1
|
Ucar H, Watanabe S, Noguchi J, Morimoto Y, Iino Y, Yagishita S, Takahashi N, Kasai H. Mechanical actions of dendritic-spine enlargement on presynaptic exocytosis. Nature 2021; 600:686-689. [PMID: 34819666 DOI: 10.1038/s41586-021-04125-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 10/12/2021] [Indexed: 11/09/2022]
Abstract
Synaptic transmission involves cell-to-cell communication at the synaptic junction between two neurons, and chemical and electrical forms of this process have been extensively studied. In the brain, excitatory glutamatergic synapses are often made on dendritic spines that enlarge during learning1-5. As dendritic spines and the presynaptic terminals are tightly connected with the synaptic cleft6, the enlargement may have mechanical effects on presynaptic functions7. Here we show that fine and transient pushing of the presynaptic boutons with a glass pipette markedly promotes both the evoked release of glutamate and the assembly of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins8-12-as measured by Förster resonance transfer (FRET) and fluorescence lifetime imaging-in rat slice culture preparations13. Both of these effects persisted for more than 20 minutes. The increased presynaptic FRET was independent of cytosolic calcium (Ca2+), but dependent on the assembly of SNARE proteins and actin polymerization in the boutons. Notably, a low hypertonic solution of sucrose (20 mM) had facilitatory effects on both the FRET and the evoked release without inducing spontaneous release, in striking contrast with a high hypertonic sucrose solution (300 mM), which induced exocytosis by itself14. Finally, spine enlargement induced by two-photon glutamate uncaging enhanced the evoked release and the FRET only when the spines pushed the boutons by their elongation. Thus, we have identified a mechanosensory and transduction mechanism15 in the presynaptic boutons, in which the evoked release of glutamate is enhanced for more than 20 min.
Collapse
Affiliation(s)
- Hasan Ucar
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan.,International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Tokyo, Japan
| | - Satoshi Watanabe
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Jun Noguchi
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Yuichi Morimoto
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan.,International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Tokyo, Japan
| | - Yusuke Iino
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan.,International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Tokyo, Japan
| | - Sho Yagishita
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan.,International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Tokyo, Japan
| | - Noriko Takahashi
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Physiology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Haruo Kasai
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan. .,International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
2
|
Tse A, Lee AK, Takahashi N, Gong A, Kasai H, Tse FW. Strong stimulation triggers full fusion exocytosis and very slow endocytosis of the small dense core granules in carotid glomus cells. J Neurogenet 2018; 32:267-278. [PMID: 30484390 DOI: 10.1080/01677063.2018.1497629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Chemosensory glomus cells of the carotid bodies release transmitters, including ATP and dopamine mainly via the exocytosis of small dense core granules (SDCGs, vesicular diameter of ∼100 nm). Using carbon-fiber amperometry, we showed previously that with a modest uniform elevation in cytosolic Ca2+ concentration ([Ca2+]i of ∼0.5 µM), SDCGs of rat glomus cells predominantly underwent a "kiss-and-run" mode of exocytosis. Here, we examined whether a larger [Ca2+]i rise influenced the mode of exocytosis. Activation of voltage-gated Ca2+ channels by a train of voltage-clamped depolarizations which elevated [Ca2+]i to ∼1.6 μM increased the cell membrane capacitance by ∼2.5%. At 30 s after such a stimulus, only 5% of the added membrane was retrieved. Flash photolysis of caged-Ca2+ (which elevated [Ca2+]i to ∼16 μM) increased cell membrane capacitance by ∼13%, and only ∼30% of the added membrane was retrieved at 30 s after the UV flash. When exocytosis and endocytosis were monitored using the two-photon excitation and extracellular polar tracer (TEP) imaging of FM1-43 fluorescence in conjunction with photolysis of caged Ca2+, almost uniform exocytosis was detected over the cell's entire surface and it was followed by slow endocytosis. Immunocytochemistry showed that the cytoplasmic densities of dynamin I, II and clathrin (key proteins that mediate endocytosis) in glomus cells were less than half of those in adrenal chromaffin cells, suggesting that a lower expression of endocytotic machinery may underlie the slow endocytosis in glomus cells. An analysis of the relative change in the signals from two fluorescent dyes that simultaneously monitored the addition of vesicular volume and plasma membrane surface area, suggested that with an intense stimulus, SDCGs of glomus cells underwent full fusion without any significant "compound" exocytosis. Therefore, during a severe hypoxic challenge, glomus granules undergo full fusion for a more complete release of transmitters.
Collapse
Affiliation(s)
- Amy Tse
- a Department of Pharmacology and Neuroscience and Metal Health Institute , University of Alberta , Edmonton , Canada
| | - Andy K Lee
- a Department of Pharmacology and Neuroscience and Metal Health Institute , University of Alberta , Edmonton , Canada
| | - Noriko Takahashi
- b Department of Physiology , Kitasato University School of Medicine , Sagamihara , Japan
| | - Alex Gong
- a Department of Pharmacology and Neuroscience and Metal Health Institute , University of Alberta , Edmonton , Canada
| | - Haruo Kasai
- c Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine , The University of Tokyo , Bunkyo-ku , Japan.,d International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo , Bunkyo-ku , Japan
| | - Frederick W Tse
- a Department of Pharmacology and Neuroscience and Metal Health Institute , University of Alberta , Edmonton , Canada
| |
Collapse
|
3
|
Asano S, Nemoto T, Kitayama T, Harada K, Zhang J, Harada K, Tanida I, Hirata M, Kanematsu T. Phospholipase C-related catalytically inactive protein (PRIP) controls KIF5B-mediated insulin secretion. Biol Open 2014; 3:463-74. [PMID: 24812354 PMCID: PMC4058080 DOI: 10.1242/bio.20147591] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously reported that phospholipase C-related catalytically inactive protein (PRIP)-knockout mice exhibited hyperinsulinemia. Here, we investigated the role of PRIP in insulin granule exocytosis using Prip-knockdown mouse insulinoma (MIN6) cells. Insulin release from Prip-knockdown MIN6 cells was higher than that from control cells, and Prip knockdown facilitated movement of GFP-phogrin-labeled insulin secretory vesicles. Double-immunofluorescent staining and density step-gradient analyses showed that the KIF5B motor protein co-localized with insulin vesicles in Prip-knockdown MIN6 cells. Knockdown of GABAA-receptor-associated protein (GABARAP), a microtubule-associated PRIP-binding partner, by Gabarap silencing in MIN6 cells reduced the co-localization of insulin vesicles with KIF5B and the movement of vesicles, resulting in decreased insulin secretion. However, the co-localization of KIF5B with microtubules was not altered in Prip- and Gabarap-knockdown cells. The presence of unbound GABARAP, freed either by an interference peptide or by Prip silencing, in MIN6 cells enhanced the co-localization of insulin vesicles with microtubules and promoted vesicle mobility. Taken together, these data demonstrate that PRIP and GABARAP function in a complex to regulate KIF5B-mediated insulin secretion, providing new insights into insulin exocytic mechanisms.
Collapse
Affiliation(s)
- Satoshi Asano
- Department of Cellular and Molecular Pharmacology, Division of Basic Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Tomomi Nemoto
- Laboratory of Molecular and Cellular Biophysics, Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0020, Japan
| | - Tomoya Kitayama
- Department of Cellular and Molecular Pharmacology, Division of Basic Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Kae Harada
- Department of Cellular and Molecular Pharmacology, Division of Basic Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Jun Zhang
- Department of Cellular and Molecular Pharmacology, Division of Basic Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Kana Harada
- Department of Cellular and Molecular Pharmacology, Division of Basic Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Isei Tanida
- Laboratory of Biomembranes, Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Masato Hirata
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Takashi Kanematsu
- Department of Cellular and Molecular Pharmacology, Division of Basic Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| |
Collapse
|
4
|
Multiple roles for the actin cytoskeleton during regulated exocytosis. Cell Mol Life Sci 2012; 70:2099-121. [PMID: 22986507 DOI: 10.1007/s00018-012-1156-5] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 08/28/2012] [Accepted: 08/30/2012] [Indexed: 01/01/2023]
Abstract
Regulated exocytosis is the main mechanism utilized by specialized secretory cells to deliver molecules to the cell surface by virtue of membranous containers (i.e., secretory vesicles). The process involves a series of highly coordinated and sequential steps, which include the biogenesis of the vesicles, their delivery to the cell periphery, their fusion with the plasma membrane, and the release of their content into the extracellular space. Each of these steps is regulated by the actin cytoskeleton. In this review, we summarize the current knowledge regarding the involvement of actin and its associated molecules during each of the exocytic steps in vertebrates, and suggest that the overall role of the actin cytoskeleton during regulated exocytosis is linked to the architecture and the physiology of the secretory cells under examination. Specifically, in neurons, neuroendocrine, endocrine, and hematopoietic cells, which contain small secretory vesicles that undergo rapid exocytosis (on the order of milliseconds), the actin cytoskeleton plays a role in pre-fusion events, where it acts primarily as a functional barrier and facilitates docking. In exocrine and other secretory cells, which contain large secretory vesicles that undergo slow exocytosis (seconds to minutes), the actin cytoskeleton plays a role in post-fusion events, where it regulates the dynamics of the fusion pore, facilitates the integration of the vesicles into the plasma membrane, provides structural support, and promotes the expulsion of large cargo molecules.
Collapse
|
5
|
Hoppa MB, Jones E, Karanauskaite J, Ramracheya R, Braun M, Collins SC, Zhang Q, Clark A, Eliasson L, Genoud C, MacDonald PE, Monteith AG, Barg S, Galvanovskis J, Rorsman P. Multivesicular exocytosis in rat pancreatic beta cells. Diabetologia 2012; 55:1001-12. [PMID: 22189485 PMCID: PMC3296018 DOI: 10.1007/s00125-011-2400-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 11/17/2011] [Indexed: 11/04/2022]
Abstract
AIMS/HYPOTHESIS To establish the occurrence, modulation and functional significance of compound exocytosis in insulin-secreting beta cells. METHODS Exocytosis was monitored in rat beta cells by electrophysiological, biochemical and optical methods. The functional assays were complemented by three-dimensional reconstruction of confocal imaging, transmission and block face scanning electron microscopy to obtain ultrastructural evidence of compound exocytosis. RESULTS Compound exocytosis contributed marginally (<5% of events) to exocytosis elicited by glucose/membrane depolarisation alone. However, in beta cells stimulated by a combination of glucose and the muscarinic agonist carbachol, 15-20% of the release events were due to multivesicular exocytosis, but the frequency of exocytosis was not affected. The optical measurements suggest that carbachol should stimulate insulin secretion by ∼40%, similar to the observed enhancement of glucose-induced insulin secretion. The effects of carbachol were mimicked by elevating [Ca(2+)](i) from 0.2 to 2 μmol/l Ca(2+). Two-photon sulforhodamine imaging revealed exocytotic events about fivefold larger than single vesicles and that these structures, once formed, could persist for tens of seconds. Cells exposed to carbachol for 30 s contained long (1-2 μm) serpentine-like membrane structures adjacent to the plasma membrane. Three-dimensional electron microscopy confirmed the existence of fused multigranular aggregates within the beta cell, the frequency of which increased about fourfold in response to stimulation with carbachol. CONCLUSIONS/INTERPRETATION Although contributing marginally to glucose-induced insulin secretion, compound exocytosis becomes quantitatively significant under conditions associated with global elevation of cytoplasmic calcium. These findings suggest that compound exocytosis is a major contributor to the augmentation of glucose-induced insulin secretion by muscarinic receptor activation.
Collapse
Affiliation(s)
- M. B. Hoppa
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, OX3 7LJ UK
| | - E. Jones
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, OX3 7LJ UK
| | - J. Karanauskaite
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, OX3 7LJ UK
| | - R. Ramracheya
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, OX3 7LJ UK
| | - M. Braun
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, OX3 7LJ UK
| | - S. C. Collins
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, OX3 7LJ UK
| | - Q. Zhang
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, OX3 7LJ UK
| | - A. Clark
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, OX3 7LJ UK
| | - L. Eliasson
- Lund University Diabetes Centre, Clinical Research Centre, Malmo, Sweden
| | - C. Genoud
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - P. E. MacDonald
- Department of Pharmacology, University of Alberta, Edmonton, Canada
| | | | - S. Barg
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - J. Galvanovskis
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, OX3 7LJ UK
| | - P. Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, OX3 7LJ UK
| |
Collapse
|
6
|
|
7
|
Fernandez NA, Liang T, Gaisano HY. Live pancreatic acinar imaging of exocytosis using syncollin-pHluorin. Am J Physiol Cell Physiol 2011; 300:C1513-23. [PMID: 21307342 DOI: 10.1152/ajpcell.00433.2010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this report, a novel live acinar exocytosis imaging technique is described. An adenovirus was engineered, encoding for an endogenous zymogen granule (ZG) protein (syncollin) fused to pHluorin, a pH-dependent green fluorescent protein (GFP). Short-term culture of mouse acini infected with this virus permits exogenous adenoviral protein expression while retaining acinar secretory competence and cell polarity. The syncollin-pHluorin fusion protein was shown to be correctly localized to ZGs, and the pH-dependent fluorescence of pHluorin was retained. Coupled with the use of a spinning disk confocal microscope, the syncollin-pHluorin fusion protein exploits the ZG luminal pH changes that occur during exocytosis to visualize exocytic events of live acinar cells in real-time with high spatial resolution in three dimensions. Apical and basolateral exocytic events were observed on stimulation of acinar cells with maximal and supramaximal cholecystokinin concentrations, respectively. Sequential exocytic events were also observed. Coupled with the use of transgenic mice and/or adenovirus-mediated protein expression, this syncollin-pHluorin imaging method offers a superior approach to studying pancreatic acinar exocytosis. This assay can also be applied to acinar disease models to elucidate the mechanisms implicated in pancreatitis.
Collapse
Affiliation(s)
- Nestor A Fernandez
- Dept. of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada
| | | | | |
Collapse
|
8
|
Richards DA. Regulation of exocytic mode in hippocampal neurons by intra-bouton calcium concentration. J Physiol 2010; 588:4927-36. [PMID: 20962005 DOI: 10.1113/jphysiol.2010.197509] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Release of neurotransmitters from synaptic vesicles is a central event in synaptic transmission. Recent evidence suggests that synaptic vesicles fuse with the plasma membrane by multiple routes during exocytosis, but the regulation and physiological implications of this choice are unclear. At hippocampal synapses in culture, two modes of synaptic vesicle exocytosis can be distinguished by virtue of the rate and extent of loss of a fluorescent lipid marker (FM1-43). Here we investigate these two modes of exocytosis using fluorescence imaging of FM1-43, combined with quantitative Ca(2+) imaging using Oregon green BAPTA-1 (OGB1), to examine how the balance of exocytic mode changes during a stimulus train. Our findings are twofold: that the full fusion mode becomes progressively favoured through the course of a 5 or 10 Hz stimulus train, and that this occurs in parallel with presynaptic accumulation of calcium. Blockade of calcium accumulation with AM-EGTA also prevents the conversion of exocytic mode. This conversion of exocytic mode may provide insight as to the mechanisms underpinning short term plasticity.
Collapse
Affiliation(s)
- David A Richards
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, MLC2001, 3333 Burnet Avenue, Cincinnati, OH 45229, USA.
| |
Collapse
|
9
|
Kadoya Y, Yamashina S. Cellular dynamics of epithelial clefting during branching morphogenesis of the mouse submandibular gland. Dev Dyn 2010; 239:1739-47. [PMID: 20503369 DOI: 10.1002/dvdy.22312] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We cultured the rudimental submandibular gland (SMG) of mice with a non-cell-permeable fluorescent tracer, and observed cell behavior during epithelial branching morphogenesis using confocal time-lapse microscopy. We traced movements of individual cells as shadowgraph movies. Individual epithelial cells migrated dynamically but erratically. The epithelial cleft extended by wiggling and separated a cluster of cells into two buds during branching. We examined the ultrastructure of the clefts in SMG rudiments treated with the laminin peptide A5G77f, which induces epithelial clefting. A short cytoplasmic shelf with a core of microfilaments was found at the deep end of the cleft. We propose that epithelial clefting involves a dynamic movement of cells at the base of the cleft, and the formation of a shelf within a cleft cell. The shelf might form a matrix attachment point at the base of the cleft with a core of microfilaments driving cleft elongation.
Collapse
Affiliation(s)
- Yuichi Kadoya
- Department of Anatomy, Kitasato University School of Allied Health Sciences, Minami-ku, Sagamihara, Japan.
| | | |
Collapse
|
10
|
Takahashi N, Hatakeyama H, Okado H, Noguchi J, Ohno M, Kasai H. SNARE conformational changes that prepare vesicles for exocytosis. Cell Metab 2010; 12:19-29. [PMID: 20620992 DOI: 10.1016/j.cmet.2010.05.013] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 04/28/2010] [Accepted: 05/26/2010] [Indexed: 11/25/2022]
Abstract
When cells release hormones and neurotransmitters through exocytosis, cytosolic Ca(2+) triggers the fusion of secretory vesicles with the plasma membrane. It is well known that this fusion requires assembly of a SNARE protein complex. However, the timing of SNARE assembly relative to vesicle fusion--essential for understanding exocytosis--has not been demonstrated. To investigate this timing, we constructed a probe that detects the assembly of two plasma membrane SNAREs, SNAP25 and syntaxin-1A, through fluorescence resonance energy transfer (FRET). With two-photon imaging, we simultaneously measured FRET signals and insulin exocytosis in beta cells from the pancreatic islet of Langerhans. In some regions of the cell, we found that the SNARE complex was preassembled, which enabled rapid exocytosis. In other regions, SNARE assembly followed Ca(2+) influx, and exocytosis was slower. Thus, SNARE proteins exist in multiple stable preparatory configurations, from which Ca(2+) may trigger exocytosis through distinct mechanisms and with distinct kinetics.
Collapse
Affiliation(s)
- Noriko Takahashi
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | | | | | | | | | | |
Collapse
|
11
|
Kasai H, Hatakeyama H, Ohno M, Takahashi N. Exocytosis in islet beta-cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 654:305-38. [PMID: 20217504 DOI: 10.1007/978-90-481-3271-3_14] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The development of technologies that allow for live optical imaging of exocytosis from beta-cells has greatly improved our understanding of insulin secretion. Two-photon imaging, in particular, has enabled researchers to visualize the exocytosis of large dense-core vesicles (LDCVs) containing insulin from beta-cells in intact islets of Langerhans. These studies have revealed that high glucose levels induce two phases of insulin secretion and that this release is dependent upon cytosolic Ca(2+) and cAMP. This technology has also made it possible to examine the spatial profile of insulin exocytosis in these tissues and compare that profile with those of other secretory glands. Such studies have led to the discovery of the massive exocytosis of synaptic-like microvesicles (SLMVs) in beta-cells. These imaging studies have also helped clarify facets of insulin exocytosis that cannot be properly addressed using the currently available electrophysiological techniques. This chapter provides a concise introduction to the field of optical imaging for those researchers who wish to characterize exocytosis from beta-cells in the islets of Langerhans.
Collapse
Affiliation(s)
- Haruo Kasai
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, The University of Tokyo, Hongo, Tokyo 113-0033, Japan.
| | | | | | | |
Collapse
|
12
|
Richards DA. Vesicular release mode shapes the postsynaptic response at hippocampal synapses. J Physiol 2009; 587:5073-80. [PMID: 19752123 DOI: 10.1113/jphysiol.2009.175315] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Release of neurotransmitters from synaptic vesicles is a central event in synaptic transmission. Recent evidence suggests that synaptic vesicles fuse with the plasma membrane by multiple routes during exocytosis, but the regulation and physiological implications of this choice are unclear. At hippocampal synapses, two modes of synaptic vesicle exocytosis can be distinguished by virtue of the rate and extent of loss of a fluorescent lipid marker (FM1-43). Here these two modes of exocytosis were investigated with a combination of electrophysiological recording and fluorescence imaging. It is shown that these exocytic modes result in distinct postsynaptic consequences, such that so-called 'kiss-and-run' exocytosis results in negligible activation of AMPA receptors, compared to the robust postsynaptic responses elicited by apparent full fusion. In contrast NMDA receptors are robustly activated by this form of glutamate delivery. Addition of cyclothiazide, which blocks AMPA receptor desensitization, reveals that the relatively slow rate of release of glutamate during kiss-and-run exocytosis shifts the population of AMPA receptors into a desensitized state, rather than simply being insufficient for receptor activation. These findings provide further support for the existence of a fusion pore mediated mode of exocytosis, and demonstrate that these two exocytic modes directly affect the throughput of synaptic transmission.
Collapse
Affiliation(s)
- David A Richards
- Department of Neurology, University of Cincinnati, Vontz Center for Molecular Studies, 3125 Eden Avenue, Cincinnati, OH 45267, USA.
| |
Collapse
|
13
|
Acid sphingomyelinase is a key regulator of cytotoxic granule secretion by primary T lymphocytes. Nat Immunol 2009; 10:761-8. [DOI: 10.1038/ni.1757] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Accepted: 05/15/2009] [Indexed: 11/08/2022]
|
14
|
Kunding AH, Mortensen MW, Christensen SM, Stamou D. A fluorescence-based technique to construct size distributions from single-object measurements: application to the extrusion of lipid vesicles. Biophys J 2008; 95:1176-88. [PMID: 18424503 PMCID: PMC2479610 DOI: 10.1529/biophysj.108.128819] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Accepted: 03/07/2008] [Indexed: 11/18/2022] Open
Abstract
We report a novel approach to quantitatively determine complete size distributions of surface-bound objects using fluorescence microscopy. We measure the integrated intensity of single particles and relate it to their size by taking into account the object geometry and the illumination profile of the microscope, here a confocal laser scanning microscope. Polydisperse (as well as monodisperse) size distributions containing objects both below and above the optical resolution of the microscope are recorded and analyzed. The data is collected online within minutes, which allows the user to correlate the size of an object with the response from any given fluorescence-based biochemical assay. We measured the mean diameter of extruded fluorescently labeled lipid vesicles using the proposed method, dynamic light scattering, and cryogenic transmission electron microscopy. The three techniques were in excellent agreement, measuring the same values within 7-9%. Furthermore we demonstrated here, for the first time that we know of, the ability to determine the full size distribution of polydisperse samples of nonextruded lipid vesicles. Knowledge of the vesicle size distribution before and after extrusion allowed us to propose an empirical model to account for the effect of extrusion on the complete size distribution of vesicle samples.
Collapse
Affiliation(s)
- Andreas H Kunding
- Bio-Nanotechnology Laboratory, Department of Neuroscience and Pharmacology, and Nano-Science Center, University of Copenhagen, Copenhagen, Denmark
| | | | | | | |
Collapse
|
15
|
Trus M, Corkey RF, Nesher R, Richard AMT, Deeney JT, Corkey BE, Atlas D. The L-type voltage-gated Ca2+ channel is the Ca2+ sensor protein of stimulus-secretion coupling in pancreatic beta cells. Biochemistry 2007; 46:14461-7. [PMID: 18027971 DOI: 10.1021/bi7016816] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
L-type voltage-gated Ca2+ channels (Cav1.2) mediate a major part of insulin secretion from pancreatic beta-cells. Cav1.2, like other voltage-gated Ca2+ channels, is functionally and physically coupled to synaptic proteins. The tight temporal coupling between channel activation and secretion leads to the prediction that rearrangements within the channel can be directly transmitted to the synaptic proteins, subsequently triggering release. La3+, which binds to the polyglutamate motif (EEEE) comprising the selectivity filter, is excluded from entry into the cells and has been previously shown to support depolarization-evoked catecholamine release from chromaffin and PC12 cells. Hence, voltage-dependent trigger of release relies on Ca2+ ions bound at the EEEE motif and not on cytosolic Ca2+ elevation. We show that glucose-induced insulin release in rat pancreatic islets and ATP release in INS-1E cells are supported by La3+ in nominally Ca2+-free solution. The release is inhibited by nifedipine. Fura 2 imaging of dispersed islet cells exposed to high glucose and La3+ in Ca2+-free solution detected no change in fluorescence; thus, La3+ is excluded from entry, and Ca2+ is not significantly released from intracellular stores. La3+ by interacting extracellularlly with the EEEE motif is sufficient to support glucose-induced insulin secretion. Voltage-driven conformational changes that engage the ion/EEEE interface are relayed to the exocytotic machinery prior to ion influx, allowing for a fast and tightly regulated process of release. These results confirm that the Ca2+ channel is a constituent of the exocytotic complex [Wiser et al. (1999) PNAS 96, 248-253] and the putative Ca2+-sensor protein of release.
Collapse
Affiliation(s)
- Michael Trus
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
To elucidate the spatiotemporal profiles of final secretory stage, we have established two-photon extracellular polar tracer (TEP) imaging, with which we can quantify all exocytic events in the plane of focus within the intact tissues. With such technique, we can estimate the precise diameters of vesicles independently of the spatial resolution of optical microscope, and measure the fusion pore dynamics at nanometer resolution. At insulin exocytosis in the pancreatic islets, it took two seconds for the fusion pore to dilate from 1.4 nm in diameter to 6 nm in diameter, and such unusual stability of the pore may be due to the crystallization of the intragranular contents. Opening of the pore was preceded by unrestricted lateral diffusion of lipids along the inner wall of the pores, supporting the idea that this structure was mainly composed of membrane lipids. TEP imaging has been also applied to other representative secretory glands, and has revealed hitherto unexpected diversity in spatial organizations of exocytosis and endocytosis, which are relevant for physiology and pathology of secretory tissues. In the pancreatic islet, compound exocytosis was characteristically inhibited (<5%), partly due to the rarity of SNAP25 redistribution into the exocytosed vesicle membrane. Such mechanisms necessitate transport of insulin granules to the cell surface for fusion, and possibly rendering exocytosis more sensitive to metabolic state. Two-photon imaging will be powerful tools to elucidate molecular and cellular mechanisms of exocytosis and related disease, and to develop new therapeutic agencies as well as diagnostic tools.
Collapse
Affiliation(s)
- Noriko Takahashi
- Division of Biophysics, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, the University of Tokyo, Japan
| | | |
Collapse
|
17
|
Hatakeyama H, Takahashi N, Kishimoto T, Nemoto T, Kasai H. Two cAMP-dependent pathways differentially regulate exocytosis of large dense-core and small vesicles in mouse beta-cells. J Physiol 2007; 582:1087-98. [PMID: 17510178 PMCID: PMC2075257 DOI: 10.1113/jphysiol.2007.135228] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
It has been reported that cAMP regulates Ca(2+)-dependent exocytosis via protein kinase A (PKA) and exchange proteins directly activated by cAMP (Epac) in neurons and secretory cells. It has, however, never been clarified how regulation of Ca(2+)-dependent exocytosis by cAMP differs depending on the involvement of PKA and Epac, and depending on two types of secretory vesicles, large dense-core vesicles (LVs) and small vesicles (SVs). In this study, we have directly visualized Ca(2+)-dependent exocytosis of both LVs and SVs with two-photon imaging in mouse pancreatic beta-cells. We found that marked exocytosis of SVs occurred with a time constant of 0.3 s, more than three times as fast as LV exocytosis, on stimulation by photolysis of a caged-Ca(2+) compound. The diameter of SVs was identified as approximately 80 nm with two-photon imaging, which was confirmed by electron-microscopic investigation with photoconversion of diaminobenzidine. Calcium-dependent exocytosis of SVs was potentiated by the cAMP-elevating agent forskolin, and the potentiating effect was unaffected by antagonists of PKA and was mimicked by the Epac-selective agonist 8-(4-chlorophenylthio)-2'-O-methyl cAMP, unlike that on LVs. Moreover, high-glucose stimulation induced massive exocytosis of SVs in addition to LVs, and photolysis of caged cAMP during glucose stimulation caused potentiation of exocytosis with little delay for SVs but with a latency of 5 s for LVs. Thus, Epac and PKA selectively regulate exocytosis of SVs and LVs, respectively, in beta-cells, and Epac can regulate exocytosis more rapidly than PKA.
Collapse
Affiliation(s)
- Hiroyasu Hatakeyama
- Division of Biophysics, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, University of Tokyo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | | | | | | | | |
Collapse
|
18
|
Doyle ME, Egan JM. Mechanisms of action of glucagon-like peptide 1 in the pancreas. Pharmacol Ther 2007; 113:546-93. [PMID: 17306374 PMCID: PMC1934514 DOI: 10.1016/j.pharmthera.2006.11.007] [Citation(s) in RCA: 503] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Accepted: 11/27/2006] [Indexed: 12/13/2022]
Abstract
Glucagon-like peptide 1 (GLP-1) is a hormone that is encoded in the proglucagon gene. It is mainly produced in enteroendocrine L cells of the gut and is secreted into the blood stream when food containing fat, protein hydrolysate, and/or glucose enters the duodenum. Its particular effects on insulin and glucagon secretion have generated a flurry of research activity over the past 20 years culminating in a naturally occurring GLP-1 receptor (GLP-1R) agonist, exendin 4 (Ex-4), now being used to treat type 2 diabetes mellitus (T2DM). GLP-1 engages a specific guanine nucleotide-binding protein (G-protein) coupled receptor (GPCR) that is present in tissues other than the pancreas (brain, kidney, lung, heart, and major blood vessels). The most widely studied cell activated by GLP-1 is the insulin-secreting beta cell where its defining action is augmentation of glucose-induced insulin secretion. Upon GLP-1R activation, adenylyl cyclase (AC) is activated and cAMP is generated, leading, in turn, to cAMP-dependent activation of second messenger pathways, such as the protein kinase A (PKA) and Epac pathways. As well as short-term effects of enhancing glucose-induced insulin secretion, continuous GLP-1R activation also increases insulin synthesis, beta cell proliferation, and neogenesis. Although these latter effects cannot be currently monitored in humans, there are substantial improvements in glucose tolerance and increases in both first phase and plateau phase insulin secretory responses in T2DM patients treated with Ex-4. This review will focus on the effects resulting from GLP-1R activation in the pancreas.
Collapse
Affiliation(s)
- Máire E Doyle
- Department of Pathology, Immunology & Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | | |
Collapse
|
19
|
Kasai H, Kishimoto T, Nemoto T, Hatakeyama H, Liu TT, Takahashi N. Two-photon excitation imaging of exocytosis and endocytosis and determination of their spatial organization. Adv Drug Deliv Rev 2006; 58:850-77. [PMID: 16996640 DOI: 10.1016/j.addr.2006.07.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Accepted: 07/13/2006] [Indexed: 12/17/2022]
Abstract
Two-photon excitation imaging is the least invasive optical approach to study living tissues. We have established two-photon extracellular polar-tracer (TEP) imaging with which it is possible to visualize and quantify all exocytic events in the plane of focus within secretory tissues. This technology also enables estimate of the precise diameters of vesicles independently of the spatial resolution of the optical microscope, and determination of the fusion pore dynamics at nanometer resolution using TEP-imaging based quantification (TEPIQ). TEP imaging has been applied to representative secretory glands, e.g., exocrine pancreas, endocrine pancreas, adrenal medulla and a pheochromocytoma cell line (PC12), and has revealed unexpected diversity in the spatial organization of exocytosis and endocytosis crucial for the physiology and pathology of secretory tissues and neurons. TEP imaging and TEPIQ analysis are powerful tools for elucidating the molecular and cellular mechanisms of exocytosis and certain related diseases, such as diabetes mellitus, and the development of new therapeutic agents and diagnostic tools.
Collapse
Affiliation(s)
- Haruo Kasai
- Division of Biophysics, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan.
| | | | | | | | | | | |
Collapse
|
20
|
Kishimoto T, Kimura R, Liu TT, Nemoto T, Takahashi N, Kasai H. Vacuolar sequential exocytosis of large dense-core vesicles in adrenal medulla. EMBO J 2006; 25:673-82. [PMID: 16467850 PMCID: PMC1383564 DOI: 10.1038/sj.emboj.7600983] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2005] [Accepted: 01/11/2006] [Indexed: 11/08/2022] Open
Abstract
Individual exocytic events in intact adrenal medulla were visualized by two-photon extracellular polar-tracer imaging. Exocytosis of chromaffin vesicles often occurred in a sequential manner, involving first vesicles located at the cell periphery and then those present deeper within the cytoplasm. Sequential exocytosis occurred preferentially at regions of the plasma membrane facing the intercellular space. The compound vesicles swelled to more than five times their original volume and formed vacuolar exocytic lumens as a result of expansion of intravesicular gels and their confinement within the lumen by the fusion pore and the narrow intercellular space. Such luminal swelling greatly promoted sequential exocytosis. The SNARE protein SNAP25 rapidly migrated from the plasma membrane to the membrane of fused vesicles. These data indicate that vesicles present deeper within the cytoplasm can be fusion ready like those at the cell periphery, and that swelling of exocytic lumens promotes assembly of the fusion machinery. We suggest the existence of two molecular configurations for fusion-ready states in Ca2+ -dependent exocytosis.
Collapse
Affiliation(s)
- Takuya Kishimoto
- Division of Biophysics, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, University of Tokyo, Hongo, Tokyo, Japan
- Department of Cell Physiology, National Institute for Physiological Sciences, and Graduate University of Advanced Studies (SOKENDAI), Myodaiji, Okazaki, Japan
| | - Ryoichi Kimura
- Department of Cell Physiology, National Institute for Physiological Sciences, and Graduate University of Advanced Studies (SOKENDAI), Myodaiji, Okazaki, Japan
- Department of Physiology, Hirosaki University School of Medicine, Hirosaki, Japan
| | - Ting-Ting Liu
- Division of Biophysics, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, University of Tokyo, Hongo, Tokyo, Japan
- Genome Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Tomomi Nemoto
- Department of Cell Physiology, National Institute for Physiological Sciences, and Graduate University of Advanced Studies (SOKENDAI), Myodaiji, Okazaki, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
| | - Noriko Takahashi
- Division of Biophysics, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, University of Tokyo, Hongo, Tokyo, Japan
- Department of Cell Physiology, National Institute for Physiological Sciences, and Graduate University of Advanced Studies (SOKENDAI), Myodaiji, Okazaki, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
| | - Haruo Kasai
- Division of Biophysics, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, University of Tokyo, Hongo, Tokyo, Japan
- Department of Cell Physiology, National Institute for Physiological Sciences, and Graduate University of Advanced Studies (SOKENDAI), Myodaiji, Okazaki, Japan
- Division of Biophysics, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, University of Tokyo, Hongo, Tokyo 113-0033, Japan. Tel.: +81 3 5841 1439; Fax: +81 3 5841 1442; E-mail:
| |
Collapse
|
21
|
Hatakeyama H, Kishimoto T, Nemoto T, Kasai H, Takahashi N. Rapid glucose sensing by protein kinase A for insulin exocytosis in mouse pancreatic islets. J Physiol 2005; 570:271-82. [PMID: 16284079 PMCID: PMC1464314 DOI: 10.1113/jphysiol.2005.096560] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The role of protein kinase A (PKA) in insulin exocytosis was investigated with the use of two-photon excitation imaging of mouse islets of Langerhans. Inhibitors of PKA selectively reduced the number of exocytic events during the initial period (< 250 s) of the first phase of glucose-induced exocytosis (GIE), without affecting the second phase, in intact islets or small clusters of islet cells. The PKA inhibitors did not reduce the extent of the glucose-induced increase in [Ca(2+)](i). The actions of glucose and PKA in Ca(2+)-induced insulin exocytosis (CIE) triggered by photolysis of a caged-Ca(2+) compound, which resulted in large increases in [Ca(2+)](i) and thereby bypassed the ATP-sensitive K(+) channel-dependent mechanism of glucose sensing, were therefore studied. A high concentration (20 mM) of glucose potentiated CIE within 1 min, and this effect was blocked by inhibitors of PKA. This PKA-dependent action of glucose required glucose metabolism, given that increasing the intracellular concentration of cAMP by treatment with forskolin potentiated CIE only at the high glucose concentration. Finally, PKA appeared to reduce the frequency of 'kiss-and-run' exocytic events and to promote full-fusion events during GIE. These data indicate that a PKA-dependent mechanism of glucose sensing, which is operative even at the basal level of PKA activity, plays an important role specifically in the first phase of GIE, and they suggest that the action of PKA is mediated at the level of the fusion reaction.
Collapse
Affiliation(s)
- Hiroyasu Hatakeyama
- Department of Cell Physiology, National Institute for Physiological Sciences, Okazaki, Japan
| | | | | | | | | |
Collapse
|
22
|
Liu TT, Kishimoto T, Hatakeyama H, Nemoto T, Takahashi N, Kasai H. Exocytosis and endocytosis of small vesicles in PC12 cells studied with TEPIQ (two-photon extracellular polar-tracer imaging-based quantification) analysis. J Physiol 2005; 568:917-29. [PMID: 16150796 PMCID: PMC1464175 DOI: 10.1113/jphysiol.2005.094011] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2005] [Accepted: 09/01/2005] [Indexed: 11/08/2022] Open
Abstract
We investigated exocytosis of PC12 cells using two-photon excitation imaging and extracellular polar tracers (TEP imaging) in the lateral membranes not facing the glass-cover slip. Upon photolysis of a caged Ca2+ compound, TEP imaging with FM1-43 (a polar membrane tracer) detected massive exocytosis of vesicles with a time constant of about 1 s. TEPIQ (two-photon extracellular polar-tracer imaging-based quantification) analysis revealed that the diameter of vesicles was small (55 nm). Extensive exocytosis of small vesicles (SVs) was shown to be mediated by the transient opening of a fusion pore with a diameter less than about 1.6 nm, and to be followed by direct ('kiss-and-run') endocytosis and translocation of the endocytic vesicles (EVs) deep into the cytoplasm. These processes were unaffected by GTP-gamma-S. In contrast, constitutive endocytic vesicles exhibited a diameter of 90 nm, took up molecules with a diameter of > 12 nm, and their formation was blocked by GTP-gamma-S. Electron-microscopic investigation with photoconversion of diaminobenzidine using FM1-43 confirmed an abundance of EVs with a diameter of 54 nm in stimulated cells. They rapidly translocated into the cytosol, and fused with endosomal organelles. The number of SV exocytosis events vastly exceeded the number of SVs morphologically docked at the plasma membrane. Simultaneous capacitance and FM1-43 measurements indicated that TEP imaging detected most SV exocytosis, and the fusion pore was closed within 2 s. Thus, we have, for the first time, directly visualized massive exocytosis of small vesicles in a non-synaptic preparation, and have revealed their fusion-pore mediated exocytosis and endocytosis.
Collapse
Affiliation(s)
- Ting-Ting Liu
- Department of Cell Physiology, National Institute for Physiological Sciences, Myodaiji, Okazaki 444-8787, Japan
| | | | | | | | | | | |
Collapse
|
23
|
Kishimoto T, Liu TT, Hatakeyama H, Nemoto T, Takahashi N, Kasai H. Sequential compound exocytosis of large dense-core vesicles in PC12 cells studied with TEPIQ (two-photon extracellular polar-tracer imaging-based quantification) analysis. J Physiol 2005; 568:905-15. [PMID: 16150797 PMCID: PMC1464190 DOI: 10.1113/jphysiol.2005.094003] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
We investigated exocytosis of PC12 cells using two-photon excitation imaging and extracellular polar tracers (TEP imaging) at the basal region of PC12 cells adjacent to the glass cover slip. TEPIQ (two-photon extracellular polar-tracer imaging-based quantification) analysis revealed that most exocytosis was mediated by large dense-core vesicles (LVs) with a mean diameter of 220 nm, and that exocytosis of LVs occurred slowly with a mean latency of approximately 7 s even though exocytosis was induced with large increases in cytosolic Ca2+ concentration by uncaging of a caged-Ca2+ compound. We also found that 97% of exocytic LVs remained poised at the plasma membrane, 72% maintained their fusion pores in an open conformation for more than 30 s, and 76% triggered sequential compound exocytosis of vesicles that were located deeper in the cytosol. Sequential compound exocytosis by PC12 cells was confirmed by electron microscopic investigation with photoconversion of diaminobenzidine by FM1-43 (a polar membrane tracer). Our data suggest that pre-stimulus docking of LVs to the plasma membrane does not necessarily hasten the fusion reaction, while docking and resulting stability of exocytic LVs facilitates sequential compound exocytosis, and thereby allowing mobilization of deep vesicles.
Collapse
Affiliation(s)
- Takuya Kishimoto
- Department of Cell Physiology, National Institute for Physiological Sciences, Myodaiji, Okazaki 444-8787, Japan
| | | | | | | | | | | |
Collapse
|