tian Y, Zhang P, Ernst D, Rho RH, Chen M, Cha YM, Walega DR, Everett TH, Chen PS. Simultaneous noninvasive recording of electrocardiogram and skin sympathetic nerve activity (neuECG). Nat Protoc 2020; 15:1853-1877. [DOI: 10.1038/s41596-020-0316-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 02/28/2020] [Indexed: 11/09/2022]
|
7
|
de Vries CJ, DeLorey DS. Effect of acute dietary nitrate supplementation on sympathetic vasoconstriction at rest and during exercise. J Appl Physiol (1985) 2019; 127:81-88. [PMID: 31095461 DOI: 10.1152/japplphysiol.01053.2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Dietary nitrate ( NO3- ) supplementation has been shown to reduce resting blood pressure. However, the mechanism responsible for the reduction in blood pressure has not been identified. Dietary NO3- supplementation may increase nitric oxide (NO) bioavailability, and NO has been shown to inhibit sympathetic vasoconstriction in resting and contracting skeletal muscle. Therefore, the purpose of this study was to investigate the hypothesis that acute dietary NO3- supplementation would attenuate sympathetic vasoconstrictor responsiveness at rest and during exercise. In a double-blind randomized crossover design, 12 men (23 ± 5 yr) performed a cold-pressor test (CPT) at rest and during moderate- and heavy-intensity alternate-leg knee-extension exercise after consumption of NO3- rich beetroot juice (~12.9 mmol NO3- ) or a NO3- -depleted placebo (~0.13 mmol NO3- ). Venous blood was sampled before and 2.5 h after the consumption of beetroot juice for the measurement of total plasma nitrite/ NO3- [NOx]. Beat-by-beat blood pressure was measured by Finometer. Leg blood flow was measured at the femoral artery via Doppler ultrasound, and leg vascular conductance (LVC) was calculated. Sympathetic vasoconstrictor responsiveness was calculated as the percentage decrease in LVC in response to the CPT. Total plasma [NOx] was greater (P < 0.001) in the NO3- (285 ± 120 µM) compared with the placebo (65 ± 30 µM) condition. However, mean arterial blood pressure and plasma catecholamines were not different (P > 0.05) between NO3- and placebo conditions at rest or during moderate- and heavy-intensity exercise. Sympathetic vasoconstrictor responsiveness (Δ% LVC) was not different (P > 0.05) between NO3- and placebo conditions at rest ( NO3- : -33 ± 10%; placebo: -35 ± 11%) or during moderate ( NO3- : -18 ± 8%; placebo: -20 ± 10%)- and heavy ( NO3- : -12 ± 8%; placebo: -11 ± 9%)-intensity exercise. These data demonstrate that acute dietary NO3- supplementation does not alter sympathetic vasoconstrictor responsiveness at rest or during exercise in young healthy males. NEW & NOTEWORTHY Dietary nitrate may increase nitric oxide bioavailability, and nitric oxide has been shown to attenuate sympathetic vasoconstriction in resting and contracting skeletal muscle and enhance functional sympatholysis. However, the effect of dietary nitrate on sympathetic vasoconstrictor responsiveness is unknown. Acute dietary nitrate supplementation did not alter blood pressure or sympathetic vasoconstrictor responsiveness at rest or during exercise in young healthy males.
Collapse
Affiliation(s)
- Christopher J de Vries
- Faculty of Kinesiology, Sport, and Recreation, University of Alberta , Edmonton, Alberta , Canada
| | - Darren S DeLorey
- Faculty of Kinesiology, Sport, and Recreation, University of Alberta , Edmonton, Alberta , Canada
| |
Collapse
|
8
|
Witte E, Liu Y, Ward JL, Kempf KS, Whitaker A, Vidoni ED, Craig JC, Poole DC, Billinger SA. Exercise intensity and middle cerebral artery dynamics in humans. Respir Physiol Neurobiol 2019; 262:32-39. [PMID: 30710650 PMCID: PMC6393201 DOI: 10.1016/j.resp.2019.01.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/11/2019] [Accepted: 01/29/2019] [Indexed: 12/24/2022]
Abstract
Despite its necessity for understanding healthy brain aging, the influence of exercise intensity on cerebrovascular kinetics is currently unknown. We, therefore characterized middle cerebral artery blood flow velocity (MCAv) kinetics associated with two exercise intensities: low and moderate. We hypothesized that increasing exercise intensity would increase the MCAv amplitude response (Amp) and that age and estimated fitness (V̇O2max) would be related to Amp. Baseline (BL) values were collected for 90-seconds followed by a 6-minute exercise bout. Heart rate, end-tidal CO2, mean arterial pressure and MCAv were recorded throughout. MCAv kinetics were described by Amp, time delay (TD) and time constant (τ). Sixty-four adults completed the study. Amp was greater during moderate compared to low exercise intensity (p < 0.001) while no difference was observed in either TD (p = 0.65) or τ (p = 0.47). Amp was negatively associated with age (p < 0.01) and positively correlated with estimated V̇O2max (p < 0.01). Although Amp declines with age, maintaining higher V̇O2max may benefit the cerebrovascular response to exercise.
Collapse
Affiliation(s)
- Emily Witte
- University of Kansas Medical Center, Physical Therapy and Rehabilitation Science, MS 2002, 3901 Rainbow Boulevard, Kansas City, KS 66160, United States
| | - Yumei Liu
- University of Kansas Medical Center, Physical Therapy and Rehabilitation Science, MS 2002, 3901 Rainbow Boulevard, Kansas City, KS 66160, United States
| | - Jaimie L Ward
- University of Kansas Medical Center, Physical Therapy and Rehabilitation Science, MS 2002, 3901 Rainbow Boulevard, Kansas City, KS 66160, United States
| | - Katie S Kempf
- University of Kansas Medical Center, Physical Therapy and Rehabilitation Science, MS 2002, 3901 Rainbow Boulevard, Kansas City, KS 66160, United States
| | - Alicen Whitaker
- University of Kansas Medical Center, Physical Therapy and Rehabilitation Science, MS 2002, 3901 Rainbow Boulevard, Kansas City, KS 66160, United States
| | - Eric D Vidoni
- University of Kansas, Alzheimer's Disease Center, KU Clinical Research Center 4350 Shawnee Mission Parkway, MS 6002, Fairway, KS 66205, United States
| | - Jesse C Craig
- Kansas State University, Departments of Kinesiology, 131 Coles Hall, 920 Denison Ave, Manhattan, KS 66506, United States
| | - David C Poole
- Kansas State University, Departments of Kinesiology, 131 Coles Hall, 920 Denison Ave, Manhattan, KS 66506, United States
| | - Sandra A Billinger
- University of Kansas Medical Center, Physical Therapy and Rehabilitation Science, MS 2002, 3901 Rainbow Boulevard, Kansas City, KS 66160, United States.
| |
Collapse
|
9
|
Sprick JD, Downey RM, Morison DL, Fonkoue IT, Li Y, DaCosta D, Rapista D, Park J. Functional sympatholysis is impaired in end-stage renal disease. Am J Physiol Regul Integr Comp Physiol 2019; 316:R504-R511. [PMID: 30726117 DOI: 10.1152/ajpregu.00380.2018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Patients with end-stage renal disease (ESRD) have decreased exercise capacity and exercise intolerance that contribute to cardiovascular risk. One potential mechanism underlying exercise intolerance in ESRD is impaired ability to oppose sympathetically mediated vasoconstriction within exercising skeletal muscle (i.e., functional sympatholysis, FS). We hypothesized that ESRD patients have impaired FS compared with healthy (CON) and hypertensive (HTN) controls and that impaired FS is related to circulating levels of the uremic toxin asymmetric dimethyl arginine (ADMA), an endogenous nitric oxide synthase inhibitor. Near-infrared spectroscopy-derived oxygen tissue saturation index (TSI) of the forearm muscle was measured continuously in 33 participants (9 CON, 14 HTN, 10 ESRD) at rest and during low-dose (-20 mmHg) lower body negative pressure (LBNP), moderate rhythmic handgrip exercise, and LBNP with concomitant handgrip exercise (LBNP+handgrip). Resting muscle TSI was lower in ESRD than in CON and HTN groups (CON = 67.8 ± 1.9%, HTN = 67.2 ± 1.1%, ESRD = 62.7 ± 1.5%, P = 0.03). Whereas CON and HTN groups had an attenuation in sympathetically mediated reduction in TSI during LBNP + handgrip compared with LBNP alone (P ≤ 0.05), this response was not present in ESRD (P = 0.71), suggesting impaired FS. There was no difference in plasma [ADMA] between groups (CON = 0.47 ± 0.05 µmol/l, HTN = 0.42 ± 0.06 µmol/l, ESRD = 0.63 ± 0.14 µmol/l, P = 0.106) and no correlation between plasma [ADMA] and resting muscle TSI (P = 0.84) or FS (P = 0.75). Collectively, these findings suggest that ESRD patients have lower muscle perfusion at rest and impaired FS but that these derangements are not related to circulating [ADMA].
Collapse
Affiliation(s)
- Justin D Sprick
- Division of Renal Medicine, Department of Medicine, Emory University School of Medicine , Atlanta, Georgia.,Department of Veterans Affairs Health Care System, Decatur, Georgia
| | - Ryan M Downey
- Division of Renal Medicine, Department of Medicine, Emory University School of Medicine , Atlanta, Georgia.,Department of Veterans Affairs Health Care System, Decatur, Georgia
| | - Doree Lynn Morison
- Division of Renal Medicine, Department of Medicine, Emory University School of Medicine , Atlanta, Georgia.,Department of Veterans Affairs Health Care System, Decatur, Georgia
| | - Ida T Fonkoue
- Division of Renal Medicine, Department of Medicine, Emory University School of Medicine , Atlanta, Georgia.,Department of Veterans Affairs Health Care System, Decatur, Georgia
| | - Yunxiao Li
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University , Atlanta, Georgia
| | - Dana DaCosta
- Division of Renal Medicine, Department of Medicine, Emory University School of Medicine , Atlanta, Georgia.,Department of Veterans Affairs Health Care System, Decatur, Georgia
| | - Derick Rapista
- Division of Renal Medicine, Department of Medicine, Emory University School of Medicine , Atlanta, Georgia.,Department of Veterans Affairs Health Care System, Decatur, Georgia
| | - Jeanie Park
- Division of Renal Medicine, Department of Medicine, Emory University School of Medicine , Atlanta, Georgia.,Department of Veterans Affairs Health Care System, Decatur, Georgia
| |
Collapse
|
10
|
Ward JL, Craig JC, Liu Y, Vidoni ED, Maletsky R, Poole DC, Billinger SA. Effect of healthy aging and sex on middle cerebral artery blood velocity dynamics during moderate-intensity exercise. Am J Physiol Heart Circ Physiol 2018; 315:H492-H501. [PMID: 29775407 PMCID: PMC6172645 DOI: 10.1152/ajpheart.00129.2018] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Blood velocity measured in the middle cerebral artery (MCAV) increases with finite kinetics during moderate-intensity exercise, and the amplitude and dynamics of the response provide invaluable insights into the controlling mechanisms. The MCAV response after exercise onset is well fit to an exponential model in young individuals but remains to be characterized in their older counterparts. The responsiveness of vasomotor control degrades with advancing age, especially in skeletal muscle. We tested the hypothesis that older subjects would evince a slower and reduced MCAV response to exercise. Twenty-nine healthy young (25 ± 1 yr old) and older (69 ± 1 yr old) adults each performed a rapid transition from rest to moderate-intensity exercise on a recumbent stepper. Resting MCAV was lower in older than young subjects (47 ± 2 vs. 64 ± 3 cm/s, P < 0.001), and amplitude from rest to steady-state exercise was lower in older than young subjects (12 ± 2 vs. 18 ± 3 cm/s, P = 0.04), even after subjects were matched for work rate. As hypothesized, the time constant was significantly longer (slower) in the older than young subjects (51 ± 10 vs. 31 ± 4 s, P = 0.03), driven primarily by older women. Neither age-related differences in fitness, end-tidal CO2, nor blood pressure could account for this effect. Thus, MCAV kinetic analyses revealed a marked impairment in the cerebrovascular response to exercise in older individuals. Kinetic analysis offers a novel approach to evaluate the efficacy of therapeutic interventions for improving cerebrovascular function in elderly and patient populations. NEW & NOTEWORTHY Understanding the dynamic cerebrovascular response to exercise has provided insights into sex-related cerebrovascular control mechanisms throughout the aging process. We report novel differences in the kinetics response of cerebrovascular blood velocity after the onset of moderate-intensity exercise. The exponential increase in brain blood flow from rest to exercise revealed that 1) the kinetics profile of the older group was blunted compared with their young counterparts and 2) the older women demonstrated a slowed response.
Collapse
Affiliation(s)
- Jaimie L Ward
- Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center , Kansas City, Kansas
| | - Jesse C Craig
- Department of Kinesiology and Department of Anatomy and Physiology, Kansas State University , Manhattan, Kansas
| | - Yumei Liu
- Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center , Kansas City, Kansas
| | - Eric D Vidoni
- University of Kansas Alzheimer's Disease Center, Fairway, Kansas
| | | | - David C Poole
- Department of Kinesiology and Department of Anatomy and Physiology, Kansas State University , Manhattan, Kansas
| | - Sandra A Billinger
- Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center , Kansas City, Kansas
| |
Collapse
|
11
|
Hellsten Y, Gliemann L. Limb vascular function in women-Effects of female sex hormones and physical activity. TRANSLATIONAL SPORTS MEDICINE 2018. [DOI: 10.1002/tsm2.3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Y. Hellsten
- Department of Nutrition Exercise and Sports; University of Copenhagen; Copenhagen Denmark
| | - L. Gliemann
- Department of Nutrition Exercise and Sports; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
12
|
Craig JC, Colburn TD, Hirai DM, Schettler MJ, Musch TI, Poole DC. Sex and nitric oxide bioavailability interact to modulate interstitial Po 2 in healthy rat skeletal muscle. J Appl Physiol (1985) 2018; 124:1558-1566. [PMID: 29369738 DOI: 10.1152/japplphysiol.01022.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Premenopausal women express reduced blood pressure and risk of cardiovascular disease relative to age-matched men. This purportedly relates to elevated estrogen levels increasing nitric oxide synthase (NOS) activity and NO-mediated vasorelaxation. We tested the hypotheses that female rat skeletal muscle would: 1) evince a higher O2 delivery-to-utilization ratio (Q̇o2/V̇o2) during contractions; and 2) express greater modulation of Q̇o2/V̇o2 with changes to NO bioavailability compared with male rats. The spinotrapezius muscle of Sprague-Dawley rats (females = 8, males = 8) was surgically exposed and electrically-stimulated (180 s, 1 Hz, 6 V). OxyphorG4 was injected into the muscle and phosphorescence quenching employed to determine the temporal profile of interstitial Po2 (Po2is, determined by Q̇o2/V̇o2). This was performed under three conditions: control (CON), 300 µM sodium nitroprusside (SNP; NO donor), and 1.5 mM Nω-nitro-l-arginine methyl ester (l-NAME; NOS blockade) superfusion. No sex differences were found for the Po2is kinetics parameters in CON or l-NAME ( P > 0.05), but females elicited a lower baseline following SNP (males 42 ± 3 vs. females 36 ± 2 mmHg, P < 0.05). Females had a lower ΔPo2is during contractions following SNP (males 22 ± 3 vs. females 17 ± 2 mmHg, P < 0.05), but there were no sex differences for the temporal response to contractions ( P > 0.05). The total NO effect (SNP minus l-NAME) on Po2is was not different between sexes. However, the spread across both conditions was shifted to a lower absolute range for females (reduced SNP baseline and greater reduction following l-NAME). These data support that females have a greater reliance on basal NO bioavailability and males have a greater responsiveness to exogenous NO and less responsiveness to reduced endogenous NO. NEW & NOTEWORTHY Interstitial Po2 (Po2is; determined by O2 delivery-to-utilization matching) plays an important role for O2 flux into skeletal muscle. We show that both sexes regulate Po2is at similar levels at rest and during skeletal muscle contractions. However, modulating NO bioavailability exposes sex differences in this regulation with females potentially having a greater reliance on basal NO bioavailability and males having a greater responsiveness to exogenous NO and less responsiveness to reduced endogenous NO.
Collapse
Affiliation(s)
- Jesse C Craig
- Department of Kinesiology, Kansas State University , Manhattan, Kansas
| | - Trenton D Colburn
- Department of Kinesiology, Kansas State University , Manhattan, Kansas
| | - Daniel M Hirai
- Department of Kinesiology, Kansas State University , Manhattan, Kansas
| | - Michael J Schettler
- Department of Anatomy and Physiology, Kansas State University , Manhattan, Kansas
| | - Timothy I Musch
- Department of Kinesiology, Kansas State University , Manhattan, Kansas.,Department of Anatomy and Physiology, Kansas State University , Manhattan, Kansas
| | - David C Poole
- Department of Kinesiology, Kansas State University , Manhattan, Kansas.,Department of Anatomy and Physiology, Kansas State University , Manhattan, Kansas
| |
Collapse
|
13
|
Neuronal nitric oxide synthase regulation of skeletal muscle functional hyperemia: exercise training and moderate compensated heart failure. Nitric Oxide 2017; 74:1-9. [PMID: 29288804 DOI: 10.1016/j.niox.2017.12.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 11/15/2017] [Accepted: 12/24/2017] [Indexed: 11/22/2022]
Abstract
Nitric oxide (NO) modulates oxygen delivery-utilization matching in resting and contracting skeletal muscle. Recent reports indicate that neuronal NO synthase (nNOS)-mediated vasoregulation during contractions is enhanced with exercise training and impaired with chronic heart failure (HF). Consequently, we tested the hypothesis that selective nNOS inhibition (S-methyl-l-thiocitrulline; SMTC, 2.1 μmol/kg) would produce attenuated reductions in muscle blood flow during moderate/heavy submaximal exercise in sedentary HF rats compared to their healthy counterparts. In addition, SMTC was expected to evoke greater reductions in exercising muscle blood flow in trained compared to sedentary healthy and HF rats. Blood flow during submaximal treadmill running (20 min/m, 5% grade) was determined via radiolabeled microspheres pre- and post-SMTC administration in healthy sedentary (Healthy + Sed, n = 8), healthy exercise trained (Healthy + ExT, n = 8), HF sedentary (HF + Sed, left ventricular end-diastolic pressure (LVEDP) = 12 ± 1 mmHg, n = 8), and HF exercise trained (HF + ExT, LVEDP = 16 ± 2 mmHg, n = 7) rats. nNOS contribution to exercising total hindlimb blood flow (ml/min/100 g) was not increased by training in either healthy or HF groups (Healthy + Sed: 105 ± 11 vs. 108 ± 16; Healthy + ExT: 96 ± 9 vs. 91 ± 7; HF + Sed: 124 ± 6 vs. 110 ± 12; HF + ExT: 107 ± 13 vs. 101 ± 8; control vs. SMTC, respectively; p > .05 for all). Similarly, SMTC did not reduce exercising blood flow in the majority of individual hindlimb muscles in any group (p > .05 for all, except for the semitendinosus and adductor longus in HF + Sed and the adductor longus in HF + ExT; p < .05). Contrary to our hypothesis, we find no support for either upregulation of nNOS function contributing to exercise hyperemia after training or its dysregulation with chronic HF.
Collapse
|
14
|
Just TP, DeLorey DS. Sex differences in sympathetic vasoconstrictor responsiveness and sympatholysis. J Appl Physiol (1985) 2017; 123:128-135. [PMID: 28473610 DOI: 10.1152/japplphysiol.00139.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/10/2017] [Accepted: 04/29/2017] [Indexed: 11/22/2022] Open
Abstract
Sex differences in the neurovascular control of blood pressure and vascular resistance have been reported. However, the mechanisms underlying the modulatory influence of sex have not been fully elucidated. Nitric oxide (NO) has been shown to inhibit sympathetic vasoconstriction in resting and contracting skeletal muscle, and estrogen modulates NO synthase (NOS) expression and NO bioavailability. Therefore NO-mediated inhibition of sympathetic vasoconstriction may be enhanced in females. Thus the purpose of the present study was to investigate the hypothesis that sympathetic vasoconstrictor responsiveness would be blunted and NO-mediated inhibition of sympathetic vasoconstriction would be enhanced in females compared with males. Male (M; n = 8) and female (F; n = 10) Sprague-Dawley rats were anesthetized and surgically instrumented for measurement of arterial blood pressure and femoral artery blood flow and stimulation of the lumbar sympathetic chain. The percentage change of femoral vascular conductance in response to sympathetic chain stimulation delivered at 2 and 5 Hz was determined at rest and during triceps surae muscle contraction before (control) and after NOS blockade [Nω-nitro-l-arginine methyl ester (l-NAME), 10 mg/kg iv]. At rest, sympathetic vasoconstrictor responsiveness was augmented (P < 0.05) in female compared with male rats at 2 Hz [F: -33 ± 8% (SD); M: -26 ± 6%] but was not different at 5 Hz (F: -55 ± 7%; M: -47 ± 7%). During muscle contraction, evoked vasoconstriction was similar (P > 0.05) in females and males at 2 Hz (F: -12 ± 5%; M: -13 ± 5%) but was blunted (P < 0.05) in females compared with males at 5 Hz (F: -24 ± 5%; M: -34 ± 8%). l-NAME increased (P < 0.05) sympathetic vasoconstrictor responsiveness in both groups at rest and during contraction. Contraction-mediated inhibition of vasoconstriction (sympatholysis) was enhanced (P < 0.05) in females compared with males; however, sympatholysis was not different (P > 0.05) between males and females in the presence of NOS blockade, indicating that NO-mediated sympatholysis was augmented in female rats. These data suggest that sex modulates sympathetic vascular control in resting and contracting skeletal muscle and that a portion of the enhanced sympatholysis in female rats was NO dependent.NEW & NOTEWORTHY Sex differences in the neurovascular regulation of blood pressure and vascular resistance have been documented. However, our understanding of the underlying mechanisms that mediate these differences is incomplete. The present study demonstrates that female rats have an enhanced capacity to inhibit sympathetic vasoconstriction during exercise (sympatholysis) and that NO mediates a portion of the enhanced sympatholysis.
Collapse
Affiliation(s)
- Timothy P Just
- Faculty of Physical Education and Recreation, University of Alberta, Edmonton, Alberta, Canada
| | - Darren S DeLorey
- Faculty of Physical Education and Recreation, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
15
|
Smith JR, Hageman KS, Harms CA, Poole DC, Musch TI. Respiratory muscle blood flow during exercise: Effects of sex and ovarian cycle. J Appl Physiol (1985) 2017; 122:918-924. [PMID: 28126910 DOI: 10.1152/japplphysiol.01007.2016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/11/2017] [Accepted: 01/23/2017] [Indexed: 11/22/2022] Open
Abstract
Sex and ovarian cycle have been speculated to modify respiratory muscle blood flow control during exercise, but the findings are inconclusive. We tested the hypotheses that females would have higher respiratory muscle blood flow and vascular conductance (VC) compared with males during exercise and that this difference would be accentuated in proestrus vs. ovariectomized (OVA) females. Mean arterial pressure (carotid artery catheter) and respiratory muscle blood flow (radiolabeled microspheres) were measured during moderate-intensity (24 m/min, 10% grade) exercise in male (n = 9), female (n = 9), and OVA female (n = 7) rats and near-maximal (60 m/min, 5% grade) exercise in male (n = 5) and female (n = 7) rats. At rest, diaphragm, intercostal, and transversus abdominis blood flow were not different (P = 0.33) among groups. During moderate-intensity exercise, diaphragm (M: 124 ± 16; F: 140 ± 14; OVA: 140 ± 20 ml·min-1·100 g-1), intercostal (M: 33 ± 5; F: 34 ± 5; OVA: 30 ± 5 ml·min-1·100 g-1), and transversus abdominis blood flow (M: 24 ± 4; F: 35 ± 7; OVA: 35 ± 9 ml·min-1·100 g-1) significantly increased in all groups compared with rest but were not different (P = 0.12) among groups. From rest to moderate-intensity exercise, diaphragm (P < 0.03) and transversus abdominis (P < 0.04) VC increased in all groups, whereas intercostal VC increased only for males and females (P = 0.01). No differences (P > 0.13) existed in VC among groups. During near-maximal exercise, diaphragm (M: 304 ± 62; F: 283 ± 17 ml·min-1·100 g-1), intercostal (M: 29 ± 8; F: 40 ± 6 ml·min-1·100 g-1), and transversus abdominis (M: 85 ± 14; F: 86 ± 9 ml·min-1·100 g-1) blood flow and VC were not different (P > 0.27) between males and females. These data demonstrate that respiratory muscle blood flow and vascular conductance at rest and during exercise are not affected by sex or ovarian cycle in rats.NEW & NOTEWORTHY It has been proposed that sex and ovarian cycle modulate respiratory muscle blood flow control during exercise. We demonstrate herein that neither sex nor ovarian cycle influences respiratory muscle blood flow or vascular conductance at rest or during exercise in rats.
Collapse
Affiliation(s)
- Joshua R Smith
- Department of Kinesiology, Kansas State University, Manhattan, Kansas; and
| | - K Sue Hageman
- Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas
| | - Craig A Harms
- Department of Kinesiology, Kansas State University, Manhattan, Kansas; and
| | - David C Poole
- Department of Kinesiology, Kansas State University, Manhattan, Kansas; and.,Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas
| | - Timothy I Musch
- Department of Kinesiology, Kansas State University, Manhattan, Kansas; and.,Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas
| |
Collapse
|
16
|
Lin AM, Liao P, Millson EC, Quyyumi AA, Park J. Tetrahydrobiopterin ameliorates the exaggerated exercise pressor response in patients with chronic kidney disease: a randomized controlled trial. Am J Physiol Renal Physiol 2016; 310:F1016-25. [PMID: 26962106 PMCID: PMC5002055 DOI: 10.1152/ajprenal.00527.2015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 02/28/2016] [Indexed: 11/22/2022] Open
Abstract
Chronic kidney disease (CKD) patients have an exaggerated increase in blood pressure (BP) during rhythmic handgrip exercise (RHG 20%) and static handgrip exercise (SHG 30%). Nitric oxide levels increase during exercise and help prevent excessive hypertension by both increasing vasodilation and reducing sympathetic nerve activity (SNA). Therefore, we hypothesized that tetrahydrobiopterin (BH4), an essential cofactor for nitric oxide synthase, would ameliorate the exaggerated exercise pressor response in CKD patients. In a randomized, double-blinded, placebo-controlled trial, we tested the effects of 12 wk of sapropterin dihydrochloride (6R-BH4; n = 18) versus placebo (n = 14) treatement on BP and muscle SNA (MSNA) responses during RHG 20% and SHG 30% in CKD patients. The 6R-BH4-treated group had a significantly lower systolic BP (+6 ± 1 vs. +13 ± 2 mmHg, P = 0.002) and mean arterial pressure response (+5 ± 1 vs. +10 ± 2 mmHg, P = 0.020) during RHG 20% and a significantly lower systolic BP response (+19 ± 3 vs. +28 ± 3 mmHg, P = 0.043) during SHG 30%. Under baseline conditions, there was no significant difference in MSNA responses between the groups; however, when the BP response during exercise was equalized between the groups using nitroprusside, the 6R-BH4-treated group had a significantly lower MSNA response during RHG 20% (6R-BH4 vs. placebo, +12 ± 1 vs. +21 ± 2 bursts/min, P = 0.004) but not during SHG 30%. These findings suggest that 6R-BH4 ameliorates the augmented BP response during RHG 20% and SHG 30% in CKD patients. A reduction in reflex activation of SNA may contribute to the decreased exercise pressor response during RHG 20% but not during SHG 30% in CKD patients.
Collapse
Affiliation(s)
- Ann M Lin
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia; Research Service Line, Department of Veterans Affairs Medical Center, Decatur, Georgia
| | - Peizhou Liao
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Erin C Millson
- Clinical Research Network, Atlanta Clinical and Translational Science Institute, Emory University School of Medicine, Atlanta, Georgia; and
| | - Arshed A Quyyumi
- Cardiology Division, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Jeanie Park
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia; Research Service Line, Department of Veterans Affairs Medical Center, Decatur, Georgia;
| |
Collapse
|
17
|
Salman IM. Cardiovascular Autonomic Dysfunction in Chronic Kidney Disease: a Comprehensive Review. Curr Hypertens Rep 2016; 17:59. [PMID: 26071764 DOI: 10.1007/s11906-015-0571-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cardiovascular autonomic dysfunction is a major complication of chronic kidney disease (CKD), likely contributing to the high incidence of cardiovascular mortality in this patient population. In addition to adrenergic overdrive in affected individuals, clinical and experimental evidence now strongly indicates the presence of impaired reflex control of both sympathetic and parasympathetic outflow to the heart and vasculature. Although the principal underlying mechanisms are not completely understood, potential involvements of altered baroreceptor, cardiopulmonary, and chemoreceptor reflex function, along with factors including but not limited to increased renin-angiotensin-aldosterone system activity, activation of the renal afferents and cardiovascular structural remodeling have been suggested. This review therefore analyzes potential mechanisms underpinning autonomic imbalance in CKD, covers results accumulated thus far on cardiovascular autonomic function studies in clinical and experimental renal failure, discusses the role of current interventional and therapeutic strategies in ameliorating autonomic deficits associated with chronic renal dysfunction, and identifies gaps in our knowledge of neural mechanisms driving cardiovascular disease in CKD.
Collapse
Affiliation(s)
- Ibrahim M Salman
- The Australian School of Advanced Medicine, Macquarie University, Sydney, New South Wales, Australia,
| |
Collapse
|
18
|
Exercise vasodilation is greater in women: contributions of nitric oxide synthase and cyclooxygenase. Eur J Appl Physiol 2015; 115:1735-46. [PMID: 25820143 DOI: 10.1007/s00421-015-3160-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 03/20/2015] [Indexed: 01/07/2023]
Abstract
PURPOSE We hypothesized exercise vasodilation would be greater in women due to nitric oxide synthase (NOS) and cyclooxygenase (COX) signaling. METHODS 45 healthy adults (23 women, W, 22 men, M, 26 ± 1 years) completed two 10-min trials of dynamic forearm exercise at 15 % intensity. Forearm blood flow (FBF; Doppler ultrasound), arterial pressure (brachial catheter), and forearm lean mass were measured to calculate relative forearm vascular conductance (FVCrel) = FBF 100 mmHg(-1) 100 g(-1) lean mass. Local intra-arterial infusion of L-NMMA or ketorolac acutely inhibited NOS and COX, respectively. In Trial 1, the first 5 min served as control exercise (CON), followed by 5 min of L-NMMA or ketorolac over the last 5 min of exercise. In Trial 2, the remaining drug was infused during 5-10 min, to achieve combined NOS-COX inhibition (double blockade, DB). RESULTS Are mean ± SE. Women exhibited 29 % greater vasodilation in CON (ΔFVCrel, 19 ± 1 vs. 15 ± 1, p = 0.01). L-NMMA reduced ΔFVCrel (p < 0.001) (W: Δ -2.3 ± 1.3 vs. M: Δ -3.7 ± 0.8, p = 0.25); whereas, ketorolac modestly increased ΔFVCrel (p = 0.04) similarly between sexes (W: Δ 1.6 ± 1.1 vs. M: Δ 2.0 ± 1.6, p = 0.78). DB was also found to be similar between the sexes (p = 0.85). CONCLUSION These data clearly indicate women produce a greater exercise vasodilator response. Furthermore, contrary to experiments in animal models, these data are the first to demonstrate vascular control by NOS and COX is similar between sexes.
Collapse
|
19
|
Jendzjowsky NG, Just TP, DeLorey DS. Exercise training augments neuronal nitric oxide synthase-mediated inhibition of sympathetic vasoconstriction in contracting skeletal muscle of rats. J Physiol 2014; 592:4789-802. [PMID: 25194041 DOI: 10.1113/jphysiol.2014.278846] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
We tested the hypothesis that exercise training would increase neuronal nitric oxide synthase (nNOS)-mediated inhibition of sympathetic vasoconstriction in resting and contracting skeletal muscle. Sprague-Dawley rats (n = 18) were randomized to sedentary or exercise-trained (40 m min(-1), 5° grade; 5 days week(-1) for 4 weeks) groups. Following completion of sedentary behaviour or exercise training, rats were anaesthetized and instrumented with a brachial artery catheter, femoral artery flow probe and stimulating electrodes on the lumbar sympathetic chain. The percentage change of femoral vascular conductance (%FVC) in response to sympathetic chain stimulations delivered at 2 and 5 Hz was determined at rest and during triceps surae muscle contraction before (control) and after selective nNOS blockade with S-methyl-l-thiocitrulline (SMTC, 0.6 mg kg(-1), i.v.) and subsequent non-selective NOS blockade with l-NAME (5 mg kg(-1), i.v.; SMTC + l-NAME). At rest, sympathetic vasoconstrictor responsiveness was greater (P < 0.05) in exercise-trained compared to sedentary rats in control, SMTC and SMTC + l-NAME conditions. During contraction, the constrictor response was not different (P > 0.05) between exercise trained (2 Hz: -11 ± 4%FVC; 5 Hz: -21 ± 5%FVC) and sedentary rats (2 Hz: -7 ± 6%FVC; 5 Hz: -18 ± 10%FVC) in control conditions. SMTC augmented (P < 0.05) sympathetic vasoconstriction in sedentary and exercise-trained rats; however, sympathetic vasoconstrictor responsiveness was greater (P < 0.05) in exercise-trained (2 Hz: -27 ± 5%FVC; 5 Hz: -39 ± 5%FVC) compared to sedentary (2 Hz: -17 ± 6%FVC; 5 Hz: -27 ± 8%FVC) rats during selective nNOS inhibition. SMTC + l-NAME further augmented (P < 0.05) sympathetic vasoconstrictor responsiveness by a similar magnitude (P > 0.05) in exercise-trained and sedentary rats. These data demonstrate that exercise training augmented nNOS-mediated inhibition of sympathetic vasoconstriction in contracting muscle.
Collapse
Affiliation(s)
- Nicholas G Jendzjowsky
- Faculty of Physical Education and Recreation, University of Alberta, Edmonton, AB, T6G 2H9, Canada
| | - Timothy P Just
- Faculty of Physical Education and Recreation, University of Alberta, Edmonton, AB, T6G 2H9, Canada
| | - Darren S DeLorey
- Faculty of Physical Education and Recreation, University of Alberta, Edmonton, AB, T6G 2H9, Canada
| |
Collapse
|
20
|
Jendzjowsky NG, DeLorey DS. Role of neuronal nitric oxide in the inhibition of sympathetic vasoconstriction in resting and contracting skeletal muscle of healthy rats. J Appl Physiol (1985) 2013; 115:97-106. [DOI: 10.1152/japplphysiol.00250.2013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Isoform-specific nitric oxide (NO) synthase (NOS) contributions to NO-mediated inhibition of sympathetic vasoconstriction in resting and contracting skeletal muscle are incompletely understood. The purpose of the present study was to investigate the role of neuronal NOS (nNOS) in the inhibition of sympathetic vasoconstriction in resting and contracting skeletal muscle of healthy rats. We hypothesized that acute pharmacological inhibition of nNOS would augment sympathetic vasoconstriction in resting and contracting skeletal muscle, demonstrating that nNOS is primarily responsible for NO-mediated inhibition of sympathetic vasoconstriction. Sprague-Dawley rats ( n = 13) were anesthetized and instrumented with an indwelling brachial artery catheter, femoral artery flow probe, and lumbar sympathetic chain stimulating electrodes. Triceps surae muscles were stimulated to contract rhythmically at 60% of maximal contractile force. In series 1 ( n = 9), the percent change in femoral vascular conductance (%FVC) in response to sympathetic stimulations delivered at 2 and 5 Hz was determined at rest and during muscle contraction before and after selective nNOS blockade with S-methyl-l-thiocitrulline (SMTC, 0.6 mg/kg iv) and subsequent nonselective NOS blockade with Nω-nitro-l-arginine methyl ester (l-NAME, 5 mg/kg iv). In series 2 ( n = 4), l-NAME was injected first, and then SMTC was injected to determine if the effect of l-NAME on constrictor responses was influenced by selective nNOS inhibition. Sympathetic stimulation decreased FVC at rest (−25 ± 7 and −44 ± 8%FVC at 2 and 5 Hz, respectively) and during contraction (−7 ± 3 and −19 ± 5%FVC at 2 and 5 Hz, respectively). The decrease in FVC in response to sympathetic stimulation was greater in the presence of SMTC at rest (−32 ± 6 and −49 ± 8%FVC at 2 and 5 Hz, respectively) and during contraction (−21 ± 4 and −28 ± 4%FVC at 2 and 5 Hz, respectively). l-NAME further increased ( P < 0.05) the sympathetic vasoconstrictor response at rest (−47 ± 4 and −60 ± 6%FVC at 2 and 5 Hz, respectively) and during muscle contraction (−33 ± 3 and −40 ± 6%FVC at 2 and 5 Hz, respectively). The effect of l-NAME was not altered by the order of nNOS inhibition. These data demonstrate that NO derived from nNOS and endothelial NOS contribute to the inhibition of sympathetic vasoconstriction in resting and contracting skeletal muscle.
Collapse
Affiliation(s)
- Nicholas G. Jendzjowsky
- Faculty of Physical Education and Recreation, University of Alberta, Edmonton, Alberta, Canada; and
| | - Darren S. DeLorey
- Faculty of Physical Education and Recreation, University of Alberta, Edmonton, Alberta, Canada; and
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
21
|
Shabeeh H, Melikian N, Dworakowski R, Casadei B, Chowienczyk P, Shah AM. Differential role of endothelial versus neuronal nitric oxide synthase in the regulation of coronary blood flow during pacing-induced increases in cardiac workload. Am J Physiol Heart Circ Physiol 2013; 304:H1277-82. [PMID: 23479261 DOI: 10.1152/ajpheart.00927.2012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Endothelial nitric oxide synthase (eNOS) was assumed to be the only source of nitric oxide (NO) involved in the regulation of human coronary blood flow (CBF). However, our recent first-in-human study using the neuronal NOS (nNOS)-selective inhibitor S-methyl-L-thiocitrulline (SMTC) showed that nNOS-derived NO also plays a role. In this study, we investigated the relative contribution of nNOS and eNOS to the CBF response to a pacing-induced increase in cardiac workload. Incremental right atrial pacing was undertaken in patients with angiographically normal coronary arteries during intracoronary infusion of saline vehicle and then either SMTC or N(G)-monomethyl-l-arginine (l-NMMA; which inhibits both eNOS and nNOS). Intracoronary SMTC (0.625 μmol/min) and l-NMMA (25 μmol/min) reduced basal CBF to a similar extent (-19.2 ± 3.2% and 25.0 ± 2.7%, respectively; n = 10 per group). Pacing-induced increases in CBF were significantly blunted by l-NMMA (maximum CBF: 83.5 ± 14.2 ml/min during saline vs. 61.6 ± 9.5 ml/min during l-NMMA; P < 0.01). By contrast, intracoronary SMTC had no effect on the maximum CBF during pacing (98.5 ± 12.9 ml/min during saline vs. 102.1 ± 16.6 ml/min during SMTC; P = not significant). l-NMMA also blunted the pacing-induced increase in coronary artery diameter (P < 0.001 vs. saline), whereas SMTC had no effect. Our results confirm a role of nNOS in the regulation of basal CBF in humans but show that coronary vasodilation in response to a pacing-induced increase in cardiac workload is exclusively mediated by eNOS-derived NO.
Collapse
Affiliation(s)
- Husain Shabeeh
- King's College London British Heart Foundation Centre, Cardiovascular Division, London, United Kingdom
| | | | | | | | | | | |
Collapse
|
22
|
Copp SW, Hirai DM, Sims GE, Fels RJ, Musch TI, Poole DC, Kenney MJ. Neuronal nitric oxide synthase inhibition and regional sympathetic nerve discharge: implications for peripheral vascular control. Respir Physiol Neurobiol 2013; 186:285-9. [PMID: 23454026 DOI: 10.1016/j.resp.2013.02.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 01/28/2013] [Accepted: 02/20/2013] [Indexed: 11/30/2022]
Abstract
Neuronal nitric oxide (NO) synthase (nNOS) inhibition with systemically administered S-methyl-l-thiocitrulline (SMTC) elevates mean arterial pressure (MAP) and reduces rat hindlimb skeletal muscle and renal blood flow. We tested the hypothesis that those SMTC-induced cardiovascular effects resulted, in part, from increased sympathetic nerve discharge (SND). MAP, HR, and lumbar and renal SND (direct nerve recordings) were measured in 9 baroreceptor (sino-aortic)-denervated rats for 20min each following both saline and SMTC (0.56mg/kg i.v.). SMTC increased MAP (peak ΔMAP: 50±8mmHg, p<0.01) compared to saline. Lumbar and renal SND were not different between saline and SMTC conditions at any time (p>0.05). The ΔSND between saline and SMTC conditions for the lumbar and renal nerves were not different from zero (peak ΔSND, lumbar: 2.0±6.8%; renal: 9.7±9.0%, p>0.05 versus zero for both). These data support that SMTC-induced reductions in skeletal muscle and renal blood flow reported previously reflect peripheral nNOS-derived NO vascular control as opposed to increased sympathetic vasoconstriction.
Collapse
Affiliation(s)
- Steven W Copp
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS 66506, USA.
| | | | | | | | | | | | | |
Collapse
|
23
|
Shabeeh H, Seddon M, Brett S, Melikian N, Casadei B, Shah AM, Chowienczyk P. Sympathetic activation increases NO release from eNOS but neither eNOS nor nNOS play an essential role in exercise hyperemia in the human forearm. Am J Physiol Heart Circ Physiol 2013; 304:H1225-30. [PMID: 23436331 DOI: 10.1152/ajpheart.00783.2012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nitric oxide (NO) release from endothelial NO synthase (eNOS) and/or neuronal NO synthase (nNOS) could be modulated by sympathetic nerve activity and contribute to increased blood flow after exercise. We examined the effects of brachial-arterial infusion of the nNOS selective inhibitor S-methyl-l-thiocitrulline (SMTC) and the nonselective NOS inhibitor N(G)-monomethyl-l-arginine (l-NMMA) on forearm arm blood flow at rest, during sympathetic activation by lower body negative pressure, and during lower body negative pressure immediately after handgrip exercise. Reduction in forearm blood flow by lower body negative pressure during infusion of SMTC was not significantly different from that during vehicle (-28.5 ± 4.02 vs. -34.1 ± 2.96%, respectively; P = 0.32; n = 8). However, l-NMMA augmented the reduction in forearm blood flow by lower body negative pressure (-44.2 ± 3.53 vs. -23.4 ± 5.71%; n = 8; P < 0.01). When lower body negative pressure was continued after handgrip exercise, there was no significant effect of either l-NMMA or SMTC on forearm blood flow immediately after low-intensity exercise (P = 0.91 and P = 0.44 for l-NMMA vs. saline and SMTC vs. saline, respectively; each n = 10) or high-intensity exercise (P = 0.46 and P = 0.68 for l-NMMA vs. saline and SMTC vs. saline, respectively; each n = 10). These results suggest that sympathetic activation increases NO release from eNOS, attenuating vasoconstriction. Dysfunction of eNOS could augment vasoconstrictor and blood pressure responses to sympathetic activation. However, neither eNOS nor nNOS plays an essential role in postexercise hyperaemia, even in the presence of increased sympathetic activation.
Collapse
Affiliation(s)
- Husain Shabeeh
- King's College London British Heart Foundation Centre, London, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
24
|
Meinen S, Lin S, Rüegg MA, Punga AR. Fatigue and muscle atrophy in a mouse model of myasthenia gravis is paralleled by loss of sarcolemmal nNOS. PLoS One 2012; 7:e44148. [PMID: 22952904 PMCID: PMC3429452 DOI: 10.1371/journal.pone.0044148] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 07/30/2012] [Indexed: 02/01/2023] Open
Abstract
Myasthenia Gravis (MG) patients suffer from chronic fatigue of skeletal muscles, even after initiation of proper immunosuppressive medication. Since the localization of neuronal nitric oxide synthase (nNOS) at the muscle membrane is important for sustained muscle contraction, we here study the localization of nNOS in muscles from mice with acetylcholine receptor antibody seropositive (AChR+) experimental autoimmune MG (EAMG). EAMG was induced in 8 week-old male mice by immunization with AChRs purified from torpedo californica. Sham-injected wild type mice and mdx mice, a model for Duchenne muscular dystrophy, were used for comparison. At EAMG disease grade 3 (severe myasthenic weakness), the triceps, sternomastoid and masseter muscles were collected for analysis. Unlike in mdx muscles, total nNOS expression as well as the presence of its binding partner syntrophin α-1, were not altered in EAMG. Immunohistological and biochemical analysis showed that nNOS was lost from the muscle membrane and accumulated in the cytosol, which is likely the consequence of blocked neuromuscular transmission. Atrophy of all examined EAMG muscles were supported by up-regulated transcript levels of the atrogenes atrogin-1 and MuRF1, as well as MuRF1 protein, in combination with reduced muscle fiber diameters. We propose that loss of sarcolemmal nNOS provides an additional mechanism for the chronic muscle fatigue and secondary muscle atrophy in EAMG and MG.
Collapse
MESH Headings
- Animals
- Autoantibodies/immunology
- Cytosol/enzymology
- Disease Models, Animal
- Immunization
- Male
- Mice
- Mice, Inbred C57BL
- Models, Biological
- Muscle Denervation
- Muscle Fatigue
- Muscle, Skeletal/enzymology
- Muscle, Skeletal/immunology
- Muscle, Skeletal/pathology
- Muscle, Skeletal/physiopathology
- Muscular Atrophy/complications
- Muscular Atrophy/immunology
- Muscular Atrophy/pathology
- Muscular Atrophy/physiopathology
- Myasthenia Gravis, Autoimmune, Experimental/complications
- Myasthenia Gravis, Autoimmune, Experimental/immunology
- Myasthenia Gravis, Autoimmune, Experimental/pathology
- Myasthenia Gravis, Autoimmune, Experimental/physiopathology
- Nitric Oxide Synthase Type I/deficiency
- Nitric Oxide Synthase Type I/genetics
- Nitric Oxide Synthase Type I/metabolism
- Phenotype
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Cholinergic/metabolism
- Sarcolemma/enzymology
- Sarcolemma/pathology
- Weight Loss
Collapse
Affiliation(s)
- Sarina Meinen
- Department of Neurobiology/Pharmacology, Biozentrum, University of Basel, Basel, Switzerland
| | - Shuo Lin
- Department of Neurobiology/Pharmacology, Biozentrum, University of Basel, Basel, Switzerland
| | - Markus A. Rüegg
- Department of Neurobiology/Pharmacology, Biozentrum, University of Basel, Basel, Switzerland
| | - Anna Rostedt Punga
- Department of Neurobiology/Pharmacology, Biozentrum, University of Basel, Basel, Switzerland
- * E-mail:
| |
Collapse
|
25
|
Hirai DM, Copp SW, Holdsworth CT, Ferguson SK, Musch TI, Poole DC. Effects of neuronal nitric oxide synthase inhibition on microvascular and contractile function in skeletal muscle of aged rats. Am J Physiol Heart Circ Physiol 2012; 303:H1076-84. [PMID: 22923618 DOI: 10.1152/ajpheart.00477.2012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Advanced age is associated with derangements in skeletal muscle microvascular function during the transition from rest to contractions. We tested the hypothesis that, contrary to what was reported previously in young rats, selective neuronal nitric oxide (NO) synthase (nNOS) inhibition would result in attenuated or absent alterations in skeletal muscle microvascular oxygenation (Po(2)(mv)), which reflects the matching between muscle O(2) delivery and utilization, following the onset of contractions in old rats. Spinotrapezius muscle blood flow (radiolabeled microspheres), Po(2)(mv) (phosphorescence quenching), O(2) utilization (Vo(2); Fick calculation), and submaximal force production were measured at rest and following the onset of contractions in anesthetized old male Fischer 344 × Brown Norway rats (27 to 28 mo) pre- and postselective nNOS inhibition (2.1 μmol/kg S-methyl-l-thiocitrulline; SMTC). At rest, SMTC had no effects on muscle blood flow (P > 0.05) but reduced Vo(2) by ∼23% (P < 0.05), which elevated basal Po(2)(mv) by ∼18% (P < 0.05). During contractions, steady-state muscle blood flow, Vo(2), Po(2)(mv), and force production were not altered after SMTC (P > 0.05 for all). The overall Po(2)(mv) dynamics following onset of contractions was also unaffected by SMTC (mean response time: pre, 19.7 ± 1.5; and post, 20.0 ± 2.0 s; P > 0.05). These results indicate that the locus of nNOS-derived NO control in skeletal muscle depends on age and metabolic rate (i.e., rest vs. contractions). Alterations in nNOS-mediated regulation of contracting skeletal muscle microvascular function with aging may contribute to poor exercise capacity in this population.
Collapse
Affiliation(s)
- Daniel M Hirai
- Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas 66506-5802, USA
| | | | | | | | | | | |
Collapse
|
26
|
Lekontseva O, Jiang Y, Schleppe C, Davidge ST. Altered neuronal nitric oxide synthase in the aging vascular system: implications for estrogens therapy. Endocrinology 2012; 153:3940-8. [PMID: 22700772 DOI: 10.1210/en.2012-1071] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Ovarian dysfunction at any age is associated with increased cardiovascular risk in women; however, therapeutic effects of exogenous estrogens are age dependent. Estradiol (E2) activates neuronal nitric oxide synthase (nNOS) in vascular cells. Because nNOS is prone to uncoupling under unfavorable biochemical conditions (as seen in aging), E2 stimulation of nNOS may lack vascular benefits in aging. Small mesenteric arteries were isolated from female Sprague Dawley rats, 3 or 12 months old, who were ovariectomized (Ovx) and treated with placebo or E2 for 4 wk. Vascular relaxation to exogenous E2 (0.001-100 μmol/liter) ± selective nNOS inhibitor (N-propyl-l-arginine, 2 μmol/liter) or pan-NOS inhibitor [Nω-nitro-l-arginine methyl ester (l-NAME), 100 μmol/liter] was examined on wire myograph. NOS expression was measured by Western blotting in thoracic aortas, in which superoxide generation was detected as dihydroethidium (DHE) fluorescence. E2 relaxations were impaired in Ovx conditions. E2 treatment (4 wk) normalized vascular function in young rats only. Both l-N-propyl-l-arginine and l-NAME blunted E2 relaxation in young controls, but only l-NAME did so in aging controls. NOS inhibition had no effect on acute E2 relaxation in Ovx rats, regardless of age or treatment. nNOS expression was similar in all animal groups. However, nNOS inhibition increased DHE fluorescence in young controls, whereas it reduced it in aging or Ovx animals. In E2-treated animals of either age, superoxide production was NOS independent. In conclusion, nNOS contributed to vascular relaxation in young, but not aging rats, where its enzymatic function shifted toward superoxide production. Thus, nNOS dysfunction may explain a mechanism of impaired E2 signaling in aging conditions.
Collapse
Affiliation(s)
- Olga Lekontseva
- Department of Physiology, Women and Children’s Health Research Institute, Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | | | | | | |
Collapse
|
27
|
COPP STEVENW, HIRAI DANIELM, FERGUSON SCOTTK, MUSCH TIMOTHYI, POOLE DAVIDC. Role of Neuronal Nitric Oxide Synthase in Modulating Microvascular and Contractile Function in Rat Skeletal Muscle. Microcirculation 2011; 18:501-11. [DOI: 10.1111/j.1549-8719.2011.00111.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Limberg JK, Eldridge MW, Proctor LT, Sebranek JJ, Schrage WG. Alpha-adrenergic control of blood flow during exercise: effect of sex and menstrual phase. J Appl Physiol (1985) 2010; 109:1360-8. [PMID: 20724565 DOI: 10.1152/japplphysiol.00518.2010] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sex differences exist in autonomic control of the cardiovascular system. This study was designed to directly test sex or female menstrual phase-related differences in α-adrenergic control of blood flow during exercise. We hypothesized that women would exhibit reduced α-adrenergic vasoconstriction compared with men during exercise; in addition, women would constrict less during the early luteal than the early follicular phase of the female menses. Young men (n = 10) were studied once and women (n = 9) studied twice, once during the early follicular phase and once during the early luteal phase of female menses. We measured forearm blood flow (FBF; Doppler ultrasound of the brachial artery) during rest and steady-state dynamic exercise (15 and 30% of maximal voluntary contraction, 20 contractions/min). A brachial artery catheter was inserted for the local administration of α-adrenergic agonists [phenylephrine (PE; α(1)) or clonidine (CL; α(2))]. Blood flow responses to exercise [forearm vascular conductance (FVC)] were similar between all groups. At rest, infusion of PE or CL decreased FVC in all groups (40-60% reduction). Vasoconstriction to PE was abolished in all groups at 15 and 30% exercise intensity. Vasoconstriction to CL was reduced at 15% and abolished at 30% intensity in all groups; women had less CL-induced constriction during the early luteal than early follicular phase (P < 0.017, 15% intensity). These results indicate that vasodilator responses to forearm exercise are comparable between men and women and are achieved through similar paths of α-adrenergic vascular control at moderate intensities; this control may differ at low intensities specific to the female menstrual phase.
Collapse
Affiliation(s)
- Jacqueline K Limberg
- Department of Kinesiology, School of Education, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
29
|
Copp SW, Hirai DM, Schwagerl PJ, Musch TI, Poole DC. Effects of neuronal nitric oxide synthase inhibition on resting and exercising hindlimb muscle blood flow in the rat. J Physiol 2010; 588:1321-31. [PMID: 20176629 DOI: 10.1113/jphysiol.2009.183723] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Nitric oxide (NO) derived from endothelial NO synthase (eNOS) is an integral mediator of vascular control during muscle contractions. However, it is not known whether neuronal NOS (nNOS)-derived NO regulates tissue hyperaemia in healthy subjects, particularly during exercise. We tested the hypothesis that selective nNOS inhibition would reduce blood flow and vascular conductance (VC) in rat hindlimb locomotor muscle(s), kidneys and splanchnic organs at rest and during dynamic treadmill exercise (20 m min(-1), 10% grade). Nineteen male Sprague-Dawley rats (555 +/- 23 g) were assigned to either rest (n = 9) or exercise (n = 10) groups. Blood flow and VC were determined via radiolabelled microspheres before and after the intra-arterial administration of the selective nNOS inhibitor S-methyl-L-thiocitrulline (SMTC, 2.1 +/- 0.1 micromol kg(-1)). Total hindlimb muscle blood flow (control: 20 +/- 2 ml min(-1) 100g(-1), SMTC: 12 +/- 2 ml min(-1) 100g(-1), P < 0.05) and VC (control: 0.16 +/- 0.02 ml min(-1) 100 g(-1) mmHg(1), SMTC: 0.09 +/- 0.01 ml min(-1) 100 g(-1) mmHg(-1), P < 0.05) were reduced substantially at rest. Moreover, the magnitude of the absolute reduction in blood flow and VC correlated (P < 0.05) with the proportion of oxidative muscle fibres found in the individual muscles or muscle parts of the hindlimb. During exercise, total hindlimb blood flow (control: 108 +/- 7 ml min(-1) 100 g(-1), SMTC: 105 +/- 8 ml min(-1) 100 g(-1)) and VC (control: 0.77 +/- 0.06 ml min(-1) 100g(-1) mmHg(-1); SMTC: 0.70 +/- 0.05 ml min(-1) 100g(-1) mmHg(-1)) were not different (P > 0.05) between control and SMTC conditions. SMTC reduced (P < 0.05) blood flow and VC at rest and during exercise in the kidneys, adrenals and liver. These results enhance our understanding of the role of NO-mediated circulatory control by demonstrating that nNOS does not appear to subserve an obligatory role in the exercising muscle hyperaemic response in the rat.
Collapse
Affiliation(s)
- Steven W Copp
- Department of Kinesiology, Kansas State University, Manhattan, KS 66506-5802, USA
| | | | | | | | | |
Collapse
|
30
|
Xue B, Singh M, Guo F, Hay M, Johnson AK. Protective actions of estrogen on angiotensin II-induced hypertension: role of central nitric oxide. Am J Physiol Heart Circ Physiol 2009; 297:H1638-46. [PMID: 19734362 DOI: 10.1152/ajpheart.00502.2009] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study tested the hypotheses that 1) nitric oxide (NO) is involved in attenuated responses to ANG II in female mice, and 2) there is differential expression of neuronal NO synthase (nNOS) in the subfornical organ (SFO) and paraventricular nucleus (PVN) in response to systemic infusions of ANG II in males vs. females. Aortic blood pressure (BP) was measured in conscious mice with telemetry implants. N(G)-nitro-l-arginine methyl ester (l-NAME; 100 microg x kg(.-1)day(-1)), an inhibitor of NOS, was administrated into the lateral cerebral ventricle for 14 days before and during ANG II pump implantation. Central infusion of l-NAME augmented the pressor effects of systemic ANG II in females (Delta21.5 + or - 2.2 vs. Delta9.2 + or - 1.5 mmHg) but not in males (Delta29.4 + or - 2.5 vs. Delta30.1 + or - 2.5 mmHg). Central administration of N(5)-(1-imino-3-butenyl)-l-ornithine (l-VNIO), a selective nNOS inhibitor, also significantly potentiated the increase in BP induced by ANG II in females (Delta17.5 + or - 3.2 vs. Delta9.2 + or - 1.5 mmHg). In gonadectomized mice, central l-NAME infusion did not affect the pressor response to ANG II in either males or females. Ganglionic blockade after ANG II infusion resulted in a greater reduction in BP in central l-NAME- or l-VNIO-treated females compared with control females. Western blot analysis of nNOS protein expression indicated that levels were approximately 12-fold higher in both the SFO and PVN of intact females compared with those in intact males. Seven days of ANG II treatment resulted in a further increase in nNOS protein expression only in intact females (PVN, to approximately 51-fold). Immunohistochemical studies revealed colocalization of nNOS and estrogen receptors in the SFO and PVN. These results suggest that NO attenuates the increase in BP induced by ANG II through reduced sympathetic outflow in females and that increased nNOS protein expression associated with the presence of female sex hormones plays a protective role against ANG II-induced hypertension in female mice.
Collapse
Affiliation(s)
- Baojian Xue
- Department of Psychology, University of Iowa, 11 Seashore Hall E, Iowa City, IA 52242, USA.
| | | | | | | | | |
Collapse
|
31
|
Abstract
Females-both rats and women-are substantially protected against the age-dependent decrease in renal function that occurs in males of the species. In part, this finding reflects the cardioprotective and renoprotective effects of estrogens, but estrogen has multiple actions, not all of which are beneficial. In addition, the low androgen level in women might be protective against a decline in renal function, but animal and clinical data on possible adverse effects of androgens are controversial. Androgens also have multiple actions, one of which-aromatization to estrogen-is likely to be protective. Sex steroids clearly have many complex actions, which explains the conflicting information on their relative benefits and dangers. Endothelial nitric oxide (NO) deficiency contributes importantly to cardiovascular risk and intrarenal NO deficiency is clearly linked to chronic kidney disease progression in animal models. Endothelial dysfunction develops with increasing age but is delayed in females, correlating with a delayed rise in asymmetric dimethylarginine level. There is no clear link between aging and arginine (the NO synthase substrate) deficiency. Animal data suggest that the aging kidney develops NO deficiency as a result of changes in neuronal NO synthase. The increased oxidative stress that occurs with aging affects multiple stages of the NO biosynthetic pathway and results in decreased production and/or action of NO. NO production is better preserved in females than in males, partly as a result of the actions of estrogens.
Collapse
|
32
|
Baylis C. Sexual dimorphism of the aging kidney: role of nitric oxide deficiency. Physiology (Bethesda) 2008; 23:142-50. [PMID: 18556467 DOI: 10.1152/physiol.00001.2008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
GFR falls with aging in humans and rats due to renal vasoconstriction and structural damage. The rate of deterioration is influenced by race/genetic background, environment, and sex, with females protected. Part of the female advantage relates to protective effects of estrogens. There is little information on impact of aging on the distribution/cardiovascular actions of the estrogen receptor subtypes. In rats, androgens may contribute to injury, but in men, high testosterone levels predict cardiovascular health. In women, the association is controversial. Nitric oxide deficiency contributes to the hypertension and renal dysfunction of aging, which may be delayed in the female.
Collapse
Affiliation(s)
- Chris Baylis
- University of Florida, Gainesville, Florida, USA.
| |
Collapse
|
33
|
Sato K, Yokota T, Ichioka S, Shibata M, Takeda S. Vasodilation of intramuscular arterioles under shear stress in dystrophin-deficient skeletal muscle is impaired through decreased nNOS expression. ACTA MYOLOGICA : MYOPATHIES AND CARDIOMYOPATHIES : OFFICIAL JOURNAL OF THE MEDITERRANEAN SOCIETY OF MYOLOGY 2008; 27:30-36. [PMID: 19108575 PMCID: PMC2859605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Duchenne muscular dystrophy (DMD) is a lethal X-linked disorder of striated muscle caused by the absence of dystrophin. Recently, impairment of vascular dilation under shear stress has been found in DMD, but the underlying molecular mechanism is not fully understood. Moreover, dilation of intramuscular arterioles, which may be a key to the molecular pathogenesis, has not been addressed yet. We examined dilation of arterioles in the mouse cremaster muscle under shear stress due to ligation. The vasodilation was significantly impaired in dystrophin-deficient mdx mice as well as in neuronal nitric oxide synthase (nNOS)-deficient mice; however, neither endothelial NOS-deficient mice nor alpha1-syntrophin-deficient mice showed any difference in vasodilation from control mice. These results indicate that nNOS is the main supplier of nitric oxide in shear stress-induced vasodilation in skeletal muscle, but that the sarcolemmal localization of nNOS is not indispensable for the function. In contrast, the response to acetylcholine or sodium nitroprusside was not impaired in mdx or nNOS-deficient mice, suggesting that pharmacological treatment using a vasoactive agent may ameliorate skeletal and cardiac muscle symptoms of DMD.
Collapse
Affiliation(s)
- K Sato
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan
| | | | | | | | | |
Collapse
|
34
|
Loyer X, Heymes C, Samuel JL. Constitutive nitric oxide synthases in the heart from hypertrophy to failure. Clin Exp Pharmacol Physiol 2008; 35:483-8. [PMID: 18307746 DOI: 10.1111/j.1440-1681.2008.04901.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
1. Endogenous myocardial nitric oxide (NO) may modulate the transition from adaptive to maladaptive hypertrophy leading to heart failure. This review summarizes the information on the interrelations between the precise localization of NO synthases (NOS) and their regulatory functions within different compartments of the heart. 2. In rodent models of pressure overload or myocardial infarction, the three NOS isoforms (NOS1, NOS2, NOS3) were shown to play a neutral, protective, or even adverse role in myocardial remodelling, depending on the NOS activity, the location of each NOS and their regulators. 3. The analysis of conditions that modulate the expression of NOS1 and NOS3 in the heart according to physiopathological situations, indicated that, beside the level of total NOS activity, unique changes in NO compartmentation secondary to NOS1 or NOS3 subcellular location might be involved in the development of cardiac hypertrophy and failure. 4. Thus, different circuits in NO-signalling pathways in myocardium might be activated and this principle is a key to understand contradictions existing in NO biology in the heart. Unravelling the mechanisms behind the NO, NOS and cardiac function is still an ongoing challenge.
Collapse
Affiliation(s)
- Xavier Loyer
- INSERM U689 CRCIL and University Denis Diderot, Paris, France
| | | | | |
Collapse
|
35
|
HAYASHI KOICHIRO, MAEDA SEIJI, IEMITSU MOTOYUKI, OTSUKI TAKESHI, SUGAWARA JUN, TANABE TAKUMI, MIYAUCHI TAKASHI, KUNO SHINYA, AJISAKA RYUICHI, MATSUDA MITSUO. Estrogen Receptor-α Genotype Affects Exercise-Related Reduction of Arterial Stiffness. Med Sci Sports Exerc 2008; 40:252-7. [DOI: 10.1249/mss.0b013e31815c04cf] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Koba S, Xing J, Sinoway LI, Li J. Differential sympathetic outflow elicited by active muscle in rats. Am J Physiol Heart Circ Physiol 2007; 293:H2335-43. [PMID: 17573458 DOI: 10.1152/ajpheart.00469.2007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study was undertaken to test the hypothesis that activation of the muscle reflex elicits less sympathetic activation in skeletal muscle than in internal organs. In decerebrate rats, we examined renal and lumbar (mainly innervating hindlimb blood vessels) sympathetic nerve activities (RSNA and LSNA, respectively) during 1 min of 1) repetitive (1- to 4-s stimulation-to-relaxation) contraction of the triceps surae muscle, 2) repetitive tendon stretch, and 3) repetitive contraction with hindlimb circulatory occlusion. During these interventions, RSNA and LSNA responded synchronously as tension developed. The increase was greater in RSNA than in LSNA [+51 +/- 14 vs. +24 +/- 5% (P < 0.05) with contraction, +46 +/- 8 vs. +17 +/- 4% (P < 0.05) with stretch, +76 +/- 20 vs. 39 +/- 7% (P < 0.05) with contraction during occlusion] during all three interventions: repetitive contraction (n = 10, +508 +/- 48 g tension from baseline), tendon stretch (n = 12, +454 +/- 34 g), and contraction during occlusion (n = 9, +473 +/- 33 g). Additionally, hindlimb circulatory occlusion significantly enhanced RSNA and LSNA responses to contraction. These data demonstrate that RSNA responses to muscle contraction and stretch are greater than LSNA responses. We suggest that activation of the muscle afferents induces the differential sympathetic outflow that is directed toward the kidney as opposed to the limbs. This differential outflow contributes to the distribution of cardiac output observed during exercise. We further suggest that as exercise proceeds, muscle metabolites produced in contracting muscle sensitize muscle afferents and enhance sympathetic drive to limbs and renal beds.
Collapse
Affiliation(s)
- Satoshi Koba
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033, USA
| | | | | | | |
Collapse
|
37
|
Kaur G, Janik J, Isaacson LG, Callahan P. Estrogen regulation of neurotrophin expression in sympathetic neurons and vascular targets. Brain Res 2007; 1139:6-14. [PMID: 17289002 DOI: 10.1016/j.brainres.2006.12.084] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2006] [Revised: 12/27/2006] [Accepted: 12/31/2006] [Indexed: 11/26/2022]
Abstract
We hypothesize that estrogen exerts a modulatory effect on sympathetic neurons to reduce neural cardiovascular tone and that these effects are modulated by nerve growth factor (NGF), a neurotrophin that regulates sympathetic neuron survival and maintenance. We examined the effects of estrogen on NGF and tyrosine hydroxylase (TH) protein content in specific vascular targets. Ovariectomized, adult Sprague-Dawley rats were implanted with placebo or 17beta-estradiol (release rate, 0.05 mg/day). Fourteen days later, NGF levels in the superior cervical ganglia (SCG) and its targets, the heart, external carotid artery, and the extracerebral blood vessels, as well as estrogen receptor alpha (ERalpha) content levels in the heart, were determined using semi-quantitative Western blot analysis. TH levels in the SCG and extracerebral blood vessels were determined by Western blotting and immunocytochemistry, respectively. Circulating levels of 17beta-estradiol and prolactin (PRL) were quantified by RIA. Estrogen replacement significantly decreased NGF protein in the SCG and its targets, the external carotid artery, heart and extracerebral blood vessels. TH protein associated with the extracerebral blood vessels was also significantly decreased, but ERalpha levels were significantly increased in the heart following estrogen replacement. These results indicate that estrogen reduces NGF protein content in sympathetic vascular targets, which may lead to decreased sympathetic innervations to these targets, and therefore reduced sympathetic regulation. In addition, the estrogen-induced increase in ERalpha levels in the heart, a target tissue of the SCG, suggests that estrogen may sensitize the heart to further estrogen modulation, and possibly increase vasodilation of the coronary vasculature.
Collapse
Affiliation(s)
- Gurjinder Kaur
- Center for Neuroscience and Behavior, Department of Zoology, Miami University, Oxford, OH 45056, USA.
| | | | | | | |
Collapse
|
38
|
Yamaleyeva LM, Gallagher PE, Vinsant S, Chappell MC. Discoordinate regulation of renal nitric oxide synthase isoforms in ovariectomized mRen2. Lewis rats. Am J Physiol Regul Integr Comp Physiol 2006; 292:R819-26. [PMID: 17023669 DOI: 10.1152/ajpregu.00389.2006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Estrogen depletion markedly exacerbates hypertension in female congenic mRen2. Lewis rats, a model of tissue renin overexpression. Because estrogen influences nitric oxide synthase (NOS) and NO may exert differential effects on blood pressure, the present study investigated the functional expression of NOS isoforms in the kidney of ovariectomized (OVX) mRen2. Lewis rats. OVX-mRen2. Lewis exhibited an increase in systolic blood pressure (SBP) of 171 +/- 5 vs. 141 +/- 7 mmHg (P < 0.01) for intact littermates. Renal cortical mRNA and protein levels for endothelial NOS (eNOS) were reduced 50-60% (P < 0.05) and negatively correlated with blood pressure. In contrast, cortical neuronal NOS (nNOS) mRNA and protein levels increased 100 to 300% (P < 0.05). In the OVX kidney, nNOS immunostaining was more evident in the macula densa, cortical tubules, and the medullary collecting ducts compared with the intact group. To determine whether the increase in renal nNOS expression constitutes a compensatory response to the reduction in renal eNOS, we treated both intact and OVX mRen2. Lewis rats with the selective nNOS inhibitor L-VNIO from 11 to 15 wk of age. The nNOS inhibitor reduced blood pressure in the OVX group (185 +/- 3 vs. 151 +/- 8 mmHg, P < 0.05), but pressure was not altered in the intact group (146 +/- 4 vs. 151 +/- 4 mmHg). In summary, exacerbation of blood pressure in the OVX mRen2. Lewis rats was associated with the discoordinate regulation of renal NOS isoforms. Estrogen sensitivity in this congenic strain may involve the influence of NO through the regulation of both eNOS and nNOS.
Collapse
Affiliation(s)
- Liliya M Yamaleyeva
- Hypertension and Vascular Disease Center, Wake Forest University Health Sciences, Medical Center Blvd., Winston-Salem, NC 27157-1095, USA
| | | | | | | |
Collapse
|
39
|
Koba S, Yoshida T, Hayashi N. Differential sympathetic outflow and vasoconstriction responses at kidney and skeletal muscles during fictive locomotion. Am J Physiol Heart Circ Physiol 2006; 290:H861-8. [PMID: 16143651 DOI: 10.1152/ajpheart.00640.2005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We compared sympathetic and circulatory responses between kidney and skeletal muscles during fictive locomotion evoked by electrical stimulation of the mesencephalic locomotor region (MLR) in decerebrate and paralyzed rats ( n = 8). Stimulation of the MLR for 30 s at 40-μA current intensity significantly increased arterial pressure (+38 ± 6 mmHg), triceps surae muscle blood flow (+17 ± 3%), and both renal and lumbar sympathetic nerve activities (RSNA +113 ± 16%, LSNA +31 ± 7%). The stimulation also significantly decreased renal cortical blood flow (−18 ± 6%) and both renal cortical and triceps surae muscle vascular conductances (RCVC −38 ± 5%, TSMVC −17 ± 3%). The sympathetic and vascular conductance changes were significantly dependent on current intensity for stimulation at 20, 30, and 40 μA. The changes in LSNA and TSMVC were significantly less than those in RSNA and RCVC, respectively, at all current intensities. At the early stage of stimulation (0–10 s), decreases in RCVC and TSMVC were significantly correlated with increases in RSNA and LSNA, respectively. These data demonstrate that fictive locomotion induces less vasoconstriction in skeletal muscles than in kidney because of less sympathetic activation. This suggests that a neural mechanism mediated by central command contributes to blood flow distribution by evoking differential sympathetic outflow during exercise.
Collapse
Affiliation(s)
- Satoshi Koba
- Graduate School of Engineering Science, Osaka Univesity, Toyonaka, Japan
| | | | | |
Collapse
|
40
|
Baylis C. Changes in renal hemodynamics and structure in the aging kidney; sexual dimorphism and the nitric oxide system. Exp Gerontol 2005; 40:271-8. [PMID: 15820607 PMCID: PMC2756822 DOI: 10.1016/j.exger.2005.01.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2004] [Revised: 01/10/2005] [Accepted: 01/13/2005] [Indexed: 10/25/2022]
Abstract
With advancing age the kidney shows both functional declines (falls in GFR) and development of structural damage. In most individuals this occurs slowly and does not lead to severe renal impairment unless additional insults are superimposed. There is a pronounced sexual dimorphism with females protected, due both to beneficial effects of the estrogens and damaging effects of androgens, some of which act directly on the glomerular mesangial cell to regulate growth and extracellular matrix production. Nitric oxide is a major factor in regulation of vascular tone and growth and becomes deficient with advancing age, as endothelial dysfunction develops. Although the abundance of the substrate, L-arginine, is well maintained during aging, there are increases in the concentration of circulating endogenous nitric oxide synthase (nNOS) inhibitors, which will contribute, to the endothelial dysfunction. There is a clear sexual dimorphism in the NO system, with pre-menopausal females producing more NO than men. Within the kidney, declines in the abundance and activity of the neuronal form of the nitric oxide synthase (nNOS) correlate with development of disease. In the male rat where injury and dysfunction occurs, nNOS abundance declines markedly, whereas in the protected female, renal nNOS abundance is maintained. Taken together, it is likely that age-dependent declines in NO generation contribute to age-dependent kidney damage.
Collapse
Affiliation(s)
- Chris Baylis
- University of Florida, P.O. Box 100274, Gainesville, FL 32667, USA.
| |
Collapse
|
41
|
Fadel PJ, Wang Z, Watanabe H, Arbique D, Vongpatanasin W, Thomas GD. Augmented sympathetic vasoconstriction in exercising forearms of postmenopausal women is reversed by oestrogen therapy. J Physiol 2004; 561:893-901. [PMID: 15498809 PMCID: PMC1665388 DOI: 10.1113/jphysiol.2004.073619] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Sympathetic vasoconstriction is normally attenuated in exercising muscles of young men and women. Recent evidence indicates that such modulation, termed functional sympatholysis, may be impaired in older men. Whether a similar impairment occurs in older women, and what role oestrogen deficiency might play in this impairment, are not known. Based on the strong positive correlation between circulating oestrogen levels and functional sympatholysis previously reported in female rats, we hypothesized that sympatholysis would be impaired in oestrogen-deficient postmenopausal women, and that this impairment would be reversed by oestrogen replacement. To test these hypotheses, we measured vasoconstrictor responses in the forearms of pre- and postmenopausal women using near infrared spectroscopy to detect decreases in muscle oxygenation in response to reflex activation of sympathetic nerves evoked by lower body negative pressure (LBNP). In eight premenopausal women, LBNP decreased muscle oxygenation by 20 +/- 1% in resting forearm, but only by 3 +/- 2% in exercising forearm (P < 0.05). In contrast, in eight postmenopausal women, LBNP decreased muscle oxygenation by 15 +/- 3% in resting forearm, and by 12 +/- 4% in exercising forearm (P > 0.05). After 1 month of transdermal oestradiol replacement in these women, the normal effect of exercise to blunt sympathetic vasoconstriction was restored (rest, -19 +/- 3%; exercise, -2 +/- 3%; P < 0.05). These data indicate that functional sympatholysis is impaired in oestrogen-deficient postmenopausal women. The effect of short-term unopposed oestrogen replacement to correct this impairment implicates a role for oestrogen in the sympathetic neural control of muscle haemodynamics during exercise.
Collapse
Affiliation(s)
- Paul J Fadel
- Hypertension Division, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8586, USA
| | | | | | | | | | | |
Collapse
|
42
|
Srilatha B, Adaikan PG. Estrogen and phytoestrogen predispose to erectile dysfunction: do ER-alpha and ER-beta in the cavernosum play a role? Urology 2004; 63:382-6. [PMID: 14972507 DOI: 10.1016/j.urology.2003.08.042] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2003] [Accepted: 08/14/2003] [Indexed: 11/17/2022]
Abstract
OBJECTIVES To investigate the functional changes in rabbit penile corpus cavernosum (CC) secondary to experimental hyperestrogenism and attempt to identify sites of immunoexpression for estrogen receptor subtypes alpha and beta (ER-alpha and ER-beta) in the CC. Although the role of testosterone in sexual function has been extensively studied in clinical settings and experimental animal models, the effect of hormonal modulation/imbalance arising from estrogenic excess has not been characterized. METHODS Eighteen New Zealand white male rabbits (2.5-3.0 kg) were divided into control and two treatment groups. The two treatment groups were given orally 0.1 mg of estradiol valerate (estradiol group) or phytoestrogen, daidzein (phytoestrogen group) daily for 12 weeks. Blood and tissue samples were collected for hormone levels and in vitro pharmacologic studies. CC samples from untreated rabbits (n = 4) were cryosectioned and incubated with appropriate mouse monoclonal antibody for identification of ER-alpha and ER-beta. RESULTS Through immunohistochemistry, color signals for nuclear ER-alpha and ER-beta receptors were localized within the CC. Chronic treatment with estradiol and phytoestrogen significantly reduced the systemic total testosterone levels. In organ bath experiments, relaxant responses to acetylcholine, nitroglycerin, and nitrergic transmission were significantly attenuated compared with the control response. With regard to the contractile effect, both types of estrogen treatments significantly potentiated norepinephrine-induced antierectile contraction of the CC. CONCLUSIONS These results indicate that estradiol treatment and chronic exposure of phytoestrogen may cause receptor-mediated pathophysiologic changes in erectile function, leading to erectile dysfunction.
Collapse
Affiliation(s)
- B Srilatha
- Department of Obstetrics and Gynecology, National University Hospital, National University of Singapore, Singapore
| | | |
Collapse
|
43
|
Fadel PJ, Keller DM, Watanabe H, Raven PB, Thomas GD. Noninvasive assessment of sympathetic vasoconstriction in human and rodent skeletal muscle using near-infrared spectroscopy and Doppler ultrasound. J Appl Physiol (1985) 2004; 96:1323-30. [PMID: 14657045 DOI: 10.1152/japplphysiol.01041.2003] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The precise role of the sympathetic nervous system in the regulation of skeletal muscle blood flow during exercise has been challenging to define in humans, partly because of the limited techniques available for measuring blood flow in active muscle. Recent studies using near-infrared (NIR) spectroscopy to measure changes in tissue oxygenation have provided an alternative method to evaluate vasomotor responses in exercising muscle, but this approach has not been fully validated. In this study, we tested the hypothesis that sympathetic activation would evoke parallel changes in tissue oxygenation and blood flow in resting and exercising muscle. We simultaneously measured tissue oxygenation with NIR spectroscopy and blood flow with Doppler ultrasound in skeletal muscle of conscious humans ( n = 13) and anesthetized rats ( n = 9). In resting forearm of humans, reflex activation of sympathetic nerves with the use of lower body negative pressure produced graded decreases in tissue oxygenation and blood flow that were highly correlated ( r = 0.80, P < 0.0001). Similarly, in resting hindlimb of rats, electrical stimulation of sympathetic nerves produced graded decreases in tissue oxygenation and blood flow velocity that were highly correlated ( r = 0.93, P < 0.0001). During rhythmic muscle contraction, the decreases in tissue oxygenation and blood flow evoked by sympathetic activation were significantly attenuated ( P < 0.05 vs. rest) but remained highly correlated in both humans ( r = 0.80, P < 0.006) and rats ( r = 0.92, P < 0.0001). These data indicate that, during steady-state metabolic conditions, changes in tissue oxygenation can be used to reliably assess sympathetic vasoconstriction in both resting and exercising skeletal muscle.
Collapse
Affiliation(s)
- Paul J Fadel
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-8586, USA
| | | | | | | | | |
Collapse
|
44
|
Wray DW, Fadel PJ, Smith ML, Raven P, Sander M. Inhibition of alpha-adrenergic vasoconstriction in exercising human thigh muscles. J Physiol 2003; 555:545-63. [PMID: 14694145 PMCID: PMC1664852 DOI: 10.1113/jphysiol.2003.054650] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The mechanisms underlying metabolic inhibition of sympathetic responses within exercising skeletal muscle remain incompletely understood. The aim of the present study was to test whether alpha(2)-adrenoreceptor-mediated vasoconstriction was more sensitive to metabolic inhibition than alpha(1)-vasoconstriction during dynamic knee-extensor exercise. We studied healthy volunteers using two protocols: (1) wide dose ranges of the alpha-adrenoreceptor agonists phenylephrine (PE, alpha(1) selective) and BHT-933 (BHT, alpha(2) selective) were administered intra-arterially at rest and during 27 W knee-extensor exercise (n= 13); (2) flow-adjusted doses of PE (0.3 microg kg(-1) l(-1)) and BHT (15 microg kg(-1) l(-1)) were administered at rest and during ramped exercise (7 W to 37 W; n= 10). Ultrasound Doppler and thermodilution techniques provided direct measurements of femoral blood flow (FBF). PE (0.8 microg kg(-1)) and BHT (40 microg kg(-1)) produced comparable maximal reductions in FBF at rest (-58 +/- 6 versus-64 +/- 4%). Despite increasing the doses, PE (1.6 microg kg(-1) min(-1)) and BHT (80 microg kg(-1) min(-1)) caused significantly smaller changes in FBF during 27 W exercise (-13 +/- 4 versus-3 +/- 5%). During ramped exercise, significant vasoconstriction at lower intensities (7 and 17 W) was seen following PE (-16 +/- 5 and -16 +/- 4%), but not BHT (-2 +/- 4 and -4 +/- 5%). At the highest intensity (37 W), FBF was not significantly changed by either drug. Collectively, these data demonstrate metabolic inhibition of alpha-adrenergic vasoconstriction in large postural muscles of healthy humans. Both alpha(1)- and alpha(2)-adrenoreceptor agonists produce comparable vasoconstriction in the resting leg, and dynamic thigh exercise attenuates alpha(1)- and alpha(2)-mediated vasoconstriction similarly. However, alpha(2)-mediated vasoconstriction appears more sensitive to metabolic inhibition, because alpha(2) is completely inhibited even at low workloads, whereas alpha(1) becomes progressively inhibited with increasing workloads.
Collapse
Affiliation(s)
- D Walter Wray
- Department of Integrative Physiology, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | | | | | | | | |
Collapse
|
45
|
Cohen RI, Hassell AM, Ye X, Marzouk K, Liu SF. Lipopolysaccharide down-regulates inducible nitric oxide synthase expression in swine heart in vivo. Biochem Biophys Res Commun 2003; 307:451-8. [PMID: 12893242 DOI: 10.1016/s0006-291x(03)01210-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Studies of the regulation of iNOS expression have provided many contradictory results. Comparing iNOS expression profile between cell types or organs of the same animal under the same experimental conditions may provide an explanation for these conflicting results. We have examined iNOS mRNA and protein expression in heart and liver of the same group of pigs. We found that there is a sharp difference in iNOS expression between heart and liver. The iNOS mRNA and protein was constitutively expressed in the heart at high level, but was not detectable in the liver of the same control animal. Lipopolysaccharide (LPS, 100 microg/kg, i.v.) caused a marked iNOS induction in the liver, but significantly down-regulated iNOS expression in the heart. This differential iNOS expression appears to be physiologically relevant, since LPS and the iNOS inhibitor, S-methylisothiourea, exerted different effects on hepatic and myocardial blood flow. Our data demonstrate a fundamental difference in iNOS regulation in the heart and liver of swine, and may explain the contradictory data on the regulation of iNOS expression.
Collapse
Affiliation(s)
- Rubin I Cohen
- Department of Medicine, Long Island Jewish Medical Center, The Albert Einstein College of Medicine, New Hyde Park, NY 11040-1433, USA
| | | | | | | | | |
Collapse
|