1
|
van Huijstee AN, Kessels HW. Variance analysis as a tool to predict the mechanism underlying synaptic plasticity. J Neurosci Methods 2020; 331:108526. [PMID: 31756397 DOI: 10.1016/j.jneumeth.2019.108526] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/31/2019] [Accepted: 11/18/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND The strength of synaptic transmission onto a neuron depends on the number of functional vesicle release sites (N), the probability of vesicle release (Pr), and the quantal size (Q). Statistical tools based on the quantal model of synaptic transmission can be used to acquire information on which of these parameters is the source of plasticity. However, quantal analysis depends on assumptions that may not be met at central synapses. NEW METHOD We examined the merit of quantal analysis to extract the mechanisms underlying synaptic plasticity by applying binomial statistics on the variance in amplitude of postsynaptic currents evoked at Schaffer collateral-CA1 (Sc-CA1) synapses in mouse hippocampal slices. We extend this analysis by combining the conventional inverse square of the coefficient of variation (1/CV2) with the variance-to-mean ratio (VMR). RESULTS This method can be used to assess the relative, but not absolute, contribution of N, Pr and Q to synaptic plasticity. The changes in 1/CV2 and VMR values correctly reflect experimental modifications of N, Pr and Q at Sc-CA1 synapses. COMPARISON WITH EXISTING METHODS While the 1/CV2 depends on N and Pr, but is independent of Q, the VMR is dependent on Pr and Q, but not on N. Combining both allows for a rapid assessment of the mechanism underlying synaptic plasticity without the need for additional electrophysiological experiments. CONCLUSION Combining the 1/CV2 with the VMR allows for a reliable prediction of the relative contribution of changes in N, Pr and Q to synaptic plasticity.
Collapse
Affiliation(s)
- Aile N van Huijstee
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands; The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands.
| | - Helmut W Kessels
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands; The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands.
| |
Collapse
|
2
|
Poulain B, Popoff MR. Why Are Botulinum Neurotoxin-Producing Bacteria So Diverse and Botulinum Neurotoxins So Toxic? Toxins (Basel) 2019; 11:toxins11010034. [PMID: 30641949 PMCID: PMC6357194 DOI: 10.3390/toxins11010034] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/03/2019] [Accepted: 01/09/2019] [Indexed: 12/15/2022] Open
Abstract
Botulinum neurotoxins (BoNTs) are the most lethal toxins among all bacterial, animal, plant and chemical poisonous compounds. Although a great effort has been made to understand their mode of action, some questions are still open. Why, and for what benefit, have environmental bacteria that accidentally interact with their host engineered so diverse and so specific toxins targeting one of the most specialized physiological processes, the neuroexocytosis of higher organisms? The extreme potency of BoNT does not result from only one hyperactive step, but in contrast to other potent lethal toxins, from multi-step activity. The cumulative effects of the different steps, each having a limited effect, make BoNTs the most potent lethal toxins. This is a unique mode of evolution of a toxic compound, the high potency of which results from multiple steps driven by unknown selection pressure, targeting one of the most critical physiological process of higher organisms.
Collapse
Affiliation(s)
- Bernard Poulain
- Institut des Neurosciences Cellulaires et Intégratives, (INCI)-CNRS, UPR 3212 Strasbourg, France.
| | | |
Collapse
|
3
|
Cheng Q, Song SH, Augustine GJ. Molecular Mechanisms of Short-Term Plasticity: Role of Synapsin Phosphorylation in Augmentation and Potentiation of Spontaneous Glutamate Release. Front Synaptic Neurosci 2018; 10:33. [PMID: 30425632 PMCID: PMC6218601 DOI: 10.3389/fnsyn.2018.00033] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/20/2018] [Indexed: 12/24/2022] Open
Abstract
We used genetic and pharmacological approaches to identify the signaling pathways involved in augmentation and potentiation, two forms of activity dependent, short-term synaptic plasticity that enhance neurotransmitter release. Trains of presynaptic action potentials produced a robust increase in the frequency of miniature excitatory postsynaptic currents (mEPSCs). Following the end of the stimulus, mEPSC frequency followed a bi-exponential decay back to basal levels. The time constants of decay identified these two exponential components as the decay of augmentation and potentiation, respectively. Augmentation increased mEPSC frequency by 9.3-fold, while potentiation increased mEPSC frequency by 2.4-fold. In synapsin triple-knockout (TKO) neurons, augmentation was reduced by 83% and potentiation was reduced by 74%, suggesting that synapsins are key signaling elements in both forms of plasticity. To examine the synapsin isoforms involved, we expressed individual synapsin isoforms in TKO neurons. While synapsin IIIa rescued both augmentation and potentiation, none of the other synapsin isoforms produced statistically significant amounts of rescue. To determine the involvement of protein kinases in these two forms of short-term plasticity, we examined the effects of inhibitors of protein kinases A (PKA) and C (PKC). While inhibition of PKC had little effect, PKA inhibition reduced augmentation by 76% and potentiation by 60%. Further, elevation of intracellular cAMP concentration, by either forskolin or IBMX, greatly increased mEPSC frequency and occluded the amount of augmentation and potentiation evoked by electrical stimulation. Finally, mutating a PKA phosphorylation site to non-phosphorylatable alanine largely abolished the ability of synapsin IIIa to rescue both augmentation and potentiation. Together, these results indicate that PKA activation is required for both augmentation and potentiation of spontaneous neurotransmitter release and that PKA-mediated phosphorylation of synapsin IIIa underlies both forms of presynaptic short-term plasticity.
Collapse
Affiliation(s)
- Qing Cheng
- Laboratory of Neurobiology, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States
| | - Sang-Ho Song
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - George J Augustine
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.,Institute of Molecular and Cell Biology, Singapore, Singapore
| |
Collapse
|
4
|
Lanore F, Silver RA. Extracting quantal properties of transmission at central synapses. NEUROMETHODS 2016; 113:193-211. [PMID: 30245548 DOI: 10.1007/978-1-4939-3411-9_10] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chemical synapses enable neurons to communicate rapidly, process and filter signals and to store information. However, studying their functional properties is difficult because synaptic connections typically consist of multiple synaptic contacts that release vesicles stochastically and exhibit time-dependent behavior. Moreover, most central synapses are small and inaccessible to direct measurements. Estimation of synaptic properties from responses recorded at the soma is complicated by the presence of nonuniform release probability and nonuniform quantal properties. The presence of multivesicular release and postsynaptic receptor saturation at some synapses can also complicate the interpretation of quantal parameters. Multiple-probability fluctuation analysis (MPFA; also known as variance-mean analysis) is a method that has been developed for estimating synaptic parameters from the variance and mean amplitude of synaptic responses recorded at different release probabilities. This statistical approach, which incorporates nonuniform synaptic properties, has become widely used for studying synaptic transmission. In this chapter, we describe the statistical models used to extract quantal parameters and discuss their interpretation when applying MPFA.
Collapse
Affiliation(s)
- Frederic Lanore
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - R Angus Silver
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| |
Collapse
|
5
|
Kim J, Kita H. Posttetanic enhancement of striato-pallidal synaptic transmission. J Neurophysiol 2015; 114:447-54. [PMID: 25995348 DOI: 10.1152/jn.00241.2015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 05/17/2015] [Indexed: 11/22/2022] Open
Abstract
The striato (Str)-globus pallidus external segment (GPe) projection plays major roles in the control of neuronal activity in the basal ganglia under both normal and pathological conditions. The present study used rat brain slice preparations to characterize the enhancement of Str-GPe synapses observed after repetitive conditioning stimuli (CS) of Str with the whole cell patch-clamp recording technique. The results show that 1) the Str-GPe synapses have a posttetanic enhancement (PTE) mechanism, which is considered to be a combination of an augmentation and a posttetanic potentiation; 2) the degree of PTE observed in GPe neurons had a wide range and was positively correlated with a wide range of paired-pulse ratios assessed before application of CS; 3) a wide range of CS, from frequencies as low as 2 Hz with as few as 5 pulses to as high as 100 Hz with 100 pulses, could induce PTE; 4) the decay time constant of PTE was dependent on the strength of CS and was prolonged greatly, up to 120 s, when strong CS were applied; and 5) the level of postsynaptic Cl(-) became a limiting factor for the degree of PTE when strong CS were applied. These results imply that Str-GPe synapses transmit inhibitions in a nonlinear activity-weighted manner, which may be suited for scaling timing and force of repeated or sequential body movements. Other possible factors controlling the induction of PTE and functional implications are also discussed.
Collapse
Affiliation(s)
- Juhyon Kim
- Department of Anatomy and Neurobiology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - Hitoshi Kita
- Department of Anatomy and Neurobiology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
6
|
Mortensen LS, Schmidt H, Farsi Z, Barrantes-Freer A, Rubio ME, Ufartes R, Eilers J, Sakaba T, Stühmer W, Pardo LA. KV 10.1 opposes activity-dependent increase in Ca²⁺ influx into the presynaptic terminal of the parallel fibre-Purkinje cell synapse. J Physiol 2014; 593:181-96. [PMID: 25556795 DOI: 10.1113/jphysiol.2014.281600] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 10/13/2014] [Indexed: 12/14/2022] Open
Abstract
KEY POINTS Voltage-gated KV 10.1 potassium channels are widely expressed in the mammalian brain but their function remains poorly understood. We report that KV 10.1 is enriched in the presynaptic terminals and does not take part in somatic action potentials. In parallel fibre synapses in the cerebellar cortex, we find that KV 10.1 regulates Ca(2+) influx and neurotransmitter release during repetitive high-frequency activity. Our results describe the physiological role of mammalian KV 10.1 for the first time and help understand the fine-tuning of synaptic transmission. The voltage-gated potassium channel KV 10.1 (Eag1) is widely expressed in the mammalian brain, but its physiological function is not yet understood. Previous studies revealed highest expression levels in hippocampus and cerebellum and suggested a synaptic localization of the channel. The distinct activation kinetics of KV 10.1 indicate a role during repetitive activity of the cell. Here, we confirm the synaptic localization of KV 10.1 both biochemically and functionally and that the channel is sufficiently fast at physiological temperature to take part in repolarization of the action potential (AP). We studied the role of the channel in cerebellar physiology using patch clamp and two-photon Ca(2+) imaging in KV 10.1-deficient and wild-type mice. The excitability and action potential waveform recorded at granule cell somata was unchanged, while Ca(2+) influx into axonal boutons was enhanced in mutants in response to stimulation with three APs, but not after a single AP. Furthermore, mutants exhibited a frequency-dependent increase in facilitation at the parallel fibre-Purkinje cell synapse at high firing rates. We propose that KV 10.1 acts as a modulator of local AP shape specifically during high-frequency burst firing when other potassium channels suffer cumulative inactivation.
Collapse
Affiliation(s)
- Lena Sünke Mortensen
- Max-Planck-Institute of Experimental Medicine, 37075, Göttingen, Germany; International Max Planck Research School Neurosciences, 37077, Göttingen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Giachello CNG, Premoselli F, Montarolo PG, Ghirardi M. Pentylenetetrazol-induced epileptiform activity affects basal synaptic transmission and short-term plasticity in monosynaptic connections. PLoS One 2013; 8:e56968. [PMID: 23437283 PMCID: PMC3577694 DOI: 10.1371/journal.pone.0056968] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Accepted: 01/18/2013] [Indexed: 11/18/2022] Open
Abstract
Epileptic activity is generally induced in experimental models by local application of epileptogenic drugs, including pentylenetetrazol (PTZ), widely used on both vertebrate and invertebrate neurons. Despite the high prevalence of this neurological disorder and the extensive research on it, the cellular and molecular mechanisms underlying epileptogenesis still remain unclear. In this work, we examined PTZ-induced neuronal changes in Helix monosynaptic circuits formed in vitro, as a simpler experimental model to investigate the effects of epileptiform activity on both basal release and post-tetanic potentiation (PTP), a form of short-term plasticity. We observed a significant enhancement of basal synaptic strength, with kinetics resembling those of previously described use-dependent forms of plasticity, determined by changes in estimated quantal parameters, such as the readily releasable pool and the release probability. Moreover, these neurons exhibited a strong reduction in PTP expression and in its decay time constant, suggesting an impairment in the dynamic reorganization of synaptic vesicle pools following prolonged stimulation of synaptic transmission. In order to explain this imbalance, we determined whether epileptic activity is related to the phosphorylation level of synapsin, which is known to modulate synaptic plasticity. Using western blot and immunocytochemical staining we found a PTZ-dependent increase in synapsin phosphorylation at both PKA/CaMKI/IV and MAPK/Erk sites, both of which are important for modulating synaptic plasticity. Taken together, our findings suggest that prolonged epileptiform activity leads to an increase in the synapsin phosphorylation status, thereby contributing to an alteration of synaptic strength in both basal condition and tetanus-induced potentiation.
Collapse
|
8
|
Abstract
The mossy fiber (MF)-granule cell (GC) pathway conveys multiple modalities of information to the cerebellar cortex, converging on Purkinje cells (PC), the sole output of the cerebellar cortex. Recent in vivo experiments have shown that activity in GCs varies from tonic firing at a few hertz to phasic bursts >500 Hz. However, the responses of parallel fiber (PF)-PC synapses to this wide range of input frequencies are unknown, and there is controversy regarding several frequency-related parameters of transmission at this synapse. We performed recordings of unitary synapses and combined variance-mean analysis with a carefully adapted extracellular stimulation method in young and adult rats. We show that, although the probability of release at individual sites is low at physiological calcium concentration, PF-PC synapses release one or more vesicles with a probability of 0.44 at 1.5 mm [Ca(2+)](e). Paired-pulse facilitation was observed over a wide range of frequencies; it renders burst inputs particularly effective and reproducible. These properties are primarily independent of synaptic weight and age. Furthermore, we show that the PF-PC synapse is able to sustain transmission at very high frequencies for tens of stimuli, as a result of accelerated vesicle replenishment and an apparent recruitment of release site vesicles, which appears to be a central mechanism of paired-pulse facilitation at this synapse. These properties ensure that PF-PC synapses possess a dynamic range enabling the temporal code of MF inputs to be transmitted reliably to the PC.
Collapse
|
9
|
Bianchi V, Gambino F, Muzio L, Toniolo D, Humeau Y, D'Adamo P. Forebrain deletion of αGDI in adult mice worsens the pre-synaptic deficit at cortico-lateral amygdala synaptic connections. PLoS One 2012; 7:e29763. [PMID: 22291894 PMCID: PMC3264564 DOI: 10.1371/journal.pone.0029763] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 12/05/2011] [Indexed: 11/18/2022] Open
Abstract
The GDI1 gene encodes αGDI, which retrieves inactive GDP-bound RAB from membranes to form a cytosolic pool awaiting vesicular release. Mutations in GDI1 are responsible for X-linked Intellectual Disability. Characterization of the Gdi1-null mice has revealed alterations in the total number and distribution of hippocampal and cortical synaptic vesicles, hippocampal short-term synaptic plasticity and specific short-term memory deficits in adult mice, which are possibly caused by alterations of different synaptic vesicle recycling pathways controlled by several RAB GTPases. However, interpretation of these studies is complicated by the complete ablation of Gdi1 in all cells in the brain throughout development. In this study, we generated conditionally gene-targeted mice in which the knockout of Gdi1 is restricted to the forebrain, hippocampus, cortex and amygdala and occurs only during postnatal development. Adult mutant mice reproduce the short-term memory deficit previously reported in Gdi1-null mice. Surprisingly, the delayed ablation of Gdi1 worsens the pre-synaptic phenotype at cortico-amygdala synaptic connections compared to Gdi1-null mice. These results suggest a pivotal role of αGDI via specific RAB GTPases acting specifically in forebrain regions at the pre-synaptic sites involved in memory formation.
Collapse
Affiliation(s)
- Veronica Bianchi
- Dulbecco Telethon Institute at Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Frédéric Gambino
- Centre National de la Recherche Scientifique UPR3212, CNRS, University of Strasbourg, Strasbourg, France
- Département des Neurosciences Fondamentales, CMU, Genève, Suisse
| | - Luca Muzio
- Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Daniela Toniolo
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy and Institute of Molecular Genetics-CNR, Pavia, Italy
| | - Yann Humeau
- Centre National de la Recherche Scientifique UPR3212, CNRS, University of Strasbourg, Strasbourg, France
- Institut Interdiciplinaire de Neuroscience Centre National de la Recherche Scientifique UMR5297, University of Bordeaux, Bordeaux, France
| | - Patrizia D'Adamo
- Dulbecco Telethon Institute at Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
- * E-mail:
| |
Collapse
|
10
|
Humeau Y, Candiani S, Ghirardi M, Poulain B, Montarolo P. Functional roles of synapsin: Lessons from invertebrates. Semin Cell Dev Biol 2011; 22:425-33. [DOI: 10.1016/j.semcdb.2011.07.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 07/13/2011] [Indexed: 12/18/2022]
|
11
|
A novel form of presynaptic plasticity based on the fast reactivation of release sites switched off during low-frequency depression. J Neurosci 2011; 30:16679-91. [PMID: 21148007 DOI: 10.1523/jneurosci.3644-09.2010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Repetitive firing of neurons at a low frequency often leads to a decrease in synaptic strength. The mechanism of this low-frequency depression (LFD) is poorly understood. Here, LFD was studied at Aplysia cholinergic synapses. The absence of a significant change in the paired-pulse ratio during LFD, together with the facts that neither the time course nor the extent of LFD were affected by the initial release probability, suggests that LFD is not related to a depletion of the ready-to-fuse synaptic vesicles (SVs) or to a decrease in the release probability, but results from the silencing of a subpopulation of release sites. A subset of SVs or release sites, which acquired a high release probability status during LFD, permits synapses to rapidly and temporarily recover the initial synaptic strength when the stimulation is stopped. However, the recovery of the full capacity of the synapse to sustain repetitive stimulations is slow and involves spontaneous reactivation of the silent release sites. Application of tetanic stimulations accelerates this recovery by immediately switching on the silent sites. This high-frequency-dependent phenomenon underlies a new form of synaptic plasticity that allows resetting of presynaptic efficiency independently of the recent history of the synapse. Microinjection of a mutated Aplysia synapsin that cannot be phosphorylated by cAMP-dependent protein kinase (PKA), or a PKA inhibitor both prevented high-frequency-dependent awakening of release sites. Changes in the firing pattern of neurons appear to be able to regulate the on-off status of release sites via a molecular cascade involving PKA-dependent phosphorylation of synapsin.
Collapse
|
12
|
Popoff MR, Poulain B. Bacterial toxins and the nervous system: neurotoxins and multipotential toxins interacting with neuronal cells. Toxins (Basel) 2010; 2:683-737. [PMID: 22069606 PMCID: PMC3153206 DOI: 10.3390/toxins2040683] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2010] [Revised: 03/18/2010] [Accepted: 04/07/2010] [Indexed: 12/13/2022] Open
Abstract
Toxins are potent molecules used by various bacteria to interact with a host organism. Some of them specifically act on neuronal cells (clostridial neurotoxins) leading to characteristics neurological affections. But many other toxins are multifunctional and recognize a wider range of cell types including neuronal cells. Various enterotoxins interact with the enteric nervous system, for example by stimulating afferent neurons or inducing neurotransmitter release from enterochromaffin cells which result either in vomiting, in amplification of the diarrhea, or in intestinal inflammation process. Other toxins can pass the blood brain barrier and directly act on specific neurons.
Collapse
Affiliation(s)
- Michel R. Popoff
- Neurotransmission et Sécrétion Neuroendocrine, CNRS UPR 2356 IFR 37 - Neurosciences, Centre de Neurochimie, 5, rue Blaise Pascal, F-67084 STRASBOURG cedex, France;
- Author to whom correspondence should be addressed;
| | | |
Collapse
|
13
|
Facchiano F, Deloye F, Doussau F, Innamorati G, Ashton AC, Dolly JO, Beninati S, Facchiano A, Luini A, Poulain B, Benfenati F. Transglutaminase participates in the blockade of neurotransmitter release by tetanus toxin: evidence for a novel biological function. Amino Acids 2010; 39:257-69. [PMID: 20084413 DOI: 10.1007/s00726-009-0436-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Accepted: 11/24/2009] [Indexed: 12/11/2022]
Abstract
Inhibition of neuroexocytosis by tetanus neurotoxin (TeNT) involves VAMP-2/synaptobrevin-2 cleavage. However, deletion of the TeNT activity does not completely abolish its inhibitory action. TeNT is a potent activator of the cross-linking enzyme transglutaminase 2 (TGase 2) in vitro. The role of the latter mechanism in TeNT poisoning was investigated in isolated nerve terminals and intact neurons. TeNT-induced inhibition of glutamate release from rat cortical synaptosomes was associated with a simultaneous activation of neuronal transglutaminase (TGase) activity. The TeNT-induced blockade of neuroexocytosis was strongly attenuated by pretreatment of either live Aplysia neurons or isolated nerve terminals with specific TGase inhibitors or neutralizing antibodies. The same treatments completely abolished the residual blockade of neuroexocytosis of a non-proteolytic mutant of TeNT light chain. Electrophysiological studies indicated that TGase activation occurs at an early step of TeNT poisoning and contributes to the inhibition of transmitter release. Bioinformatics and biochemical analyses identified synapsin I and SNAP-25 as potential presynaptic TGase substrates in isolated nerve terminals, which are potentially involved in the inhibitory action of TeNT. The results suggest that neuronal TGase activity plays an important role in the regulation of neuroexocytosis and is one of the intracellular targets of TeNT in neurons.
Collapse
Affiliation(s)
- Francesco Facchiano
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Momboisse F, Lonchamp E, Calco V, Ceridono M, Vitale N, Bader MF, Gasman S. betaPIX-activated Rac1 stimulates the activation of phospholipase D, which is associated with exocytosis in neuroendocrine cells. J Cell Sci 2009; 122:798-806. [PMID: 19261846 DOI: 10.1242/jcs.038109] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rho GTPases are crucial regulators of actin cytoskeletal rearrangements and play important roles in many cell functions linked to membrane trafficking processes. In neuroendocrine cells, we have previously demonstrated that RhoA and Cdc42 mediate part of the actin remodelling and vesicular trafficking events that are required for the release of hormones by exocytosis. Here, we investigate the functional importance of Rac1 for the exocytotic reaction and dissect the downstream and upstream molecular events that might integrate it to the exocytotic machinery. Using PC12 cells, we found that Rac1 is associated with the plasma membrane and is activated during exocytosis. Silencing of Rac1 by siRNA inhibits hormone release, prevents secretagogue (high K(+))-evoked phospholipase D1 (PLD1) activation and blocks the formation of phosphatidic acid at the plasma membrane. We identify betaPix as the guanine nucleotide-exchange factor integrating Rac1 activation to PLD1 and the exocytotic process. Finally, we show that the presence of the scaffolding protein Scrib at the plasma membrane is essential for betaPix/Rac1-mediated PLD1 activation and exocytosis. As PLD1 has recently emerged as a promoter of membrane fusion in various exocytotic events, our results define a novel molecular pathway linking a Rho GTPase, Rac1, to the final stages of Ca(2+)-regulated exocytosis in neuroendocrine cells.
Collapse
Affiliation(s)
- Fanny Momboisse
- Département Neurotransmission et Sécrétion Neuroendocrine, Institut des Neurosciences Cellulaires et Intégratives (UPR 3212), Centre National de la Recherche Scientifique et Université de Strasbourg, 5 rue Blaise Pascal, 67084 Strasbourg, France
| | | | | | | | | | | | | |
Collapse
|
15
|
Humeau Y, Gambino F, Chelly J, Vitale N. X-linked mental retardation: focus on synaptic function and plasticity. J Neurochem 2009; 109:1-14. [DOI: 10.1111/j.1471-4159.2009.05881.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Khoutorsky A, Spira ME. Activity-dependent calpain activation plays a critical role in synaptic facilitation and post-tetanic potentiation. Learn Mem 2009; 16:129-41. [DOI: 10.1101/lm.1275709] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|