1
|
Matteoli G, Alvente S, Bastianini S, Berteotti C, Ciani E, Cinelli E, Lo Martire V, Medici G, Mello T, Miglioranza E, Silvani A, Mutolo D, Zoccoli G. Characterisation of sleep apneas and respiratory circuitry in mice lacking CDKL5. J Sleep Res 2025; 34:e14295. [PMID: 39049436 PMCID: PMC11911053 DOI: 10.1111/jsr.14295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/27/2024]
Abstract
CDKL5 deficiency disorder is a rare genetic disease caused by mutations in the CDKL5 gene. Central apneas during wakefulness have been reported in patients with CDKL5 deficiency disorder. Studies on CDKL5-knockout mice, a CDKL5 deficiency disorder model, reported sleep apneas, but it is still unclear whether these events are central (central sleep apnea) or obstructive (obstructive sleep apnea) and may be related to alterations of brain circuits that modulate breathing rhythm. This study aimed to discriminate central sleep apnea and obstructive sleep apnea in CDKL5-knockout mice, and explore changes in the somatostatin neurons expressing high levels of neurokinin-1 receptors within the preBötzinger complex. Ten adult male wild-type and 12 CDKL5-knockout mice underwent electrode implantation for sleep stage discrimination and diaphragmatic activity recording, and were studied using whole-body plethysmography for 7 hr during the light (resting) period. Sleep apneas were categorised as central sleep apnea or obstructive sleep apnea based on the recorded signals. The number of somatostatin neurons in the preBötzinger complex and their neurokinin-1 receptors expression were assessed through immunohistochemistry in a sub-group of animals. CDKL5-knockout mice exhibited a higher apnea occurrence rate and a greater prevalence of obstructive sleep apnea during rapid eye movement sleep, compared with wild-type, whereas no significant difference was observed for central sleep apnea. Moreover, CDKL5-knockout mice showed a reduced number of somatostatin neurons in the preBötzinger complex, and these neurons expressed a lower level of neurokinin-1 receptors compared with wild-type controls. These findings underscore the pivotal role of CDKL5 in regulating normal breathing, suggesting its potential involvement in shaping preBötzinger complex neural circuitry and controlling respiratory muscles during sleep.
Collapse
Affiliation(s)
- Gabriele Matteoli
- Department of Biomedical and Neuromotor SciencesAlma Mater Studiorum ‐ University of BolognaBolognaItaly
| | - Sara Alvente
- Department of Biomedical and Neuromotor SciencesAlma Mater Studiorum ‐ University of BolognaBolognaItaly
| | - Stefano Bastianini
- Department of Biomedical and Neuromotor SciencesAlma Mater Studiorum ‐ University of BolognaBolognaItaly
| | - Chiara Berteotti
- Department of Biomedical and Neuromotor SciencesAlma Mater Studiorum ‐ University of BolognaBolognaItaly
| | - Elisabetta Ciani
- Department of Biomedical and Neuromotor SciencesAlma Mater Studiorum ‐ University of BolognaBolognaItaly
| | - Elenia Cinelli
- Department of Experimental and Clinical Medicine, Section of PhysiologyUniversity of FlorenceFlorenceItaly
| | - Viviana Lo Martire
- Department of Biomedical and Neuromotor SciencesAlma Mater Studiorum ‐ University of BolognaBolognaItaly
| | - Giorgio Medici
- Department of Biomedical and Neuromotor SciencesAlma Mater Studiorum ‐ University of BolognaBolognaItaly
| | - Tommaso Mello
- Department of Experimental and Clinical Biochemical Sciences “Mario Serio”University of FlorenceFlorenceItaly
| | - Elena Miglioranza
- Department of Biomedical and Neuromotor SciencesAlma Mater Studiorum ‐ University of BolognaBolognaItaly
| | - Alessandro Silvani
- Department of Biomedical and Neuromotor SciencesAlma Mater Studiorum ‐ University of BolognaBolognaItaly
| | - Donatella Mutolo
- Department of Experimental and Clinical Medicine, Section of PhysiologyUniversity of FlorenceFlorenceItaly
| | - Giovanna Zoccoli
- Department of Biomedical and Neuromotor SciencesAlma Mater Studiorum ‐ University of BolognaBolognaItaly
| |
Collapse
|
2
|
Hajipour M, Sobhani-Rad D, Zainaee S, Farzadfar MT, Khaniki SH. Dysphagia following cerebellar stroke: analyzing the contribution of the cerebellum to swallowing function. Front Neurol 2023; 14:1276243. [PMID: 38033782 PMCID: PMC10687548 DOI: 10.3389/fneur.2023.1276243] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Swallowing is essential for human health, and the cerebellum is crucial for motor movement regulation. Cerebellar strokes may cause dysphagia, but their exact effects remain unexplored in swallowing function. Therefore, the aim of this study was to analyze the precise clinical characteristics of the oral and pharyngeal phases of swallowing after cerebellar stroke and to critically discuss the cerebellum's contribution to swallowing. The study involved 34 participants with cerebellar strokes, gathered through convenience sampling. Neurologists diagnosed isolated strokes, and a speech and language pathologist examined swallowing ability using the Mann Assessment of Swallowing Ability. The study found that 52.9% of people experienced dysphagia after a cerebellar stroke. Dysphagia was significantly associated with a higher risk of aspiration. Age was also significantly correlated with dysphagia. No significant correlation was found between swallowing ability and sex. In conclusion, this study suggests isolated cerebellar stroke can adversely affect the motor and non-motor aspects of swallowing and cause severe dysphagia and aspiration risk. Thus, early diagnosis and timely management of dysphagia following a cerebellar stroke can help prevent serious consequences.
Collapse
Affiliation(s)
- Masoume Hajipour
- Department of Speech Therapy, School of Paramedical and Rehabilitation Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Davood Sobhani-Rad
- Department of Speech Therapy, School of Paramedical and Rehabilitation Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shahryar Zainaee
- Department of Communication Sciences and Disorders, College of Health and Human Services, Bowling Green State University, Bowling Green, OH, United States
| | | | - Saeedeh Hajebi Khaniki
- Department of Biostatistics, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Gresova S, Gaborova M, Stimmelova J, Peregrim I, Svorc P, Donic V, Pallayova M. An Obstructive Sleep Apnea - A Novel Public Health Threat. Physiol Res 2023; 72:415-423. [PMID: 37795885 PMCID: PMC10634565 DOI: 10.33549/physiolres.935065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/18/2023] [Indexed: 01/05/2024] Open
Abstract
In patients with obstructive sleep apnea (OSA) during obstructive events, episodes of hypoxia and hypercapnia may modulate the autonomic nervous system (ANS) by increasing sympathetic tone and irritability, which contributes to sympathovagal imbalance and ultimately dysautonomia. Because OSA can alter ANS function through biochemical changes, we can assume that heart rate variability (HRV) will be altered in patients with OSA. Most studies show that in both the time and frequency domains, patients with OSA have higher sympathetic components and lower parasympathetic dominance than healthy controls. These results confirm autonomic dysfunction in these patients, but also provide new therapeutic directions. Respiratory methods that modulate ANS, e.g., cardiorespiratory biofeedback, could be beneficial for these patients. Heart rate variability assessment can be used as a tool to evaluate the effectiveness of OSA treatment due to its association with autonomic impairment.
Collapse
Affiliation(s)
- S Gresova
- Department of Human Physiology, Pavol Jozef Safarik University Faculty of Medicine, Kosice, Slovak Republic
| | | | | | | | | | | | | |
Collapse
|
4
|
Chang JL, Goldberg AN, Alt JA, Alzoubaidi M, Ashbrook L, Auckley D, Ayappa I, Bakhtiar H, Barrera JE, Bartley BL, Billings ME, Boon MS, Bosschieter P, Braverman I, Brodie K, Cabrera-Muffly C, Caesar R, Cahali MB, Cai Y, Cao M, Capasso R, Caples SM, Chahine LM, Chang CP, Chang KW, Chaudhary N, Cheong CSJ, Chowdhuri S, Cistulli PA, Claman D, Collen J, Coughlin KC, Creamer J, Davis EM, Dupuy-McCauley KL, Durr ML, Dutt M, Ali ME, Elkassabany NM, Epstein LJ, Fiala JA, Freedman N, Gill K, Boyd Gillespie M, Golisch L, Gooneratne N, Gottlieb DJ, Green KK, Gulati A, Gurubhagavatula I, Hayward N, Hoff PT, Hoffmann OM, Holfinger SJ, Hsia J, Huntley C, Huoh KC, Huyett P, Inala S, Ishman SL, Jella TK, Jobanputra AM, Johnson AP, Junna MR, Kado JT, Kaffenberger TM, Kapur VK, Kezirian EJ, Khan M, Kirsch DB, Kominsky A, Kryger M, Krystal AD, Kushida CA, Kuzniar TJ, Lam DJ, Lettieri CJ, Lim DC, Lin HC, Liu SY, MacKay SG, Magalang UJ, Malhotra A, Mansukhani MP, Maurer JT, May AM, Mitchell RB, Mokhlesi B, Mullins AE, Nada EM, Naik S, Nokes B, Olson MD, Pack AI, Pang EB, Pang KP, Patil SP, Van de Perck E, Piccirillo JF, Pien GW, et alChang JL, Goldberg AN, Alt JA, Alzoubaidi M, Ashbrook L, Auckley D, Ayappa I, Bakhtiar H, Barrera JE, Bartley BL, Billings ME, Boon MS, Bosschieter P, Braverman I, Brodie K, Cabrera-Muffly C, Caesar R, Cahali MB, Cai Y, Cao M, Capasso R, Caples SM, Chahine LM, Chang CP, Chang KW, Chaudhary N, Cheong CSJ, Chowdhuri S, Cistulli PA, Claman D, Collen J, Coughlin KC, Creamer J, Davis EM, Dupuy-McCauley KL, Durr ML, Dutt M, Ali ME, Elkassabany NM, Epstein LJ, Fiala JA, Freedman N, Gill K, Boyd Gillespie M, Golisch L, Gooneratne N, Gottlieb DJ, Green KK, Gulati A, Gurubhagavatula I, Hayward N, Hoff PT, Hoffmann OM, Holfinger SJ, Hsia J, Huntley C, Huoh KC, Huyett P, Inala S, Ishman SL, Jella TK, Jobanputra AM, Johnson AP, Junna MR, Kado JT, Kaffenberger TM, Kapur VK, Kezirian EJ, Khan M, Kirsch DB, Kominsky A, Kryger M, Krystal AD, Kushida CA, Kuzniar TJ, Lam DJ, Lettieri CJ, Lim DC, Lin HC, Liu SY, MacKay SG, Magalang UJ, Malhotra A, Mansukhani MP, Maurer JT, May AM, Mitchell RB, Mokhlesi B, Mullins AE, Nada EM, Naik S, Nokes B, Olson MD, Pack AI, Pang EB, Pang KP, Patil SP, Van de Perck E, Piccirillo JF, Pien GW, Piper AJ, Plawecki A, Quigg M, Ravesloot MJ, Redline S, Rotenberg BW, Ryden A, Sarmiento KF, Sbeih F, Schell AE, Schmickl CN, Schotland HM, Schwab RJ, Seo J, Shah N, Shelgikar AV, Shochat I, Soose RJ, Steele TO, Stephens E, Stepnowsky C, Strohl KP, Sutherland K, Suurna MV, Thaler E, Thapa S, Vanderveken OM, de Vries N, Weaver EM, Weir ID, Wolfe LF, Tucker Woodson B, Won CH, Xu J, Yalamanchi P, Yaremchuk K, Yeghiazarians Y, Yu JL, Zeidler M, Rosen IM. International Consensus Statement on Obstructive Sleep Apnea. Int Forum Allergy Rhinol 2023; 13:1061-1482. [PMID: 36068685 PMCID: PMC10359192 DOI: 10.1002/alr.23079] [Show More Authors] [Citation(s) in RCA: 121] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/12/2022] [Accepted: 08/18/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND Evaluation and interpretation of the literature on obstructive sleep apnea (OSA) allows for consolidation and determination of the key factors important for clinical management of the adult OSA patient. Toward this goal, an international collaborative of multidisciplinary experts in sleep apnea evaluation and treatment have produced the International Consensus statement on Obstructive Sleep Apnea (ICS:OSA). METHODS Using previously defined methodology, focal topics in OSA were assigned as literature review (LR), evidence-based review (EBR), or evidence-based review with recommendations (EBR-R) formats. Each topic incorporated the available and relevant evidence which was summarized and graded on study quality. Each topic and section underwent iterative review and the ICS:OSA was created and reviewed by all authors for consensus. RESULTS The ICS:OSA addresses OSA syndrome definitions, pathophysiology, epidemiology, risk factors for disease, screening methods, diagnostic testing types, multiple treatment modalities, and effects of OSA treatment on multiple OSA-associated comorbidities. Specific focus on outcomes with positive airway pressure (PAP) and surgical treatments were evaluated. CONCLUSION This review of the literature consolidates the available knowledge and identifies the limitations of the current evidence on OSA. This effort aims to create a resource for OSA evidence-based practice and identify future research needs. Knowledge gaps and research opportunities include improving the metrics of OSA disease, determining the optimal OSA screening paradigms, developing strategies for PAP adherence and longitudinal care, enhancing selection of PAP alternatives and surgery, understanding health risk outcomes, and translating evidence into individualized approaches to therapy.
Collapse
Affiliation(s)
- Jolie L. Chang
- University of California, San Francisco, California, USA
| | | | | | | | - Liza Ashbrook
- University of California, San Francisco, California, USA
| | | | - Indu Ayappa
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | | | | | | | - Maurits S. Boon
- Sidney Kimmel Medical Center at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Pien Bosschieter
- Academic Centre for Dentistry Amsterdam, Amsterdam, The Netherlands
| | - Itzhak Braverman
- Hillel Yaffe Medical Center, Hadera Technion, Faculty of Medicine, Hadera, Israel
| | - Kara Brodie
- University of California, San Francisco, California, USA
| | | | - Ray Caesar
- Stone Oak Orthodontics, San Antonio, Texas, USA
| | | | - Yi Cai
- University of California, San Francisco, California, USA
| | | | | | | | | | | | | | | | | | - Susmita Chowdhuri
- Wayne State University and John D. Dingell VA Medical Center, Detroit, Michigan, USA
| | - Peter A. Cistulli
- Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - David Claman
- University of California, San Francisco, California, USA
| | - Jacob Collen
- Uniformed Services University, Bethesda, Maryland, USA
| | | | | | - Eric M. Davis
- University of Virginia, Charlottesville, Virginia, USA
| | | | | | - Mohan Dutt
- University of Michigan, Ann Arbor, Michigan, USA
| | - Mazen El Ali
- University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | - Kirat Gill
- Stanford University, Palo Alto, California, USA
| | | | - Lea Golisch
- University Hospital Mannheim, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | | | | | | | - Arushi Gulati
- University of California, San Francisco, California, USA
| | | | | | - Paul T. Hoff
- University of Michigan, Ann Arbor, Michigan, USA
| | - Oliver M.G. Hoffmann
- University Hospital Mannheim, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | | | - Jennifer Hsia
- University of Minnesota, Minneapolis, Minnesota, USA
| | - Colin Huntley
- Sidney Kimmel Medical Center at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | | | - Sanjana Inala
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | | | | | | | | | | | | | | | | | - Meena Khan
- Ohio State University, Columbus, Ohio, USA
| | | | - Alan Kominsky
- Cleveland Clinic Head and Neck Institute, Cleveland, Ohio, USA
| | - Meir Kryger
- Yale School of Medicine, New Haven, Connecticut, USA
| | | | | | | | - Derek J. Lam
- Oregon Health and Science University, Portland, Oregon, USA
| | | | | | | | | | | | | | - Atul Malhotra
- University of California, San Diego, California, USA
| | | | - Joachim T. Maurer
- University Hospital Mannheim, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Anna M. May
- Case Western Reserve University, Cleveland, Ohio, USA
| | - Ron B. Mitchell
- University of Texas, Southwestern and Children’s Medical Center Dallas, Texas, USA
| | | | | | | | | | - Brandon Nokes
- University of California, San Diego, California, USA
| | | | - Allan I. Pack
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | - Mark Quigg
- University of Virginia, Charlottesville, Virginia, USA
| | | | - Susan Redline
- Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Armand Ryden
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | | | - Firas Sbeih
- Cleveland Clinic Head and Neck Institute, Cleveland, Ohio, USA
| | | | | | | | | | - Jiyeon Seo
- University of California, Los Angeles, California, USA
| | - Neomi Shah
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | | | - Ryan J. Soose
- University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Erika Stephens
- University of California, San Francisco, California, USA
| | | | | | | | | | - Erica Thaler
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sritika Thapa
- Yale School of Medicine, New Haven, Connecticut, USA
| | | | - Nico de Vries
- Academic Centre for Dentistry Amsterdam, Amsterdam, The Netherlands
| | | | - Ian D. Weir
- Yale School of Medicine, New Haven, Connecticut, USA
| | | | | | | | - Josie Xu
- University of Toronto, Ontario, Canada
| | | | | | | | | | | | - Ilene M. Rosen
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
5
|
Koecklin KHU, Kato C, Abe Y, Yabushita T, Kokai S, Ono T. Histological and contractile changes in the genioglossus muscle after nasal obstruction in growing rats. Sci Rep 2023; 13:6245. [PMID: 37069178 PMCID: PMC10110532 DOI: 10.1038/s41598-023-32921-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 04/04/2023] [Indexed: 04/19/2023] Open
Abstract
The aim of the study was to address the genioglossus muscle physiological and histological changes after unilateral nasal obstruction in growing rats. Fifty-four 6-day-old male Wistar albino rats were randomly divided into control (n = 27) and experimental (n = 27) groups. Unilateral nasal obstruction was performed at 8 days old. Contractile properties of the genioglossus whole muscle were measured at 5-, 7- and 9-week-old, including the twitch and tetanic forces, contraction time, half-decay time, and fatigue index. The histological characteristics of the genioglossus were also evaluated at 5-, 7- and 9-week-old, analyzing the myosin heavy chain composition of the slow, fast, IIa and IIb muscle fiber type, by measuring the number, rate, diameter and cross-sectional area. The maximal twitch force, and tetanic force at 60 Hz and 80 Hz force was significantly increased at all ages after nasal obstruction. The fatigue index was decreased at 5 weeks-old after nasal obstruction. The diameter and cross-sectional area of the fast, IIa and IIb muscle fiber types were increased at 7 and 9 weeks after nasal obstruction, while only the diameter of IIa type and cross-sectional area of IIb type were increased at 5 weeks-old after nasal obstruction. Nasal obstruction during growth affects the whole genioglossus muscle contractile properties and histological characteristics, increasing its force, the diameter and area of its muscle fibers. These changes in the genioglossus muscle may affect the normal growth, development and function of the craniofacial complex.
Collapse
Affiliation(s)
| | - Chiho Kato
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yasunori Abe
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | | | - Satoshi Kokai
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Takashi Ono
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
6
|
Krohn F, Novello M, van der Giessen RS, De Zeeuw CI, Pel JJM, Bosman LWJ. The integrated brain network that controls respiration. eLife 2023; 12:83654. [PMID: 36884287 PMCID: PMC9995121 DOI: 10.7554/elife.83654] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/29/2023] [Indexed: 03/09/2023] Open
Abstract
Respiration is a brain function on which our lives essentially depend. Control of respiration ensures that the frequency and depth of breathing adapt continuously to metabolic needs. In addition, the respiratory control network of the brain has to organize muscular synergies that integrate ventilation with posture and body movement. Finally, respiration is coupled to cardiovascular function and emotion. Here, we argue that the brain can handle this all by integrating a brainstem central pattern generator circuit in a larger network that also comprises the cerebellum. Although currently not generally recognized as a respiratory control center, the cerebellum is well known for its coordinating and modulating role in motor behavior, as well as for its role in the autonomic nervous system. In this review, we discuss the role of brain regions involved in the control of respiration, and their anatomical and functional interactions. We discuss how sensory feedback can result in adaptation of respiration, and how these mechanisms can be compromised by various neurological and psychological disorders. Finally, we demonstrate how the respiratory pattern generators are part of a larger and integrated network of respiratory brain regions.
Collapse
Affiliation(s)
- Friedrich Krohn
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | - Manuele Novello
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | | | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands.,Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Johan J M Pel
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | | |
Collapse
|
7
|
Mafa-dependent GABAergic activity promotes mouse neonatal apneas. Nat Commun 2022; 13:3284. [PMID: 35672398 PMCID: PMC9174494 DOI: 10.1038/s41467-022-30825-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 05/19/2022] [Indexed: 01/17/2023] Open
Abstract
While apneas are associated with multiple pathological and fatal conditions, the underlying molecular mechanisms remain elusive. We report that a mutated form of the transcription factor Mafa (Mafa4A) that prevents phosphorylation of the Mafa protein leads to an abnormally high incidence of breath holding apneas and death in newborn Mafa4A/4A mutant mice. This apneic breathing is phenocopied by restricting the mutation to central GABAergic inhibitory neurons and by activation of inhibitory Mafa neurons while reversed by inhibiting GABAergic transmission centrally. We find that Mafa activates the Gad2 promoter in vitro and that this activation is enhanced by the mutation that likely results in increased inhibitory drives onto target neurons. We also find that Mafa inhibitory neurons are absent from respiratory, sensory (primary and secondary) and pontine structures but are present in the vicinity of the hypoglossal motor nucleus including premotor neurons that innervate the geniohyoid muscle, to control upper airway patency. Altogether, our data reveal a role for Mafa phosphorylation in regulation of GABAergic drives and suggest a mechanism whereby reduced premotor drives to upper airway muscles may cause apneic breathing at birth. Apneas are associated with many pathological conditions. Here, the authors show in a mouse model that stabilization of the transcription factor Mafa in brainstem GABAergic neurons may contribute to apnea, by decreasing motor drive to muscles controlling the airways.
Collapse
|
8
|
Hensen HA, Carberry JC, Krishnan AV, Osman AM, Mosch AMH, Toson B, Tay KL, Eckert DJ. Impaired pharyngeal reflex responses to negative pressure: A novel cause of sleep apnea in multiple sclerosis. J Appl Physiol (1985) 2022; 132:815-823. [PMID: 35050793 DOI: 10.1152/japplphysiol.00240.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Obstructive sleep apnea (OSA) is common in people with multiple sclerosis (MS). However, people with MS often do not have 'typical' anatomical risk factors (i.e. non-obese and female predominance). Accordingly, non-anatomical factors such as impaired upper airway muscle function may be particularly important for OSA pathogenesis in MS. Therefore, this study aimed to investigate genioglossus (largest upper-airway dilator muscle) reflex responses to brief pulses of upper airway negative pressure in people with OSA and MS. 11 people with MS and OSA and 10 OSA controls without MS matched for age, sex and OSA severity were fitted with a nasal mask, pneumotachograph, choanal and epiglottic pressure sensors and intramuscular electrodes into genioglossus. Approximately 60 brief (250ms) negative pressure pulses (~-12cmH2O mask pressure) were delivered every 2-6 breaths at random during quiet nasal breathing during wakefulness to determine genioglossus EMG reflex responses (timing, amplitude and morphology). Where available, recent clinical MRI brain scans were evaluated for the number, size and location of brainstem lesions in the MS group. When present, genioglossus reflex excitation responses were similar between MS participants and controls (e.g. peak excitation amplitude 229±85 vs. 282±98 % baseline, p=0.17). However, ~30% of people with MS had either an abnormal (predominantly inhibition) or no protective excitation reflex. Participants with MS without a reflex had multiple brainstem lesions including in the hypoglossal motor nucleus which may impair sensory processing and/or efferent output. Impaired pharyngeal reflex function may be an important contributor to OSA pathogenesis for a proportion of people with MS.
Collapse
Affiliation(s)
- Hanna A Hensen
- Neuroscience Research Australia (NeuRA), Sydney, New South Wales, Australia.,School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Jayne C Carberry
- Adelaide Institute for Sleep Health, Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA, Australia.,UCD School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| | | | - Amal M Osman
- Adelaide Institute for Sleep Health, Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA, Australia
| | - Anne-Marie H Mosch
- Neuroscience Research Australia (NeuRA), Sydney, New South Wales, Australia
| | - Barbara Toson
- Neuroscience Research Australia (NeuRA), Sydney, New South Wales, Australia.,Adelaide Institute for Sleep Health, Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA, Australia
| | - Kevin L Tay
- Prince of Wales Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Danny J Eckert
- Neuroscience Research Australia (NeuRA), Sydney, New South Wales, Australia.,Adelaide Institute for Sleep Health, Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
9
|
Madani A, Pitollat G, Sizun E, Cardoit L, Ringot M, Bourgeois T, Ramanantsoa N, Delclaux C, Dauger S, d'Ortho MP, Thoby-Brisson M, Gallego J, Matrot B. Obstructive Apneas in a Mouse Model of Congenital Central Hypoventilation Syndrome. Am J Respir Crit Care Med 2021; 204:1200-1210. [PMID: 34478357 DOI: 10.1164/rccm.202104-0887oc] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Rationale: Congenital central hypoventilation syndrome (CCHS) is characterized by life-threatening sleep hypoventilation and is caused by PHOX2B gene mutations, most frequently the PHOX2B27Ala/+ mutation, with patients requiring lifelong ventilatory support. It is unclear whether obstructive apneas are part of the syndrome. Objectives: To determine if Phox2b27Ala/+ mice, which present the main symptoms of CCHS and die within hours after birth, also express obstructive apneas, and to investigate potential underlying mechanisms. Methods: Apneas were classified as central, obstructive, or mixed by using a novel system combining pneumotachography and laser detection of abdominal movement immediately after birth. Several respiratory nuclei involved in airway patency were examined by immunohistochemistry and electrophysiology in brainstem-spinal cord preparations. Measurements and Main Results: The median (interquartile range) of obstructive apnea frequency was 2.3 (1.5-3.3)/min in Phox2b27Ala/+ pups versus 0.6 (0.4-1.0)/min in wild types (P < 0.0001). Obstructive apnea duration was 2.7 seconds (2.3-3.9) in Phox2b27Ala/+ pups versus 1.7 seconds (1.1-1.9) in wild types (P < 0.0001). Central and mixed apneas presented similar significant differences. In Phox2b27Ala/+ preparations, the hypoglossal nucleus had fewer (P < 0.05) and smaller (P < 0.01) neurons, compared with wild-type preparations. Importantly, coordination of phrenic and hypoglossal motor activities was disrupted, as evidenced by the longer and variable delay of hypoglossal activity with respect to phrenic activity onset (P < 0.001). Conclusions: The Phox2b27Ala/+ mutation predisposed pups not only to hypoventilation and central apneas, but also to obstructive and mixed apneas, likely because of hypoglossal dysgenesis. These results thus demand attention toward obstructive events in infants with CCHS.
Collapse
Affiliation(s)
- Amélia Madani
- NeuroDiderot, FHU I2-D2, Université de Paris, Inserm, Paris, France
| | - Gabriel Pitollat
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR5287, Université de Bordeaux, CNRS, Bordeaux, France
| | - Eléonore Sizun
- NeuroDiderot, FHU I2-D2, Université de Paris, Inserm, Paris, France
| | - Laura Cardoit
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR5287, Université de Bordeaux, CNRS, Bordeaux, France
| | - Maud Ringot
- NeuroDiderot, FHU I2-D2, Université de Paris, Inserm, Paris, France
| | - Thomas Bourgeois
- NeuroDiderot, FHU I2-D2, Université de Paris, Inserm, Paris, France
| | | | - Christophe Delclaux
- NeuroDiderot, FHU I2-D2, Université de Paris, Inserm, Paris, France.,Service d'Explorations Fonctionnelles Pédiatriques and
| | - Stéphane Dauger
- NeuroDiderot, FHU I2-D2, Université de Paris, Inserm, Paris, France.,Service de Médecine Intensive-Réanimation Pédiatriques, Hôpital Robert Debré, AP-HP, Paris, France; and
| | - Marie-Pia d'Ortho
- NeuroDiderot, FHU I2-D2, Université de Paris, Inserm, Paris, France.,Service de Physiologie-Explorations Fonctionnelles, Hôpital Bichat, AP-HP, Paris, France
| | - Muriel Thoby-Brisson
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR5287, Université de Bordeaux, CNRS, Bordeaux, France
| | - Jorge Gallego
- NeuroDiderot, FHU I2-D2, Université de Paris, Inserm, Paris, France
| | - Boris Matrot
- NeuroDiderot, FHU I2-D2, Université de Paris, Inserm, Paris, France
| |
Collapse
|
10
|
Yang CF, Kim EJ, Callaway EM, Feldman JL. Monosynaptic Projections to Excitatory and Inhibitory preBötzinger Complex Neurons. Front Neuroanat 2020; 14:58. [PMID: 33013329 PMCID: PMC7507425 DOI: 10.3389/fnana.2020.00058] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 08/04/2020] [Indexed: 01/01/2023] Open
Abstract
The key driver of breathing rhythm is the preBötzinger Complex (preBötC) whose activity is modulated by various functional inputs, e.g., volitional, physiological, and emotional. While the preBötC is highly interconnected with other regions of the breathing central pattern generator (bCPG) in the brainstem, there is no data about the direct projections to either excitatory and inhibitory preBötC subpopulations from other elements of the bCPG or from suprapontine regions. Using modified rabies tracing, we identified neurons throughout the brain that send monosynaptic projections to identified excitatory and inhibitory preBötC neurons in mice. Within the brainstem, neurons from sites in the bCPG, including the contralateral preBötC, Bötzinger Complex, the nucleus of the solitary tract (NTS), parafacial region (pF L /pF V ), and parabrachial nuclei (PB), send direct projections to both excitatory and inhibitory preBötC neurons. Suprapontine inputs to the excitatory and inhibitory preBötC neurons include the superior colliculus, red nucleus, amygdala, hypothalamus, and cortex; these projections represent potential direct pathways for volitional, emotional, and physiological control of breathing.
Collapse
Affiliation(s)
- Cindy F. Yang
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Euiseok J. Kim
- Systems Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Edward M. Callaway
- Systems Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Jack L. Feldman
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
11
|
Boyle CE, Parkar A, Barror A, Kubin L. Noradrenergic terminal density varies among different groups of hypoglossal premotor neurons. J Chem Neuroanat 2019; 100:101651. [PMID: 31128245 PMCID: PMC6717541 DOI: 10.1016/j.jchemneu.2019.101651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/21/2019] [Accepted: 05/21/2019] [Indexed: 12/31/2022]
Abstract
In obstructive sleep apnea (OSA) patients, contraction of the muscles of the tongue is needed to protect the upper airway from collapse. During wakefulness, norepinephrine directly excites motoneurons that innervate the tongue and other upper airway muscles but its excitatory effects decline during sleep, thus contributing to OSA. In addition to motoneurons, NE may regulate activity in premotor pathways but little is known about these upstream effects. To start filling this void, we injected a retrograde tracer (beta-subunit of cholera toxin-CTb; 5-10 nl, 1%) into the hypoglossal (XII) motor nucleus in 7 rats. We then used dual immunohistochemistry and brightfield microscopy to count dopamine beta-hydroxylase (DBH)-positive axon terminals closely apposed to CTb cells located in five anatomically distinct XII premotor regions. In different premotor groups, we found on the average 2.2-4.3 closely apposed DBH terminals per cell, with ˜60% more terminals on XII premotor neurons located in the ventrolateral pontine parabrachial region and ventral medullary gigantocellular region than on XII premotor cells of the rostral or caudal intermediate medullary reticular regions. This difference suggests stronger control by norepinephrine of the interneurons that mediate complex behavioral effects than of those mediating reflexes or respiratory drive to XII motoneurons.
Collapse
Affiliation(s)
- Caroline E Boyle
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anjum Parkar
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Amanda Barror
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Leszek Kubin
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
12
|
Muscarinic Inhibition of Hypoglossal Motoneurons: Possible Implications for Upper Airway Muscle Hypotonia during REM Sleep. J Neurosci 2019; 39:7910-7919. [PMID: 31420456 DOI: 10.1523/jneurosci.0461-19.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 07/08/2019] [Accepted: 08/13/2019] [Indexed: 01/02/2023] Open
Abstract
Proper function of pharyngeal dilator muscles, including the genioglossus muscle of the tongue, is required to maintain upper airway patency. During sleep, the activity of these muscles is suppressed, and as a result individuals with obstructive sleep apnea experience repeated episodes of upper airway closure when they are asleep, in particular during rapid-eye-movement (REM) sleep. Blocking cholinergic transmission in the hypoglossal motor nucleus (MoXII) restores REM sleep genioglossus activity, highlighting the importance of cholinergic transmission in the inhibition of hypoglossal motor neurons (HMNs) during REM sleep. Glutamatergic afferent input from neurons in the parahypoglossal (PH) region to the HMNs is critical for MoXII respiratory motor output. We hypothesized that state-dependent cholinergic regulation may be mediated by this pathway. Here we studied the effects of cholinergic transmission in HMNs in adult male and female mice using patch-clamp recordings in brain slices. Using channelrhodopsin-2-assisted circuit mapping, we first demonstrated that PH glutamatergic neurons directly and robustly activate HMNs (PHGlut → HMNs). We then show that carbachol consistently depresses this input and that this effect is presynaptic. Additionally, carbachol directly affects HMNs by a variable combination of muscarinic-mediated excitatory and inhibitory responses. Altogether, our results suggest that cholinergic signaling impairs upper airway dilator muscle activity by suppressing glutamatergic input from PH premotoneurons to HMNs and by directly inhibiting HMNs. Our findings highlight the complexity of cholinergic control of HMNs at both the presynaptic and postsynaptic levels and provide a possible mechanism for REM sleep suppression of upper airway muscle activity.SIGNIFICANCE STATEMENT Individuals with obstructive sleep apnea can breathe adequately when awake but experience repeated episodes of upper airway closure when asleep, in particular during REM sleep. Similar to skeletal postural muscles, pharyngeal dilator muscles responsible for maintaining an open upper airway become hypotonic during REM sleep. Unlike spinal motoneurons controlling postural muscles that are inhibited by glycinergic transmission during REM sleep, hypoglossal motoneurons that control the upper airway muscles are inhibited in REM sleep by the combination of monoaminergic disfacilitation and cholinergic inhibition. In this study, we demonstrated how cholinergic signaling inhibits hypoglossal motoneurons through presynaptic and postsynaptic muscarinic receptors. Our results provide a potential mechanism for upper airway hypotonia during REM sleep.
Collapse
|
13
|
Pilarski JQ, Leiter JC, Fregosi RF. Muscles of Breathing: Development, Function, and Patterns of Activation. Compr Physiol 2019; 9:1025-1080. [PMID: 31187893 DOI: 10.1002/cphy.c180008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This review is a comprehensive description of all muscles that assist lung inflation or deflation in any way. The developmental origin, anatomical orientation, mechanical action, innervation, and pattern of activation are described for each respiratory muscle fulfilling this broad definition. In addition, the circumstances in which each muscle is called upon to assist ventilation are discussed. The number of "respiratory" muscles is large, and the coordination of respiratory muscles with "nonrespiratory" muscles and in nonrespiratory activities is complex-commensurate with the diversity of activities that humans pursue, including sleep (8.27). The capacity for speech and adoption of the bipedal posture in human evolution has resulted in patterns of respiratory muscle activation that differ significantly from most other animals. A disproportionate number of respiratory muscles affect the nose, mouth, pharynx, and larynx, reflecting the vital importance of coordinated muscle activity to control upper airway patency during both wakefulness and sleep. The upright posture has freed the hands from locomotor functions, but the evolutionary history and ontogeny of forelimb muscles pervades the patterns of activation and the forces generated by these muscles during breathing. The distinction between respiratory and nonrespiratory muscles is artificial, as many "nonrespiratory" muscles can augment breathing under conditions of high ventilator demand. Understanding the ontogeny, innervation, activation patterns, and functions of respiratory muscles is clinically useful, particularly in sleep medicine. Detailed explorations of how the nervous system controls the multiple muscles required for successful completion of respiratory behaviors will continue to be a fruitful area of investigation. © 2019 American Physiological Society. Compr Physiol 9:1025-1080, 2019.
Collapse
Affiliation(s)
- Jason Q Pilarski
- Department of Biological and Dental Sciences, Idaho State University Pocatello, Idaho, USA
| | - James C Leiter
- Department of Molecular and Systems Biology, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Ralph F Fregosi
- Departments of Physiology and Neuroscience, The University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
14
|
Paik SK, Yoo HI, Choi SK, Bae JY, Park SK, Bae YC. Distribution of excitatory and inhibitory axon terminals on the rat hypoglossal motoneurons. Brain Struct Funct 2019; 224:1767-1779. [PMID: 31006070 DOI: 10.1007/s00429-019-01874-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 04/11/2019] [Indexed: 12/19/2022]
Abstract
Detailed information about the excitatory and inhibitory synapses on the hypoglossal motoneurons may help understand the neural mechanism for control of the hypoglossal motoneuron excitability and hence the precise and coordinated movements of the tongue during chewing, swallowing and licking. For this, we investigated the distribution of GABA-, glycine (Gly)- and glutamate (Glut)-immunopositive (+) axon terminals on the genioglossal (GG) motoneurons by retrograde tracing, electron microscopic immunohistochemistry, and quantitative analysis. Small GG motoneurons (< 400 μm2 in cross-sectional area) had fewer primary dendrites, significantly higher nuclear/cytoplasmic ratio, and smaller membrane area covered by synaptic boutons than large GG motoneurons (> 400 μm2). The fraction of inhibitory boutons (GABA + only, Gly + only, and mixed GABA +/Gly + boutons) of all boutons was significantly higher for small GG motoneurons than for large ones, whereas the fraction of Glut + boutons was significantly higher for large GG motoneurons than for small ones. Almost all boutons (> 95%) on both small and large GG motoneurons were GABA + , Gly + or Glut + . The frequency of mixed GABA +/Gly + boutons was the highest among inhibitory boutons types for both small and large GG motoneurons. These findings may elucidate the anatomical substrate for precise regulation of the motoneuron firing required for the fine movements of the tongue, and also suggest that the excitability of small and large GG motoneurons may be regulated differently.
Collapse
Affiliation(s)
- Sang Kyoo Paik
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, 188-1, 2-Ga, Samdeok-Dong, Jung-Gu, Daegu, 700-412, South Korea
| | - Hong Il Yoo
- Department of Anatomy and Neuroscience, College of Medicine, Eulji University, 77 Gyeryong-ro 771 beon-gil, Jung-Gu, Daejeon, 34824, South Korea
| | - Seung Ki Choi
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, 188-1, 2-Ga, Samdeok-Dong, Jung-Gu, Daegu, 700-412, South Korea
| | - Jin Young Bae
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, 188-1, 2-Ga, Samdeok-Dong, Jung-Gu, Daegu, 700-412, South Korea
| | - Sook Kyung Park
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, 188-1, 2-Ga, Samdeok-Dong, Jung-Gu, Daegu, 700-412, South Korea
| | - Yong Chul Bae
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, 188-1, 2-Ga, Samdeok-Dong, Jung-Gu, Daegu, 700-412, South Korea.
| |
Collapse
|
15
|
Huckstepp RTR, Cardoza KP, Henderson LE, Feldman JL. Distinct parafacial regions in control of breathing in adult rats. PLoS One 2018; 13:e0201485. [PMID: 30096151 PMCID: PMC6086409 DOI: 10.1371/journal.pone.0201485] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 07/15/2018] [Indexed: 11/29/2022] Open
Abstract
Recently, based on functional differences, we subdivided neurons juxtaposed to the facial nucleus into two distinct populations, the parafacial ventral and lateral regions, i.e., pFV and pFL. Little is known about the composition of these regions, i.e., are they homogenous or heterogeneous populations? Here, we manipulated their excitability in spontaneously breathing vagotomized urethane anesthetized adult rats to further characterize their role in breathing. In the pFL, disinhibition or excitation decreased breathing frequency (f) with a concomitant increase of tidal volume (VT), and induced active expiration; in contrast, reducing excitation had no effect. This result is congruent with pFL neurons constituting a conditional expiratory oscillator comprised of a functionally homogeneous set of excitatory neurons that are tonically suppressed at rest. In the pFV, disinhibition increased f with a presumptive reflexive decrease in VT; excitation increased f, VT and sigh rate; reducing excitation decreased VT with a presumptive reflexive increase in f. Therefore, the pFV, has multiple functional roles that require further parcellation. Interestingly, while hyperpolarization of the pFV reduces ongoing expiratory activity, no perturbation of pFV excitability induced active expiration. Thus, while the pFV can affect ongoing expiratory activity, presumably generated by the pFL, it does not appear capable of directly inducing active expiration. We conclude that the pFL contains neurons that can initiate, modulate, and sustain active expiration, whereas the pFV contains subpopulations of neurons that differentially affect various aspects of breathing pattern, including but not limited to modulation of ongoing expiratory activity.
Collapse
Affiliation(s)
- Robert T. R. Huckstepp
- Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Kathryn P. Cardoza
- Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Lauren E. Henderson
- Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Jack L. Feldman
- Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
16
|
Ghezzi F, Monni L, Nistri A. Functional up-regulation of the M-current by retigabine contrasts hyperexcitability and excitotoxicity on rat hypoglossal motoneurons. J Physiol 2018; 596:2611-2629. [PMID: 29736957 DOI: 10.1113/jp275906] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 04/23/2018] [Indexed: 12/14/2022] Open
Abstract
KEY POINTS Excessive neuronal excitability characterizes several neuropathological conditions, including neurodegenerative diseases such as amyotrophic lateral sclerosis. Hypoglossal motoneurons (HMs), which control tongue muscles, are extremely vulnerable to this disease and undergo damage and death when exposed to an excessive glutamate extracellular concentration that causes excitotoxicity. Our laboratory devised an in vitro model of excitotoxicity obtained by pharmacological blockade of glutamate transporters. In this paradigm, HMs display hyperexcitability, collective bursting and eventually cell death. The results of the present study show that pharmacological up-regulation of a K+ current (M-current), via application of the anti-convulsant retigabine, prevented all hallmarks of HM excitotoxicity, comprising bursting, generation of reactive oxygen species, expression of toxic markers and cell death. ○Our data may have translational value to develop new treatments against neurological diseases by using positive pharmacological modulators of the M-current. ABSTRACT Neuronal hyperexcitability is a symptom characterizing several neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS). In the ALS bulbar form, hypoglossal motoneurons (HMs) are an early target for neurodegeneration because of their high vulnerability to metabolic insults. In recent years, our laboratory has developed an in vitro model of a brainstem slice comprising the hypoglossal nucleus in which HM neurodegeneration is achieved by blocking glutamate clearance with dl-threo-β-benzyloxyaspartate (TBOA), thus leading to delayed excitotoxicity. During this process, HMs display a set of hallmarks such as hyperexcitability (and network bursting), reactive oxygen species (ROS) generation and, finally, cell death. The present study aimed to investigate whether blocking early hyperexcitability and bursting with the anti-convulsant drug retigabine was sufficient to achieve neuroprotection against excitotoxicity. Retigabine is a selective positive allosteric modulator of the M-current (IM ), an endogenous mechanism that neurons (comprising HMs) express to dampen excitability. Retigabine (10 μm; co-applied with TBOA) contrasted ROS generation, release of endogenous toxic factors into the HM cytoplasm and excitotoxicity-induced HM death. Electrophysiological experiments showed that retigabine readily contrasted and arrested bursting evoked by TBOA administration. Because neuronal IM subunits (Kv7.2, Kv7.3 and Kv7.5) were expressed in the hypoglossal nucleus and in functionally connected medullary nuclei, we suggest that they were responsible for the strong reduction in network excitability, a potent phenomenon for achieving neuroprotection against TBOA-induced excitotoxicity. The results of the present study may have translational value for testing novel positive pharmacological modulators of the IM under pathological conditions (including neurodegenerative disorders) characterized by excessive neuronal excitability.
Collapse
Affiliation(s)
- Filippo Ghezzi
- Department of Neuroscience, International School for Advanced Studies (SISSA), Trieste, Italy
| | - Laura Monni
- Department of Neuroscience, International School for Advanced Studies (SISSA), Trieste, Italy
| | - Andrea Nistri
- Department of Neuroscience, International School for Advanced Studies (SISSA), Trieste, Italy
| |
Collapse
|
17
|
Wijesuriya NS, Gainche L, Jordan AS, Berlowitz DJ, LeGuen M, Rochford PD, O'Donoghue FJ, Ruehland WR, Carberry JC, Butler JE, Eckert DJ. Genioglossus reflex responses to negative upper airway pressure are altered in people with tetraplegia and obstructive sleep apnoea. J Physiol 2018; 596:2853-2864. [PMID: 29658103 DOI: 10.1113/jp275222] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 03/07/2018] [Indexed: 12/21/2022] Open
Abstract
KEY POINTS Protective reflexes in the throat area (upper airway) are crucial for breathing. Impairment of these reflexes can cause breathing problems during sleep such as obstructive sleep apnoea (OSA). OSA is very common in people with spinal cord injury for unknown reasons. This study shows major changes in protective reflexes that serve to keep the upper airway open in response to suction pressures in people with tetraplegia and OSA. These results help us understand why OSA is so common in people with tetraplegia and provide new insight into how protective upper airway reflexes work more broadly. ABSTRACT More than 60% of people with tetraplegia have obstructive sleep apnoea (OSA). However, the specific causes are unknown. Genioglossus, the largest upper-airway dilator muscle, is important in maintaining upper-airway patency. Impaired genioglossus muscle function following spinal cord injury may contribute to OSA. This study aimed to determine if genioglossus reflex responses to negative upper-airway pressure are altered in people with OSA and tetraplegia compared to non-neurologically impaired able-bodied individuals with OSA. Genioglossus reflex responses measured via intramuscular electrodes to ∼60 brief (250 ms) pulses of negative upper-airway pressure (∼-15 cmH2 O at the mask) were compared between 13 participants (2 females) with tetraplegia plus OSA and 9 able-bodied controls (2 females) matched for age and OSA severity. The initial short-latency excitatory reflex response was absent in 6/13 people with tetraplegia and 1/9 controls. Genioglossus reflex inhibition in the absence of excitation was observed in three people with tetraplegia and none of the controls. When the excitatory response was present, it was significantly delayed in the tetraplegia group compared to able-bodied controls: excitation onset latency (mean ± SD) was 32 ± 16 vs. 18 ± 9 ms, P = 0.045; peak excitation latency was 48 ± 17 vs. 33 ± 8 ms, P = 0.038. However, when present, amplitude of the excitation response was not different between groups, 195 ± 26 vs. 219 ± 98% at baseline, P = 0.55. There are major differences in genioglossus reflex morphology and timing in response to rapid changes in airway pressure in people with tetraplegia and OSA. Altered genioglossus function may contribute to the increased risk of OSA in people with tetraplegia. The precise mechanisms mediating these differences are unknown.
Collapse
Affiliation(s)
| | - Laura Gainche
- University of Melbourne, Melbourne, Australia.,Institute for Breathing and Sleep (IBAS), Melbourne, Australia
| | - Amy S Jordan
- University of Melbourne, Melbourne, Australia.,Institute for Breathing and Sleep (IBAS), Melbourne, Australia
| | - David J Berlowitz
- University of Melbourne, Melbourne, Australia.,Institute for Breathing and Sleep (IBAS), Melbourne, Australia.,Department of Respiratory and Sleep Medicine, Austin Health, Melbourne, Australia
| | - Mariannick LeGuen
- University of Melbourne, Melbourne, Australia.,Institute for Breathing and Sleep (IBAS), Melbourne, Australia
| | - Peter D Rochford
- Institute for Breathing and Sleep (IBAS), Melbourne, Australia.,Department of Respiratory and Sleep Medicine, Austin Health, Melbourne, Australia
| | - Fergal J O'Donoghue
- University of Melbourne, Melbourne, Australia.,Institute for Breathing and Sleep (IBAS), Melbourne, Australia.,Department of Respiratory and Sleep Medicine, Austin Health, Melbourne, Australia
| | - Warren R Ruehland
- University of Melbourne, Melbourne, Australia.,Institute for Breathing and Sleep (IBAS), Melbourne, Australia.,Department of Respiratory and Sleep Medicine, Austin Health, Melbourne, Australia
| | - Jayne C Carberry
- Neuroscience Research Australia (NeuRA), Randwick, NSW, Australia.,University of New South Wales, Syndney, Australia
| | - Jane E Butler
- Neuroscience Research Australia (NeuRA), Randwick, NSW, Australia.,University of New South Wales, Syndney, Australia
| | - Danny J Eckert
- Neuroscience Research Australia (NeuRA), Randwick, NSW, Australia.,University of New South Wales, Syndney, Australia
| |
Collapse
|
18
|
Yang CF, Feldman JL. Efferent projections of excitatory and inhibitory preBötzinger Complex neurons. J Comp Neurol 2018; 526:1389-1402. [PMID: 29473167 DOI: 10.1002/cne.24415] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 02/04/2018] [Accepted: 02/09/2018] [Indexed: 02/01/2023]
Abstract
The preBötzinger Complex (preBötC), a compact medullary region essential for generating normal breathing rhythm and pattern, is the kernel of the breathing central pattern generator (CPG). Excitatory preBötC neurons in rats project to major breathing-related brainstem regions. Here, we provide a brainstem connectivity map in mice for both excitatory and inhibitory preBötC neurons. Using a genetic strategy to label preBötC neurons, we confirmed extensive projections of preBötC excitatory neurons within the brainstem breathing CPG including the contralateral preBötC, Bötzinger Complex (BötC), ventral respiratory group, nucleus of the solitary tract, parahypoglossal nucleus, parafacial region (RTN/pFRG or alternatively, pFL /pFV ), parabrachial and Kölliker-Füse nuclei, as well as major projections to the midbrain periaqueductal gray. Interestingly, preBötC inhibitory projections paralleled the excitatory projections. Moreover, we examined overlapping projections in the pons in detail and found that they targeted the same neurons. We further explored the direct anatomical link between the preBötC and suprapontine brain regions that may govern emotion and other complex behaviors that can affect or be affected by breathing. Forebrain efferent projections were sparse and restricted to specific nuclei within the thalamus and hypothalamus, with processes rarely observed in cortex, basal ganglia, or other limbic regions, e.g., amygdala or hippocampus. We conclude that the preBötC sends direct, presumably inspiratory-modulated, excitatory and inhibitory projections in parallel to distinct targets throughout the brain that generate and modulate breathing pattern and/or coordinate breathing with other behaviors, physiology, cognition, or emotional state.
Collapse
Affiliation(s)
- Cindy F Yang
- Department of Neurobiology, David Geffen School of Medicine, UCLA, Los Angeles, California, 90095-1763
| | - Jack L Feldman
- Department of Neurobiology, David Geffen School of Medicine, UCLA, Los Angeles, California, 90095-1763
| |
Collapse
|
19
|
Fassbender P, Herbstreit F, Eikermann M, Teschler H, Peters J. Obstructive Sleep Apnea-a Perioperative Risk Factor. DEUTSCHES ARZTEBLATT INTERNATIONAL 2018; 113:463-9. [PMID: 27476705 DOI: 10.3238/arztebl.2016.0463] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 04/13/2016] [Accepted: 04/13/2016] [Indexed: 12/26/2022]
Abstract
BACKGROUND Obstructive sleep apnea (OSA) is a common disorder of breathing but is probably underappreciated as a perioperative risk factor. METHODS This review is based on pertinent articles, published up to 15 August 2015, that were retrieved by a selective search in PubMed based on the terms "sleep apnea AND anesthesia" OR "sleep apnea AND pathophysiology." The guidelines of multiple specialty societies were considered as well. RESULTS OSA is characterized by phases of upper airway obstruction accompanied by apnea/hypoventilation, with hypoxemia, hypercapnia, and recurrent overactivation of the sympathetic nervous system. It has been reported that 22% to 82% of all adults who are about to undergo surgery have OSA. The causes of OSA are multifactorial and include, among others, an anatomical predisposition and /or a reduced inspiratory activation of the bronchodilator muscles, particularly when the patient is sleeping or has taken a sedative drug, anesthetic agent, or muscle relaxant. OSA is associated with arterial hypertension, coronary heart disease, and congestive heart failure. It can be assessed before the planned intervention with polysomnography and structured questionnaires (STOP/STOP-BANG), with sensitivities of 62% and 88%. The utility of miniaturized screening devices is debated. Patients with OSA are at risk for perioperative problems including difficult or ineffective mask ventilation and/or intubation, postoperative airway obstruction, and complications arising from other comorbid conditions. They should be appropriately monitored postoperatively depending on the type of intervention they have undergone, and depending on individually varying, patient-related factors; postoperative management in an intensive care unit may be indicated, although no validated data on this topic are yet available. CONCLUSION OSA patients need care by specialists from multiple disciplines, including anesthesiologists with experience in recognizing OSA, securing the airway of OSA patients, and managing them postoperatively. No randomized trials have yet compared the modalities of general anesthesia for OSA patients with respect to postoperative complications or phases of apnea or hypopnea.
Collapse
Affiliation(s)
- Philipp Fassbender
- Clinic for Anesthesiology and Intensive Care & Essen University Hospital, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, USA, und Universität Duisburg-Essen, Department of Interventional Pneumology, Ruhrlandklinik, University Hospital Essen
| | | | | | | | | |
Collapse
|
20
|
The Effect of Donepezil on Arousal Threshold and Apnea-Hypopnea Index. A Randomized, Double-Blind, Cross-Over Study. Ann Am Thorac Soc 2017; 13:2012-2018. [PMID: 27442715 DOI: 10.1513/annalsats.201605-384oc] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
RATIONALE Obstructive sleep apnea (OSA) has multiple pathophysiological causes. A low respiratory arousal threshold (ArTh) and a high loop gain (unstable ventilatory control) can contribute to recurrent respiratory events in patients with OSA. Prior studies have shown that donepezil, an acetylcholinesterase inhibitor, might improve OSA, but the mechanism is unknown. OBJECTIVES To determine whether a single dose of donepezil lowers the apnea-hypopnea index by modulating the ArTh or loop gain. METHODS In this randomized, double-blind, crossover trial, 41 subjects with OSA underwent two polysomnograms with ArTh and loop gain evaluated, during which 10 mg of donepezil or placebo was administered. MEASUREMENTS AND MAIN RESULTS Compared with placebo, sleep efficiency (77.2 vs. 71.9%; P = 0.015) and total sleep time decreased with donepezil (372 vs. 351 min; P = 0.004). No differences were found in apnea-hypopnea index (51.8 vs. 50.0 events/h; P = 0.576) or nadir oxygen saturation as determined by pulse oximetry (80.3 vs. 81.1%; P = 0.241) between placebo and donepezil, respectively. ArTh was not significantly changed (-18.9 vs. -18.0 cm H2O; P = 0.394) with donepezil. As a whole group, loop gain (ventilatory response to a 1-cycle/min disturbance) did not change significantly (P = 0.089). CONCLUSIONS A single dose of donepezil did not appear to affect the overall severity of OSA in this patient group, and no consistent effects on ArTh or loop gain were observed. Donepezil may have minor effects on sleep architecture. Clinical trial registered with www.clinicaltrials.gov (NCT02264353).
Collapse
|
21
|
Morphology of Dbx1 respiratory neurons in the preBötzinger complex and reticular formation of neonatal mice. Sci Data 2017; 4:170097. [PMID: 28763053 PMCID: PMC5538238 DOI: 10.1038/sdata.2017.97] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 06/06/2017] [Indexed: 01/23/2023] Open
Abstract
The relationship between neuron morphology and function is a perennial issue in neuroscience. Information about synaptic integration, network connectivity, and the specific roles of neuronal subpopulations can be obtained through morphological analysis of key neurons within a microcircuit. Here we present morphologies of two classes of brainstem respiratory neurons. First, interneurons derived from Dbx1-expressing precursors (Dbx1 neurons) in the preBötzinger complex (preBötC) of the ventral medulla that generate the rhythm for inspiratory breathing movements. Second, Dbx1 neurons of the intermediate reticular formation that influence the motor pattern of pharyngeal and lingual movements during the inspiratory phase of the breathing cycle. We describe the image acquisition and subsequent digitization of morphologies of respiratory Dbx1 neurons from the preBötC and the intermediate reticular formation that were first recorded in vitro. These data can be analyzed comparatively to examine how morphology influences the roles of Dbx1 preBötC and Dbx1 reticular interneurons in respiration and can also be utilized to create morphologically accurate compartmental models for simulation and modeling of respiratory circuits.
Collapse
|
22
|
Functional Interactions between Mammalian Respiratory Rhythmogenic and Premotor Circuitry. J Neurosci 2017; 36:7223-33. [PMID: 27383596 DOI: 10.1523/jneurosci.0296-16.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 05/27/2016] [Indexed: 01/21/2023] Open
Abstract
UNLABELLED Breathing in mammals depends on rhythms that originate from the preBötzinger complex (preBötC) of the ventral medulla and a network of brainstem and spinal premotor neurons. The rhythm-generating core of the preBötC, as well as some premotor circuits, consist of interneurons derived from Dbx1-expressing precursors (Dbx1 neurons), but the structure and function of these networks remain incompletely understood. We previously developed a cell-specific detection and laser ablation system to interrogate respiratory network structure and function in a slice model of breathing that retains the preBötC, the respiratory-related hypoglossal (XII) motor nucleus and XII premotor circuits. In spontaneously rhythmic slices, cumulative ablation of Dbx1 preBötC neurons decreased XII motor output by ∼50% after ∼15 cell deletions, and then decelerated and terminated rhythmic function altogether as the tally increased to ∼85 neurons. In contrast, cumulatively deleting Dbx1 XII premotor neurons decreased motor output monotonically but did not affect frequency nor stop XII output regardless of the ablation tally. Here, we couple an existing preBötC model with a premotor population in several topological configurations to investigate which one may replicate the laser ablation experiments best. If the XII premotor population is a "small-world" network (rich in local connections with sparse long-range connections among constituent premotor neurons) and connected with the preBötC such that the total number of incoming synapses remains fixed, then the in silico system successfully replicates the in vitro laser ablation experiments. This study proposes a feasible configuration for circuits consisting of Dbx1-derived interneurons that generate inspiratory rhythm and motor pattern. SIGNIFICANCE STATEMENT To produce a breathing-related motor pattern, a brainstem core oscillator circuit projects to a population of premotor interneurons, but the assemblage of this network remains incompletely understood. Here we applied network modeling and numerical simulation to discover respiratory circuit configurations that successfully replicate photonic cell ablation experiments targeting either the core oscillator or premotor network, respectively. If premotor neurons are interconnected in a so-called "small-world" network with a fixed number of incoming synapses balanced between premotor and rhythmogenic neurons, then our simulations match their experimental benchmarks. These results provide a framework of experimentally testable predictions regarding the rudimentary structure and function of respiratory rhythm- and pattern-generating circuits in the brainstem of mammals.
Collapse
|
23
|
Kubin L. Neural Control of the Upper Airway: Respiratory and State-Dependent Mechanisms. Compr Physiol 2016; 6:1801-1850. [PMID: 27783860 DOI: 10.1002/cphy.c160002] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Upper airway muscles subserve many essential for survival orofacial behaviors, including their important role as accessory respiratory muscles. In the face of certain predisposition of craniofacial anatomy, both tonic and phasic inspiratory activation of upper airway muscles is necessary to protect the upper airway against collapse. This protective action is adequate during wakefulness, but fails during sleep which results in recurrent episodes of hypopneas and apneas, a condition known as the obstructive sleep apnea syndrome (OSA). Although OSA is almost exclusively a human disorder, animal models help unveil the basic principles governing the impact of sleep on breathing and upper airway muscle activity. This article discusses the neuroanatomy, neurochemistry, and neurophysiology of the different neuronal systems whose activity changes with sleep-wake states, such as the noradrenergic, serotonergic, cholinergic, orexinergic, histaminergic, GABAergic and glycinergic, and their impact on central respiratory neurons and upper airway motoneurons. Observations of the interactions between sleep-wake states and upper airway muscles in healthy humans and OSA patients are related to findings from animal models with normal upper airway, and various animal models of OSA, including the chronic-intermittent hypoxia model. Using a framework of upper airway motoneurons being under concurrent influence of central respiratory, reflex and state-dependent inputs, different neurotransmitters, and neuropeptides are considered as either causing a sleep-dependent withdrawal of excitation from motoneurons or mediating an active, sleep-related inhibition of motoneurons. Information about the neurochemistry of state-dependent control of upper airway muscles accumulated to date reveals fundamental principles and may help understand and treat OSA. © 2016 American Physiological Society. Compr Physiol 6:1801-1850, 2016.
Collapse
Affiliation(s)
- Leszek Kubin
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
24
|
Kanjhan R, Fogarty MJ, Noakes PG, Bellingham MC. Developmental changes in the morphology of mouse hypoglossal motor neurons. Brain Struct Funct 2016; 221:3755-86. [PMID: 26476929 PMCID: PMC5009180 DOI: 10.1007/s00429-015-1130-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 10/03/2015] [Indexed: 12/19/2022]
Abstract
Hypoglossal motor neurons (XII MNs) innervate tongue muscles important in breathing, suckling and vocalization. Morphological properties of 103 XII MNs were studied using Neurobiotin™ filling in transverse brainstem slices from C57/Bl6 mice (n = 34) from embryonic day (E) 17 to postnatal day (P) 28. XII MNs from areas thought to innervate different tongue muscles showed similar morphology in most, but not all, features. Morphological properties of XII MNs were established prior to birth, not differing between E17-18 and P0. MN somatic volume gradually increased for the first 2 weeks post-birth. The complexity of dendritic branching and dendrite length of XII MNs increased throughout development (E17-P28). MNs in the ventromedial XII motor nucleus, likely to innervate the genioglossus, frequently (42 %) had dendrites crossing to the contralateral side at all ages, but their number declined with postnatal development. Unexpectedly, putative dendritic spines were found in all XII MNs at all ages, and were primarily localized to XII MN somata and primary dendrites at E18-P4, increased in distal dendrites by P5-P8, and were later predominantly found in distal dendrites. Dye-coupling between XII MNs was common from E18 to P7, but declined strongly with maturation after P7. Axon collaterals were found in 20 % (6 of 28) of XII MNs with filled axons; collaterals terminated widely outside and, in one case, within the XII motor nucleus. These results reveal new morphological features of mouse XII MNs, and suggest that dendritic projection patterns, spine density and distribution, and dye-coupling patterns show specific developmental changes in mice.
Collapse
Affiliation(s)
- Refik Kanjhan
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Matthew J Fogarty
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Peter G Noakes
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, 4072, Australia
- Queensland Brain Institute, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Mark C Bellingham
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
25
|
Abstract
Depending on the subpopulation, obstructive sleep apnea (OSA) can affect more than 75% of surgical patients. An increasing body of evidence supports the association between OSA and perioperative complications, but some data indicate important perioperative outcomes do not differ between patients with and without OSA. In this review we will provide an overview of the pathophysiology of sleep apnea and the risk factors for perioperative complications related to sleep apnea. We also discuss a clinical algorithm for the identification and management of OSA patients facing surgery.
Collapse
Affiliation(s)
- Sebastian Zaremba
- Department of Anaesthesia Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, 02114, USA; Department of Neurology, Rheinische-Friedrich-Wilhelms-University, Bonn, D-53127, Germany; German Center for Neurodegenerative Diseases, Bonn, D-53127, Germany
| | - James E Mojica
- Department of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, 02114, USA
| | - Matthias Eikermann
- Department of Anaesthesia Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, 02114, USA; Department of Anaesthesia and Critical Care, University Hospital Essen, Essen, 45147, Germany
| |
Collapse
|
26
|
Zaremba S, Mueller N, Heisig AM, Shin CH, Jung S, Leffert LR, Bateman BT, Pugsley LJ, Nagasaka Y, Duarte IM, Ecker JL, Eikermann M. Elevated upper body position improves pregnancy-related OSA without impairing sleep quality or sleep architecture early after delivery. Chest 2016; 148:936-944. [PMID: 25905714 DOI: 10.1378/chest.14-2973] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND During pregnancy, upper airway resistance is increased, predisposing vulnerable women to pregnancy-related OSA. Elevation of the upper body increases upper airway cross-sectional area (CSA) and improves severity of OSA in a subgroup of nonpregnant patients (positional-dependent sleep apnea). We tested the hypothesis that elevated position of the upper body improves OSA early after delivery. METHODS Following institutional review board approval, we conducted a randomized, crossover study on two postpartum units of Massachusetts General Hospital. Women during the first 48 h after delivery were included. Polysomnography was performed in nonelevated and 45° elevated upper body position. Upper airway CSA was measured by acoustic pharyngometry in nonelevated, 45° elevated, and sitting body position. RESULTS Fifty-five patients were enrolled, and measurements of airway CSA obtained. Thirty patients completed polysomnography in both body positions. Elevation of the upper body significantly reduced apnea-hypopnea index (AHI) from 7.7 ± 2.2/h in nonelevated to 4.5 ± 1.4/h in 45° elevated upper body position (P = .031) during sleep. Moderate to severe OSA (AHI > 15/h) was diagnosed in 20% of postpartum patients and successfully treated by elevated body position in one-half of them. Total sleep time and sleep architecture were not affected by upper body elevation. Change from nonelevated to sitting position increased inspiratory upper airway CSA from 1.35 ± 0.1 cm2 to 1.54 ± 0.1 cm2 during wakefulness. Position-dependent increase in CSA and decrease in AHI were correlated (r = 0.42, P = .022). CONCLUSIONS Among early postpartum women, 45° upper body elevation increased upper airway CSA and mitigated sleep apnea. Elevated body position might improve respiratory safety in women early after delivery. TRIAL REGISTRY ClinicalTrials.gov; No.: NCT01719224; URL: www.clinicaltrials.gov.
Collapse
Affiliation(s)
- Sebastian Zaremba
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA; Sleep Medicine, Department of Neurology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-University, Bonn, Germany
| | - Noomi Mueller
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Anne M Heisig
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Christina H Shin
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Stefanie Jung
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA; Department of Pediatric Surgery, DRK-Kinderklinik Siegen, Teaching Hospital of Philipps University, Marburg, Germany; Department of Pediatric Urology, DRK-Kinderklinik Siegen, Teaching Hospital of Philipps University, Marburg, Germany
| | - Lisa R Leffert
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Brian T Bateman
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA; Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Lori J Pugsley
- Department of Obstetrics and Gynecology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Yasuko Nagasaka
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Ingrid Moreno Duarte
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Jeffrey L Ecker
- Department of Obstetrics and Gynecology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Matthias Eikermann
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA; Department of Anesthesia and Critical Care Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany.
| |
Collapse
|
27
|
Fenik VB. Revisiting Antagonist Effects in Hypoglossal Nucleus: Brainstem Circuit for the State-Dependent Control of Hypoglossal Motoneurons: A Hypothesis. Front Neurol 2015; 6:254. [PMID: 26648908 PMCID: PMC4664632 DOI: 10.3389/fneur.2015.00254] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 11/17/2015] [Indexed: 12/31/2022] Open
Abstract
We reassessed and provided new insights into the findings that were obtained in our previous experiments that employed the injections of combined adrenergic, serotonergic, GABAergic, and glycinergic antagonists into the hypoglossal nucleus in order to pharmacologically abolish the depression of hypoglossal nerve activity that occurred during carbachol-induced rapid-eye-movement (REM) sleep-like state in anesthetized rats. We concluded that noradrenergic disfacilitation is the major mechanism that is responsible for approximately 90% of the depression of hypoglossal motoneurons, whereas the remaining 10% can be explained by serotonergic mechanisms that have net inhibitory effect on hypoglossal nerve activity during REM sleep-like state. We hypothesized that both noradrenergic and serotonergic state-dependent mechanisms indirectly control hypoglossal motoneuron excitability during REM sleep; their activities are integrated and mediated to hypoglossal motoneurons by reticular formation neurons. In addition, we proposed a brainstem neural circuit that can explain the new findings.
Collapse
Affiliation(s)
- Victor B Fenik
- Department of Veterans Affairs Greater Los Angeles Healthcare System , Los Angeles, CA , USA ; Websciences International , Los Angeles, CA , USA
| |
Collapse
|
28
|
Uchima Koecklin KH, Kato C, Funaki Y, Hiranuma M, Ishida T, Fujita K, Yabushita T, Kokai S, Ono T. Effect of unilateral nasal obstruction on tongue protrusion forces in growing rats. J Appl Physiol (1985) 2015; 118:1128-35. [DOI: 10.1152/japplphysiol.01152.2014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 03/10/2015] [Indexed: 01/23/2023] Open
Abstract
Mouth breathing caused by nasal obstruction affects the normal growth and development of craniofacial structures, including changes in the orofacial muscles. Tongue muscles play an important role in patency of the pharyngeal airway, and changes in the breathing pattern may influence tongue function. The purpose of this study was to evaluate the effect of unilateral nasal obstruction during growth on contractile properties of the tongue-protruding muscles. Sixty 6-day-old male Wistar albino rats were divided randomly into control ( n = 30) and experimental ( n = 30) groups. Rats in the experimental group underwent a unilateral nasal obstruction after cauterization of the external nostril at the age of 8 days, and muscle contractile characteristics were measured at 5, 7, and 9 wk of age. The specific parameters measured were twitch force, contraction time, half-decay time, tetanic force, and fatigue index. Repeated-measures multivariate analysis of variance was used for intergroup and intragroup statistical comparisons. Twitch contraction force and half-decay time were significantly increased in the experimental group at all ages. Tetanic forces at 60 and 80 Hz were significantly higher in the experimental group at all ages. The fatigue index was decreased significantly in the experimental group at the age of 5 wk. These results suggest that early unilateral nasal obstruction may increase the contraction force of the tongue-protruding muscles and prolong the duration of muscle contraction, which may influence the shape and development of the craniofacial complex.
Collapse
Affiliation(s)
- Karin Harumi Uchima Koecklin
- Orthodontic Science, Department of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Chiho Kato
- Orthodontic Science, Department of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yukiha Funaki
- Orthodontic Science, Department of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Maya Hiranuma
- Orthodontic Science, Department of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takayoshi Ishida
- Orthodontic Science, Department of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Koichi Fujita
- Orthodontic Science, Department of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tadachika Yabushita
- Orthodontic Science, Department of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Satoshi Kokai
- Orthodontic Science, Department of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takashi Ono
- Orthodontic Science, Department of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
29
|
Abstract
Contiguous brain regions associated with a given behavior are increasingly being divided into subregions associated with distinct aspects of that behavior. Using recently developed neuronal hyperpolarizing technologies, we functionally dissect the parafacial region in the medulla, which contains key elements of the central pattern generator for breathing that are important in central CO2-chemoreception and for gating active expiration. By transfecting different populations of neighboring neurons with allatostatin or HM4D Gi/o-coupled receptors, we analyzed the effect of their hyperpolarization on respiration in spontaneously breathing vagotomized urethane-anesthetized rats. We identify two functionally separate parafacial nuclei: ventral (pFV) and lateral (pFL). Disinhibition of the pFL with bicuculline and strychnine led to active expiration. Hyperpolarizing pFL neurons had no effect on breathing at rest, or changes in inspiratory activity induced by hypoxia and hypercapnia; however, hyperpolarizing pFL neurons attenuated active expiration when it was induced by hypercapnia, hypoxia, or disinhibition of the pFL. In contrast, hyperpolarizing pFV neurons affected breathing at rest by decreasing inspiratory-related activity, attenuating the hypoxia- and hypercapnia-induced increase in inspiratory activity, and when present, reducing expiratory-related abdominal activity. Together with previous observations, we conclude that the pFV provides a generic excitatory drive to breathe, even at rest, whereas the pFL is a conditional oscillator quiet at rest that, when activated, e.g., during exercise, drives active expiration.
Collapse
|
30
|
Jen R, Grandner MA, Malhotra A. Future of Sleep-Disordered Breathing Therapy Using a Mechanistic Approach. Can J Cardiol 2015; 31:880-8. [PMID: 26044800 DOI: 10.1016/j.cjca.2015.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 01/30/2015] [Accepted: 02/08/2015] [Indexed: 01/10/2023] Open
Abstract
Sleep disordered breathing (SDB) is highly prevalent among patients with cardiovascular disease (CVD), and the relationship between SDB and CVD may be bidirectional. However, SDB remains underdiagnosed and undertreated. One of the major barriers identified by cardiologists is lack of satisfaction with SDB therapy. This situation could be the result of the discordance between treatment and the pathophysiological characteristics of SDB. This condition is caused by multiple pathophysiological mechanisms, which could be classified into upper airway anatomic compromise, pharyngeal dilator muscle dysfunction, and ventilatory control instability. However, the effective treatment of SDB remains limited, and positive airway pressure therapy is still the mainstay of the treatment. Therefore, we review the pathophysiological characteristics of SDB in this article, and we propose to provide individualized treatment of SDB based on the underlying mechanism. This approach requires further study but could potentially improve adherence and success of therapy.
Collapse
Affiliation(s)
- Rachel Jen
- Respiratory Division, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Division of Pulmonary and Critical Care, University of California, San Diego, La Jolla, California, USA
| | - Michael A Grandner
- Division of Sleep Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Atul Malhotra
- Division of Pulmonary and Critical Care, University of California, San Diego, La Jolla, California, USA.
| |
Collapse
|
31
|
Anesthesia and increased hypercarbic drive impair the coordination between breathing and swallowing. Anesthesiology 2015; 121:1175-83. [PMID: 25275368 DOI: 10.1097/aln.0000000000000462] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Coordination between breathing and swallowing helps prevent aspiration of foreign material into the respiratory tract. The authors examined the effects of anesthesia and hypercapnia on swallowing-breathing coordination. METHODS In a randomized controlled crossover study, general anesthesia with propofol or sevoflurane was titrated using an up-down method to identify the threshold for suppression of the motor response to electrical stimulation of the forearm. Additional measurements included bispectral index, genioglossus electromyogram, ventilation (pneumotachometer), and hypopharyngeal pressure. During wakefulness and at each level of anesthesia, carbon dioxide was added to increase the end-tidal pressure by 4 and 8 mmHg. A swallow was defined as increased genioglossus activity with deglutition apnea and an increase in hypopharyngeal pressure. Spontaneous swallows were categorized as physiological (during expiration or followed by expiration) or pathological (during inspiration or followed by an inspiration). RESULTS A total of 224 swallows were analyzed. Anesthesia increased the proportion of pathological swallows (25.9% vs. 4.9%) and decreased the number of swallows per hour (1.7±3.3 vs. 28.0±22.3) compared to wakefulness. During anesthesia, hypercapnia decreased hypopharyngeal pressure during inspiration (-14.1±3.7 vs. -8.7±2 mmHg) and increased minute ventilation, the proportion of pathological swallows (19.1% vs. 12.3%), and the number of swallows per hour (5.5±17.0. vs. 1.3±5.5). CONCLUSIONS Anesthesia impaired the coordination between swallowing and respiration. Mild hypercapnia increased the frequency of swallowing during anesthesia and the likelihood of pathological swallowing. During anesthesia, the risk for aspiration may be further increased when ventilatory drive is stimulated.
Collapse
|
32
|
Yokota S, Kaur S, VanderHorst VG, Saper CB, Chamberlin NL. Respiratory-related outputs of glutamatergic, hypercapnia-responsive parabrachial neurons in mice. J Comp Neurol 2015; 523:907-20. [PMID: 25424719 DOI: 10.1002/cne.23720] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 11/20/2014] [Accepted: 11/21/2014] [Indexed: 01/16/2023]
Abstract
In patients with obstructive sleep apnea, airway obstruction during sleep produces hypercapnia, which in turn activates respiratory muscles that pump air into the lungs (e.g., the diaphragm) and that dilate and stabilize the upper airway (e.g., the genioglossus). We hypothesized that these responses are facilitated by glutamatergic neurons in the parabrachial complex (PB) that respond to hypercapnia and project to premotor and motor neurons that innervate the diaphragm and genioglossus muscles. To test this hypothesis, we combined c-Fos immunohistochemistry with in situ hybridization for vGluT2 or GAD67 or with retrograde tracing from the ventrolateral medullary region that contains phrenic premotor neurons, the phrenic motor nucleus in the C3-C5 spinal ventral horn, or the hypoglossal motor nucleus. We found that hypercapnia (10% CO2 for 2 hours) activated c-Fos expression in neurons in the external lateral, lateral crescent (PBcr), and Kölliker-Fuse (KF) PB subnuclei and that most of these neurons were glutamatergic and virtually none γ-aminobutyric acidergic. Numerous CO2 -responsive neurons in the KF and PBcr were labeled after retrograde tracer injection into the ventrolateral medulla or hypoglossal motor nuclei, and in the KF after injections into the spinal cord, making them candidates for mediating respiratory-facilitatory and upper-airway-stabilizing effects of hypercapnia.
Collapse
Affiliation(s)
- Shigefumi Yokota
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, 02215; Division of Sleep Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, 02215; Department of Anatomy and Morphological Neuroscience, Shimane University School of Medicine, Izumo, 693-8501, Japan
| | | | | | | | | |
Collapse
|
33
|
Sands SA, Eckert DJ, Jordan AS, Edwards BA, Owens RL, Butler JP, Schwab RJ, Loring SH, Malhotra A, White DP, Wellman A. Enhanced upper-airway muscle responsiveness is a distinct feature of overweight/obese individuals without sleep apnea. Am J Respir Crit Care Med 2014; 190:930-7. [PMID: 25191791 DOI: 10.1164/rccm.201404-0783oc] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
RATIONALE Body habitus is a major determinant of obstructive sleep apnea (OSA). However, many individuals do not have OSA despite being overweight/obese (body mass index > 25 kg/m(2)) for reasons that are not fully elucidated. OBJECTIVES To determine the key physiologic traits (upper-airway anatomy/collapsibility, upper-airway muscle responsiveness, chemoreflex control of ventilation, arousability from sleep) responsible for the absence of OSA in overweight/obese individuals. METHODS We compared key physiologic traits in 18 overweight/obese subjects without apnea (apnea-hypopnea index < 15 events per hour) with 25 overweight/obese matched patients with OSA (apnea-hypopnea index ≥ 15 events per hour) and 11 normal-weight nonapneic control subjects. Traits were measured by repeatedly lowering continuous positive airway pressure to subtherapeutic levels for 3 minutes during non-REM sleep. MEASUREMENTS AND MAIN RESULTS Overweight/obese subjects without apnea exhibited a less collapsible airway than overweight/obese patients with apnea (critical closing pressure: -3.7 ± 1.9 vs. 0.6 ± 1.2 cm H2O; P = 0.003; mean ± 95% confidence interval), but a more collapsible airway relative to normal-weight control subjects (-8.8 ± 3.1 cm H2O; P < 0.001). Notably, overweight/obese subjects without apnea exhibited a threefold greater upper-airway muscle responsiveness than both overweight/obese patients with apnea (Δgenioglossus EMG/Δepiglottic pressure: -0.49 [-0.22 to -0.79] vs. -0.15 [-0.09 to -0.22] %max/cm H2O; P = 0.008; mean [95% confidence interval]) and normal-weight control subjects (-0.16 [-0.04 to -0.30] %max/cm H2O; P = 0.02). Loop gain was elevated (more negative) in both overweight/obese groups and normal-weight control subjects (P = 0.02). Model-based analysis demonstrated that overweight/obese individuals without apnea rely on both more favorable anatomy and collapsibility and enhanced upper-airway dilator muscle responses to avoid OSA. CONCLUSIONS Overweight/obese individuals without apnea have a moderately compromised upper-airway structure that is mitigated by highly responsive upper-airway dilator muscles to avoid OSA. Elucidating the mechanisms underlying enhanced muscle responses in this population may provide clues for novel OSA interventions.
Collapse
Affiliation(s)
- Scott A Sands
- 1 Division of Sleep Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Wang X, Hayes JA, Revill AL, Song H, Kottick A, Vann NC, LaMar MD, Picardo MCD, Akins VT, Funk GD, Del Negro CA. Laser ablation of Dbx1 neurons in the pre-Bötzinger complex stops inspiratory rhythm and impairs output in neonatal mice. eLife 2014; 3:e03427. [PMID: 25027440 PMCID: PMC4129438 DOI: 10.7554/elife.03427] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
To understand the neural origins of rhythmic behavior one must characterize the central pattern generator circuit and quantify the population size needed to sustain functionality. Breathing-related interneurons of the brainstem pre-Bötzinger complex (preBötC) that putatively comprise the core respiratory rhythm generator in mammals are derived from Dbx1-expressing precursors. Here, we show that selective photonic destruction of Dbx1 preBötC neurons in neonatal mouse slices impairs respiratory rhythm but surprisingly also the magnitude of motor output; respiratory hypoglossal nerve discharge decreased and its frequency steadily diminished until rhythm stopped irreversibly after 85±20 (mean ± SEM) cellular ablations, which corresponds to ∼15% of the estimated population. These results demonstrate that a single canonical interneuron class generates respiratory rhythm and contributes in a premotor capacity, whereas these functions are normally attributed to discrete populations. We also establish quantitative cellular parameters that govern network viability, which may have ramifications for respiratory pathology in disease states.
Collapse
Affiliation(s)
- Xueying Wang
- Department of Applied Science, The College of William and Mary, Williamsburg, United States
| | - John A Hayes
- Department of Applied Science, The College of William and Mary, Williamsburg, United States
| | - Ann L Revill
- Department of Physiology, University of Alberta, Edmonton, Canada The Women and Children's Health Research Institute, University of Alberta, Edmonton, Canada
| | - Hanbing Song
- Department of Applied Science, The College of William and Mary, Williamsburg, United States
| | - Andrew Kottick
- Department of Applied Science, The College of William and Mary, Williamsburg, United States
| | - Nikolas C Vann
- Department of Applied Science, The College of William and Mary, Williamsburg, United States
| | - M Drew LaMar
- Department of Biology, The College of William and Mary, Williamsburg, United States
| | | | - Victoria T Akins
- Department of Applied Science, The College of William and Mary, Williamsburg, United States
| | - Gregory D Funk
- Department of Physiology, University of Alberta, Edmonton, Canada The Women and Children's Health Research Institute, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
35
|
Nasse JS, Travers JB. Adrenoreceptor modulation of oromotor pathways in the rat medulla. J Neurophysiol 2014; 112:580-93. [PMID: 24805080 DOI: 10.1152/jn.00091.2014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Regulation of feeding behavior involves the integration of multiple physiological and neurological pathways that control both nutrient-seeking and consummatory behaviors. The consummatory phase of ingestion includes stereotyped oromotor movements of the tongue and jaw that are controlled through brain stem pathways. These pathways encompass not only cranial nerve sensory and motor nuclei for processing feeding-related afferent signals and supplying the oromotor musculature but also reticular neurons for orchestrating ingestion and coordinating it with other behaviors that utilize the same musculature. Based on decerebrate studies, this circuit should be sensitive to satiety mechanisms mediated centrally by A2 noradrenergic neurons in the caudal nucleus of the solitary tract (cNST) that are potently activated during satiety. Because the first observable phase of satiety is inhibition of oromotor movements, we hypothesized that norepinephrine (NE) would act to inhibit prehypoglossal neurons in the medullary reticular formation. Using patch-clamp electrophysiology of retrogradely labeled prehypoglossal neurons and calcium imaging to test this hypothesis, we demonstrate that norepinephrine can influence both pre- and postsynaptic properties of reticular neurons through both α1- and α2-adrenoreceptors. The α1-adrenoreceptor agonist phenylephrine (PE) activated an inward current in the presence of TTX and increased the frequency of both inhibitory and excitatory miniature postsynaptic currents. The α2-adrenoreceptor agonist dexmedetomidine (DMT) inhibited cNST-evoked excitatory currents as well as spontaneous and miniature excitatory currents through presynaptic mechanisms. The diversity of adrenoreceptor modulation of these prehypoglossal neurons may reflect their role in a multifunctional circuit coordinating both ingestive and respiratory lingual function.
Collapse
Affiliation(s)
- Jason S Nasse
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, Ohio
| | - Joseph B Travers
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, Ohio
| |
Collapse
|
36
|
Koshiya N, Oku Y, Yokota S, Oyamada Y, Yasui Y, Okada Y. Anatomical and functional pathways of rhythmogenic inspiratory premotor information flow originating in the pre-Bötzinger complex in the rat medulla. Neuroscience 2014; 268:194-211. [DOI: 10.1016/j.neuroscience.2014.03.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 03/02/2014] [Accepted: 03/04/2014] [Indexed: 01/30/2023]
|
37
|
Edge D, McDonald FB, Jones JFX, Bradford A, O'Halloran KD. Effect of chronic intermittent hypoxia on the reflex recruitment of the genioglossus during airway obstruction in the anesthetized rat. PROGRESS IN BRAIN RESEARCH 2014; 209:147-68. [PMID: 24746047 DOI: 10.1016/b978-0-444-63274-6.00008-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We sought to test the hypothesis that chronic intermittent hypoxia (CIH)-a feature of sleep-disordered breathing in humans-impairs reflex recruitment of the genioglossus (GG, pharyngeal dilator) during obstructive airway events. Adult male Wistar rats were exposed to 20 cycles of normoxia and hypoxia (5% O2 at nadir) per hour, 8h a day for 7 days (CIH, N=7). The sham group (N=7) were exposed to normoxia in parallel. Following gas treatments, rats were anesthetized with an i.p. injection of urethane (1.5g/kg; 20%, w/v). Fine concentric needle electrodes were inserted into the GG and the costal diaphragm. Discriminated GG motor unit potentials and whole electromyograph (EMG), together with arterial blood pressure and arterial O2 saturation, were recorded during quiet basal breathing and during nasal airway occlusion. Airway occlusion significantly increased GG EMG activity in all animals; but there was no difference in the reflex response to airway occlusion between sham and CIH-treated animals (+105±22% vs. +105±17%, mean±SEM for area under the curve of integrated GG EMG, % increase from baseline, p=0.99). Occluded breaths were characterized by a significant increase in the firing frequency of phasically active units and the recruitment of large motor units that were quiescent under basal conditions. Though there are reports of impaired control of the upper airway following CIH in the rat, we conclude that reflexly evoked motor discharge to the GG is not affected by 7 days of CIH, a paradigm that we have shown increases apnea index in sleeping rats.
Collapse
Affiliation(s)
- Deirdre Edge
- UCD School of Medicine and Medical Science, University College Dublin, Dublin, Ireland.
| | - Fiona B McDonald
- UCD School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - James F X Jones
- UCD School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Aidan Bradford
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Ken D O'Halloran
- Department of Physiology, Western Gateway Building, University College Cork, Cork, Ireland
| |
Collapse
|
38
|
Horner RL. Neural control of the upper airway: integrative physiological mechanisms and relevance for sleep disordered breathing. Compr Physiol 2013; 2:479-535. [PMID: 23728986 DOI: 10.1002/cphy.c110023] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The various neural mechanisms affecting the control of the upper airway muscles are discussed in this review, with particular emphasis on structure-function relationships and integrative physiological motor-control processes. Particular foci of attention include the respiratory function of the upper airway muscles, and the various reflex mechanisms underlying their control, specifically the reflex responses to changes in airway pressure, reflexes from pulmonary receptors, chemoreceptor and baroreceptor reflexes, and postural effects on upper airway motor control. This article also addresses the determinants of upper airway collapsibility and the influence of neural drive to the upper airway muscles, and the influence of common drugs such as ethanol, sedative hypnotics, and opioids on upper airway motor control. In addition to an examination of these basic physiological mechanisms, consideration is given throughout this review as to how these mechanisms relate to integrative function in the intact normal upper airway in wakefulness and sleep, and how they may be involved in the pathogenesis of clinical problems such obstructive sleep apnea hypopnea.
Collapse
|
39
|
Fregosi RF, Ludlow CL. Activation of upper airway muscles during breathing and swallowing. J Appl Physiol (1985) 2013; 116:291-301. [PMID: 24092695 DOI: 10.1152/japplphysiol.00670.2013] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The upper airway is a complex muscular tube that is used by the respiratory and digestive systems. The upper airway is invested with several small and anatomically peculiar muscles. The muscle fiber orientations and their nervous innervation are both extremely complex, and how the activity of the muscles is initiated and adjusted during complex behaviors is poorly understood. The bulk of the evidence suggests that the entire assembly of tongue and laryngeal muscles operate together but differently during breathing and swallowing, like a ballet rather than a solo performance. Here we review the functional anatomy of the tongue and laryngeal muscles, and their neural innervation. We also consider how muscular activity is altered as respiratory drive changes, and briefly address upper airway muscle control during swallowing.
Collapse
Affiliation(s)
- Ralph F Fregosi
- Department of Physiology, University of Arizona, Tucson, Arizona
| | | |
Collapse
|
40
|
Horner RL, Hughes SW, Malhotra A. State-dependent and reflex drives to the upper airway: basic physiology with clinical implications. J Appl Physiol (1985) 2013; 116:325-36. [PMID: 23970535 DOI: 10.1152/japplphysiol.00531.2013] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The root cause of the most common and serious of the sleep disorders is impairment of breathing, and a number of factors predispose a particular individual to hypoventilation during sleep. In turn, obstructive hypopneas and apneas are the most common of the sleep-related respiratory problems and are caused by dysfunction of the upper airway as a conduit for airflow. The overarching principle that underpins the full spectrum of clinical sleep-related breathing disorders is that the sleeping brain modifies respiratory muscle activity and control mechanisms and diminishes the ability to respond to respiratory distress. Depression of upper airway muscle activity and reflex responses, and suppression of arousal (i.e., "waking-up") responses to respiratory disturbance, can also occur with commonly used sedating agents (e.g., hypnotics and anesthetics). Growing evidence indicates that the sometimes critical problems of sleep and sedation-induced depression of breathing and arousal responses may be working through common brain pathways acting on common cellular mechanisms. To identify these state-dependent pathways and reflex mechanisms, as they affect the upper airway, is the focus of this paper. Major emphasis is on the synthesis of established and recent findings. In particular, we specifically focus on 1) the recently defined mechanism of genioglossus muscle inhibition in rapid-eye-movement sleep; 2) convergence of diverse neurotransmitters and signaling pathways onto one root mechanism that may explain pharyngeal motor suppression in sleep and drug-induced brain sedation; 3) the lateral reticular formation as a key hub of respiratory and reflex drives to the upper airway.
Collapse
Affiliation(s)
- Richard L Horner
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
41
|
Distinct inspiratory rhythm and pattern generating mechanisms in the preBötzinger complex. J Neurosci 2013; 33:9235-45. [PMID: 23719793 DOI: 10.1523/jneurosci.4143-12.2013] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
In the mammalian respiratory central pattern generator, the preBötzinger complex (preBötC) produces rhythmic bursts that drive inspiratory motor output. Cellular mechanisms initiated by each burst are hypothesized to be necessary to determine the timing of the subsequent burst, playing a critical role in rhythmogenesis. To explore mechanisms relating inspiratory burst generation to rhythmogenesis, we compared preBötC and hypoglossal (XII) nerve motor activity in medullary slices from neonatal mice in conditions where periods between successive inspiratory XII bursts were highly variable and distributed multimodally. This pattern resulted from rhythmic preBötC neural population activity that consisted of bursts, concurrent with XII bursts, intermingled with significantly smaller "burstlets". Burstlets occurred at regular intervals during significantly longer XII interburst intervals, at times when a XII burst was expected. When a preBötC burst occurred, its high amplitude inspiratory component (I-burst) was preceded by a preinspiratory component that closely resembled the rising phase of burstlets. Cadmium (8 μM) eliminated preBötC and XII bursts, but rhythmic preBötC burstlets persisted. Burstlets and preinspiratory activity were observed in ~90% of preBötC neurons that were active during I-bursts. When preBötC excitability was raised significantly, burstlets could leak through to motor output in medullary slices and in vivo in adult anesthetized rats. Thus, rhythmic bursting, a fundamental mode of nervous system activity and an essential element of breathing, can be deconstructed into a rhythmogenic process producing low amplitude burstlets and preinspiratory activity that determine timing, and a pattern-generating process producing suprathreshold I-bursts essential for motor output.
Collapse
|
42
|
Ramirez JM, Garcia AJ, Anderson TM, Koschnitzky JE, Peng YJ, Kumar GK, Prabhakar NR. Central and peripheral factors contributing to obstructive sleep apneas. Respir Physiol Neurobiol 2013; 189:344-53. [PMID: 23770311 DOI: 10.1016/j.resp.2013.06.004] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 06/03/2013] [Accepted: 06/05/2013] [Indexed: 11/30/2022]
Abstract
Apnea, the cessation of breathing, is a common physiological and pathophysiological phenomenon. Among the different forms of apnea, obstructive sleep apnea (OSA) is clinically the most prominent manifestation. OSA is characterized by repetitive airway occlusions that are typically associated with peripheral airway obstructions. However, it would be an oversimplification to conclude that OSA is caused by peripheral obstructions. OSA is the result of a dynamic interplay between chemo- and mechanosensory reflexes, neuromodulation, behavioral state and the differential activation of the central respiratory network and its motor outputs. This interplay has numerous neuronal and cardiovascular consequences that are initially adaptive but in the long-term become major contributors to morbidity and mortality. Not only OSA, but also central apneas (CA) have multiple, and partly overlapping mechanisms. In OSA and CA the underlying mechanisms are neither "exclusively peripheral" nor "exclusively central" in origin. This review discusses the complex interplay of peripheral and central nervous components that characterizes the cessation of breathing.
Collapse
Affiliation(s)
- Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institute, Department of Neurological Surgery and Pediatrics, University of Washington School of Medicine, Seattle, WA, USA.
| | | | | | | | | | | | | |
Collapse
|
43
|
Rubelowski JM, Menge M, Distler C, Rothermel M, Hoffmann KP. Connections of the superior colliculus to shoulder muscles of the rat: a dual tracing study. Front Neuroanat 2013; 7:17. [PMID: 23760726 PMCID: PMC3675767 DOI: 10.3389/fnana.2013.00017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 05/22/2013] [Indexed: 12/18/2022] Open
Abstract
Previous investigations indicate that the superior colliculus (SC) is involved in the initiation and execution of forelimb movements. In the present study we investigated the tectofugal, in particular the tecto-reticulo-spinal projections to the shoulder and arm muscles in the rat. We simultaneously retrogradely labeled the premotor neurons in the brainstem by injection of the pseudorabies virus PrV Bartha 614 into the m. rhomboideus minor and m. acromiodeltoideus, and anterogradely visualized the tectofugal projections by intracollicular injection of the tracer FITC dextrane. Our results demonstrate that the connection of the SC to the skeletal muscles of the forelimb is at least trisynaptic. This was confirmed by long survival times after virus injections into the muscles (98-101 h) after which numerous neurons in the deep layers of the SC were labeled. Transsynaptically retrogradely labeled brainstem neurons connected disynaptically to the injected muscles with adjacent tectal terminals were predominantly located in the gigantocellular nuclear complex of the reticular formation. In addition, putative relay neurons were found in the caudal part of the pontine reticular nucleus. Both tectal projections to the nucleus gigantocellularis and the pontine reticular nucleus were bilateral but ipsilaterally biased. We suggest this projection to be involved in more global functions in motivated behavior like general arousal allowing fast voluntary motor activity.
Collapse
Affiliation(s)
- J. M. Rubelowski
- Allgemeine Zoologie and Neurobiologie, Ruhr-University BochumBochum, Germany
| | - M. Menge
- Allgemeine Zoologie and Neurobiologie, Ruhr-University BochumBochum, Germany
| | - C. Distler
- Allgemeine Zoologie and Neurobiologie, Ruhr-University BochumBochum, Germany
| | - M. Rothermel
- Brain Institute and Department of Physiology, School of Medicine, University of UtahSalt Lake City, UT, USA
| | | |
Collapse
|
44
|
Stettner GM, Rukhadze I, Mann GL, Lei Y, Kubin L. Respiratory modulation of lingual muscle activity across sleep-wake states in rats. Respir Physiol Neurobiol 2013; 188:308-17. [PMID: 23732510 DOI: 10.1016/j.resp.2013.05.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 05/22/2013] [Accepted: 05/23/2013] [Indexed: 11/26/2022]
Abstract
In obstructive sleep apnea (OSA) patients, inspiratory activation (IA) of lingual muscles protects the upper airway from collapse. We aimed to determine when rats' lingual muscles exhibit IA. In 5 Sprague-Dawley and 3 Wistar rats, we monitored cortical EEG and lingual, diaphragmatic and nuchal electromyograms (EMGs), and identified segments of records when lingual EMG exhibited IA. Individual segments lasted 2.4-269 s (median: 14.5 s), most (89%) occurred during slow-wave sleep (SWS), and they collectively occupied 0.3-6.1% of the total recording time. IA usually started to increase with a delay after SWS onset and ended with an arousal, or declined prior to rapid eye movement sleep. IA of lingual EMG was not accompanied by increased diaphragmatic activity or respiratory rate changes, but occurred when cortical EEG power was particularly low in a low beta-1 frequency range (12.5-16.4 Hz). A deep SWS-related activation of upper airway muscles may be an endogenous phenomenon designed to protect the upper airway against collapse.
Collapse
Affiliation(s)
- Georg M Stettner
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104-6046, USA
| | | | | | | | | |
Collapse
|
45
|
Abstract
Abstract
Postoperative pulmonary complications are responsible for significant increases in hospital cost as well as patient morbidity and mortality; respiratory muscle dysfunction represents a contributing factor. Upper airway dilator muscles functionally resist the upper airway collapsing forces created by the respiratory pump muscles. Standard perioperative medications (anesthetics, sedatives, opioids, and neuromuscular blocking agents), interventions (patient positioning, mechanical ventilation, and surgical trauma), and diseases (lung hyperinflation, obesity, and obstructive sleep apnea) have differential effects on the respiratory muscle subgroups. These effects on the upper airway dilators and respiratory pump muscles impair their coordination and function and can result in respiratory failure. Perioperative management strategies can help decrease the incidence of postoperative respiratory muscle dysfunction. Such strategies include minimally invasive procedures rather than open surgery, early and optimal mobilizing of respiratory muscles while on mechanical ventilation, judicious use of respiratory depressant anesthetics and neuromuscular blocking agents, and noninvasive ventilation when possible.
Collapse
|
46
|
Fregosi RF. Respiratory related control of hypoglossal motoneurons--knowing what we do not know. Respir Physiol Neurobiol 2011; 179:43-7. [PMID: 21741499 DOI: 10.1016/j.resp.2011.06.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 06/24/2011] [Accepted: 06/26/2011] [Indexed: 10/18/2022]
Abstract
Because tongue position and stiffness help insure that the pharyngeal airspace is sufficiently open during breathing, the respiration-related behavior of the tongue muscles has been studied in detail, particularly during the last two decades. Although eight different muscles act upon the mammal tongue, we know very little about the respiration-related control of the majority of these, and almost nothing about how they work together as a complex electro-mechanical system. Other significant gaps include how hypoglossal motoneuron axons find their appropriate muscle target during development, whether the biophysical properties of hypoglossal motoneurons driving different muscles are the same, and how afferent information from cardiorespiratory reflex systems is transmitted from major brainstem integrating centers to the hypoglossal motoneuron pool. This brief review outlines some of these issues, with the hope that this will spur research in the field, ultimately leading to an improved understanding of the respiration-related control of the mammalian tongue musculature.
Collapse
Affiliation(s)
- Ralph F Fregosi
- Department of Physiology, College of Medicine and Department of Neuroscience, College of Science, The University of Arizona, Tucson, AZ 85721-0093, United States.
| |
Collapse
|
47
|
Fregosi RF. Influence of tongue muscle contraction and transmural pressure on nasopharyngeal geometry in the rat. J Appl Physiol (1985) 2011; 111:766-74. [PMID: 21719721 DOI: 10.1152/japplphysiol.01501.2010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The mammalian pharynx is a hollow muscular tube that participates in ingestion and respiration, and its size, shape, and stiffness can be altered by contraction of skeletal muscles that lie inside or outside of its walls. MRI was used to determine the interaction between pharyngeal pressure and selective stimulation of extrinsic tongue muscles on the shape of the rat nasopharynx. Pressure (-9, -6, -3, 3, 6, and 9 cmH₂O) was applied randomly to the isolated pharyngeal airway of anesthetized rats that were positioned in a 4.7-T MRI scanner. The anterior-posterior (AP) and lateral diameters of the nasopharynx were measured in eight axial slices at each level of pressure, with and without bilateral hypoglossal nerve stimulation (0.1-ms pulse, 1/3 maximal force, 80 Hz). The rat nasopharynx is nearly circular, and positive pharyngeal pressure caused similar expansion of AP and lateral diameters; as a result, airway shape (ratio of lateral to AP diameter) remained constant. Negative pressure did not change AP or lateral diameter significantly, suggesting that a negative pressure reflex activated the tongue or other pharyngeal muscles. Stimulation of tongue protrudor muscles alone or coactivation of protrudor and retractor muscles caused greater AP than lateral expansion, making the nasopharynx slightly more elliptical, with the long axis in the AP direction. These effects tended to be more pronounced at negative pharyngeal pressures and greater in the caudal than rostral nasopharynx. These data show that stimulation of rodent tongue muscles can adjust pharyngeal shape, extending previous work showing that tongue muscle contraction alters pharyngeal compliance and volume, and provide physiological insight that can be applied to the treatment of obstructive sleep apnea.
Collapse
Affiliation(s)
- Ralph F Fregosi
- Dept. of Physiology, Gittings Bldg., The Univ. of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
48
|
Yokota S, Niu JG, Tsumori T, Oka T, Yasui Y. Glutamatergic Kölliker-Fuse nucleus neurons innervate hypoglossal motoneurons whose axons form the medial (protruder) branch of the hypoglossal nerve in the rat. Brain Res 2011; 1404:10-20. [PMID: 21724177 DOI: 10.1016/j.brainres.2011.06.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 05/31/2011] [Accepted: 06/09/2011] [Indexed: 10/18/2022]
Abstract
This study was performed to understand the anatomical substrates for Kölliker-Fuse nucleus (KFN) modulation of respiratory-related tongue movement. After application of cholera toxin B subunit (CTb) to the medial branch of the hypoglossal nerve (HGn) and injection of biotinylated dextran amine (BDA) into the KFN ipsilaterally, an overlapping distribution of BDA-labeled axon terminals and CTb-labeled neurons was found in the ventral compartment of the hypoglossal nucleus (HGN) ipsilateral to the application and injection sites. At the electron microscopic level, the BDA-labeled terminals made asymmetrical synaptic contacts predominantly with dendrites of the HGN neurons, some of which were labeled with CTb. Using retrograde tracing combined with in situ hybridization, we demonstrated that almost all the KFN neurons sending their axons to the HGN were positive for vesicular glutamate transporter (VGLUT) 2 mRNA but not glutamic acid decarboxylase 67 mRNA. Using a combination of anterograde and retrograde tracing techniques and immunohistochemistry for VGLUT2, we further demonstrated that the KFN axon terminals with VGLUT2 immunoreactivity established close contact with the HGN motoneurons whose axons constitute the medial branch of the HGn. The present results suggest that glutamatergic KFN fibers may exert excitatory influence upon the HGN motoneurons sending their axons to the medial branch of the HGn for the control of protruder tongue muscles contraction to maintain airway patency during respiration.
Collapse
Affiliation(s)
- Shigefumi Yokota
- Department of Anatomy and Morphological Neuroscience, Shimane University School of Medicine, Izumo 693-8501, Japan
| | | | | | | | | |
Collapse
|
49
|
Berger AJ. Development of synaptic transmission to respiratory motoneurons. Respir Physiol Neurobiol 2011; 179:34-42. [PMID: 21382524 DOI: 10.1016/j.resp.2011.03.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 02/28/2011] [Accepted: 03/01/2011] [Indexed: 11/26/2022]
Abstract
Respiratory motoneurons provide the exclusive drive to respiratory muscles and therefore are a key relay between brainstem neural circuits that generate respiratory rhythm and respiratory muscles that control moment of gases into and out of the airways and lungs. This review is focused on postnatal development of fast ionotropic synaptic transmission to respiratory motoneurons, with a focus on hypoglossal motoneurons (HMs). Glutamatergic synaptic transmission to HMs involves activation of both non-NMDA and NMDA receptors and during the postnatal period co-activation of these receptors located at the same synapse may occur. Further, the relative role of each receptor type in inspiratory-phase motoneuron depolarization is dependent on the type of preparation used (in vitro versus in vivo; neonatal versus adult). Respiratory motoneurons receive both glycinergic and GABAergic inhibitory synaptic inputs. During inspiration phrenic and HMs receive concurrent excitatory and inhibitory synaptic inputs. During postnatal development in HMs GABAergic and glycinergic synaptic inputs have slow kinetics and are depolarizing and with postnatal development they become faster and hyperpolarizing. Additionally shunting inhibition may play an important role in synaptic processing by respiratory motoneurons.
Collapse
Affiliation(s)
- Albert J Berger
- Department of Physiology and Biophysics, School of Medicine, University of Washington, Box 357290, Seattle, WA 98195, USA.
| |
Collapse
|
50
|
Tadjalli A, Duffin J, Peever J. Identification of a novel form of noradrenergic-dependent respiratory motor plasticity triggered by vagal feedback. J Neurosci 2010; 30:16886-95. [PMID: 21159960 PMCID: PMC6634916 DOI: 10.1523/jneurosci.3394-10.2010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 09/09/2010] [Accepted: 10/06/2010] [Indexed: 11/21/2022] Open
Abstract
The respiratory control system is not just reflexive, it is smart, it learns, and, in fact, it has a memory. The respiratory system listens to and carefully remembers how previous stimuli affect breathing. Respiratory memory is laid down by adjusting synaptic strength between respiratory neurons. For example, repeated hypoxic bouts trigger a form of respiratory memory that functions to strengthen the ability of respiratory motoneurons to trigger contraction of breathing muscles. This type of respiratory plasticity is known as long-term facilitation (LTF). Although chemical feedback, such as hypoxia, initiates LTF, it is unknown whether natural modulation of mechanical feedback (from vagal inputs) also causes motor plasticity. Here, we used reverse microdialysis, electrophysiology, neuropharmacology, and histology to determine whether episodic modulation of vagally mediated mechanical feedback is able to induce respiratory LTF in anesthetized adult rats. We show that repeated obstructive apneas disrupt vagal feedback and trigger LTF of hypoglossal motoneuron activity and genioglossus muscle tone. This same stimulus does not cause LTF of diaphragm activity. Hypoxic episodes do not cause apnea-induced LTF; instead, LTF is triggered by modulation of vagal feedback. Unlike hypoxia-induced respiratory plasticity, vagus-induced LTF does not require 5-HT(2) receptors but instead relies on activation of α1-adrenergic receptors on hypoglossal motoneurons. In summary, we identify a novel form of hypoxia- and 5-HT-independent respiratory motor plasticity that is triggered by physiological modulation of vagal feedback and is mediated by α1-adrenergic receptor activation on (or near) hypoglossal motoneurons.
Collapse
Affiliation(s)
- Arash Tadjalli
- Systems Neurobiology Laboratory, Departments of Cell and Systems Biology and
| | - James Duffin
- Physiology, University of Toronto, Toronto, Ontario, Canada M5S 3G5
| | - John Peever
- Systems Neurobiology Laboratory, Departments of Cell and Systems Biology and
- Physiology, University of Toronto, Toronto, Ontario, Canada M5S 3G5
| |
Collapse
|