1
|
Özcan O, Kaçmaz M, Erdoğan FH, Balyen LSD, Oğuzman H, Kaya H, Arpacı A. Exploration of Leucine-Rich Alpha-2 Glycoprotein 1 (LRG1) and Its Association with Proangiogenic Mediators in Sickle Cell Disease: A Potential Player in the Pathogenesis of the Disease. Turk J Haematol 2025; 42:100-107. [PMID: 40231494 PMCID: PMC12099478 DOI: 10.4274/tjh.galenos.2025.2025.0441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 04/14/2025] [Indexed: 04/16/2025] Open
Abstract
Objective Leucine-rich alpha-2-glycoprotein 1 (LRG1) is a novel mediator involved in abnormal angiogenesis. We aimed to investigate circulating LRG1 levels and their relationship with proangiogenic mediators in sickle cell disease (SCD). Materials and Methods A total of 50 patients with SCD, with 25 in steady-state condition (SCD-SS) and 25 in periods of painful vaso-occlusive crisis (SCD-VOC), and 25 healthy controls were included in the study. Demographical and clinical data were collected from hospital records. Serum LRG1, vascular endothelial growth factor A (VEGFA), and hypoxia-inducible factor 1-alpha (HIF1A) levels were measured by enzyme-linked immunosorbent assay (ELISA), and C-reactive protein (CRP) was measured by the nephelometric method. Routine biochemical parameters were assessed using an autoanalyzer. Multinomial logistic regression was used to analyze ELISA parameters, and receiver operating characteristic (ROC) curves were constructed to determine the optimal cut-off point for HIF1A to predict VOCs in SCD patients. Results LRG1 and VEGFA levels were significantly higher in SCD patients than controls (p<0.001), with no difference between the SCD-SS and SCD-VOC groups. HIF1A, CRP, and lactate dehydrogenase levels differed significantly across all groups, being highest in the SCD-VOC group (p<0.001). After adjusting for age and sex, LRG1, HIF1A, and VEGFA remained elevated in the SCD groups. HIF1A correlated with CRP (r=0.351, p=0.024), but LRG1 showed no correlation with proangiogenic mediators in the SCD-VOC group. The area under the ROC curve was calculated as 0.694 (95% confidence interval: 0.542-0.845, p=0.021) and the optimal cut-off point was 494.5 pg/mL for HIF1A in predicting vaso-occlusive crises in patients with SCD. Conclusion Circulating LRG1 levels may reflect neutrophil activation and contribute to the cross-talk between proangiogenic mediators released in SCD.
Collapse
Affiliation(s)
- Oğuzhan Özcan
- Hatay Mustafa Kemal University, Tayfur Ata Sökmen Faculty of Medicine, Department of Biochemistry, Hatay, Türkiye
| | - Murat Kaçmaz
- University of Health Sciences Türkiye, Gazi Yaşargil Training and Research Hospital, Clinic of Hematology, Diyarbakır, Türkiye
| | - Fatma Hazal Erdoğan
- Hatay Mustafa Kemal University, Tayfur Ata Sökmen Faculty of Medicine, Department of Biochemistry, Hatay, Türkiye
| | - Lütfiye Seçil Deniz Balyen
- Hatay Mustafa Kemal University, Tayfur Ata Sökmen Faculty of Medicine, Department of Hematology, Hatay, Türkiye
| | - Hamdi Oğuzman
- Hatay Mustafa Kemal University, Tayfur Ata Sökmen Faculty of Medicine, Department of Biochemistry, Hatay, Türkiye
| | - Hasan Kaya
- Hatay Mustafa Kemal University, Tayfur Ata Sökmen Faculty of Medicine, Department of Hematology, Hatay, Türkiye
| | - Abdullah Arpacı
- Hatay Mustafa Kemal University, Tayfur Ata Sökmen Faculty of Medicine, Department of Biochemistry, Hatay, Türkiye
| |
Collapse
|
2
|
Corner TP, Salah E, Tumber A, Kaur S, Nakashima Y, Allen MD, Schnaubelt LI, Fiorini G, Brewitz L, Schofield CJ. Crystallographic and Selectivity Studies on the Approved HIF Prolyl Hydroxylase Inhibitors Desidustat and Enarodustat. ChemMedChem 2024; 19:e202400504. [PMID: 39291299 DOI: 10.1002/cmdc.202400504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 09/19/2024]
Abstract
Prolyl hydroxylase domain-containing proteins 1-3 (PHD1-3) are 2-oxoglutarate (2OG)-dependent oxygenases catalysing C-4 hydroxylation of prolyl residues in α-subunits of the heterodimeric transcription factor hypoxia-inducible factor (HIF), modifications that promote HIF-α degradation via the ubiquitin-proteasome pathway. Pharmacological inhibition of the PHDs induces HIF-α stabilisation, so promoting HIF target gene transcription. PHD inhibitors are used to treat anaemia caused by chronic kidney disease (CKD) due to their ability to stimulate erythropoietin (EPO) production. We report studies on the effects of the approved PHD inhibitors Desidustat and Enarodustat, and the clinical candidate TP0463518, on activities of a representative set of isolated recombinant human 2OG oxygenases. The three molecules manifest selectivity for PHD inhibition over that of the other 2OG oxygenases evaluated. We obtained crystal structures of Desidustat and Enarodustat in complex with the human 2OG oxygenase factor inhibiting hypoxia-inducible factor-α (FIH), which, together with modelling studies, inform on the binding modes of Desidustat and Enarodustat to active site Fe(II) in 2OG oxygenases, including PHD1-3. The results will help in the design of selective inhibitors of both the PHDs and other 2OG oxygenases, which are of medicinal interest due to their involvement inter alia in metabolic regulation, epigenetic signalling, DNA-damage repair, and agrochemical resistance.
Collapse
Affiliation(s)
- Thomas P Corner
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
- Present Address: Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, 06511, United States of America
| | - Eidarus Salah
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Anthony Tumber
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Samanpreet Kaur
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Yu Nakashima
- Institute of Natural Medicine, University of Toyama, 2630-Sugitani, Toyama, 930-0194, Japan
| | - Mark D Allen
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Lara I Schnaubelt
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Giorgia Fiorini
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Lennart Brewitz
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| |
Collapse
|
3
|
He J, Yu Y, Liu W, Li Z, Qi Z, Weng S, Guo C, He J. Molecular mechanism of infectious spleen and kidney necrosis virus in manipulating the hypoxia-inducible factor pathway to augment virus replication. Virulence 2024; 15:2349027. [PMID: 38680083 PMCID: PMC11085990 DOI: 10.1080/21505594.2024.2349027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/28/2024] [Indexed: 05/01/2024] Open
Abstract
Infectious spleen and kidney necrosis virus (ISKNV), a member of the genus Megalocytivirus in the family Iridoviridae, can infect over 50 fish species and cause significant economic losses in Asia. Our previous study showed that hypoxia triggers the hypoxia-inducible factor pathway (HIF-pathway), leading to increased replication of ISKNV through promoting the upregulation of viral hypoxic response genes like orf077r. This study delved into the molecular mechanism of how ISKNV manipulates the HIF-pathway to enhance its replication. In vitro and in vivo experiments confirmed that ISKNV infection activated the HIF-pathway, which in turn promoted ISKNV replication. These findings suggest that ISKNV actively manipulates the HIF-pathway. Co-immunoprecipitation experiments revealed that the ISKNV-encoded protein VP077R interacts with the Von Hippel-Lindau (VHL) protein at the HIF-binding region, competitively inhibiting the interaction of HIF-1α with VHL. This prevents HIF degradation and activates the HIF-pathway. Furthermore, VP077R interacts with factor-inhibiting HIF (FIH), recruiting FIH and S-phase kinase-associated protein 1 (Skp1) to form an FIH - VP077R - Skp1 complex. This complex promotes FIH protein degradation via ubiquitination, further activating the HIF-pathway. These findings indicated that ISKNV takes over the HIF-pathway by releasing two "brakes" on this pathway (VHL and FIH) via VP077R, facilitating virus replication. We speculate that hypoxia initiates a positive feedback loop between ISKNV VP077R and the HIF pathway, leading to the outbreak of ISKNV disease. This work offers valuable insights into the complex interactions between the environment, host, and virus.
Collapse
Affiliation(s)
- Jian He
- State Key Laboratory for Biocontrol/Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Yang Yu
- State Key Laboratory for Biocontrol/Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Wenhui Liu
- State Key Laboratory for Biocontrol/Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Zhimin Li
- State Key Laboratory for Biocontrol/Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Zhang Qi
- State Key Laboratory for Biocontrol/Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Shaoping Weng
- Guangdong Province Key Laboratory of Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Changjun Guo
- State Key Laboratory for Biocontrol/Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China
- Guangdong Province Key Laboratory of Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Jianguo He
- State Key Laboratory for Biocontrol/Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China
- Guangdong Province Key Laboratory of Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| |
Collapse
|
4
|
Nguyen TH, Limpens M, Bouhmidi S, Paprzycki L, Legrand A, Declèves AE, Heher P, Belayew A, Banerji CRS, Zammit PS, Tassin A. The DUX4-HIF1α Axis in Murine and Human Muscle Cells: A Link More Complex Than Expected. Int J Mol Sci 2024; 25:3327. [PMID: 38542301 PMCID: PMC10969790 DOI: 10.3390/ijms25063327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/20/2024] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
FacioScapuloHumeral muscular Dystrophy (FSHD) is one of the most prevalent inherited muscle disorders and is linked to the inappropriate expression of the DUX4 transcription factor in skeletal muscles. The deregulated molecular network causing FSHD muscle dysfunction and pathology is not well understood. It has been shown that the hypoxia response factor HIF1α is critically disturbed in FSHD and has a major role in DUX4-induced cell death. In this study, we further explored the relationship between DUX4 and HIF1α. We found that the DUX4 and HIF1α link differed according to the stage of myogenic differentiation and was conserved between human and mouse muscle. Furthermore, we found that HIF1α knockdown in a mouse model of DUX4 local expression exacerbated DUX4-mediated muscle fibrosis. Our data indicate that the suggested role of HIF1α in DUX4 toxicity is complex and that targeting HIF1α might be challenging in the context of FSHD therapeutic approaches.
Collapse
Affiliation(s)
- Thuy-Hang Nguyen
- Laboratory of Respiratory Physiology, Pathophysiology and Rehabilitation, Research Institute for Health Sciences and Technology, University of Mons, 7000 Mons, Belgium
| | - Maelle Limpens
- Laboratory of Respiratory Physiology, Pathophysiology and Rehabilitation, Research Institute for Health Sciences and Technology, University of Mons, 7000 Mons, Belgium
| | - Sihame Bouhmidi
- Laboratory of Respiratory Physiology, Pathophysiology and Rehabilitation, Research Institute for Health Sciences and Technology, University of Mons, 7000 Mons, Belgium
| | - Lise Paprzycki
- Laboratory of Respiratory Physiology, Pathophysiology and Rehabilitation, Research Institute for Health Sciences and Technology, University of Mons, 7000 Mons, Belgium
| | - Alexandre Legrand
- Laboratory of Respiratory Physiology, Pathophysiology and Rehabilitation, Research Institute for Health Sciences and Technology, University of Mons, 7000 Mons, Belgium
| | - Anne-Emilie Declèves
- Department of Metabolic and Molecular Biochemistry, Research Institute for Health Sciences and Technology, University of Mons, 7000 Mons, Belgium
| | - Philipp Heher
- Randall Centre for Cell and Molecular Biophysics, King’s College London, Guy’s Campus, London SE1 1UL, UK
| | - Alexandra Belayew
- Laboratory of Respiratory Physiology, Pathophysiology and Rehabilitation, Research Institute for Health Sciences and Technology, University of Mons, 7000 Mons, Belgium
| | - Christopher R. S. Banerji
- Randall Centre for Cell and Molecular Biophysics, King’s College London, Guy’s Campus, London SE1 1UL, UK
- The Alan Turing Institute, The British Library, London NW1 2DB, UK
| | - Peter S. Zammit
- Randall Centre for Cell and Molecular Biophysics, King’s College London, Guy’s Campus, London SE1 1UL, UK
| | - Alexandra Tassin
- Laboratory of Respiratory Physiology, Pathophysiology and Rehabilitation, Research Institute for Health Sciences and Technology, University of Mons, 7000 Mons, Belgium
| |
Collapse
|
5
|
Li W, Zhou C, Yu L, Hou Z, Liu H, Kong L, Xu Y, He J, Lan J, Ou Q, Fang Y, Lu Z, Wu X, Pan Z, Peng J, Lin J. Tumor-derived lactate promotes resistance to bevacizumab treatment by facilitating autophagy enhancer protein RUBCNL expression through histone H3 lysine 18 lactylation (H3K18la) in colorectal cancer. Autophagy 2024; 20:114-130. [PMID: 37615625 PMCID: PMC10761097 DOI: 10.1080/15548627.2023.2249762] [Citation(s) in RCA: 123] [Impact Index Per Article: 123.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 08/10/2023] [Accepted: 08/13/2023] [Indexed: 08/25/2023] Open
Abstract
Bevacizumab plays an important role in the first and second line treatment for metastatic colorectal cancer (CRC). And induction of hypoxia and the tumors response to it plays an important role in determining the efficacy of antiangiogenic therapy while the connection between them remains unclear. Here, we found that lactate accumulated in the tumor environment of CRC and acted as substrates for histone lactylation, and this process was further induced by cellular enhanced glycolysis in hypoxia. We determined that CRC patients resistant to bevacizumab treatment presented with elevated levels of histone lactylation and inhibition of histone lactylation efficiently suppressed CRC tumorigenesis, progression and survival in hypoxia. Histone lactylation promoted the transcription of RUBCNL/Pacer, facilitating autophagosome maturation through interacting with BECN1 (beclin 1) and mediating the recruitment and function of the class III phosphatidylinositol 3-kinase complex, which had a crucial role in hypoxic cancer cells proliferation and survival. Moreover, combining inhibition of histone lactylation and macroautophagy/autophagy with bevacizumab treatment demonstrated remarkable treatment efficacy in bevacizumab-resistance patients-derived pre-clinical models. These findings delivered a new exploration and important supplement of metabolic reprogramming-epigenetic regulation, and provided a new strategy for improving clinical efficacy of bevacizumab in CRC by inhibition of histone lactylation.Abbreviations: 2-DG: 2-deoxy-D-glucose; BECN1: beclin 1; CQ: chloroquine; CRC: colorectal cancer; DMOG: dimethyloxalylglycine; H3K18la: histone H3 lysine 18 lactylation; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; Nala: sodium lactate; PDO: patient-derived orgnoid; PDX: patient-derived xenograft; RUBCNL/Pacer: rubicon like autophagy enhancer; SQSTM1/p62: sequestosome 1.
Collapse
Affiliation(s)
- Weihao Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Chi Zhou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Long Yu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Zhenlin Hou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Huashan Liu
- Department of Colorectal Surgery and Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lingheng Kong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yanbo Xu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Jiahua He
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Jin Lan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Qingjian Ou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yujing Fang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Zhenhai Lu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Xiaojun Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Zhizhong Pan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Jianhong Peng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Junzhong Lin
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| |
Collapse
|
6
|
Wang W, Tayier B, Guan L, Yan F, Mu Y. Optimization of the cotransfection of SERCA2a and Cx43 genes for myocardial infarction complications. Life Sci 2023; 331:122067. [PMID: 37659592 DOI: 10.1016/j.lfs.2023.122067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/27/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
As our previous study showed, the therapeutic effect of two genes (SERCA2a and Cx43) on heart failure after myocardial infarction (MI) was greater than that of single gene (SERCA2a or Cx43) therapy for bone marrow stem cell (BMSC) transplantation. Based on previous research, the aim of this study was to investigate the optimal ratio of codelivery of SERCA2a and Cx43 genes for MI therapy after biotinylated microbubble (BMB) transplantation via ultrasonic-targeted microbubble destruction (UTMD). Forty rats underwent left anterior descending (LAD) ligation and BMSC injection into the infarct and border zones. Four weeks later, the genes SERCA2a and Cx43 were codelivered at different ratios (1:1, 1:2 and 2:1) into the infarcted heart via UTMD. Cardiac mechanoelectrical function was determined at 4 wks after gene delivery, and the hearts of the rats were harvested for measurement of MI size and detection of SERCA2a and Cx43 expression. Q-PCR analysis of the expression of Nkx2.5 and GATA4 in the myocardial infarct zone and measurement of neovascularization in infarcted hearts. After comparing the therapeutic effects of different cogene ratios, the SERCA2a/Cx43-1:2 group showed remarkable cardiac electrical stability and strengthened the role of anti-arrhythmia. In conclusion, the optimum ratio of the SERCA2a/Cx43 gene is 1:2, which is advantageous for maintaining cardiac electrophysiological stability.
Collapse
Affiliation(s)
- Wei Wang
- Department of Echocardiography, Xinjiang Medical University Affiliated First Hospital, Urumqi, China; Xinjiang Key Laboratory of Ultrasound Medicine, Urumqi, China; Department of Ultrasound, Urumqi Friendship Hospital, Urumqi, China
| | - Baihetiya Tayier
- Department of Echocardiography, Xinjiang Medical University Affiliated First Hospital, Urumqi, China; Xinjiang Key Laboratory of Ultrasound Medicine, Urumqi, China
| | - Lina Guan
- Department of Echocardiography, Xinjiang Medical University Affiliated First Hospital, Urumqi, China; Xinjiang Key Laboratory of Ultrasound Medicine, Urumqi, China
| | - Fei Yan
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Yuming Mu
- Department of Echocardiography, Xinjiang Medical University Affiliated First Hospital, Urumqi, China; Xinjiang Key Laboratory of Ultrasound Medicine, Urumqi, China.
| |
Collapse
|
7
|
Barnes EA, Knutsen C, Kindt A, Che X, Ying L, Adams E, Gonzalez E, Oak P, Hilgendorff A, Alvira CM, Cornfield DN. Hypoxia-Inducible Factor-1α in SM22α-Expressing Cells Modulates Alveolarization. Am J Respir Cell Mol Biol 2023; 69:470-483. [PMID: 37290124 PMCID: PMC10557922 DOI: 10.1165/rcmb.2023-0045oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/08/2023] [Indexed: 06/10/2023] Open
Abstract
Worldwide, the incidence of both preterm births and chronic lung disease of infancy, or bronchopulmonary dysplasia, remains high. Infants with bronchopulmonary dysplasia have larger and fewer alveoli, a lung pathology that can persist into adulthood. Although recent data point to a role for hypoxia-inducible factor-1α (HIF-1α) in mediating pulmonary angiogenesis and alveolarization, the cell-specific role of HIF-1α remains incompletely understood. Thus, we hypothesized that HIF-1α, in a distinct subset of mesenchymal cells, mediates postnatal alveolarization. To test the hypothesis, we generated mice with a cell-specific deletion of HIF-1α by crossing SM22α promoter-driven Cre mice with HIF-1αflox/flox mice (SM22α-HIF-1α-/-), determined SM-22α-expressing cell identity using single-cell RNA sequencing, and interrogated samples from preterm infants. Deletion of HIF-1α in SM22α-expressing cells had no effect on lung structure at day 3 of life. However, at 8 days, there were fewer and larger alveoli, a difference that persisted into adulthood. Microvascular density, elastin organization, and peripheral branching of the lung vasculature were decreased in SM22α-HIF-1α-/- mice, compared with control mice. Single-cell RNA sequencing demonstrated that three mesenchymal cell subtypes express SM22α: myofibroblasts, airway smooth muscle cells, and vascular smooth muscle cells. Pulmonary vascular smooth muscle cells from SM22α-HIF-1α-/- mice had decreased angiopoietin-2 expression and, in coculture experiments, a diminished capacity to promote angiogenesis that was rescued by angiopoietin-2. Angiopoietin-2 expression in tracheal aspirates of preterm infants was inversely correlated with overall mechanical ventilation time, a marker of disease severity. We conclude that SM22α-specific HIF-1α expression drives peripheral angiogenesis and alveolarization in the lung, perhaps by promoting angiopoietin-2 expression.
Collapse
Affiliation(s)
- Elizabeth A. Barnes
- Division of Pulmonary, Asthma, and Sleep Medicine, Center for Excellence in Pulmonary Biology, and
| | - Carsten Knutsen
- Division of Pulmonary, Asthma, and Sleep Medicine, Center for Excellence in Pulmonary Biology, and
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - Alida Kindt
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands; and
| | - Xibing Che
- Division of Pulmonary, Asthma, and Sleep Medicine, Center for Excellence in Pulmonary Biology, and
| | - Lihua Ying
- Division of Pulmonary, Asthma, and Sleep Medicine, Center for Excellence in Pulmonary Biology, and
| | - Eloa Adams
- Division of Pulmonary, Asthma, and Sleep Medicine, Center for Excellence in Pulmonary Biology, and
| | - Erika Gonzalez
- Comprehensive Pneumology Center, Ludwig Maximilian University of Munich, Munich, Germany
| | - Prajakta Oak
- Comprehensive Pneumology Center, Ludwig Maximilian University of Munich, Munich, Germany
| | - Anne Hilgendorff
- Comprehensive Pneumology Center, Ludwig Maximilian University of Munich, Munich, Germany
| | - Cristina M. Alvira
- Division of Pulmonary, Asthma, and Sleep Medicine, Center for Excellence in Pulmonary Biology, and
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - David N. Cornfield
- Division of Pulmonary, Asthma, and Sleep Medicine, Center for Excellence in Pulmonary Biology, and
| |
Collapse
|
8
|
Hu Y, Zhao Y, Li P, Lu H, Li H, Ge J. Hypoxia and panvascular diseases: exploring the role of hypoxia-inducible factors in vascular smooth muscle cells under panvascular pathologies. Sci Bull (Beijing) 2023; 68:1954-1974. [PMID: 37541793 DOI: 10.1016/j.scib.2023.07.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/13/2023] [Accepted: 07/10/2023] [Indexed: 08/06/2023]
Abstract
As an emerging discipline, panvascular diseases are a set of vascular diseases with atherosclerosis as the common pathogenic hallmark, which mostly affect vital organs like the heart, brain, kidney, and limbs. As the major responser to the most common stressor in the vasculature (hypoxia)-hypoxia-inducible factors (HIFs), and the primary regulator of pressure and oxygen delivery in the vasculature-vascular smooth muscle cells (VSMCs), their own multifaceted nature and their interactions with each other are fascinating. Abnormally active VSMCs (e.g., atherosclerosis, pulmonary hypertension) or abnormally dysfunctional VSMCs (e.g., aneurysms, vascular calcification) are associated with HIFs. These widespread systemic diseases also reflect the interdisciplinary nature of panvascular medicine. Moreover, given the comparable proliferative characteristics exhibited by VSMCs and cancer cells, and the delicate equilibrium between angiogenesis and cancer progression, there is a pressing need for more accurate modulation targets or combination approaches to bolster the effectiveness of HIF targeting therapies. Based on the aforementioned content, this review primarily focused on the significance of integrating the overall and local perspectives, as well as temporal and spatial balance, in the context of the HIF signaling pathway in VSMC-related panvascular diseases. Furthermore, the review discussed the implications of HIF-targeting drugs on panvascular disorders, while considering the trade-offs involved.
Collapse
Affiliation(s)
- Yiqing Hu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Yongchao Zhao
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China; Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Peng Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Hao Lu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China; Shanghai Clinical Research Center for Interventional Medicine, Shanghai 200032, China.
| | - Hua Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China.
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China; Shanghai Clinical Research Center for Interventional Medicine, Shanghai 200032, China; Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai 200032, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai 200032, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China.
| |
Collapse
|
9
|
Adzigbli L, Sokolov EP, Wimmers K, Sokolova IM, Ponsuksili S. Effects of hypoxia and reoxygenation on mitochondrial functions and transcriptional profiles of isolated brain and muscle porcine cells. Sci Rep 2022; 12:19881. [PMID: 36400902 PMCID: PMC9674649 DOI: 10.1038/s41598-022-24386-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Oxygen fluctuations might occur in mammalian tissues under physiological (e.g. at high altitudes) or pathological (e.g. ischemia-reperfusion) conditions. Mitochondria are the key target and potential amplifiers of hypoxia-reoxygenation (H-R) stress. Understanding the mitochondrial responses to H-R stress is important for identifying adaptive mechanisms and potential therapeutic solutions for pathologies associated with oxygen fluctuations. We explored metabolic response to H-R stress in two tissue types (muscle and brain) with different degrees of hypoxia tolerance in a domestic pig Sus scrofa focusing on the cellular responses independent of the systemic regulatory mechanisms. Isolated cells from the skeletal muscle (masseter) and brain (thalamus) were exposed to acute short-term (15 min) hypoxia followed by reoxygenation. The mitochondrial oxygen consumption, reactive oxygen species (ROS) production rates and transcriptional profiles of hypoxia-responsive mRNA and miRNA were determined. Mitochondria of the porcine brain cells showed a decrease in the resting respiration and ATP synthesis capacity whereas the mitochondria from the muscle cells showed robust respiration and less susceptibility to H-R stress. ROS production was not affected by the short-term H-R stress in the brain or muscle cells. Transcriptionally, prolyl hydroxylase domain protein EGLN3 was upregulated during hypoxia and suppressed during reoxygenation in porcine muscle cells. The decline in EGLN3 mRNA during reoxygenation was accompanied by an upregulation of hypoxia-inducible factor subunit α (HIF1A) transcripts in the muscle cells. However, in the brain cells, HIF1A mRNA levels were suppressed during reoxygenation. Other functionally important transcripts and miRNAs involved in antioxidant response, apoptosis, inflammation, and substrate oxidation were also differentially expressed between the muscle and brain cells. Suppression of miRNA levels during acute intermittent hypoxia was stronger in the brain cells affecting ~ 55% of all studied miRNA transcripts than in the muscle cells (~ 25% of miRNA) signifying transcriptional derepression of the respective mRNA targets. Our study provides insights into the potential molecular and physiological mechanisms contributing to different hypoxia sensitivity of the studied tissues and can serve as a starting point to better understand the biological processes associated with hypoxia stress, e.g. during ischemia and reperfusion.
Collapse
Affiliation(s)
- Linda Adzigbli
- Research Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Dummerstorf, Germany
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany
| | - Eugene P Sokolov
- Leibniz Institute for Baltic Sea Research, Leibniz Science Campus Phosphorus Research, Warnemünde, Rostock, Germany
| | - Klaus Wimmers
- Research Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Dummerstorf, Germany
| | - Inna M Sokolova
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany.
- Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Rostock, Germany.
| | - Siriluck Ponsuksili
- Research Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Dummerstorf, Germany.
| |
Collapse
|
10
|
Qin L, Cui J, Li J. Sympathetic Nerve Activity and Blood Pressure Response to Exercise in Peripheral Artery Disease: From Molecular Mechanisms, Human Studies, to Intervention Strategy Development. Int J Mol Sci 2022; 23:ijms231810622. [PMID: 36142521 PMCID: PMC9505475 DOI: 10.3390/ijms231810622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Sympathetic nerve activity (SNA) regulates the contraction of vascular smooth muscle and leads to a change in arterial blood pressure (BP). It was observed that SNA, vascular contractility, and BP are heightened in patients with peripheral artery disease (PAD) during exercise. The exercise pressor reflex (EPR), a neural mechanism responsible for BP response to activation of muscle afferent nerve, is a determinant of the exaggerated exercise-induced BP rise in PAD. Based on recent results obtained from a series of studies in PAD patients and a rat model of PAD, this review will shed light on SNA-driven BP response and the underlying mechanisms by which receptors and molecular mediators in muscle afferent nerves mediate the abnormalities in autonomic activities of PAD. Intervention strategies, particularly non-pharmacological strategies, improving the deleterious exercise-induced SNA and BP in PAD, and enhancing tolerance and performance during exercise will also be discussed.
Collapse
|
11
|
Fets L, Bevan N, Nunes PM, Campos S, Dos Santos MS, Sherriff E, MacRae JI, House D, Anastasiou D. MOG analogues to explore the MCT2 pharmacophore, α-ketoglutarate biology and cellular effects of N-oxalylglycine. Commun Biol 2022; 5:877. [PMID: 36028752 PMCID: PMC9418262 DOI: 10.1038/s42003-022-03805-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 08/05/2022] [Indexed: 11/09/2022] Open
Abstract
α-ketoglutarate (αKG) is a central metabolic node with a broad influence on cellular physiology. The αKG analogue N-oxalylglycine (NOG) and its membrane-permeable pro-drug derivative dimethyl-oxalylglycine (DMOG) have been extensively used as tools to study prolyl hydroxylases (PHDs) and other αKG-dependent processes. In cell culture media, DMOG is rapidly converted to MOG, which enters cells through monocarboxylate transporter MCT2, leading to intracellular NOG concentrations that are sufficiently high to inhibit glutaminolysis enzymes and cause cytotoxicity. Therefore, the degree of (D)MOG instability together with MCT2 expression levels determine the intracellular targets NOG engages with and, ultimately, its effects on cell viability. Here we designed and characterised a series of MOG analogues with the aims of improving compound stability and exploring the functional requirements for interaction with MCT2, a relatively understudied member of the SLC16 family. We report MOG analogues that maintain ability to enter cells via MCT2, and identify compounds that do not inhibit glutaminolysis or cause cytotoxicity but can still inhibit PHDs. We use these analogues to show that, under our experimental conditions, glutaminolysis-induced activation of mTORC1 can be uncoupled from PHD activity. Therefore, these new compounds can help deconvolute cellular effects that result from the polypharmacological action of NOG.
Collapse
Affiliation(s)
- Louise Fets
- Cancer Metabolism Laboratory, The Francis Crick Institute, London, UK
- Drug Transport and Tumour Metabolism Lab, MRC London Institute of Medical Sciences, London, UK
| | - Natalie Bevan
- Cancer Metabolism Laboratory, The Francis Crick Institute, London, UK
| | - Patrícia M Nunes
- Cancer Metabolism Laboratory, The Francis Crick Institute, London, UK
| | | | | | | | - James I MacRae
- Metabolomics Science Technology Platform, The Francis Crick Institute, London, UK
| | | | | |
Collapse
|
12
|
Ito R, Barnes EA, Che X, Alvira CM, Cornfield DN. SM22α cell-specific HIF stabilization mitigates hyperoxia-induced neonatal lung injury. Am J Physiol Lung Cell Mol Physiol 2022; 323:L129-L141. [PMID: 35762602 PMCID: PMC9342196 DOI: 10.1152/ajplung.00110.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Though survival rates for preterm infants are improving, the incidence of chronic lung disease of infancy, or bronchopulmonary dysplasia (BPD), remains high. Histologically, BPD is characterized by larger and fewer alveoli. Hypoxia-inducible factors (HIFs) may be protective in the context of hyperoxia-induced lung injury, but the cell-specific effects of HIF expression in neonatal lung injury remain unknown. Thus, we sought to determine whether HIF stabilization in SM22α-expressing cells can limit hyperoxia-induced neonatal lung injury. We generated SM22α-specific HIF-1α-stabilized mice (SM22α-PHD1/2-/- mice) by cross-breeding SM22α-promotor-driven Cre recombinase mice with prolyl hydroxylase PHD1flox/flox and PHD2flox/flox mice. Neonatal mice were randomized to 21% O2 (normoxia) or 80% O2 (hyperoxia) exposure for 14 days. For the hyperoxia recovery studies, neonatal mice were recovered from normoxia for an additional 10 wk. SM22α-specific HIF-1α stabilization mitigated hyperoxia-induced lung injury and preserved microvessel density compared with control mice for both neonates and adults. In SM22α-PHD1/2-/- mice, pulmonary artery endothelial cells (PAECs) were more proliferative and pulmonary arteries expressed more collagen IV compared with control mice, even under hyperoxic conditions. Angiopoietin-2 (Ang2) mRNA expression in pulmonary artery smooth muscle cells (PASMC) was greater in SM22α-PHD1/2-/- compared with control mice in both normoxia and hyperoxia. Pulmonary endothelial cells (PECs) cocultured with PASMC isolated from SM22α-PHD1/2-/- mice formed more tubes and branches with greater tube length compared with PEC cocultured with PASMC isolated from SM22α-PHD1/2+/+ mice. Addition of Ang2 recombinant protein further augmented tube formation for both PHD1/2+/+ and PHD1/2-/- PASMC. Cell-specific deletion of PHD1 and 2 selectively increases HIF-1α expression in SM22α-expressing cells and protects neonatal lung development despite prolonged hyperoxia exposure. HIF stabilization in SM22α-expressing cells preserved endothelial cell proliferation, microvascular density, increased angiopoietin-2 expression, and lung structure, suggesting a role for cell-specific HIF-1α stabilization to prevent neonatal lung injury.
Collapse
Affiliation(s)
- Reiji Ito
- Department of Pediatrics, Center for Excellence in Pulmonary Biology, Stanford University School of Medicine, Stanford, California
| | - Elizabeth A. Barnes
- Department of Pediatrics, Center for Excellence in Pulmonary Biology, Stanford University School of Medicine, Stanford, California
| | - Xibing Che
- Department of Pediatrics, Center for Excellence in Pulmonary Biology, Stanford University School of Medicine, Stanford, California
| | - Cristina M. Alvira
- Department of Pediatrics, Center for Excellence in Pulmonary Biology, Stanford University School of Medicine, Stanford, California
| | - David N. Cornfield
- Department of Pediatrics, Center for Excellence in Pulmonary Biology, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
13
|
Wang Z, Yang H, Lv H, Huang C, Qian J. Vitamin D Receptor-Dependent Protective Effect of Moderate Hypoxia in a Mouse Colitis Model. Front Physiol 2022; 13:876890. [PMID: 35711312 PMCID: PMC9195869 DOI: 10.3389/fphys.2022.876890] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/06/2022] [Indexed: 12/04/2022] Open
Abstract
Although hypoxia is important for maintaining the intestinal barrier, its effect on the barrier during acute colitis and the underlying mechanisms are not fully understood. To explore the influence of hypoxia in dextran sulfate sodium (DSS)-induced colitis mice and the role of hypoxia-inducible factor (HIF) and vitamin D receptor (VDR) in the process. Colitis mice were subjected to hypoxia to detect intestinal barrier function changes. And the mechanisms were explored in vitro. First, compared with colitis mice without hypoxia stimulation, those with hypoxia stimulation showed significantly decreased pathological damage and improved permeability of the intestinal barrier. The expression of tight junction proteins (occludin, ZO-1), HIF-1α as well as VDR was up-regulated in colitis mice with hypoxia stimulation. However, in VDR gene knockout (KO)colitis mice, hypoxia treatment showed no protective effect, suggesting the VDR dependency of this effect. Similarly although hypoxia stimulation could enhance the single-layer epithelial transmembrane electrical resistance in DLD-1 and NCM460 cells, these effects disappeared in VDR-knockdown cells. Furthermore, over-expression of HIF-1α in DLD-1 and NCM460 increased the expression of VDR, whereas HIF-1α-knockdown reduced the VDR expression directly. Chromatin immunoprecipitation and luciferase assays confirmed that HIF-1α can bind to the promoter region of the VDR gene under hypoxia. Finally, compared with their wild-type siblings, VDR-KO mice showed reduced abundance of anaerobic bacteria and SCFA-producing bacteria. Hypoxia was protective against DSS-induced colitis, and VDR is instrumental in it. Furthermore, HIF-1α-VDR mediates the effect of hypoxia on the barrier function. Moreover, intestinal flora may be an important link between hypoxia and VDR.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Gastroenterology, PUMC Hospital, CAMS and PUMC, Beijing, China
| | - Hong Yang
- Department of Gastroenterology, PUMC Hospital, CAMS and PUMC, Beijing, China
| | - Hong Lv
- Department of Gastroenterology, PUMC Hospital, CAMS and PUMC, Beijing, China
| | - Changzhi Huang
- State Key Laboratory of Molecular Oncology, Cancer Hospital, CAMS and PUMC, Beijing, China
| | - Jiaming Qian
- Department of Gastroenterology, PUMC Hospital, CAMS and PUMC, Beijing, China
| |
Collapse
|
14
|
Wang W, Tayier B, Guan L, Yan F, Mu Y. Pre-transplantation of Bone Marrow Mesenchymal Stem Cells Amplifies the Therapeutic Effect of Ultrasound-Targeted Microbubble Destruction-Mediated Localized Combined Gene Therapy in Post-Myocardial Infarction Heart Failure Rats. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:830-845. [PMID: 35246339 DOI: 10.1016/j.ultrasmedbio.2022.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Although stem cell transplantation and single-gene therapy have been intensively discussed separately as treatments for myocardial infarction (MI) hearts and have exhibited ideal therapeutic efficiency in animal models, clinical trials turned out to be disappointing. Here, we deliver sarcoplasmic reticulum Ca2+-ATPase 2a (SERCA2a) and connexin 43 (Cx43) genes simultaneously via an ultrasound-targeted microbubble destruction (UTMD) approach to chronic MI hearts that have been pre-treated with bone marrow mesenchymal stem cells (BMSCs) to amplify cardiac repair. First, biotinylated microbubbles (BMBs) were fabricated, and biotinylated recombinant adenoviruses carrying the SERCA2a or Cx43 gene were conjugated to the surface of self-assembled BMBs to form SERCA2a-BMBs, Cx43-BMBs or dual gene-loaded BMBs. Then, the general characteristics of these bubbles, including particle size, concentration, contrast signal and gene loading capacity, were examined. Second, a rat myocardial infarction model was created by ligating the left anterior descending coronary artery and injecting BMSCs into the infarct and border zones. Four weeks later, co-delivery of SERCA2a and Cx43 genes to the infarcted heart were delivered together to the infarcted heart using the UTMD approach. Cardiac mechano-electrical function was determined 4 wk after gene transfection, and the infarcted hearts were collected for myocardial infarct size measurement and detection of expression of SERCA2a, Cx43 and cardiac-specific markers. Finally, to validate the role of BMSC transplantation, MI rats transplanted or not with BMSCs were transfected with SERCA2a and Cx43, and the cardiac mechano-electrical function of these two groups of rats was recorded and compared. General characteristics of the self-assembled gene-loaded BMBs were qualified, and the gene loading rate was satisfactory. The self-assembled gene-loaded BMBs were in microscale and exhibit satisfactory dual-gene loading capacity. High transfection efficiency was achieved under ultrasound irradiation in vitro. In addition, rats in which SERCA2a and Cx43 were overexpressed simultaneously had the best contractile function and electrical stability among all experimental groups. Immunofluorescence assay revealed that the levels of SERCA2a and/or Cx43 proteins were significantly elevated, especially in the border zone. Moreover, compared with rats that did not receive BMSCs, rats pre-treated with BMSCs have better mechano-electrical function after transfection with SERCA2a and Cx43. Collectively, we report a promising cardiac repair strategy for post-MI hearts that exploits the providential advantages of stem cell therapy and UTMD-mediated localized co-delivery of specific genes.
Collapse
Affiliation(s)
- Wei Wang
- Department of Echocardiography, Xinjiang Medical University First Affiliated Hospital, Urumqi, China; Xinjiang Key Laboratory of Ultrasound Medicine, Urumqi, China
| | - Baihetiya Tayier
- Department of Echocardiography, Xinjiang Medical University First Affiliated Hospital, Urumqi, China; Xinjiang Key Laboratory of Ultrasound Medicine, Urumqi, China
| | - Lina Guan
- Department of Echocardiography, Xinjiang Medical University First Affiliated Hospital, Urumqi, China; Xinjiang Key Laboratory of Ultrasound Medicine, Urumqi, China
| | - Fei Yan
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yuming Mu
- Department of Echocardiography, Xinjiang Medical University First Affiliated Hospital, Urumqi, China; Xinjiang Key Laboratory of Ultrasound Medicine, Urumqi, China.
| |
Collapse
|
15
|
Garcia JP, Avila FR, Torres RA, Maita KC, Eldaly AS, Rinker BD, Zubair AC, Forte AJ, Sarabia-Estrada R. Hypoxia-preconditioning of human adipose-derived stem cells enhances cellular proliferation and angiogenesis: A systematic review. J Clin Transl Res 2022; 8:61-70. [PMID: 35187291 PMCID: PMC8848748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Human adipose-derived stem cells (hADSCs) have gained attention lately because of their ease of harvesting and ability to be substantially multiplied in laboratory cultures. Stem cells are usually cultured under atmospheric conditions; however, preconditioning stem cells under hypoxic conditions seems beneficial. AIM This systematic review aims to investigate the effect of hypoxia preconditioning and its impact on the proliferation and angiogenic capacity of the hADSCs. METHODS We performed a systematic review by searching PubMed, Scopus, Embase, and Google Scholar databases from all years through March 22, 2021, following Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Medical Subject Headings terms "adipose-derived stem cell," "Hypoxia," "cell proliferation," and "angiogenesis" guided our search. Only articles written in English using experimental models comparing a preconditioned group against a control group of hADSCs with data on proliferation and angiogenic capacity were included. RESULTS Our search yielded a total of 321 articles. 11 articles met our inclusion criteria and were ultimately included in this review. Two studies induced hypoxia using hypoxia-inducible factor-1 alpha stabilizing agents, while nine reached hypoxia by changing oxygen tension conditions around the cells. Four articles conducted in-vivo studies to correlate their in-vitro findings, which proved to be consistent. Although 1 article indicated cell proliferation inhibition with hypoxia preconditioning, the remaining 10 found enhanced proliferation in preconditioned groups compared to controls. All articles showed an enhanced angiogenic capacity of hADSCs after hypoxia preconditioning. CONCLUSION In this review, we found evidence to support hypoxia preconditioning of hADSCs before implantation. Benefits include enhanced cell proliferation with a faster population doubling rate and increased secretion of multiple angiogenic growth factors, enhancing angiogenesis capacity. RELEVANCE FOR PATIENTS Although regenerative therapy is a promising field of study and treatment in medicine, much is still unknown. The potential for angiogenic therapeutics with stem cells is high, but more so, if we discover ways to enhance their natural angiogenic properties. Procedures and pathologies alike require the assistance of angiogenic treatments to improve outcome, such is the case with skin grafts, muscle flaps, skin flaps, or myocardial infarction to mention a few. Enhanced angiogenic properties of stem cells may pave the way for better outcomes and results for patients.
Collapse
Affiliation(s)
- John P. Garcia
- 1Division of Plastic Surgery, Mayo Clinic, Jacksonville, Florida
| | | | | | - Karla C. Maita
- 1Division of Plastic Surgery, Mayo Clinic, Jacksonville, Florida
| | | | - Brian D. Rinker
- 1Division of Plastic Surgery, Mayo Clinic, Jacksonville, Florida
| | - Abba C. Zubair
- 2Transfusion Medicines and Stem Cell Therapy, Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, Florida, USA
| | - Antonio J. Forte
- 1Division of Plastic Surgery, Mayo Clinic, Jacksonville, Florida,Corresponding author: Antonio J. Forte Division of Plastic Surgery, Mayo Clinic, 4500 San Pablo Rd, Jacksonville, FL 32224. Phone: 904-953-2073 Fax: 904-953-7368
| | - Rachel Sarabia-Estrada
- 3Departments of Neurosurgery; Neuroscience; and, Cancer Biology, Mayo Clinic, Jacksonville, Florida
| |
Collapse
|
16
|
Rathor R, Suryakumar G, Singh SN. Diet and redox state in maintaining skeletal muscle health and performance at high altitude. Free Radic Biol Med 2021; 174:305-320. [PMID: 34352371 DOI: 10.1016/j.freeradbiomed.2021.07.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 07/14/2021] [Accepted: 07/19/2021] [Indexed: 01/07/2023]
Abstract
High altitude exposure leads to compromised physical performance with considerable weight loss. The major stressor at high altitude is hypobaric hypoxia which leads to disturbance in redox homeostasis. Oxidative stress is a well-known trigger for many high altitude illnesses and regulates several key signaling pathways under stressful conditions. Altered redox homeostasis is considered the prime culprit of high altitude linked skeletal muscle atrophy. Hypobaric hypoxia disturbs redox homeostasis through increased RONS production and compromised antioxidant system. Increased RONS disturbs the cellular homeostasis via multiple ways such as inflammation generation, altered protein anabolic pathways, redox remodeling of RyR1 that contributed to dysregulated calcium homeostasis, enhanced protein degradation pathways via activation calcium-regulated protein, calpain, and apoptosis. Ultimately, all the cellular signaling pathways aggregately result in skeletal muscle atrophy. Dietary supplementation of phytochemicals could become a safe and effective intervention to ameliorate skeletal muscle atrophy and enhance the physical performance of the personnel who are staying at high altitude regions. The present evidence-based review explores few dietary supplementations which regulate several signaling mechanisms and ameliorate hypobaric hypoxia induced muscle atrophy and enhances physical performance. However, a clinical research trial is required to establish proof-of-concept.
Collapse
Affiliation(s)
- Richa Rathor
- Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, New Delhi, 110054, India.
| | - Geetha Suryakumar
- Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, New Delhi, 110054, India
| | - Som Nath Singh
- Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, New Delhi, 110054, India
| |
Collapse
|
17
|
Zhang H, He H, Cui Y, Yu S, Li S, Afedo SY, Wang Y, Bai X, He J. Regulatory effects of HIF-1α and HO-1 in hypoxia-induced proliferation of pulmonary arterial smooth muscle cells in yak. Cell Signal 2021; 87:110140. [PMID: 34478827 DOI: 10.1016/j.cellsig.2021.110140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/24/2021] [Accepted: 08/29/2021] [Indexed: 01/13/2023]
Abstract
Hypoxia-inducible factor-1α (HIF-1α) and heme oxygenase-1 (HO-1) are important transcription regulators in hypoxic cells and for maintaining cellular homeostasis, but it is unclear whether they participate in hypoxia-induced excessive proliferation of yak pulmonary artery smooth muscle cells (PASMCs). In this study, we identified distribution of HIF-1α and HO-1 in yak lungs. Immunohistochemistry and immunofluorescence results revealed that both HIF-1α and HO-1 were mainly concentrated in the medial layer of small pulmonary arteries. Furthermore, under induced-hypoxic conditions, we investigated HIF-1α and HO-1 protein expression and studied their potential involvement in yak PASMCs proliferation and apoptosis. Western blot results also showed that both factors significantly increased in age-dependent manner and upregulated in hypoxic PASMCs (which exhibited obvious proliferation and anti-apoptosis phenomena). HIF-1α up-regulation by DMOG increased the proliferation and anti-apoptosis of PASMCs, while HIF-1α down-regulation by LW6 decreased proliferation and promoted apoptosis. More so, treatment with ZnPP under hypoxic conditions down-regulated HO-1 expression, stimulated proliferation, and resisted apoptosis in yak PASMCs. Taken together, our study demonstrated that both HIF-1α and HO-1 participated in PASMCs proliferation and apoptosis, suggesting that HO-1 is important for inhibition of yak PASMCs proliferation while HIF-1α promoted hypoxia-induced yak PASMCs proliferation.
Collapse
Affiliation(s)
- Huizhu Zhang
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Honghong He
- Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Yan Cui
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China.
| | - Sijiu Yu
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Shijie Li
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Seth Yaw Afedo
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Yali Wang
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Xuefeng Bai
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Junfeng He
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
18
|
Zippusch S, Besecke KFW, Helms F, Klingenberg M, Lyons A, Behrens P, Haverich A, Wilhelmi M, Ehlert N, Böer U. Chemically induced hypoxia by dimethyloxalylglycine (DMOG)-loaded nanoporous silica nanoparticles supports endothelial tube formation by sustained VEGF release from adipose tissue-derived stem cells. Regen Biomater 2021; 8:rbab039. [PMID: 34408911 PMCID: PMC8363767 DOI: 10.1093/rb/rbab039] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/18/2021] [Accepted: 06/23/2021] [Indexed: 12/20/2022] Open
Abstract
Inadequate vascularization leading to insufficient oxygen and nutrient supply in deeper layers of bioartificial tissues remains a limitation in current tissue engineering approaches to which pre-vascularization offers a promising solution. Hypoxia triggering pre-vascularization by enhanced vascular endothelial growth factor (VEGF) expression can be induced chemically by dimethyloxalylglycine (DMOG). Nanoporous silica nanoparticles (NPSNPs, or mesoporous silica nanoparticles, MSNs) enable sustained delivery of molecules and potentially release DMOG allowing a durable capillarization of a construct. Here we evaluated the effects of soluble DMOG and DMOG-loaded NPSNPs on VEGF secretion of adipose tissue-derived stem cells (ASC) and on tube formation by human umbilical vein endothelial cells (HUVEC)-ASC co-cultures. Repeated doses of 100 µM and 500 µM soluble DMOG on ASC resulted in 3- to 7-fold increased VEGF levels on day 9 (P < 0.0001). Same doses of DMOG-NPSNPs enhanced VEGF secretion 7.7-fold (P < 0.0001) which could be maintained until day 12 with 500 µM DMOG-NPSNPs. In fibrin-based tube formation assays, 100 µM DMOG-NPSNPs had inhibitory effects whereas 50 µM significantly increased tube length, area and number of junctions transiently for 4 days. Thus, DMOG-NPSNPs supported endothelial tube formation by upregulated VEGF secretion from ASC and thus display a promising tool for pre-vascularization of tissue-engineered constructs. Further studies will evaluate their effect in hydrogels under perfusion.
Collapse
Affiliation(s)
- Sarah Zippusch
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Stadtfelddamm 34, 30625 Hannover, Germany.,Division for Cardiac, Thoracic-, Transplantation- and Vascular Surgery, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Karen F W Besecke
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Stadtfelddamm 34, 30625 Hannover, Germany.,Institute of Inorganic Chemistry, Leibniz University Hannover, Callinstraße 9, 30167 Hannover, Germany
| | - Florian Helms
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Stadtfelddamm 34, 30625 Hannover, Germany
| | - Melanie Klingenberg
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Stadtfelddamm 34, 30625 Hannover, Germany.,Division for Cardiac, Thoracic-, Transplantation- and Vascular Surgery, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Anne Lyons
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Stadtfelddamm 34, 30625 Hannover, Germany
| | - Peter Behrens
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Stadtfelddamm 34, 30625 Hannover, Germany.,Institute of Inorganic Chemistry, Leibniz University Hannover, Callinstraße 9, 30167 Hannover, Germany.,Cluster of Excellence Hearing4all, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
| | - Axel Haverich
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Stadtfelddamm 34, 30625 Hannover, Germany.,Division for Cardiac, Thoracic-, Transplantation- and Vascular Surgery, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Mathias Wilhelmi
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Stadtfelddamm 34, 30625 Hannover, Germany.,Department of Vascular- and Endovascular Surgery, St. Bernward Hospital, Treibestraße 9, 31134 Hildesheim, Germany
| | - Nina Ehlert
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Stadtfelddamm 34, 30625 Hannover, Germany.,Institute of Inorganic Chemistry, Leibniz University Hannover, Callinstraße 9, 30167 Hannover, Germany
| | - Ulrike Böer
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Stadtfelddamm 34, 30625 Hannover, Germany.,Division for Cardiac, Thoracic-, Transplantation- and Vascular Surgery, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| |
Collapse
|
19
|
Nguyen TH, Conotte S, Belayew A, Declèves AE, Legrand A, Tassin A. Hypoxia and Hypoxia-Inducible Factor Signaling in Muscular Dystrophies: Cause and Consequences. Int J Mol Sci 2021; 22:7220. [PMID: 34281273 PMCID: PMC8269128 DOI: 10.3390/ijms22137220] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 12/29/2022] Open
Abstract
Muscular dystrophies (MDs) are a group of inherited degenerative muscle disorders characterized by a progressive skeletal muscle wasting. Respiratory impairments and subsequent hypoxemia are encountered in a significant subgroup of patients in almost all MD forms. In response to hypoxic stress, compensatory mechanisms are activated especially through Hypoxia-Inducible Factor 1 α (HIF-1α). In healthy muscle, hypoxia and HIF-1α activation are known to affect oxidative stress balance and metabolism. Recent evidence has also highlighted HIF-1α as a regulator of myogenesis and satellite cell function. However, the impact of HIF-1α pathway modifications in MDs remains to be investigated. Multifactorial pathological mechanisms could lead to HIF-1α activation in patient skeletal muscles. In addition to the genetic defect per se, respiratory failure or blood vessel alterations could modify hypoxia response pathways. Here, we will discuss the current knowledge about the hypoxia response pathway alterations in MDs and address whether such changes could influence MD pathophysiology.
Collapse
Affiliation(s)
- Thuy-Hang Nguyen
- Laboratory of Respiratory Physiology, Pathophysiology and Rehabilitation, Research Institute for Health Sciences and Technology, University of Mons, 7000 Mons, Belgium; (T.-H.N.); (S.C.); (A.B.); (A.L.)
| | - Stephanie Conotte
- Laboratory of Respiratory Physiology, Pathophysiology and Rehabilitation, Research Institute for Health Sciences and Technology, University of Mons, 7000 Mons, Belgium; (T.-H.N.); (S.C.); (A.B.); (A.L.)
| | - Alexandra Belayew
- Laboratory of Respiratory Physiology, Pathophysiology and Rehabilitation, Research Institute for Health Sciences and Technology, University of Mons, 7000 Mons, Belgium; (T.-H.N.); (S.C.); (A.B.); (A.L.)
| | - Anne-Emilie Declèves
- Department of Metabolic and Molecular Biochemistry, Research Institute for Health Sciences and Technology, University of Mons, 7000 Mons, Belgium;
| | - Alexandre Legrand
- Laboratory of Respiratory Physiology, Pathophysiology and Rehabilitation, Research Institute for Health Sciences and Technology, University of Mons, 7000 Mons, Belgium; (T.-H.N.); (S.C.); (A.B.); (A.L.)
| | - Alexandra Tassin
- Laboratory of Respiratory Physiology, Pathophysiology and Rehabilitation, Research Institute for Health Sciences and Technology, University of Mons, 7000 Mons, Belgium; (T.-H.N.); (S.C.); (A.B.); (A.L.)
| |
Collapse
|
20
|
Sturrock A, Zimmerman E, Helms M, Liou TG, Paine R. Hypoxia induces expression of angiotensin-converting enzyme II in alveolar epithelial cells: Implications for the pathogenesis of acute lung injury in COVID-19. Physiol Rep 2021; 9:e14854. [PMID: 33991451 PMCID: PMC8123561 DOI: 10.14814/phy2.14854] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/31/2021] [Accepted: 04/03/2021] [Indexed: 11/24/2022] Open
Abstract
SARS-CoV-2 uptake by lung epithelial cells is a critical step in the pathogenesis of COVID-19. Viral entry is dependent on the binding of the viral spike protein to the angiotensin converting enzyme II protein (ACE2) on the host cell surface, followed by proteolytic cleavage by a host serine protease such as TMPRSS2. Infection of alveolar epithelial cells (AEC) in the distal lung is a key feature in progression to the acute respiratory distress syndrome (ARDS). We hypothesized that AEC expression of ACE2 is induced by hypoxia. In a murine model of hypoxic stress (12% FiO2), the total lung Ace2 mRNA and protein expression was significantly increased after 24 hours in hypoxia compared to normoxia (21% FiO2). In experiments with primary murine type II AEC, we found that exposure to hypoxia either in vivo (prior to isolation) or in vitro resulted in greatly increased AEC expression of both Ace2 (mRNA and protein) and of Tmprss2. However, when isolated type II AEC were maintained in culture over 5 days, with loss of type II cell characteristics and induction of type I cell features, Ace2 expression was greatly reduced, suggesting that this expression was a feature of only this subset of AEC. Finally, in primary human small airway epithelial cells (SAEC), ACE2 mRNA and protein expression were also induced by hypoxia, as was binding to purified spike protein. Hypoxia-induced increase in ACE2 expression in type II AEC may provide an explanation of the extended temporal course of human patients who develop ARDS in COVID-19.
Collapse
Affiliation(s)
- Anne Sturrock
- Department of Veterans Affairs Medical CenterSalt Lake CityUtahUSA
- Division of RespiratoryCritical Care and Occupational Pulmonary MedicineUniversity of Utah School of MedicineSalt Lake CityUtahUSA
| | - Elizabeth Zimmerman
- Division of RespiratoryCritical Care and Occupational Pulmonary MedicineUniversity of Utah School of MedicineSalt Lake CityUtahUSA
| | - My Helms
- Division of RespiratoryCritical Care and Occupational Pulmonary MedicineUniversity of Utah School of MedicineSalt Lake CityUtahUSA
| | - Theodore G. Liou
- Division of RespiratoryCritical Care and Occupational Pulmonary MedicineUniversity of Utah School of MedicineSalt Lake CityUtahUSA
| | - Robert Paine
- Department of Veterans Affairs Medical CenterSalt Lake CityUtahUSA
- Division of RespiratoryCritical Care and Occupational Pulmonary MedicineUniversity of Utah School of MedicineSalt Lake CityUtahUSA
| |
Collapse
|
21
|
Contribution of the CK2 Catalytic Isoforms α and α' to the Glycolytic Phenotype of Tumor Cells. Cells 2021; 10:cells10010181. [PMID: 33477590 PMCID: PMC7831337 DOI: 10.3390/cells10010181] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/04/2021] [Accepted: 01/15/2021] [Indexed: 12/13/2022] Open
Abstract
CK2 is a Ser/Thr protein kinase overexpressed in many cancers. It is usually present in cells as a tetrameric enzyme, composed of two catalytic (α or α’) and two regulatory (β) subunits, but it is active also in its monomeric form, and the specific role of the different isoforms is largely unknown. CK2 phosphorylates several substrates related to the uncontrolled proliferation, motility, and survival of cancer cells. As a consequence, tumor cells are addicted to CK2, relying on its activity more than healthy cells for their life, and exploiting it for developing multiple oncological hallmarks. However, little is known about CK2 contribution to the metabolic rewiring of cancer cells. With this study we aimed at shedding some light on it, especially focusing on the CK2 role in the glycolytic onco-phenotype. By analyzing neuroblastoma and osteosarcoma cell lines depleted of either one (α) or the other (α’) CK2 catalytic subunit, we also aimed at disclosing possible pro-tumor functions which are specific of a CK2 isoform. Our results suggest that both CK2 α and α’ contribute to cell proliferation, survival and tumorigenicity. The analyzed metabolic features disclosed a role of CK2 in tumor metabolism, and suggest prominent functions for CK2 α isoform. Results were also confirmed by CK2 pharmacological inhibition. Overall, our study provides new information on the mechanism of cancer cells addiction to CK2 and on its isoform-specific functions, with fundamental implications for improving future therapeutic strategies based on CK2 targeting.
Collapse
|
22
|
Qin L, Li J. HIF-1α inhibition alleviates the exaggerated exercise pressor reflex in rats with peripheral artery disease induced by femoral artery occlusion. Physiol Rep 2021; 8:e14676. [PMID: 33356010 PMCID: PMC7757375 DOI: 10.14814/phy2.14676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/12/2020] [Accepted: 11/15/2020] [Indexed: 11/24/2022] Open
Abstract
Hypoxia-inducible factor 1α (HIF-1α) is a transcription factor mediating adaptive responses to hypoxia and ischemia. Our previous work showed that HIF-1α is increased in muscle sensory nerves of rats with peripheral artery disease (PAD) induced by femoral artery occlusion. The present study was further to examine the role played by HIF-1α in regulating the response of arterial blood pressure (BP) to the activation of muscle afferent nerve during static muscle contraction in rats with femoral artery occlusion. A rat model of femoral artery ligation was used to study PAD in this study. Western blot analysis was employed to examine the protein levels of HIF-1α in the dorsal root ganglion (DRG) tissues. BAY87, a synthesized compound with the characteristics of highly potent and specific suppressive effects on expression and activity of HIF-1α, was given into the arterial blood supply of the ischemic hindlimb muscles before the exercise pressor reflex was evoked by static muscle contraction. First, HIF-1α was increased in the DRG of occluded limbs (optical density: 0.89 ± 0.13 in control versus 1.5 ± 0.05 in occlusion; p < 0.05, n = 6 in each group). Arterial injection of BAY87 (0.2 mg/kg) then inhibited expression of HIF-1α in the DRG of occluded limbs 3 hr following its injection (optical density: 1.02 ± 0.09 in occluded limbs with BAY87 versus 1.06 ± 0.1 in control limbs; p > 0.05, n = 5 in each group). In addition, muscle contraction evoked a greater increase in BP in occluded rats. BAY87 attenuated the enhanced BP response in occluded rats to a greater degree than in control rats. Our data suggest that the inhibition of HIF-1α alleviates the exaggeration of the exercise pressor reflex in rats under ischemic circumstances of the hindlimbs in PAD induced by femoral artery occlusion.
Collapse
Affiliation(s)
- Lu Qin
- Heart and Vascular InstituteThe Pennsylvania State University College of MedicineHersheyPAUSA
| | - Jianhua Li
- Heart and Vascular InstituteThe Pennsylvania State University College of MedicineHersheyPAUSA
| |
Collapse
|
23
|
Dunn LL, Kong SMY, Tumanov S, Chen W, Cantley J, Ayer A, Maghzal GJ, Midwinter RG, Chan KH, Ng MKC, Stocker R. Hmox1 (Heme Oxygenase-1) Protects Against Ischemia-Mediated Injury via Stabilization of HIF-1α (Hypoxia-Inducible Factor-1α). Arterioscler Thromb Vasc Biol 2021; 41:317-330. [PMID: 33207934 DOI: 10.1161/atvbaha.120.315393] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Hmox1 (heme oxygenase-1) is a stress-induced enzyme that catalyzes the degradation of heme to carbon monoxide, iron, and biliverdin. Induction of Hmox1 and its products protect against cardiovascular disease, including ischemic injury. Hmox1 is also a downstream target of the transcription factor HIF-1α (hypoxia-inducible factor-1α), a key regulator of the body's response to hypoxia. However, the mechanisms by which Hmox1 confers protection against ischemia-mediated injury remain to be fully understood. Approach and Results: Hmox1 deficient (Hmox1-/-) mice had impaired blood flow recovery with severe tissue necrosis and autoamputation following unilateral hindlimb ischemia. Autoamputation preceded the return of blood flow, and bone marrow transfer from littermate wild-type mice failed to prevent tissue injury and autoamputation. In wild-type mice, ischemia-induced expression of Hmox1 in skeletal muscle occurred before stabilization of HIF-1α. Moreover, HIF-1α stabilization and glucose utilization were impaired in Hmox1-/- mice compared with wild-type mice. Experiments exposing dermal fibroblasts to hypoxia (1% O2) recapitulated these key findings. Metabolomics analyses indicated a failure of Hmox1-/- mice to adapt cellular energy reprogramming in response to ischemia. Prolyl-4-hydroxylase inhibition stabilized HIF-1α in Hmox1-/- fibroblasts and ischemic skeletal muscle, decreased tissue necrosis and autoamputation, and restored cellular metabolism to that of wild-type mice. Mechanistic studies showed that carbon monoxide stabilized HIF-1α in Hmox1-/- fibroblasts in response to hypoxia. CONCLUSIONS Our findings suggest that Hmox1 acts both downstream and upstream of HIF-1α, and that stabilization of HIF-1α contributes to Hmox1's protection against ischemic injury independent of neovascularization.
Collapse
Affiliation(s)
- Louise L Dunn
- The Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia (L.L.D., S.M.Y.K., S.T., W.C., A.A., G.J.M., R.S.)
- St Vincent's Clinical School, University of New South Wales, Sydney, Australia (L.L.D., W.C., A.A., G.J.M., R.S.)
| | - Stephanie M Y Kong
- The Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia (L.L.D., S.M.Y.K., S.T., W.C., A.A., G.J.M., R.S.)
| | - Sergey Tumanov
- The Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia (L.L.D., S.M.Y.K., S.T., W.C., A.A., G.J.M., R.S.)
- Heart Research Institute, Newtown, NSW, Australia (S.T., W.C., A.A., K.H.C., M.K.C.N., R.S.)
| | - Weiyu Chen
- The Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia (L.L.D., S.M.Y.K., S.T., W.C., A.A., G.J.M., R.S.)
- St Vincent's Clinical School, University of New South Wales, Sydney, Australia (L.L.D., W.C., A.A., G.J.M., R.S.)
- Heart Research Institute, Newtown, NSW, Australia (S.T., W.C., A.A., K.H.C., M.K.C.N., R.S.)
| | | | - Anita Ayer
- The Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia (L.L.D., S.M.Y.K., S.T., W.C., A.A., G.J.M., R.S.)
- St Vincent's Clinical School, University of New South Wales, Sydney, Australia (L.L.D., W.C., A.A., G.J.M., R.S.)
- Heart Research Institute, Newtown, NSW, Australia (S.T., W.C., A.A., K.H.C., M.K.C.N., R.S.)
| | - Ghassan J Maghzal
- The Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia (L.L.D., S.M.Y.K., S.T., W.C., A.A., G.J.M., R.S.)
- St Vincent's Clinical School, University of New South Wales, Sydney, Australia (L.L.D., W.C., A.A., G.J.M., R.S.)
| | - Robyn G Midwinter
- St Vincent's Clinical School, University of New South Wales, Sydney, Australia (L.L.D., W.C., A.A., G.J.M., R.S.)
- Centre for Vascular Research, School of Medical Sciences (Pathology), and Bosch Institute, Sydney Medical School, The University of Sydney, Australia (R.G.M., R.S.)
| | - Kim H Chan
- Heart Research Institute, Newtown, NSW, Australia (S.T., W.C., A.A., K.H.C., M.K.C.N., R.S.)
- Royal Prince Alfred Hospital, Camperdown, NSW, Australia (K.H.C., M.K.C.N.)
| | - Martin K C Ng
- Heart Research Institute, Newtown, NSW, Australia (S.T., W.C., A.A., K.H.C., M.K.C.N., R.S.)
- Royal Prince Alfred Hospital, Camperdown, NSW, Australia (K.H.C., M.K.C.N.)
| | - Roland Stocker
- The Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia (L.L.D., S.M.Y.K., S.T., W.C., A.A., G.J.M., R.S.)
- Heart Research Institute, Newtown, NSW, Australia (S.T., W.C., A.A., K.H.C., M.K.C.N., R.S.)
- Centre for Vascular Research, School of Medical Sciences (Pathology), and Bosch Institute, Sydney Medical School, The University of Sydney, Australia (R.G.M., R.S.)
| |
Collapse
|
24
|
Qin L, Li J. Nerve growth factor in muscle afferent neurons of peripheral artery disease and autonomic function. Neural Regen Res 2021; 16:694-699. [PMID: 33063730 PMCID: PMC8067946 DOI: 10.4103/1673-5374.293132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In peripheral artery disease patients, the blood supply directed to the lower limbs is reduced. This results in severe limb ischemia and thereby enhances pain sensitivity in lower limbs. The painful perception is induced and exaggerate during walking, and is relieved by rest. This symptom is termed by intermittent claudication. The limb ischemia also amplifies autonomic responses during exercise. In the process of pain and autonomic responses originating exercising muscle, a number of receptors in afferent nerves sense ischemic changes and send signals to the central nervous system leading to autonomic responses. This review integrates recent study results in terms of perspectives including how nerve growth factor affects muscle sensory nerve receptors in peripheral artery disease and thereby alters responses of sympathetic nerve activity and blood pressure to active muscle. For the sensory nerve receptors, we emphasize the role played by transient receptor potential vanilloid type 1, purinergic P2X purinoceptor 3 and acid sensing ion channel subtype 3 in amplified sympathetic nerve activity responses in peripheral artery disease.
Collapse
Affiliation(s)
- Lu Qin
- Heart & Vascular Institute, Penn State University College of Medicine, Hershey, PA, USA
| | - Jianhua Li
- Heart & Vascular Institute, Penn State University College of Medicine, Hershey, PA, USA
| |
Collapse
|
25
|
Kierans SJ, Taylor CT. Regulation of glycolysis by the hypoxia-inducible factor (HIF): implications for cellular physiology. J Physiol 2020; 599:23-37. [PMID: 33006160 DOI: 10.1113/jp280572] [Citation(s) in RCA: 512] [Impact Index Per Article: 102.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/25/2020] [Indexed: 12/22/2022] Open
Abstract
Under conditions of hypoxia, most eukaryotic cells can shift their primary metabolic strategy from predominantly mitochondrial respiration towards increased glycolysis to maintain ATP levels. This hypoxia-induced reprogramming of metabolism is key to satisfying cellular energetic requirements during acute hypoxic stress. At a transcriptional level, this metabolic switch can be regulated by several pathways including the hypoxia inducible factor-1α (HIF-1α) which induces an increased expression of glycolytic enzymes. While this increase in glycolytic flux is beneficial for maintaining bioenergetic homeostasis during hypoxia, the pathways mediating this increase can also be exploited by cancer cells to promote tumour survival and growth, an area which has been extensively studied. It has recently become appreciated that increased glycolytic metabolism in hypoxia may also have profound effects on cellular physiology in hypoxic immune and endothelial cells. Therefore, understanding the mechanisms central to mediating this reprogramming are of importance from both physiological and pathophysiological standpoints. In this review, we highlight the role of HIF-1α in the regulation of hypoxic glycolysis and its implications for physiological processes such as angiogenesis and immune cell effector function.
Collapse
Affiliation(s)
- S J Kierans
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland.,School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - C T Taylor
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland.,School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
26
|
Cienfuegos-Pecina E, Ibarra-Rivera TR, Saucedo AL, Ramírez-Martínez LA, Esquivel-Figueroa D, Domínguez-Vázquez I, Alcántara-Solano KJ, Moreno-Peña DP, Alarcon-Galvan G, Rodríguez-Rodríguez DR, Torres-González L, Muñoz-Espinosa LE, Pérez-Rodríguez E, Cordero-Pérez P. Effect of sodium ( S)-2-hydroxyglutarate in male, and succinic acid in female Wistar rats against renal ischemia-reperfusion injury, suggesting a role of the HIF-1 pathway. PeerJ 2020; 8:e9438. [PMID: 32728491 PMCID: PMC7357568 DOI: 10.7717/peerj.9438] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 06/08/2020] [Indexed: 12/30/2022] Open
Abstract
Background Ischemia–reperfusion (IR) injury is the main cause of delayed graft function in solid organ transplantation. Hypoxia-inducible factors (HIFs) control the expression of genes related to preconditioning against IR injury. During normoxia, HIF-α subunits are marked for degradation by the egg-laying defective nine homolog (EGLN) family of prolyl-4-hydroxylases. The inhibition of EGLN stabilizes HIFs and protects against IR injury. The aim of this study was to determine whether the EGLN inhibitors sodium (S)-2-hydroxyglutarate [(S)-2HG] and succinic acid (SA) have a nephroprotective effect against renal IR injury in Wistar rats. Methods (S)-2HG was synthesized in a 22.96% yield from commercially available L-glutamic acid in a two-step methodology (diazotization/alkaline hydrolysis), and its structure was confirmed by nuclear magnetic resonance and polarimetry. SA was acquired commercially. (S)-2HG and SA were independently evaluated in male and female Wistar rats respectively after renal IR injury. Rats were divided into the following groups: sham (SH), nontoxicity [(S)-2HG: 12.5 or 25 mg/kg; SA: 12.5, 25, or 50 mg/kg], IR, and compound+IR [(S)-2HG: 12.5 or 25 mg/kg; SA: 12.5, 25, or 50 mg/kg]; independent SH and IR groups were used for each assessed compound. Markers of kidney injury (BUN, creatinine, glucose, and uric acid) and liver function (ALT, AST, ALP, LDH, serum proteins, and albumin), proinflammatory cytokines (IL-1β, IL-6, and TNF-α), oxidative stress biomarkers (malondialdehyde and superoxide dismutase), and histological parameters (tubular necrosis, acidophilic casts, and vascular congestion) were assessed. Tissue HIF-1α was measured by ELISA and Western blot, and the expression of Hmox1 was assessed by RT-qPCR. Results (S)-2HG had a dose-dependent nephroprotective effect, as evidenced by a significant reduction in the changes in the BUN, creatinine, ALP, AST, and LDH levels compared with the IR group. Tissue HIF-1α was only increased in the IR group compared to SH; however, (S)-2HG caused a significant increase in the expression of Hmox1, suggesting an early accumulation of HIF-1α in the (S)-2HG-treated groups. There were no significant effects on the other biomarkers. SA did not show a nephroprotective effect; the only changes were a decrease in creatinine level at 12.5 mg/kg and increased IR injury at 50 mg/kg. There were no effects on the other biochemical, proinflammatory, or oxidative stress biomarkers. Conclusion None of the compounds were hepatotoxic at the tested doses. (S)-2HG showed a dose-dependent nephroprotective effect at the evaluated doses, which involved an increase in the expression of Hmox1, suggesting stabilization of HIF-1α. SA did not show a nephroprotective effect but tended to increase IR injury when given at high doses.
Collapse
Affiliation(s)
- Eduardo Cienfuegos-Pecina
- Universidad Autonoma de Nuevo Leon, Liver Unit, Department of Internal Medicine, University Hospital "Dr. José E. González", Monterrey, Nuevo León, Mexico
| | - Tannya R Ibarra-Rivera
- Universidad Autonoma de Nuevo Leon, Department of Analytical Chemistry, School of Medicine, Monterrey, Nuevo León, Mexico
| | - Alma L Saucedo
- Universidad Autonoma de Nuevo Leon, Department of Analytical Chemistry, School of Medicine, Monterrey, Nuevo León, Mexico
| | - Luis A Ramírez-Martínez
- Universidad Autonoma de Nuevo Leon, Liver Unit, Department of Internal Medicine, University Hospital "Dr. José E. González", Monterrey, Nuevo León, Mexico
| | - Deanna Esquivel-Figueroa
- Universidad Autonoma de Nuevo Leon, Liver Unit, Department of Internal Medicine, University Hospital "Dr. José E. González", Monterrey, Nuevo León, Mexico
| | - Ixel Domínguez-Vázquez
- Universidad Autonoma de Nuevo Leon, Liver Unit, Department of Internal Medicine, University Hospital "Dr. José E. González", Monterrey, Nuevo León, Mexico
| | - Karina J Alcántara-Solano
- Universidad Autonoma de Nuevo Leon, Liver Unit, Department of Internal Medicine, University Hospital "Dr. José E. González", Monterrey, Nuevo León, Mexico
| | - Diana P Moreno-Peña
- Universidad Autonoma de Nuevo Leon, Liver Unit, Department of Internal Medicine, University Hospital "Dr. José E. González", Monterrey, Nuevo León, Mexico
| | - Gabriela Alarcon-Galvan
- Universidad de Monterrey, Basic Science Department, School of Medicine, Monterrey, Nuevo León, Mexico
| | - Diana Raquel Rodríguez-Rodríguez
- Universidad Autonoma de Nuevo Leon, Liver Unit, Department of Internal Medicine, University Hospital "Dr. José E. González", Monterrey, Nuevo León, Mexico
| | - Liliana Torres-González
- Universidad Autonoma de Nuevo Leon, Liver Unit, Department of Internal Medicine, University Hospital "Dr. José E. González", Monterrey, Nuevo León, Mexico
| | - Linda E Muñoz-Espinosa
- Universidad Autonoma de Nuevo Leon, Liver Unit, Department of Internal Medicine, University Hospital "Dr. José E. González", Monterrey, Nuevo León, Mexico
| | - Edelmiro Pérez-Rodríguez
- Universidad Autonoma de Nuevo Leon, Transplant Service, University Hospital "Dr. José E. González", Monterrey, Nuevo León, Mexico
| | - Paula Cordero-Pérez
- Universidad Autonoma de Nuevo Leon, Liver Unit, Department of Internal Medicine, University Hospital "Dr. José E. González", Monterrey, Nuevo León, Mexico
| |
Collapse
|
27
|
Khiatah B, Qi M, Du W, T-Chen K, van Megen KM, Perez RG, Isenberg JS, Kandeel F, Roep BO, Ku HT, Al-Abdullah IH. Intra-pancreatic tissue-derived mesenchymal stromal cells: a promising therapeutic potential with anti-inflammatory and pro-angiogenic profiles. Stem Cell Res Ther 2019; 10:322. [PMID: 31730488 PMCID: PMC6858763 DOI: 10.1186/s13287-019-1435-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 09/26/2019] [Accepted: 09/30/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Human pancreata contain many types of cells, such as endocrine islets, acinar, ductal, fat, and mesenchymal stromal cells (MSCs). MSCs are important and shown to have a promising therapeutic potential to treat various disease conditions. METHODS We investigated intra-pancreatic tissue-derived (IPTD) MSCs isolated from tissue fractions that are routinely discarded during pancreatic islet isolation of human cadaveric donors. Furthermore, whether pro-angiogenic and anti-inflammatory properties of these cells could be enhanced was investigated. RESULTS IPTD-MSCs were expanded in GMP-compatible CMRL-1066 medium supplemented with 5% human platelet lysate (hPL). IPTD-MSCs were found to be highly pure, with > 95% positive for CD90, CD105, and CD73, and negative for CD45, CD34, CD14, and HLA-DR. Immunofluorescence staining of pancreas tissue demonstrated the presence of CD105+ cells in the vicinity of islets. IPTD-MSCs were capable of differentiation into adipocytes, chondrocytes, and osteoblasts in vitro, underscoring their multipotent features. When these cells were cultured in the presence of a low dose of TNF-α, gene expression of tumor necrosis factor alpha-stimulated gene-6 (TSG-6) was significantly increased, compared to control. In contrast, treating cells with dimethyloxallyl glycine (DMOG) (a prolyl 4-hydroxylase inhibitor) enhanced mRNA levels of nuclear factor erythroid 2-related factor 2 (NRF2) and vascular endothelial growth factor (VEGF). Interestingly, a combination of TNF-α and DMOG stimulated the optimal expression of all three genes in IPTD-MSCs. Conditioned medium of IPTD-MSCs treated with a combination of DMOG and TNF-α contained higher levels of pro-angiogenic (VEGF, IL-6, and IL-8) compared to controls, promoting angiogenesis of human endothelial cells in vitro. In contrast, levels of MCP-1, a pro-inflammatory cytokine, were reduced in the conditioned medium of IPTD-MSCs treated with a combination of DMOG and TNF-α. CONCLUSIONS The results demonstrate that IPTD-MSCs reside within the pancreas and can be separated as part of a standard islet-isolation protocol. These IPTD-MSCs can be expanded and potentiated ex vivo to enhance their anti-inflammatory and pro-angiogenic profiles. The fact that IPTD-MSCs are generated in a GMP-compatible procedure implicates a direct clinical application.
Collapse
Affiliation(s)
- Bashar Khiatah
- Department of Translational Research and Cellular Therapeutics, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd, Duarte, CA 91010 USA
| | - Meirigeng Qi
- Department of Translational Research and Cellular Therapeutics, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd, Duarte, CA 91010 USA
| | - Weiting Du
- Department of Translational Research and Cellular Therapeutics, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd, Duarte, CA 91010 USA
| | - Kuan T-Chen
- Department of Translational Research and Cellular Therapeutics, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd, Duarte, CA 91010 USA
| | - Kayleigh M. van Megen
- Department of Diabetes Immunology, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA USA
| | - Rachel G. Perez
- Department of Translational Research and Cellular Therapeutics, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd, Duarte, CA 91010 USA
| | - Jeffrey S. Isenberg
- Department of Translational Research and Cellular Therapeutics, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd, Duarte, CA 91010 USA
| | - Fouad Kandeel
- Department of Translational Research and Cellular Therapeutics, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd, Duarte, CA 91010 USA
| | - Bart O. Roep
- Department of Diabetes Immunology, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA USA
| | - Hsun Teresa Ku
- Department of Translational Research and Cellular Therapeutics, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd, Duarte, CA 91010 USA
| | - Ismail H. Al-Abdullah
- Department of Translational Research and Cellular Therapeutics, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd, Duarte, CA 91010 USA
| |
Collapse
|
28
|
Imaging Hypoxic Stress and the Treatment of Amyotrophic Lateral Sclerosis with Dimethyloxalylglycine in a Mice Model. Neuroscience 2019; 415:31-43. [DOI: 10.1016/j.neuroscience.2019.06.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/15/2019] [Accepted: 06/18/2019] [Indexed: 12/13/2022]
|
29
|
Boakye AA, Zhang D, Guo L, Zheng Y, Hoetker D, Zhao J, Posa DK, Ng CK, Zheng H, Kumar A, Kumar V, Wempe MF, Bhatnagar A, Conklin DJ, Baba SP. Carnosine Supplementation Enhances Post Ischemic Hind Limb Revascularization. Front Physiol 2019; 10:751. [PMID: 31312142 PMCID: PMC6614208 DOI: 10.3389/fphys.2019.00751] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 05/31/2019] [Indexed: 01/12/2023] Open
Abstract
High (millimolar) concentrations of the histidine containing dipeptide - carnosine (β-alanine-L-histidine) are present in the skeletal muscle. The dipeptide has been shown to buffer intracellular pH, chelate transition metals, and scavenge lipid peroxidation products; however, its role in protecting against tissue injury remains unclear. In this study, we tested the hypothesis that carnosine protects against post ischemia by augmenting HIF-1α angiogenic signaling by Fe2+ chelation. We found that wild type (WT) C57BL/6 mice, subjected to hind limb ischemia (HLI) and supplemented with carnosine (1g/L) in drinking water, had improved blood flow recovery and limb function, enhanced revascularization and regeneration of myocytes compared with HLI mice placed on water alone. Carnosine supplementation enhanced the bioavailability of carnosine in the ischemic limb, which was accompanied by increased expression of proton-coupled oligopeptide transporters. Consistent with our hypothesis, carnosine supplementation augmented HIF-1α and VEGF expression in the ischemic limb and the mobilization of proangiogenic Flk-1+/Sca-1+ cells into circulation. Pretreatment of murine myoblast (C2C12) cells with octyl-D-carnosine or carnosine enhanced HIF-1α protein expression, VEGF mRNA levels and VEGF release under hypoxic conditions. Similarly pretreatment of WT C57/Bl6 mice with carnosine showed enhanced blood flow in the ischemic limb following HLI surgery. In contrast, pretreatment of hypoxic C2C12 cells with methylcarcinine, a carnosine analog, lacking Fe2+ chelating capacity, had no effect on HIF-1α levels and VEGF release. Collectively, these data suggest that carnosine promotes post ischemic revascularization via augmentation of pro-angiogenic HIF-1α/VEGF signaling, possibly by Fe2+ chelation.
Collapse
Affiliation(s)
- Adjoa A. Boakye
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, United States
| | - Deqing Zhang
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, United States
- Department of Medicine, Envirome Institute, University of Louisville, Louisville, KY, United States
| | - Luping Guo
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, United States
- Department of Medicine, Envirome Institute, University of Louisville, Louisville, KY, United States
| | - Yuting Zheng
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, United States
- Department of Medicine, Envirome Institute, University of Louisville, Louisville, KY, United States
| | - David Hoetker
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, United States
- Department of Medicine, Envirome Institute, University of Louisville, Louisville, KY, United States
| | - Jingjing Zhao
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, United States
- Department of Medicine, Envirome Institute, University of Louisville, Louisville, KY, United States
| | - Dheeraj Kumar Posa
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, United States
- Department of Medicine, Envirome Institute, University of Louisville, Louisville, KY, United States
| | - Chin K. Ng
- Department of Radiology, University of Louisville, Louisville, KY, United States
| | - Huaiyu Zheng
- Department of Radiology, University of Louisville, Louisville, KY, United States
| | - Amit Kumar
- Department of Pharmaceutical Sciences, University of Colorado, Denver, Denver, CO, United States
| | - Vijay Kumar
- Department of Pharmaceutical Sciences, University of Colorado, Denver, Denver, CO, United States
| | - Michael F. Wempe
- Department of Pharmaceutical Sciences, University of Colorado, Denver, Denver, CO, United States
| | - Aruni Bhatnagar
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, United States
- Department of Medicine, Envirome Institute, University of Louisville, Louisville, KY, United States
| | - Daniel J. Conklin
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, United States
- Department of Medicine, Envirome Institute, University of Louisville, Louisville, KY, United States
| | - Shahid P. Baba
- Diabetes and Obesity Center, University of Louisville, Louisville, KY, United States
- Department of Medicine, Envirome Institute, University of Louisville, Louisville, KY, United States
| |
Collapse
|
30
|
Abstract
The ability to generate new microvessels in desired numbers and at desired locations has been a long-sought goal in vascular medicine, engineering, and biology. Historically, the need to revascularize ischemic tissues nonsurgically (so-called therapeutic vascularization) served as the main driving force for the development of new methods of vascular growth. More recently, vascularization of engineered tissues and the generation of vascularized microphysiological systems have provided additional targets for these methods, and have required adaptation of therapeutic vascularization to biomaterial scaffolds and to microscale devices. Three complementary strategies have been investigated to engineer microvasculature: angiogenesis (the sprouting of existing vessels), vasculogenesis (the coalescence of adult or progenitor cells into vessels), and microfluidics (the vascularization of scaffolds that possess the open geometry of microvascular networks). Over the past several decades, vascularization techniques have grown tremendously in sophistication, from the crude implantation of arteries into myocardial tunnels by Vineberg in the 1940s, to the current use of micropatterning techniques to control the exact shape and placement of vessels within a scaffold. This review provides a broad historical view of methods to engineer the microvasculature, and offers a common framework for organizing and analyzing the numerous studies in this area of tissue engineering and regenerative medicine. © 2019 American Physiological Society. Compr Physiol 9:1155-1212, 2019.
Collapse
Affiliation(s)
- Joe Tien
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
- Division of Materials Science and Engineering, Boston University, Brookline, Massachusetts, USA
| |
Collapse
|
31
|
Abstract
Kinase inhibitors (KIs) have had a huge impact on clinical treatment of various cancers, but they are far from perfect medicines. In particular, their efficacies are limited to certain cancer types and, in many cases, provide only temporary remission. This paper explores the possibility of covalently binding a fluorophore for in vivo optical imaging to the KI dasatinib where the particular fluorophore chosen for this study, a heptamethine cyanine (Cy) derivative, tends to accumulate in tumors. Thus, we hypothesized that the dasatinib-fluorophore conjugate might target tumor cells more effectively than the parent KI, give enhanced suppression of viability, and simultaneously serve as a probe for optical imaging. As far as we are aware, the dasatinib conjugate (1) is the first reported to contain this KI and a probe for near-IR imaging, and it is certainly the first conjugate of a tumor-targeting near-IR dye and a KI of any kind. Conjugate 1 suppressed the viability of liver cancer cells (HepG2) more effectively than dasatinib at the same concentration. In scratch assays, 1 prevented regrowth of the tumor cells. Conjugate 1 is cell permeable, and confocal imaging indicates the fluorescence of those cells is concentrated in the mitochondria than lysosomes. In general, this study suggests there is untapped potential for conjugates of KIs with tumor-targeting near-IR dyes in the development of theranostics for optical imaging and treatment of cancer.
Collapse
Affiliation(s)
- Syed Muhammad Usama
- Department of Chemistry, Texas A & M University, Box 30012, College Station, Texas 77842, United States
| | - Bosheng Zhao
- Department of Chemistry, Texas A & M University, Box 30012, College Station, Texas 77842, United States
| | - Kevin Burgess
- Department of Chemistry, Texas A & M University, Box 30012, College Station, Texas 77842, United States
| |
Collapse
|
32
|
Kurelac I, Iommarini L, Vatrinet R, Amato LB, De Luise M, Leone G, Girolimetti G, Umesh Ganesh N, Bridgeman VL, Ombrato L, Columbaro M, Ragazzi M, Gibellini L, Sollazzo M, Feichtinger RG, Vidali S, Baldassarre M, Foriel S, Vidone M, Cossarizza A, Grifoni D, Kofler B, Malanchi I, Porcelli AM, Gasparre G. Inducing cancer indolence by targeting mitochondrial Complex I is potentiated by blocking macrophage-mediated adaptive responses. Nat Commun 2019; 10:903. [PMID: 30796225 PMCID: PMC6385215 DOI: 10.1038/s41467-019-08839-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 01/30/2019] [Indexed: 02/08/2023] Open
Abstract
Converting carcinomas in benign oncocytomas has been suggested as a potential anti-cancer strategy. One of the oncocytoma hallmarks is the lack of respiratory complex I (CI). Here we use genetic ablation of this enzyme to induce indolence in two cancer types, and show this is reversed by allowing the stabilization of Hypoxia Inducible Factor-1 alpha (HIF-1α). We further show that on the long run CI-deficient tumors re-adapt to their inability to respond to hypoxia, concordantly with the persistence of human oncocytomas. We demonstrate that CI-deficient tumors survive and carry out angiogenesis, despite their inability to stabilize HIF-1α. Such adaptive response is mediated by tumor associated macrophages, whose blockage improves the effect of CI ablation. Additionally, the simultaneous pharmacological inhibition of CI function through metformin and macrophage infiltration through PLX-3397 impairs tumor growth in vivo in a synergistic manner, setting the basis for an efficient combinatorial adjuvant therapy in clinical trials.
Collapse
Affiliation(s)
- Ivana Kurelac
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Via Massarenti 9, 40138, Bologna, Italy
- Tumor-Host Interaction Lab, The Francis Crick Institute, 1 Midland Rd, NW1 1AT, London, UK
| | - Luisa Iommarini
- Dipartimento di Farmacia e Biotecnologie, Università di Bologna, Via Selmi 3, 40126, Bologna, Italy
| | - Renaud Vatrinet
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Via Massarenti 9, 40138, Bologna, Italy
- Dipartimento di Farmacia e Biotecnologie, Università di Bologna, Via Selmi 3, 40126, Bologna, Italy
| | - Laura Benedetta Amato
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Via Massarenti 9, 40138, Bologna, Italy
| | - Monica De Luise
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Via Massarenti 9, 40138, Bologna, Italy
| | - Giulia Leone
- Dipartimento di Farmacia e Biotecnologie, Università di Bologna, Via Selmi 3, 40126, Bologna, Italy
| | - Giulia Girolimetti
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Via Massarenti 9, 40138, Bologna, Italy
| | - Nikkitha Umesh Ganesh
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Via Massarenti 9, 40138, Bologna, Italy
| | | | - Luigi Ombrato
- Tumor-Host Interaction Lab, The Francis Crick Institute, 1 Midland Rd, NW1 1AT, London, UK
| | - Marta Columbaro
- Laboratory of Musculoskeletal Cell Biology, IRCCS Istituto Ortopedico Rizzoli, Via Giulio Cesare Pupilli 1, 40136, Bologna, Italy
| | - Moira Ragazzi
- Anatomia Patologica, Azienda Ospedaliera S. Maria Nuova di Reggio Emilia, Viale Risorgimento 80, 42123, Reggio Emilia, Italy
| | - Lara Gibellini
- Dipartimento di Scienze Mediche e Chirurgiche materno infantili e dell'adulto, Università degli Studi di Modena e Reggio Emilia, Via del Pozzo 71, 41124, Modena, Italy
| | - Manuela Sollazzo
- Dipartimento di Farmacia e Biotecnologie, Università di Bologna, Via Selmi 3, 40126, Bologna, Italy
| | - Rene Gunther Feichtinger
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Muellner Hauptstraße 48, 5020, Salzburg, Austria
| | - Silvia Vidali
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Muellner Hauptstraße 48, 5020, Salzburg, Austria
| | - Maurizio Baldassarre
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Via Massarenti 9, 40138, Bologna, Italy
| | - Sarah Foriel
- Khondrion BV, Philips van Leydenlaan 15, 6525 EX, Nijmegen, The Netherlands
- Radboud Center for Mitochondrial Medicine (RCMM) at the Department of Pediatrics, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6500 HB, Nijmegen, The Netherlands
| | - Michele Vidone
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Via Massarenti 9, 40138, Bologna, Italy
| | - Andrea Cossarizza
- Dipartimento di Scienze Mediche e Chirurgiche materno infantili e dell'adulto, Università degli Studi di Modena e Reggio Emilia, Via del Pozzo 71, 41124, Modena, Italy
| | - Daniela Grifoni
- Dipartimento di Farmacia e Biotecnologie, Università di Bologna, Via Selmi 3, 40126, Bologna, Italy
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Muellner Hauptstraße 48, 5020, Salzburg, Austria
| | - Ilaria Malanchi
- Tumor-Host Interaction Lab, The Francis Crick Institute, 1 Midland Rd, NW1 1AT, London, UK.
| | - Anna Maria Porcelli
- Dipartimento di Farmacia e Biotecnologie, Università di Bologna, Via Selmi 3, 40126, Bologna, Italy.
- Centro Interdipartimentale di Ricerca Industriale Scienze della Vita e Tecnologie per la Salute, Università di Bologna, Via Tolara di Sopra 41/E, 40064, Ozzano dell'Emilia, Italy.
| | - Giuseppe Gasparre
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Via Massarenti 9, 40138, Bologna, Italy.
- Centro di Ricerca Biomedica Applicata (CRBA), Università di Bologna, Via Massarenti 9, 40138, Bologna, Italy.
| |
Collapse
|
33
|
Abstract
Molecular entities that localize in tumor tissue are clinically important for targeted delivery of diagnostic, imaging, and therapeutic reagents. Often these targeting entities are designed for specific receptors (e.g., EGFR or integrin receptors). However, there is a subset of cyanine-7 dyes that apparently localize in every type of solid tumor tissue (at least, no exceptions have been reported so far), and they persist there for several days. Consequently, these dyes can be used for near-IR optical imaging of tumors in animal studies, they can be conjugated with cytotoxic species to give experimental theranostics, and there is potential for expanding their use into the development of clinically useful derivatives. Data presented in the literature and in this work indicate that the half-lives of these compounds in serum at 37 °C is on the order of minutes to a few hours, so what accounts for the persistent fluorescence of these dyes in tumor tissue over periods of several days? Literature, solely based on tissue culture experiments featuring a particular receptor blocker, indicates that uptake of these dyes is mediated by the organic anion transporter proteins (OATPs). Data presented in this paper agrees with that conclusion for short-term uptake, but significantly expands understanding of the likely reasons for long-term uptake and persistent tumor localization in vivo.
Collapse
Affiliation(s)
- Syed Muhammad Usama
- Department of Chemistry Texas A&M University , Box 30012, College Station , Texas 77842 , United States
| | - Chen-Ming Lin
- Department of Chemistry Texas A&M University , Box 30012, College Station , Texas 77842 , United States
| | - Kevin Burgess
- Department of Chemistry Texas A&M University , Box 30012, College Station , Texas 77842 , United States
| |
Collapse
|
34
|
Inhibition of prolyl hydroxylase domain proteins selectively enhances venous thrombus neovascularisation. Thromb Res 2018; 169:105-112. [PMID: 30031289 DOI: 10.1016/j.thromres.2018.07.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 06/30/2018] [Accepted: 07/09/2018] [Indexed: 11/21/2022]
Abstract
BACKGROUND Hypoxia within acute venous thrombi is thought to drive resolution through stabilisation of hypoxia inducible factor 1 alpha (HIF1α). Prolyl hydroxylase domain (PHD) isoforms are critical regulators of HIF1α stability. Non-selective inhibition of PHD isoforms with l-mimosine has been shown to increase HIF1α stabilisation and promote thrombus resolution. OBJECTIVE The aim of this study was to investigate the therapeutic potential of PHD inhibition in venous thrombus resolution. METHODS Thrombosis was induced in the inferior vena cava of mice using a combination of flow restriction and endothelial activation. Gene and protein expression of PHD isoforms in the resolving thrombus was measured by RT-PCR and immunohistochemistry. Thrombus resolution was quantified in mice treated with pan PHD inhibitors AKB-4924 and JNJ-42041935 or inducible all-cell Phd2 knockouts by micro-computed tomography, 3D high frequency ultrasound or endpoint histology. RESULTS Resolving venous thrombi demonstrated significant temporal gene expression profiles for PHD2 and PHD3 (P < 0.05), but not for PHD1. PHD isoform protein expression was localised to early and late inflammatory cell infiltrates. Treatment with selective pan PHD inhibitors, AKB-4924 and JNJ-42041935, enhanced thrombus neovascularisation (P < 0.05), but had no significant effect on overall thrombus resolution. Thrombus resolution or its markers, macrophage accumulation and neovascularisation, did not differ significantly in inducible all-cell homozygous Phd2 knockouts compared with littermate controls (P > 0.05). CONCLUSIONS This data suggests that PHD-mediated thrombus neovascularisation has a limited role in the resolution of venous thrombi. Directly targeting angiogenesis alone may not be a viable therapeutic strategy to enhance venous thrombus resolution.
Collapse
|
35
|
Borton AH, Benson BL, Neilson LE, Saunders A, Alaiti MA, Huang AY, Jain MK, Proweller A, Ramirez-Bergeron DL. Aryl Hydrocarbon Receptor Nuclear Translocator in Vascular Smooth Muscle Cells Is Required for Optimal Peripheral Perfusion Recovery. J Am Heart Assoc 2018; 7:e009205. [PMID: 29858371 PMCID: PMC6015385 DOI: 10.1161/jaha.118.009205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 05/02/2018] [Indexed: 11/23/2022]
Abstract
BACKGROUND Limb ischemia resulting from peripheral vascular disease is a common cause of morbidity. Vessel occlusion limits blood flow, creating a hypoxic environment that damages distal tissue, requiring therapeutic revascularization. Hypoxia-inducible factors (HIFs) are key transcriptional regulators of hypoxic vascular responses, including angiogenesis and arteriogenesis. Despite vascular smooth muscle cells' (VSMCs') importance in vessel integrity, little is known about their functional responses to hypoxia in peripheral vascular disease. This study investigated the role of VSMC HIF in mediating peripheral ischemic responses. METHODS AND RESULTS We used ArntSMKO mice with smooth muscle-specific deletion of aryl hydrocarbon receptor nuclear translocator (ARNT, HIF-1β), required for HIF transcriptional activity, in a femoral artery ligation model of peripheral vascular disease. ArntSMKO mice exhibit impaired perfusion recovery despite normal collateral vessel dilation and angiogenic capillary responses. Decreased blood flow manifests in extensive tissue damage and hypoxia in ligated limbs of ArntSMKO mice. Furthermore, loss of aryl hydrocarbon receptor nuclear translocator changes the proliferation, migration, and transcriptional profile of cultured VSMCs. ArntSMKO mice display disrupted VSMC morphologic features and wrapping around arterioles and increased vascular permeability linked to decreased local blood flow. CONCLUSIONS Our data demonstrate that traditional vascular remodeling responses are insufficient to provide robust peripheral tissue reperfusion in ArntSMKO mice. In all, this study highlights HIF responses to hypoxia in arteriole VSMCs critical for the phenotypic and functional stability of vessels that aid in the recovery of blood flow in ischemic peripheral tissues.
Collapse
MESH Headings
- Animals
- Aryl Hydrocarbon Receptor Nuclear Translocator/biosynthesis
- Aryl Hydrocarbon Receptor Nuclear Translocator/genetics
- Blotting, Western
- Cells, Cultured
- Disease Models, Animal
- Gene Expression Regulation
- Immunohistochemistry
- Ischemia/genetics
- Ischemia/metabolism
- Ischemia/pathology
- Lower Extremity/blood supply
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Microscopy, Confocal
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Peripheral Vascular Diseases/genetics
- Peripheral Vascular Diseases/metabolism
- Peripheral Vascular Diseases/pathology
- RNA/genetics
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
Affiliation(s)
- Anna Henry Borton
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH
- Case Cardiovascular Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH
- Harrington Heart and Vascular Institute, University Hospitals, Cleveland, OH
| | - Bryan L Benson
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Lee E Neilson
- Neurological Institute, University Hospitals, Cleveland, OH
| | - Ashley Saunders
- Case Cardiovascular Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH
- Harrington Heart and Vascular Institute, University Hospitals, Cleveland, OH
| | - M Amer Alaiti
- Case Cardiovascular Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH
- Harrington Heart and Vascular Institute, University Hospitals, Cleveland, OH
| | - Alex Y Huang
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH
- Angie Fowler Adolescent and Young Adult Cancer Institute and University Hospitals Rainbow Babies and Children's Hospital University Hospitals, Cleveland, OH
| | - Mukesh K Jain
- Case Cardiovascular Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH
- Harrington Heart and Vascular Institute, University Hospitals, Cleveland, OH
| | - Aaron Proweller
- Case Cardiovascular Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH
- Harrington Heart and Vascular Institute, University Hospitals, Cleveland, OH
| | - Diana L Ramirez-Bergeron
- Case Cardiovascular Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH
- Harrington Heart and Vascular Institute, University Hospitals, Cleveland, OH
| |
Collapse
|
36
|
Jain T, Nikolopoulou EA, Xu Q, Qu A. Hypoxia inducible factor as a therapeutic target for atherosclerosis. Pharmacol Ther 2018; 183:22-33. [DOI: 10.1016/j.pharmthera.2017.09.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
37
|
Quiescence of adult oligodendrocyte precursor cells requires thyroid hormone and hypoxia to activate Runx1. Sci Rep 2017; 7:1019. [PMID: 28432293 PMCID: PMC5430791 DOI: 10.1038/s41598-017-01023-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 03/23/2017] [Indexed: 12/15/2022] Open
Abstract
The adult mammalian central nervous system (CNS) contains a population of slowly dividing oligodendrocyte precursor cells (OPCs), i.e., adult OPCs, which supply new oligodendrocytes throughout the life of animal. While adult OPCs develop from rapidly dividing perinatal OPCs, the mechanisms underlying their quiescence remain unknown. Here, we show that perinatal rodent OPCs cultured with thyroid hormone (TH) under hypoxia become quiescent and acquire adult OPCs-like characteristics. The cyclin-dependent kinase inhibitor p15/INK4b plays crucial roles in the TH-dependent cell cycle deceleration in OPCs under hypoxia. Klf9 is a direct target of TH-dependent signaling. Under hypoxic conditions, hypoxia-inducible factors mediates runt-related transcription factor 1 activity to induce G1 arrest in OPCs through enhancing TH-dependent p15/INK4b expression. As adult OPCs display phenotypes of adult somatic stem cells in the CNS, the current results shed light on environmental requirements for the quiescence of adult somatic stem cells during their development from actively proliferating stem/progenitor cells.
Collapse
|
38
|
Qi X, Liu Y, Ding ZY, Cao JQ, Huang JH, Zhang JY, Jia WT, Wang J, Liu CS, Li XL. Synergistic effects of dimethyloxallyl glycine and recombinant human bone morphogenetic protein-2 on repair of critical-sized bone defects in rats. Sci Rep 2017; 7:42820. [PMID: 28230059 PMCID: PMC5322391 DOI: 10.1038/srep42820] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/16/2017] [Indexed: 12/23/2022] Open
Abstract
In bone remodeling, osteogenesis is closely coupled to angiogenesis. Bone tissue engineering using multifunctional bioactive materials is a promising technique which has the ability to simultaneously stimulate osteogenesis and angiogenesis for repair of bone defects. We developed mesoporous bioactive glass (MBG)-doped poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) composite scaffolds as delivery vehicle. Two bioactive molecules, dimethyloxalylglycine (DMOG), a small-molecule angiogenic drug, and recombinant human bone morphogenetic protein-2 (rhBMP-2), an osteoinductive growth factor, were co-incorporated into the scaffold. The synergistic effects of DMOG and rhBMP-2 released in the composite scaffolds on osteogenic and angiogenic differentiation of hBMSCs were investigated using real-time quantitative polymerase chain reaction and western blotting. Moreover, in vivo studies were conducted to observe bone regeneration and vascular formation of critical-sized bone defects in rats using micro-computed tomography, histological analyses, Microfil® perfusion, fluorescence labeling, and immunohistochemical analysis. The results showed that DMOG and rhBMP-2 released in the MBG-PHBHHx scaffolds did exert synergistic effects on the osteogenic and angiogenic differentiation of hBMSCs. Moreover, DMOG and rhBMP-2 produced significant increases in newly-formed bone and neovascularization of calvarial bone defects in rats. It is concluded that the co-delivery strategy of both rhBMP-2 and DMOG can significantly improve the critical-sized bone regeneration.
Collapse
Affiliation(s)
- Xin Qi
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, PR China
| | - Yang Liu
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China
| | - Zhen-Yu Ding
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, PR China
| | - Jia-Qing Cao
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, PR China
| | - Jing-Huan Huang
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, PR China
| | - Jie-Yuan Zhang
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, PR China
| | - Wei-Tao Jia
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, PR China
| | - Jing Wang
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China
| | - Chang-Sheng Liu
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China.,The State Key Laboratory for Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China.,Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China
| | - Xiao-Lin Li
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, PR China
| |
Collapse
|
39
|
Zhang L, Sun Z, Ren P, You M, Zhang J, Fang L, Wang J, Chen Y, Yan F, Zheng H, Xie M. Localized Delivery of shRNA against PHD2 Protects the Heart from Acute Myocardial Infarction through Ultrasound-Targeted Cationic Microbubble Destruction. Theranostics 2017; 7:51-66. [PMID: 28042316 PMCID: PMC5196885 DOI: 10.7150/thno.16074] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 08/30/2016] [Indexed: 01/22/2023] Open
Abstract
Hypoxia-inducible factor 1α (HIF-1α) plays a critical protective role in ischemic heart disease. Under normoxic conditions, HIF-1α was degraded by oxygen-dependent prolyl hydroxylase-2 (PHD2). Gene therapy has become a promising strategy to inhibit the degradation of HIF-1α and to improve cardiac function after ischemic injury. However, conventional gene delivery systems are difficult to achieve a targeted and localized gene delivery into the ischemic myocardia. Here, we report the localized myocardial delivery of shRNA against PHD2 through ultrasound-targeted microbubble destruction (UTMD) for protection the heart from acute myocardial infarction. In this study, a novel cationic microbubble was fabricated by using of the thin-film hydration and sonication method. The resulting microbubbles had a 28.2 ± 2.21 mV surface zeta potential and could greatly improve DNA binding performance, achieving 17.81 ± 1.46 μg of DNA loading capacity per 5 × 108 microbubbles. Combined with these cationic microbubbles, UTMD-mediated gene delivery was evaluated and the gene transfection efficiency was optimized in the H9C2 cardiac cells. Knockdown of PHD2 gene was successfully realized by UTMD-mediated shPHD2 transfection, resulting in HIF-1α-dependent protective effects on H9C2 cells through increasing the expression of HIF-1α, VEGF and bFGF. We further employed UTMD-mediated shPHD2 transfection into the localized ischemic myocardia in a rat ischemia model, demonstrating significantly reduced infarct size and greatly improved the heart function. The silencing of PHD2 and the up-regulation of its downstream genes in the treated myocardia were confirmed. Histological analysis further revealed numbers of HIF-1α- and VEGF-, and CD31-positive cells/mm2 in the shPHD2-treated group were significantly greater than those in the sham or control vector groups (P < 0.05). In conclusion, our study provides a promising strategy to realize ultrasound-mediated localized myocardial shRNA delivery to protect the heart from acute myocardial infarction via cationic microbubbles.
Collapse
|
40
|
Badin PM, Sopariwala DH, Lorca S, Narkar VA. Muscle Arnt/Hif1β Is Dispensable in Myofiber Type Determination, Vascularization and Insulin Sensitivity. PLoS One 2016; 11:e0168457. [PMID: 28005939 PMCID: PMC5178999 DOI: 10.1371/journal.pone.0168457] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 12/01/2016] [Indexed: 02/07/2023] Open
Abstract
Aryl Hydrocarbon Receptor Nuclear Translocator/ hypoxia-inducible factor 1 beta (ARNT/ HIF1β), a member of bHLH-PAS family of transcriptional factors, plays a critical role in metabolic homeostasis, insulin resistance and glucose intolerance. The contributions of ARNT in pancreas, liver and adipose tissue to energy balance through gene regulation have been described. Surprisingly, the impact of ARNT signaling in the skeletal muscles, one of the major organs involved in glucose disposal, has not been investigated, especially in type II diabetes. Here we report that ARNT is expressed in the skeletal muscles, particularly in the energy-efficient oxidative slow-twitch myofibers, which are characterized by increased oxidative capacity, mitochondrial content, vascular supply and insulin sensitivity. However, muscle-specific deletion of ARNT did not change myofiber type distribution, oxidative capacity, mitochondrial content, capillarity, or the expression of genes associated with these features. Consequently, the lack of ARNT in the skeletal muscle did not affect weight gain, lean/fat mass, insulin sensitivity and glucose tolerance in lean mice, nor did it impact insulin resistance and glucose intolerance in high fat diet-induced obesity. Therefore, skeletal muscle ARNT is dispensable for controlling muscle fiber type and metabolic regulation, as well as diet-induced weight control, insulin sensitivity and glucose tolerance.
Collapse
Affiliation(s)
- Pierre-Marie Badin
- Metabolic and Degenerative Diseases, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, UTHealth, Houston, TX, United States of America
| | - Danesh H. Sopariwala
- Metabolic and Degenerative Diseases, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, UTHealth, Houston, TX, United States of America
| | - Sabina Lorca
- Metabolic and Degenerative Diseases, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, UTHealth, Houston, TX, United States of America
| | - Vihang A. Narkar
- Metabolic and Degenerative Diseases, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, UTHealth, Houston, TX, United States of America
- Integrative Biology and Pharmacology, McGovern Medical School, UTHealth, Houston, TX, United States of America
- Graduate School of Biomedical Sciences, McGovern Medical School, UTHealth, Houston, TX, United States of America
- * E-mail:
| |
Collapse
|
41
|
Hypoxia inducible factor stabilization improves defective ischemia-induced angiogenesis in a rodent model of chronic kidney disease. Kidney Int 2016; 91:616-627. [PMID: 27927598 DOI: 10.1016/j.kint.2016.09.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 08/24/2016] [Accepted: 09/15/2016] [Indexed: 12/17/2022]
Abstract
Chronic kidney disease (CKD) is associated with increased risk and worse prognosis of cardiovascular disease, including peripheral artery disease. An impaired angiogenic response to ischemia may contribute to poor outcomes of peripheral artery disease in patients with CKD. Hypoxia inducible factors (HIF) are master regulators of angiogenesis and therefore represent a promising target for therapeutic intervention. To test this we induced hind-limb ischemia in rats with CKD caused by 5/6 nephrectomy and administered two different treatments known to stabilize HIF protein in vivo: carbon monoxide and a pharmacological inhibitor of prolyl hydroxylation 2-(1-chloro-4- hydroxyisoquinoline-3-carboxamido) acetate (ICA). Expression levels of pro-angiogenic HIF target genes (Vegf, Vegf-r1, Vegf-r2, Ho-1) were measured by qRT-PCR. Capillary density was measured by CD31 immunofluorescence staining and HIF expression was evaluated by immunohistochemistry. Capillary density in ischemic skeletal muscle was significantly lower in CKD animals compared to sham controls. Rats with CKD showed significantly lower expression of HIF and all measured pro-angiogenic HIF target genes, including VEGF. Both HIF stabilizing treatments rescued HIF target gene expression in animals with CKD and led to significantly higher ischemia-induced capillary sprouting compared to untreated controls. ICA was effective regardless of whether it was administered before or after induction of ischemia and led to a HIF expression in skeletal muscle. Thus, impaired ischemia-induced angiogenesis in rats with CKD can be improved by HIF stabilization, even if started after onset of ischemia.
Collapse
|
42
|
Zhu ZH, Song WQ, Zhang CQ, Yin JM. Dimethyloxaloylglycine increases bone repair capacity of adipose-derived stem cells in the treatment of osteonecrosis of the femoral head. Exp Ther Med 2016; 12:2843-2850. [PMID: 27882083 PMCID: PMC5103711 DOI: 10.3892/etm.2016.3698] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 08/11/2016] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells have been widely studied to promote local bone regeneration of osteonecrosis of the femoral head (ONFH). Previous studies observed that dimethyloxaloylglycine (DMOG) enhanced the angiogenic and osteogenic activity of mesenchymal stem cells by activating the expression of hypoxia inducible factor-1α (HIF-1α), thereby improving the bone repair capacity of mesenchymal stem cells. In the present study, it was investigated whether DMOG could increase the bone repair capacity of adipose-derived stem cells (ASCs) in the treatment of ONFH. Western blot analysis was performed to detect HIF-1α protein expression in ASCs treated with different concentrations of DMOG. The results showed DMOG enhanced HIF-1α expression in ASCs in a dose-dependent manner at least for 7 days. Furthermore, DMOG-treated ASCs were transplanted into the necrotic area of a rabbit model of ONFH to treat the disease. Four weeks later, micro-computed tomography (CT) quantitative analysis showed that 58.8±7.4% of the necrotic area was regenerated in the DMOG-treated ASCs transplantation group, 45.5±3.4% in normal ASCs transplantation group, 25.2±2.8% in only core decompression group and 10.6±2.6% in the untreated group. Histological analysis showed that transplantation of DMOG-treated ASCs clearly improved the bone regeneration of the necrotic area compared with the other three groups. Micro-CT and immunohistochemical analysis demonstrated the revasculation of the necrotic area were also increased significantly in the DMOG-treated ASC group compared with the control groups. Thus, it is hypothesized that DMOG could increase the bone repair capacity of ASCs through enhancing HIF-1α expression in the treatment of ONFH.
Collapse
Affiliation(s)
- Zhen-Hong Zhu
- Department of Orthopedic Surgery, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| | - Wen-Qi Song
- Department of Orthopedic Surgery, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| | - Chang-Qing Zhang
- Department of Orthopedic Surgery, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| | - Ji-Min Yin
- Department of Orthopedic Surgery, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| |
Collapse
|
43
|
Salvi A, Thanabalu T. Expression of N-WASP is regulated by HiF1α through the hypoxia response element in the N-WASP promoter. Biochem Biophys Rep 2016; 9:13-21. [PMID: 28955984 PMCID: PMC5614722 DOI: 10.1016/j.bbrep.2016.10.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 10/05/2016] [Accepted: 10/24/2016] [Indexed: 12/20/2022] Open
Abstract
Cancer cell migration and invasion involves temporal and spatial regulation of actin cytoskeleton reorganization, which is regulated by the WASP family of proteins such as N-WASP (Neural- Wiskott Aldrich Syndrome Protein). We have previously shown that expression of N-WASP was increased under hypoxic conditions. In order to characterize the regulation of N-WASP expression, we constructed an N-WASP promoter driven GFP reporter construct, N-WASPpro-GFP. Transfection of N-WASPpro-GFP construct and plasmid expressing HiF1α (Hypoxia Inducible factor 1α) enhanced the expression of GFP suggesting that increased expression of N-WASP under hypoxic conditions is mediated by HiF1α. Sequence analysis of the N-WASP promoter revealed the presence of two hypoxia response elements (HREs) characterized by the consensus sequence 5′-GCGTG-3′ at -132 bp(HRE1) and at -662 bp(HRE2) relative to transcription start site (TSS). Site-directed mutagenesis of HRE1(-132) but not HRE2(-662) abolished the HiF1α induced activation of N-WASP promoter. Similarly ChIP assay demonstrated that HiF1α bound to HRE1(-132) but not HRE2(-662) under hypoxic condition. MDA-MB-231 cells but not MDA-MB-231KD cells treated with hypoxia mimicking agent, DMOG showed enhanced gelatin degradation. Similarly MDA-MB-231KD(N-WASPpro-N-WASPR) cells expressing N-WASPR under the transcriptional regulation of WT N-WASPpro but not MDA-MB-231KD(N-WASPproHRE1-N-WASPR) cells expressing N-WASPR under the transcriptional regulation of N-WASPproHRE1 showed enhanced gelatin degradation when treated with DMOG. Thus indicating the importance of N-WASP in hypoxia induced invadopodia formation. Thus, our data demonstrates that hypoxia-induced activation of N-WASP expression is mediated by interaction of HiF1α with the HRE1(-132) and explains the role of N-WASP in hypoxia induced invadopodia formation. Expression of N-WASP expression is enhanced under hypoxia conditions. N-WASP is essential for hypoxia induced invasion. HiF1α binds to hypoxia response element (HRE) in N-WASP promoter. HRE1 is essential for hypoxia induced invadopodia activity
Collapse
Affiliation(s)
- Amrita Salvi
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | - Thirumaran Thanabalu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| |
Collapse
|
44
|
Egginton S, Hussain A, Hall-Jones J, Chaudhry B, Syeda F, Glen KE. Shear stress-induced angiogenesis in mouse muscle is independent of the vasodilator mechanism and quickly reversible. Acta Physiol (Oxf) 2016; 218:153-166. [PMID: 27261201 PMCID: PMC5082534 DOI: 10.1111/apha.12728] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 10/10/2015] [Accepted: 06/01/2016] [Indexed: 11/29/2022]
Abstract
AIM Is modulation of skeletal muscle capillary supply by altering blood flow due to a presumptive shear stress response per se, or dependent on the vasodilator mechanism? METHODS The response to four different vasodilators, and cotreatment with blockers of NO and prostaglandin synthesis, was compared. Femoral artery blood flow was correlated with capillary-to-fibre ratio (C:F) and protein levels of putative angiogenic compounds. RESULTS All vasodilators induced a similar increase in blood flow after 14 days, with a similar effect on C:F (1.62 ± 0.05, 1.60 ± 0.01, 1.57 ± 0.06, 1.57 ± 0.07, respectively, all P < 0.05 vs. control 1.20 ± 0.01). Concomitant inhibitors revealed differential effects on blood flow and angiogenesis, demonstrating that a similar response may have different signalling origins. The time course of this response with the most commonly used vasodilator, prazosin, showed that blood flow increased from 0.40 mL min-1 to 0.61 mL min-1 by 28 days (P < 0.05), dropped within 1 week after the cessation of treatment (0.54 mL min-1 ; P < 0.05) and returned to control levels by 6 weeks. In parallel with FBF, capillary rarefaction began within 1 week (P < 0.05), giving C:F values similar to control by 2 weeks. Of the dominant signalling pathways, prazosin decreased muscle VEGF, but increased its cognate receptor Flk-1 (both P < 0.01); levels of eNOS varied with blood flow (P < 0.05), and Ang-1 initially increased, while its receptor Tie-2 was unchanged, with only modest changes in the antiangiogenic factor TSP-1. CONCLUSION Hyperaemia-induced angiogenesis, likely in response to elevated shear stress, is independent of the vasodilator involved, with a rapid induction and quick regression following the stimulus withdrawal.
Collapse
Affiliation(s)
- S. Egginton
- School of Biomedical Sciences; University of Leeds; Leeds UK
| | - A. Hussain
- Science Department; Denefield School; Reading UK
- Centre for Cardiovascular Sciences; Medical School; University of Birmingham; Birmingham UK
| | - J. Hall-Jones
- Centre for Cardiovascular Sciences; Medical School; University of Birmingham; Birmingham UK
| | - B. Chaudhry
- Centre for Cardiovascular Sciences; Medical School; University of Birmingham; Birmingham UK
| | - F. Syeda
- Centre for Cardiovascular Sciences; Medical School; University of Birmingham; Birmingham UK
| | - K. E. Glen
- Centre for Biological Engineering; Loughborough University; Loughborough UK
| |
Collapse
|
45
|
Stoehr A, Yang Y, Patel S, Evangelista AM, Aponte A, Wang G, Liu P, Boylston J, Kloner PH, Lin Y, Gucek M, Zhu J, Murphy E. Prolyl hydroxylation regulates protein degradation, synthesis, and splicing in human induced pluripotent stem cell-derived cardiomyocytes. Cardiovasc Res 2016; 110:346-58. [PMID: 27095734 DOI: 10.1093/cvr/cvw081] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 04/12/2016] [Indexed: 12/12/2022] Open
Abstract
AIMS Protein hydroxylases are oxygen- and α-ketoglutarate-dependent enzymes that catalyse hydroxylation of amino acids such as proline, thus linking oxygen and metabolism to enzymatic activity. Prolyl hydroxylation is a dynamic post-translational modification that regulates protein stability and protein-protein interactions; however, the extent of this modification is largely uncharacterized. The goals of this study are to investigate the biological consequences of prolyl hydroxylation and to identify new targets that undergo prolyl hydroxylation in human cardiomyocytes. METHODS AND RESULTS We used human induced pluripotent stem cell-derived cardiomyocytes in combination with pulse-chase amino acid labelling and proteomics to analyse the effects of prolyl hydroxylation on protein degradation and synthesis. We identified 167 proteins that exhibit differences in degradation with inhibition of prolyl hydroxylation by dimethyloxalylglycine (DMOG); 164 were stabilized. Proteins involved in RNA splicing such as serine/arginine-rich splicing factor 2 (SRSF2) and splicing factor and proline- and glutamine-rich (SFPQ) were stabilized with DMOG. DMOG also decreased protein translation of cytoskeletal and sarcomeric proteins such as α-cardiac actin. We searched the mass spectrometry data for proline hydroxylation and identified 134 high confidence peptides mapping to 78 unique proteins. We identified SRSF2, SFPQ, α-cardiac actin, and cardiac titin as prolyl hydroxylated. We identified 29 prolyl hydroxylated proteins that showed a significant difference in either protein degradation or synthesis. Additionally, we performed next-generation RNA sequencing and showed that the observed decrease in protein synthesis was not due to changes in mRNA levels. Because RNA splicing factors were prolyl hydroxylated, we investigated splicing ± inhibition of prolyl hydroxylation and detected 369 alternative splicing events, with a preponderance of exon skipping. CONCLUSIONS This study provides the first extensive characterization of the cardiac prolyl hydroxylome and demonstrates that inhibition of α-ketoglutarate hydroxylases alters protein stability, translation, and splicing.
Collapse
Affiliation(s)
- Andrea Stoehr
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yanqin Yang
- DNA Sequencing and Genomics Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sajni Patel
- Proteomics Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alicia M Evangelista
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Angel Aponte
- Proteomics Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Guanghui Wang
- Proteomics Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Poching Liu
- DNA Sequencing and Genomics Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jennifer Boylston
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Philip H Kloner
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yongshun Lin
- iPS Cell Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Marjan Gucek
- Proteomics Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jun Zhu
- DNA Sequencing and Genomics Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Elizabeth Murphy
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
46
|
Liu XL, Lu J, Xing J. Stabilization of HIF-1α modulates VEGF and Caspase-3 in the hippocampus of rats following transient global ischemia induced by asphyxial cardiac arrest. Life Sci 2016; 151:243-249. [DOI: 10.1016/j.lfs.2016.03.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 02/22/2016] [Accepted: 03/01/2016] [Indexed: 12/31/2022]
|
47
|
Ge T, Yu Q, Liu W, Cong L, Liu L, Wang Y, Zhou L, Lin D. Characterization of bone marrow-derived mesenchymal stem cells from dimethyloxallyl glycine-preconditioned mice: Evaluation of the feasibility of dimethyloxallyl glycine as a mobilization agent. Mol Med Rep 2016; 13:3498-506. [PMID: 26935134 PMCID: PMC4805059 DOI: 10.3892/mmr.2016.4945] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 01/27/2016] [Indexed: 12/23/2022] Open
Abstract
The prolyl hydroxylase inhibitor dimethyloxallyl glycine (DMOG) has been increasingly studied with regards to stem cell therapy. Previous studies have demonstrated that endogenous mesenchymal stem cells (MSCs) may be mobilized into peripheral circulation by pharmaceutical preconditioning. In addition, our previous study confirmed that DMOG, as a novel mobilization agent, could induce mouse/rat MSC migration into peripheral blood circulation. Therefore, the present study conducted studies to characterize bone marrow-derived MSCs (BM-MSCs) collected from mice following DMOG intraperitoneal injection. The surface antigen immune phenotype, differentiation capability, proliferative ability, migratory capacity and paracrine capacity of the BM-MSCs collected from DMOG-preconditioned mice (DBM-MSCs) or normal saline-treated mice (NBM-MSCs) were evaluated by means of flow cytometry, differentiation induction, Cell Counting kit-8, Transwell assay and enzyme-linked immunosorbent assay, respectively. Compared with NBM-MSCs, DBM-MSCs displayed a similar immune phenotype and multilineage differentiation capability, reduced proliferative ability and migratory capacity, and similar transforming growth factor and platelet-derived growth factor secretion capacity. These results provide a novel insight into the biological properties of BM-MSCs from mice preconditioned with DMOG. DBM-MSCs exhibited slightly distinct characteristics to NBM-MSCs; however, they may have therapeutic potential for future stem cell therapy. In addition, the present study suggested that DMOG may be used as a novel mobilization agent in future clinical trials as no adverse effects were observed.
Collapse
Affiliation(s)
- Tingting Ge
- Department of Bioengineering, College of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Qin Yu
- Department of Bioengineering, College of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Wei Liu
- Department of Bioengineering, College of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Li Cong
- Department of Pediatrics, The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Lizhen Liu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Medical School of Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Yan Wang
- Department of Pediatrics, The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Liping Zhou
- Department of Bioengineering, College of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Deju Lin
- Department of Bioengineering, College of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| |
Collapse
|
48
|
Min JW, Hu JJ, He M, Sanchez RM, Huang WX, Liu YQ, Bsoul NB, Han S, Yin J, Liu WH, He XH, Peng BW. Vitexin reduces hypoxia-ischemia neonatal brain injury by the inhibition of HIF-1alpha in a rat pup model. Neuropharmacology 2015; 99:38-50. [PMID: 26187393 DOI: 10.1016/j.neuropharm.2015.07.007] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 06/16/2015] [Accepted: 07/07/2015] [Indexed: 01/25/2023]
Abstract
Previous studies have demonstrated that the early suppression of HIF-1α after hypoxia-ischemia (HI) injury provides neuroprotection. Vitexin (5, 7, 4-trihydroxyflavone-8-glucoside), an HIF-1α inhibitor, is a c-glycosylated flavone that has been identified in medicinal plants. Therefore, we hypothesized that treatment with vitexin would protect against HI brain injury. Newborn rat pups were subjected to unilateral carotid artery ligation followed by 2.5 h of hypoxia (8% O2 at 37 °C). Vitexin (30, 45 or 60 mg/kg) was administered intraperitoneally at 5 min or 3 h after HI. Vitexin, administered 5 min after HI, was neuroprotective as seen by decreased infarct volume evaluated at 48 h post-HI. This neuroprotection was removed when vitexin was administered 3 h after HI. Neuronal cell death, blood-brain barrier (BBB) integrity, brain edema, HIF-1α and VEGF protein levels were evaluated using a combination of Nissl staining, IgG staining, brain water content, immunohistochemistry and Western blot at 24 and 48 h after HI. The long-term effects of vitexin were evaluated by brain atrophy measurement, Nissl staining and neurobehavioral tests. Vitexin (45 mg/kg) ameliorated brain edema, BBB disruption and neuronal cell death; Upregulation of HIF-1α by dimethyloxalylglycine (DMOG) increased the BBB permeability and brain edema compared to HI alone. Vitexin attenuated the increase in HIF-1α and VEGF. Vitexin also had long-term effects of protecting against the loss of ipsilateral brain and improveing neurobehavioral outcomes. In conclusion, our data indicate early HIF-1α inhibition with vitexin provides both acute and long-term neuroprotection in the developing brain after neonatal HI injury.
Collapse
Affiliation(s)
- Jia-Wei Min
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disorder, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Jiang-Jian Hu
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disorder, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Miao He
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disorder, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Russell M Sanchez
- Department of Surgery, College of Medicine, Texas A&M Health Science Center, Neuroscience Institute, Scott & White Hospital, & Central Texas Veterans Health Care System, Temple, TX, USA
| | - Wen-Xian Huang
- Department of Pathophysiology, Hubei Provincial Key Laboratory of Developmentally Originated Disorder, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Yu-Qiang Liu
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disorder, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Najeeb Bassam Bsoul
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disorder, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Song Han
- Department of Pathophysiology, Hubei Provincial Key Laboratory of Developmentally Originated Disorder, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Jun Yin
- Department of Pathophysiology, Hubei Provincial Key Laboratory of Developmentally Originated Disorder, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Wan-Hong Liu
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Xiao-Hua He
- Department of Pathophysiology, Hubei Provincial Key Laboratory of Developmentally Originated Disorder, School of Basic Medical Sciences, Wuhan University, Wuhan, China.
| | - Bi-Wen Peng
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disorder, School of Basic Medical Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
49
|
Hypoxia-Inducible Factor-1 in Physiological and Pathophysiological Angiogenesis: Applications and Therapies. BIOMED RESEARCH INTERNATIONAL 2015; 2015:549412. [PMID: 26146622 PMCID: PMC4471260 DOI: 10.1155/2015/549412] [Citation(s) in RCA: 408] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 04/10/2015] [Accepted: 04/17/2015] [Indexed: 02/07/2023]
Abstract
The cardiovascular system ensures the delivery of oxygen and nutrients to all cells, tissues, and organs. Under extended exposure to reduced oxygen levels, cells are able to survive through the transcriptional activation of a series of genes that participate in angiogenesis, glucose metabolism, and cell proliferation. The oxygen-sensitive transcriptional activator HIF-1 (hypoxia-inducible factor-1) is a key transcriptional mediator of the response to hypoxic conditions. The HIF-1 pathway was found to be a master regulator of angiogenesis. Whether the process is physiological or pathological, HIF-1 seems to participate in vasculature formation by synergistic correlations with other proangiogenic factors such as VEGF (vascular endothelial growth factor), PlGF (placental growth factor), or angiopoietins. Considering the important contributions of HIF-1 in angiogenesis and vasculogenesis, it should be considered a promising target for treating ischaemic diseases or cancer. In this review, we discuss the roles of HIF-1 in both physiological/pathophysiological angiogenesis and potential strategies for clinical therapy.
Collapse
|
50
|
Tomlinson RE, Silva MJ. HIF-1α regulates bone formation after osteogenic mechanical loading. Bone 2015; 73:98-104. [PMID: 25541207 PMCID: PMC4336830 DOI: 10.1016/j.bone.2014.12.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 11/22/2014] [Accepted: 12/16/2014] [Indexed: 01/21/2023]
Abstract
HIF-1 is a transcription factor typically associated with angiogenic gene transcription under hypoxic conditions. In this study, mice with HIF-1α deleted in the osteoblast lineage (ΔHIF-1α) were subjected to damaging or non-damaging mechanical loading known to produce woven or lamellar bone, respectively, at the ulnar diaphysis. By microCT, ΔHIF-1α mice produced significantly less woven bone than wild type (WT) mice 7days after damaging loading. This decrease in woven bone volume and extent was accompanied by a significant decrease in vascularity measured by immunohistochemistry against vWF. Additionally, osteocytes, rather than osteoblasts, appear to be the main bone cell expressing HIF-1α following damaging loading. In contrast, 10days after non-damaging mechanical loading, dynamic histomorphometry measurements demonstrated no impairment in loading-induced lamellar bone formation in ΔHIF-1α mice. In fact, both non-loaded and loaded ulnae from ΔHIF-1α mice had increased bone formation compared with WT ulnae. When comparing the relative increase in periosteal bone formation in loaded vs. non-loaded ulnae, it was not different between ΔHIF-1α mice and controls. There were no significant differences observed between WT and ΔHIF-1α mice in endosteal bone formation parameters. The increases in periosteal lamellar bone formation in ΔHIF-1α mice are attributed to non-angiogenic effects of the knockout. In conclusion, these results demonstrate that HIF-1α is a pro-osteogenic factor for woven bone formation after damaging loading, but an anti-osteogenic factor for lamellar bone formation under basal conditions and after non-damaging loading.
Collapse
Affiliation(s)
- Ryan E Tomlinson
- Departments of Orthopaedic Surgery and Biomedical Engineering, Musculoskeletal Research Center, Washington University in St. Louis, 425 S. Euclid Avenue, St. Louis, MO 63110, USA.
| | - Matthew J Silva
- Departments of Orthopaedic Surgery and Biomedical Engineering, Musculoskeletal Research Center, Washington University in St. Louis, 425 S. Euclid Avenue, St. Louis, MO 63110, USA.
| |
Collapse
|