1
|
Van Malderen S, Hehl M, Nuyts M, Verstraelen S, Heemels RE, Hardwick RM, Swinnen SP, Cuypers K. Age-related differences in task-related modulation of cerebellar brain inhibition. Neurobiol Aging 2025; 150:53-68. [PMID: 40068243 DOI: 10.1016/j.neurobiolaging.2025.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 02/13/2025] [Accepted: 02/27/2025] [Indexed: 04/10/2025]
Abstract
Age-related reductions in cerebellar integrity predict motor impairments in older adults (OA), but the contribution of cerebro-cerebellar interactions to these impairments remains unclear. Understanding these interactions could reveal underlying mechanisms associated with age-related deficits in motor control. To explore this, twenty younger adults (YA) and twenty OA, all right-handed, participated in a dual-site transcranial magnetic stimulation protocol. Cerebellar brain inhibition (CBI) was measured at rest and during the anticipatory period of a bimanual tracking task (BTT). The results revealed that YA outperformed OA on the BTT. Both age groups demonstrated reduced CBI during the anticipatory period of the BTT compared to CBI at rest, with no differences in CBI levels between both groups. Notably, motor performance was influenced by CBI modulation, as learning progressed (early vs. slightly later short-term learning), and this influence differed between age groups. In summary, resting-state CBI and the task-related release of CBI were maintained in OA, challenging previous assumptions of reduced inhibitory function in OA. However, the modulation of CBI appears to influence short-term motor learning differently for both groups, suggesting potential functional reorganization of the cerebellar neural system.
Collapse
Affiliation(s)
- Shanti Van Malderen
- Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute, Hasselt University, Diepenbeek, Belgium; KU Leuven, Leuven Brain Institute (LBI), Leuven, Belgium; Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Heverlee, Belgium
| | - Melina Hehl
- Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute, Hasselt University, Diepenbeek, Belgium; KU Leuven, Leuven Brain Institute (LBI), Leuven, Belgium; Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Heverlee, Belgium
| | - Marten Nuyts
- Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Stefanie Verstraelen
- Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Robin E Heemels
- Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Robert M Hardwick
- Faculty of Movement and Rehabilitation Sciences, Institute of NeuroScience (IONS), UCLouvain, Woluwe-Saint-Lambert, Belgium
| | - Stephan P Swinnen
- KU Leuven, Leuven Brain Institute (LBI), Leuven, Belgium; Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Heverlee, Belgium
| | - Koen Cuypers
- Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute, Hasselt University, Diepenbeek, Belgium; KU Leuven, Leuven Brain Institute (LBI), Leuven, Belgium; Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Heverlee, Belgium.
| |
Collapse
|
2
|
Arumí-Trujillo C, Verdejo-Amengual FJ, Martínez-Navarro O, Vink JJ, Valenzuela-Pascual F. The effectiveness of non-invasive brain stimulation in enhancing lower extremity function in children with spastic cerebral palsy: Protocol for a systematic review and meta-analysis. MethodsX 2025; 14:103141. [PMID: 39850763 PMCID: PMC11755019 DOI: 10.1016/j.mex.2024.103141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 12/27/2024] [Indexed: 01/25/2025] Open
Abstract
Non-invasive brain stimulation (NIBS) techniques have emerged as a promising non-pharmacological adjunct to neurorehabilitation. Children with Cerebral Palsy (CP) exhibit altered cortical excitability, and while CP remains incurable, physiotherapy combined with other interventions is essential for managing motor dysfunction. Although some studies have examined NIBS using various stimulation parameters, there is limited evidence regarding its effects on the lower extremities and optimal administration protocols. This review aims to evaluate the effectiveness of NIBS techniques, such as transcranial direct current stimulation (tDCS) and repetitive transcranial magnetic stimulation (rTMS), for the treatment of motor function in spastic cerebral palsy, specifically in the lower extremity. A systematic search will be conducted in databases including MEDLINE, CINAHL Plus, EMBASE, Scopus, ISI Web of Science, and the Cochrane Central Register of Controlled Trials. The search strategy will follow the PICO framework (Participants, Intervention, Comparison, Outcomes), focusing on randomized controlled trials (RCTs). Two independent reviewers will manage screening, selection, data extraction, risk of bias assessment, and grading of evidence. This review will provide key insights into the effectiveness of NIBS for lower-extremity function in children with spastic CP, guiding future research and clinical applications.
Collapse
Affiliation(s)
- Clàudia Arumí-Trujillo
- Faculty of Nursing and Physiotherapy, Universidad de Lleida, Roig 2, 25198 Lleida, Montserrat, España
- Translational Neuroimaging Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, the Netherlands
| | - Francisco José Verdejo-Amengual
- Faculty of Nursing and Physiotherapy, Universidad de Lleida, Roig 2, 25198 Lleida, Montserrat, España
- Research Group of Health Care (GReCS), Lleida Biomedical Research Institute's Dr. Pifarre Foundation (IRB Lleida), Avda Alcalde Rovira Roure 80, 25198 Lleida, España
| | - Oriol Martínez-Navarro
- Faculty of Nursing and Physiotherapy, Universidad de Lleida, Roig 2, 25198 Lleida, Montserrat, España
- Group of Studies on Society, Health, Education and Culture (GESEC), Universidad de Lleida, Pl. de Víctor Siurana 1, 25003 Lleida, España
| | - Jord J.T. Vink
- Translational Neuroimaging Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, the Netherlands
- Center of Excellence in Rehabilitation Medicine, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University and De Hoogstraat Rehabilitation, the Netherlands
| | - Fran Valenzuela-Pascual
- Faculty of Nursing and Physiotherapy, Universidad de Lleida, Roig 2, 25198 Lleida, Montserrat, España
- Group of Studies on Society, Health, Education and Culture (GESEC), Universidad de Lleida, Pl. de Víctor Siurana 1, 25003 Lleida, España
- Research Group of Health Care (GReCS), Lleida Biomedical Research Institute's Dr. Pifarre Foundation (IRB Lleida), Avda Alcalde Rovira Roure 80, 25198 Lleida, España
| |
Collapse
|
3
|
Vetter DE, Jooß A, Mutanen TP, Kozák G, Ziemann U. Short-interval interhemispheric inhibition does not originate from the motor hotspot. Brain Stimul 2025; 18:1074-1081. [PMID: 40414487 DOI: 10.1016/j.brs.2025.05.115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 04/27/2025] [Accepted: 05/16/2025] [Indexed: 05/27/2025] Open
Abstract
BACKGROUND Paired-coil TMS can delineate causal connections between cortical areas. Short-interval interhemispheric inhibition (SIHI) is a rapid inhibitory process, in which one primary motor cortex (M1) inhibits the other through the corpus callosum. Previous work suggests that both SIHI and motor evoked potentials (MEPs) originate in the motor hotspot. However, SIHI and MEPs are mediated by different neuronal populations. OBJECTIVES Here we used a recently published TMS-based association-method (Weise et al., 2023, Nat Protoc 18:293-318) to test if the neuronal populations mediating SIHI and MEPs can be spatially discriminated. METHOD s: We mapped the origin of SIHI and MEPs of hand muscles in each hemisphere, using the novel association-method to perform a 'source space' mapping on 18 healthy volunteers. RESULTS The origin of SIHI (the 'coldspot') was identifiable in the majority of subjects near the motor hotspot, at the hand-knob and around the central sulcus. It was displaced posterolaterally from the motor hotspot by about 6 mm. Post-hoc analyses revealed that precisely targeting the coldspot elicited significantly stronger SIHI compared to targeting the motor hotspot. CONCLUSIONS Findings demonstrate that the TMS-based association-method for source-space mapping enables physiological investigation of the distinct neuronal populations that give rise to interhemispheric inhibition of the contralateral motor cortex versus motor evoked potentials in contralateral hand muscles. SIHI can be more effectively elicited by targeting the coldspot rather than the hotspot, a potentially relevant distinction when aiming to modify interhemispheric neural communication, e.g., in stroke rehabilitation.
Collapse
Affiliation(s)
- David Emanuel Vetter
- Department of Neurology & Stroke, University of Tübingen, Tübingen, Germany; Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Andreas Jooß
- Department of Neurology & Stroke, University of Tübingen, Tübingen, Germany; Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Tuomas P Mutanen
- Department of Neuroscience and Biomedical Engineering, Aalto Yliopisto, Uusimaa, Espoo, Finland
| | - Gábor Kozák
- Department of Neurology & Stroke, University of Tübingen, Tübingen, Germany; Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Ulf Ziemann
- Department of Neurology & Stroke, University of Tübingen, Tübingen, Germany; Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
4
|
Wilkins EW, Young RJ, Davidson R, Krider R, Alhwayek G, Park JA, Parikh AC, Riley ZA, Poston B. The Influence of Transcranial Alternating Current Stimulation on the Excitability of the Unstimulated Contralateral Primary Motor Cortex. Brain Sci 2025; 15:512. [PMID: 40426683 PMCID: PMC12110175 DOI: 10.3390/brainsci15050512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 05/14/2025] [Accepted: 05/14/2025] [Indexed: 05/29/2025] Open
Abstract
OBJECTIVES Transcranial alternating current stimulation (tACS) can enhance primary motor cortex (M1) excitability and improve motor skill when delivered unilaterally to the dominant hemisphere. However, the impact of tACS on contralateral M1 excitability both during and after application has not been studied. The purpose of this study was to examine the effects of tACS delivered to the dominant left M1 on the excitability of the unstimulated contralateral non-dominant right M1. METHODS This study implemented a double-blind, randomized, SHAM-controlled, within-subjects, crossover experimental design. Eighteen young adults completed a tACS condition and a SHAM condition on two different days in counterbalanced order with a week washout period between days. Transcranial magnetic stimulation (TMS) was utilized to assess excitability of the contralateral right M1 while tACS was delivered to the left M1. TMS was administered in five test blocks (termed Pre, D5, D10, D15, and Post) relative to a 20 min application of tACS (70 Hz, 1 mA current strength). The Pre and Post TMS test blocks were conducted before and immediately after tACS was applied to the left M1, whereas the TMS test blocks performed during tACS were completed at time points starting at the 5, 10, and 15 min marks of the 20 min stimulation period. The primary dependent variable was the 1 mV motor evoked potential (MEP) amplitude. MEP data were analyzed with a 2 condition (tACS, SHAM) × 5 test (Pre, D5, D10, D15, Post) within-subjects ANOVA. RESULTS The main effect for condition (p = 0.704) and condition × test interaction (p = 0.349) were both non-statistically significant. There was a significant main effect for test (p = 0.003); however, post hoc analysis indicated that none of the pairwise comparisons were statistically significant. CONCLUSIONS Overall, the findings indicate that tACS applied to the left M1 does not significantly modulate contralateral right M1 excitability during or immediately after stimulation, at least when utilizing the present tACS parameters.
Collapse
Affiliation(s)
- Erik W. Wilkins
- Department of Kinesiology and Nutrition Sciences, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA; (E.W.W.); (J.A.P.)
- Interdisciplinary Ph.D. Program in Neuroscience, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA;
| | - Richard J. Young
- Interdisciplinary Ph.D. Program in Neuroscience, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA;
| | - Ryder Davidson
- School of Medicine, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA; (R.D.); (R.K.); (G.A.)
| | - Reese Krider
- School of Medicine, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA; (R.D.); (R.K.); (G.A.)
| | - George Alhwayek
- School of Medicine, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA; (R.D.); (R.K.); (G.A.)
| | - Jonathan A. Park
- Department of Kinesiology and Nutrition Sciences, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA; (E.W.W.); (J.A.P.)
| | - Armaan C. Parikh
- Department of Special Education, Vanderbilt University, Nashville, TN 37212, USA;
| | - Zachary A. Riley
- Department of Kinesiology, Indiana University Purdue, Indianapolis, IN 46202, USA;
| | - Brach Poston
- Department of Kinesiology and Nutrition Sciences, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA; (E.W.W.); (J.A.P.)
- Interdisciplinary Ph.D. Program in Neuroscience, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA;
| |
Collapse
|
5
|
Zeroual M, Ginatempo F, Loi N, Vaira LA, Cano A, Biglio A, Visaloco G, De Riu G, Deriu F. Sensorimotor integration and faces recognition in a model of altered face sensory information: Neurophysiological study in patients with dentofacial deformities. Clin Neurophysiol 2025; 173:113-123. [PMID: 40090236 DOI: 10.1016/j.clinph.2025.02.269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 01/30/2025] [Accepted: 02/23/2025] [Indexed: 03/18/2025]
Abstract
OBJECTIVE To explore the excitability and sensory motor integration of the face and masticatory primary motor cortex (M1), and recognition of face expressions in individuals with dentofacial deformities (IDD). METHODS Short-interval intracortical inhibition (SICI), short-afferent inhibition (SAI) of masticatory and face M1, the blink reflex and face expressions recognition (FER) ability were assessed in 18 healthy subjects (HS) (24.56 ± 1.02 years old) and in 18 IDD (27.36 ± 1.39 years) before and after 1 month from surgery. RESULTS In IDD, SICI (p = 0.033) and SAI (p = 0.008) were significantly reduced in the masticatory, but not face, M1 and the blink reflex was normal. IDD also exhibited deficits in FER before surgery (p = 0.033), which was still present after surgery (p = 0.015), although improved. CONCLUSION Results evidence that alterations of sensory afferents due to dentofacial deformities modulates sensorimotor integration of masticatory M1, with topographic specificity. The altered sensory information from face not only influences motor inhibitory control but also FER. SIGNIFICANCE The integration of sensory inputs with motor outputs depends topographically on the type of sensory afferents stimulated as well as on the target muscle and its respective representation area in M1. Afferent information from face also plays a role in FER ability.
Collapse
Affiliation(s)
- Mohammed Zeroual
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | | | - Nicola Loi
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy; University Hospital of Sassari, Sassari, Italy
| | - Luigi Angelo Vaira
- Maxillofacial Surgery Unit, Department of Medicine, Surgery and Pharmacy. University of Sassari, Sassari, Italy
| | - Antonella Cano
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy; University Hospital of Sassari, Sassari, Italy
| | - Andrea Biglio
- Maxillofacial Surgery Unit, Department of Medicine, Surgery and Pharmacy. University of Sassari, Sassari, Italy
| | - Giulio Visaloco
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy
| | - Giacomo De Riu
- Maxillofacial Surgery Unit, Department of Medicine, Surgery and Pharmacy. University of Sassari, Sassari, Italy
| | - Franca Deriu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy; Unit of Endocrinology, Nutritional and Metabolic Disorders, AOU Sassari, Sassari, Italy.
| |
Collapse
|
6
|
Dupont W, Papaxanthis C, Lurquin L, Lebon F, Madden-Lombardi C. Negated actions are simulated within the primary motor cortex. Neuroscience 2025; 565:468-478. [PMID: 39674536 DOI: 10.1016/j.neuroscience.2024.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/25/2024] [Accepted: 12/09/2024] [Indexed: 12/16/2024]
Abstract
Controversy persists regarding the representation of linguistically negated actions, specifically concerning activation and inhibitory mechanisms in the motor system, and whether negated action sentences evoke an initial motor simulation of the action to be negated. We conducted two experiments probing corticospinal excitability (CSE) and short-interval intracortical inhibition (SICI) in the primary motor cortex at different latencies while reading affirmative and negative action sentences. In experiment one, twenty-six participants read action and non-action sentences in affirmative or negative forms. Using transcranial magnetic stimulation, we probed CSE in hand muscles at rest and at several latencies after verb presentation. We observed a greater CSE for action sentences compared to non-action sentences, regardless of verb form. In experiment two, nineteen participants read affirmative and negative action sentences. We measured CSE and SICI at short and long latencies after verb presentation. CSE was greater for affirmative and negative action sentences at both latencies compared to rest. SICI did not change at the short latency but increased at longer latencies, regardless of verb form. Negated action sentences showed the same motor excitability as affirmed action sentences with no additional inhibition at early latencies. These results lend support for the idea that actions to be negated are initially simulated within the motor system. Neural differences between affirmative and negative action sentences may occur outside the primary motor cortex.
Collapse
Affiliation(s)
- W Dupont
- INSERM UMR1093-CAPS, Université de Bourgogne, UFR des Sciences du Sport, F-21000, Dijon, France.
| | - C Papaxanthis
- INSERM UMR1093-CAPS, Université de Bourgogne, UFR des Sciences du Sport, F-21000, Dijon, France
| | - L Lurquin
- INSERM UMR1093-CAPS, Université de Bourgogne, UFR des Sciences du Sport, F-21000, Dijon, France
| | - F Lebon
- INSERM UMR1093-CAPS, Université de Bourgogne, UFR des Sciences du Sport, F-21000, Dijon, France; Institut Universitaire de France (IUF), Paris, France
| | - C Madden-Lombardi
- INSERM UMR1093-CAPS, Université de Bourgogne, UFR des Sciences du Sport, F-21000, Dijon, France; Centre National de la Recherche Scientifique (CNRS), Paris, France
| |
Collapse
|
7
|
Chiappini E, Turrini S, Fiori F, Benassi M, Tessari A, di Pellegrino G, Avenanti A. You Are as Old as the Connectivity You Keep: Distinct Neurophysiological Mechanisms Underlying Age-Related Changes in Hand Dexterity and Strength. Arch Med Res 2025; 56:103031. [PMID: 39567344 DOI: 10.1016/j.arcmed.2024.103031] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/22/2024] [Accepted: 06/12/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND Aging can lead to a decline in motor control. While age-related motor impairments have been documented, the underlying changes in cortico-cortical interactions remain poorly understood. METHODS We took advantage of the high temporal resolution of dual-site transcranial magnetic stimulation (dsTMS) to investigate how communication between higher-order rostral premotor regions and the primary motor cortex (M1) influences motor control in young and elderly adults. We assessed the dynamics of connectivity from the inferior frontal gyrus (IFG) or pre-supplementary motor area (preSMA) to M1, by testing how conditioning of the IFG/preSMA affected the amplitude of motor evoked potentials (MEPs) induced by M1 stimulation at different temporal intervals. Moreover, we explored how age-related changes in premotor-M1 interactions relate to motor performance. RESULTS Our results show that both young and elderly adults had excitatory IFG-M1 and preSMA-M1 interactions, but the two groups' timing and strength differed. In young adults, IFG-M1 interactions were early and time-specific (8 ms), whereas in older individuals, they were delayed and more prolonged (12-16 ms). PreSMA-M1 interactions emerged early (6 ms) and peaked at 10-12 ms in young individuals but were attenuated in older individuals. Critically, a connectivity profile of the IFG-M1 circuit like that of the young cohort predicted better dexterity in older individuals, while preserved preSMA-M1 interactions predicted greater strength, suggesting that age-related motor decline is associated with specific changes in premotor-motor networks. CONCLUSIONS Preserving youthful motor network connectivity in older individuals is related to maintaining motor performance and providing information for interventions targeting aging effects on behavior.
Collapse
Affiliation(s)
- Emilio Chiappini
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany; Department of Clinical and Health Psychology, University of Vienna, Vienna, Austria; Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, Cesena, Italy
| | - Sonia Turrini
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, Cesena, Italy
| | - Francesca Fiori
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, Cesena, Italy; NeXT: Unità di Ricerca di Neurofisiologia e Neuroingegneria dell'Interazione Uomo-Tecnologia, Dipartimento di Medicina, Università Campus Bio-Medico, Rome, Italy
| | - Mariagrazia Benassi
- Dipartimento di Psicologia "Renzo Canestrari", Alma Mater Studiorum Università di Bologna, Bologna, Italy
| | - Alessia Tessari
- Dipartimento di Psicologia "Renzo Canestrari", Alma Mater Studiorum Università di Bologna, Bologna, Italy
| | - Giuseppe di Pellegrino
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, Cesena, Italy
| | - Alessio Avenanti
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, Cesena, Italy; Centro de Investigación en Neuropsicología y Neurociencias Cognitivas, Universidad Católica Del Maule, Talca, Chile.
| |
Collapse
|
8
|
Taube W, Lauber B. Changes in the cortical GABAergic inhibitory system with ageing and ageing-related neurodegenerative diseases. J Physiol 2024. [PMID: 39722574 DOI: 10.1113/jp285656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 12/04/2024] [Indexed: 12/28/2024] Open
Abstract
The human cortical inhibitory system is known to play a vital role for normal brain development, function, and plasticity. GABA is the most prominent inhibitory neurotransmitter in the CNS and is a key regulator not only for motor control and motor learning, but also for cognitive processes. With ageing and many neurodegenerative pathologies, a decline in GABAergic function in several cortical regions together with a reduced ability to task-specifically modulate and increase inhibition in the primary motor cortex has been observed. This decline in intracortical inhibition is associated with impaired motor control but also with diminished motor-cognitive (i.e. dual-tasking) and cognitive performance (e.g. executive functions). Furthermore, more general well-being such as sleep quality, stress resistance or non-specific pain perception are also associated with reduced GABA functioning. The current review highlights the interplay between changes in GABAergic function and changes in motor control, motor-cognitive and cognitive performance associated with healthy ageing, as well as in seniors with neurodegenerative diseases such as mild cognitive impairment. Furthermore, recent evidence highlighting the ability to up- or downregulate cortical inhibition by means of physical exercise programs is presented and discussed.
Collapse
Affiliation(s)
- Wolfgang Taube
- Department of Neuroscience and Movement Science, University of Fribourg, Fribourg, Switzerland
| | - Benedikt Lauber
- Department of Neuroscience and Movement Science, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
9
|
Butler CLP, Sangari S, Chen B, Perez MA. Enhanced inhibitory input to triceps brachii in humans with spinal cord injury. J Physiol 2024; 602:6909-6923. [PMID: 39504123 DOI: 10.1113/jp285510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 07/24/2024] [Indexed: 11/16/2024] Open
Abstract
Most individuals with cervical spinal cord injury (SCI) show increased muscle weakness in the elbow extensor compared to elbow flexor muscles. Although this is a well-known functional deficit, the underlying neural mechanisms remain poorly understood. To address this question, we measured the suppression of voluntary electromyographic activity (svEMG; a measurement thought to reflect changes in intracortical inhibition) by applying low-intensity transcranial magnetic stimulation over the arm representation of the primary motor cortex during 10% of isometric maximal voluntary contraction (MVC) into elbow flexion or extension in individuals with and without chronic cervical SCI. We found that the svEMG latency and duration were not different between the biceps and triceps brachii in controls but prolonged in the triceps in individuals with SCI. The svEMG area was larger in the triceps compared to the biceps in both groups and further increased in SCI participants, suggesting a pronounced intracortical inhibitory input during elbow extension. A negative correlation was found between svEMG area and MVCs indicating that control and SCI participants with lower svEMG area had larger MVCs. The svEMG area was not different between 5% and 30% of MVC, making it less probable that differences in muscle strength between groups contributed to our results. These findings support the existence of strong inhibitory input to corticospinal projections controlling elbow extensor compared to flexor muscles, which is more pronounced after chronic cervical SCI. KEY POINTS: After cervical spinal cord injury (SCI), people often recover function in elbow flexor, but much less in elbow extensor muscles. The neural mechanisms contributing to this difference remain unknown. We measured the suppression of voluntary electromyographic activity (svEMG) elicited through low-intensity transcranial magnetic stimulation of the primary motor cortex (assumed to reflect changes in intracortical inhibition) in the biceps and triceps muscles in controls and individuals with cervical chronic incomplete SCI. We found increased svEMG area in the triceps compared to the biceps in controls and SCI participants, with this measurement being even more pronounced in the triceps after SCI. The svEMG area correlated with maximal voluntary contraction values in both groups, suggesting the people with lesser inhibition had larger motor output. Our results support the presence of strong cortical inhibitory input to corticospinal projections controlling elbow extensor compared to elbow flexors muscles after cervical SCI.
Collapse
Affiliation(s)
- Carley L P Butler
- Shirley Ryan AbilityLab, Chicago, IL, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, USA
- Edward Hines Jr. VA Hospital, Hines, IL, USA
| | | | - Bing Chen
- Shirley Ryan AbilityLab, Chicago, IL, USA
- Edward Hines Jr. VA Hospital, Hines, IL, USA
| | - Monica A Perez
- Shirley Ryan AbilityLab, Chicago, IL, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, USA
- Edward Hines Jr. VA Hospital, Hines, IL, USA
| |
Collapse
|
10
|
Collins KC, Clark AB, Pomeroy VM, Kennedy NC. The test-retest reliability of non-navigated transcranial magnetic stimulation (TMS) measures of corticospinal pathway excitability early after stroke. Disabil Rehabil 2024; 46:6439-6446. [PMID: 38634228 DOI: 10.1080/09638288.2024.2337107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 03/20/2024] [Accepted: 03/24/2024] [Indexed: 04/19/2024]
Abstract
PURPOSE Motor evoked potential (MEP) characteristics are potential biomarkers of whether rehabilitation interventions drive motor recovery after stroke. The test-retest reliability of Transcranial Magnetic Stimulation (TMS) measurements in sub-acute stroke remains unclear. This study aims to determine the test-retest reliability of upper limb MEP measures elicited by non-neuronavigated transcranial magnetic stimulation in sub-acute-stroke. METHODS In two identical data collection sessions, 1-3 days apart, TMS measures assessed: motor threshold (MT), amplitude, latency (MEP-L), silent period (SP), recruitment curve slope in the biceps brachii (BB), extensor carpi radialis (ECR), and abductor pollicis brevis (APB) muscles of paretic and non-paretic upper limbs. Test-retest reliability was calculated using the intra-class correlation coefficient (ICC) and 95% confidence intervals (CI). Acceptable reliability was set at a lower 95% CI of 0.70 or above. The limits of agreement (LOA) and smallest detectable change (SDC) were calculated. RESULTS 30 participants with sub-acute stroke were included (av 36 days post stroke) reliability was variable between poor to good for the different MEP characteristics. The SDC values differed across muscles and MEP characteristics in both paretic and less paretic limbs. CONCLUSIONS The present findings indicate there is limited evidence for acceptable test-retest reliability of non-navigated TMS outcomes when using the appropriate 95% CI for ICC, SDC and LOA values. CLINICAL TRIAL REGISTRATION Current Controlled Trials: ISCRT 19090862, http://www.controlled-trials.com.
Collapse
Affiliation(s)
- Kathryn C Collins
- Faculty of Health and Social Sciences, Bournemouth University, Bournemouth, UK
| | - Allan B Clark
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Valerie M Pomeroy
- Acquired Brain Injury Rehabilitation Alliance, School of Health Sciences, University of East Anglia, Norwich, UK
- National Institute of Health Research Brain Injury MedTech Cooperative, Cambridge, UK
| | | |
Collapse
|
11
|
Passaretti M, Cilia R, Rinaldo S, Rossi Sebastiano D, Orunesu E, Devigili G, Braccia A, Paparella G, De Riggi M, van Eimeren T, Strafella AP, Lanteri P, Berardelli A, Bologna M, Eleopra R. Neurophysiological markers of motor compensatory mechanisms in early Parkinson's disease. Brain 2024; 147:3714-3726. [PMID: 39189320 PMCID: PMC11531851 DOI: 10.1093/brain/awae210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/20/2024] [Accepted: 06/13/2024] [Indexed: 08/28/2024] Open
Abstract
Compensatory mechanisms in Parkinson's disease are defined as the changes that the brain uses to adapt to neurodegeneration and progressive dopamine reduction. Motor compensation in early Parkinson's disease could, in part, be responsible for a unilateral onset of clinical motor signs despite the presence of bilateral nigrostriatal degeneration. Although several mechanisms have been proposed for compensatory adaptations in Parkinson's disease, the underlying pathophysiology is unclear. Here, we investigate motor compensation in Parkinson's disease by investigating the relationship between clinical signs, dopamine transporter imaging data and neurophysiological measures of the primary motor cortex (M1), using transcranial magnetic stimulation in presymptomatic and symptomatic hemispheres of patients. In this cross-sectional, multicentre study, we screened 82 individuals with Parkinson's disease. Patients were evaluated clinically in their medication OFF state using standardized scales. Sixteen Parkinson's disease patients with bilateral dopamine transporter deficit in the putamina but unilateral symptoms were included. Twenty-eight sex- and age-matched healthy controls were also investigated. In all participants, we tested cortical excitability using single- and paired-pulse techniques, interhemispheric inhibition and cortical plasticity with paired associative stimulation. Data were analysed with ANOVAs, multiple linear regression and logistic regression models. Individual coefficients of motor compensation were defined in patients based on clinical and imaging data, i.e. the motor compensation coefficient. The motor compensation coefficient includes an asymmetry score to balance motor and dopamine transporter data between the two hemispheres, in addition to a hemispheric ratio accounting for the relative mismatch between the magnitude of motor signs and dopaminergic deficit. In patients, corticospinal excitability and plasticity were higher in the presymptomatic compared with the symptomatic M1. Also, interhemispheric inhibition from the presymptomatic to the symptomatic M1 was reduced. Lower putamen binding was associated with higher plasticity and reduced interhemispheric inhibition in the presymptomatic hemisphere. The motor compensation coefficient distinguished the presymptomatic from the symptomatic hemisphere. Finally, in the presymptomatic hemisphere, a higher motor compensation coefficient was associated with lower corticospinal excitability and interhemispheric inhibition and with higher plasticity. In conclusion, the present study suggests that motor compensation involves M1-striatal networks and intercortical connections becoming more effective with progressive loss of dopaminergic terminals in the putamen. The balance between these motor networks seems to be driven by cortical plasticity.
Collapse
Affiliation(s)
- Massimiliano Passaretti
- Parkinson and Movement Disorders Unit, Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
- Department of Clinical Neuroscience, Karolinska Institutet, 17165 Solna, Sweden
| | - Roberto Cilia
- Parkinson and Movement Disorders Unit, Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Sara Rinaldo
- Parkinson and Movement Disorders Unit, Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Davide Rossi Sebastiano
- Neurophysiology Unit, Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Eva Orunesu
- Nuclear Medicine Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Grazia Devigili
- Parkinson and Movement Disorders Unit, Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Arianna Braccia
- Parkinson and Movement Disorders Unit, Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Giulia Paparella
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
- IRCCS Neuromed, 86077 Pozzilli (IS), Italy
| | - Martina De Riggi
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Thilo van Eimeren
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Antonio Paolo Strafella
- Krembil Brain Institute, University Health Network, Toronto, ON M5R 1E8, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M5S 2S1, Canada
| | - Paola Lanteri
- Neurophysiology Unit, Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Alfredo Berardelli
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
- IRCCS Neuromed, 86077 Pozzilli (IS), Italy
| | - Matteo Bologna
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
- IRCCS Neuromed, 86077 Pozzilli (IS), Italy
| | - Roberto Eleopra
- Parkinson and Movement Disorders Unit, Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| |
Collapse
|
12
|
Matsugi A, Tsuzaki A, Jinai S, Okada Y, Mori N, Hosomi K. Cerebellar repetitive transcranial magnetic stimulation has no effect on contraction-induced facilitation of corticospinal excitability. PLoS One 2024; 19:e0310173. [PMID: 39485742 PMCID: PMC11530076 DOI: 10.1371/journal.pone.0310173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 08/27/2024] [Indexed: 11/03/2024] Open
Abstract
This study aimed to investigate whether the cerebellum contributes to contraction-induced facilitation (CIF) of contralateral corticospinal excitability. To this end, repetitive cerebellar transcranial magnetic stimulation (TMS) was used to test whether it modulates CIF. Overall, 20 healthy young individuals participated in the study. Single-pulse TMS was applied to the left primary motor cortex to induce motor-evoked potentials (MEP) on electromyography of the right first dorsal interosseous (FDI) muscle to test corticospinal excitability. This measurement was conducted during contraction (10% maximum voluntary contraction [MVC]) and rest (0% MVC) of the FDI muscle. CIF, cerebellar brain inhibition (CBI), cortical silent period (cSP), and resting motor threshold (rMT) were measured before and after low-frequency repetitive TMS (crTMS) of the right cerebellum to downregulate cerebellar output. The CIF (contraction/rest of the MEP), CBI (conditioned/unconditioned MEP) during contraction, cSP, and rMT were not affected by crTMS. At rest, CBI was decreased. These findings indicated that the primary motor cortex function for the increase in corticospinal excitability was not affected by crTMS. This study contributes to our understanding of the role of the cerebellum in motor control. Additionally, it may inform decision-making for the site of cerebellar ataxia treatment using non-invasive brain stimulation.
Collapse
Affiliation(s)
- Akiyoshi Matsugi
- Faculty of Rehabilitation, Shijonawate Gakuen University, Daitou City, Osaka, Japan
| | - Aki Tsuzaki
- Faculty of Rehabilitation, Shijonawate Gakuen University, Daitou City, Osaka, Japan
| | - Soichi Jinai
- Faculty of Rehabilitation, Shijonawate Gakuen University, Daitou City, Osaka, Japan
| | - Yohei Okada
- Neurorehabilitation Research Center of Kio University, Koryo-cho, Kitakatsuragi-gun, Nara, Japan
| | - Nobuhiko Mori
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan
| | - Koichi Hosomi
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan
- Department of Neurosurgery, Toyonaka Municipal Hospital, Toyonaka City, Osaka, Japan
| |
Collapse
|
13
|
Abellaneda-Pérez K, Potash RM, Pascual-Leone A, Sacchet MD. Neuromodulation and meditation: A review and synthesis toward promoting well-being and understanding consciousness and brain. Neurosci Biobehav Rev 2024; 166:105862. [PMID: 39186992 DOI: 10.1016/j.neubiorev.2024.105862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/16/2024] [Accepted: 08/17/2024] [Indexed: 08/28/2024]
Abstract
The neuroscience of meditation is providing insight into meditation's beneficial effects on well-being and informing understanding of consciousness. However, further research is needed to explicate mechanisms linking brain activity and meditation. Non-invasive brain stimulation (NIBS) presents a promising approach for causally investigating neural mechanisms of meditation. Prior NIBS-meditation research has predominantly targeted frontal and parietal cortices suggesting that it might be possible to boost the behavioral and neural effects of meditation with NIBS. Moreover, NIBS has revealed distinct neural signatures in long-term meditators. Nonetheless, methodological variations in NIBS-meditation research contributes to challenges for definitive interpretation of previous results. Future NIBS studies should further investigate core substrates of meditation, including specific brain networks and oscillations, and causal neural mechanisms of advanced meditation. Overall, NIBS-meditation research holds promise for enhancing meditation-based interventions in support of well-being and resilience in both non-clinical and clinical populations, and for uncovering the brain-mind mechanisms of meditation and consciousness.
Collapse
Affiliation(s)
- Kilian Abellaneda-Pérez
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain; Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la Universitat Autònoma de Barcelona, Badalona, Barcelona, Spain.
| | - Ruby M Potash
- Meditation Research Program, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Alvaro Pascual-Leone
- Hinda and Arthur Marcus Institute for Aging Research and Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Matthew D Sacchet
- Meditation Research Program, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.
| |
Collapse
|
14
|
Wang Y, Lin Y, Ran Q, Cao N, Xia X, Tan X, Wu Y, Zhang J, Liu K, Liu H. Dorsolateral prefrontal cortex to ipsilateral primary motor cortex intercortical interactions during inhibitory control enhance response inhibition in open-skill athletes. Sci Rep 2024; 14:24345. [PMID: 39420010 PMCID: PMC11487194 DOI: 10.1038/s41598-024-75151-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024] Open
Abstract
Numerous studies have reported that long-term sports training can affect inhibitory control and induce brain functional alterations. However, the influence of environmental dynamics in sports training on inter-cortical connectivity has not been well studied. In the current study, we used twin-coil transcranial magnetic stimulation to investigate the functional connectivity between dorsolateral prefrontal cortex (DLPFC) and ipsilateral primary motor cortex (M1) during proactive and reactive inhibition in participants with sports skills in dynamic environment (open-skill experts), stable environment (closed-skill experts), and no sports skills (controls). Using a modified stop signal task, proactive inhibition was measured by the response delay effect (RDE), and reactive inhibition was measured by the stop-signal reaction time (SSRT). Intra-hemispheric DLPFC-M1 interactions and single pulse motor-evoked potentials (MEPs) were measured during the task. A stronger inhibitory effect of the DLPFC over M1 was observed during early reactive control stages compared to baseline levels. In addition, this inhibitory effect was pronounced when comparing open-skill experts to non-athlete controls, a relationship that was significantly correlated with superior reactive control performance. Furthermore, DLPFC to M1 influencing direction shifted from late proactive control to reactive control. Behavioral results also demonstrated enhanced proactive control abilities in open-skill experts relative to controls. Such enhancement may be due to the combination of environmental complexity and physical fitness in long-term skill training.
Collapse
Affiliation(s)
- Yanqiu Wang
- School of Physical Education, Central China Normal University, Wuhan, 430079, China
| | - Yitong Lin
- School of Psychology, Shanghai University of Sport, Shanghai, 200438, China
| | - Qiuyan Ran
- School of Psychology, Shanghai University of Sport, Shanghai, 200438, China
| | - Na Cao
- Department of Life Sciences, The University of Tokyo, Tokyo, 153-8902, Japan
| | - Xue Xia
- School of Social Development and Health Management, University of Health and Rehabilitation Sciences, Qingdao, 266000, China
| | - Xiaoying Tan
- Faculty of Health Sciences and Sports, Macao Polytechnic University, Macao, 999078, China
| | - Yin Wu
- School of Economics and Management, Shanghai University of Sport, Shanghai, 200438, China
| | - Jian Zhang
- School of Psychology, Shanghai University of Sport, Shanghai, 200438, China
| | - Ke Liu
- Department of Rehabilitation, China Shanghai Punan Hospital of Pudong New District, Shanghai, 200125, China
| | - Hui Liu
- Department of Rehabilitation, China Shanghai Punan Hospital of Pudong New District, Shanghai, 200125, China.
| |
Collapse
|
15
|
Kaluskar P, Bharadwaj D, Iyer KS, Dy C, Zheng M, Brogan DM. A Systematic Review to Compare Electrical, Magnetic, and Optogenetic Stimulation for Peripheral Nerve Repair. JOURNAL OF HAND SURGERY GLOBAL ONLINE 2024; 6:722-739. [PMID: 39381397 PMCID: PMC11456630 DOI: 10.1016/j.jhsg.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 03/06/2024] [Indexed: 10/10/2024] Open
Abstract
The purpose of this systematic review was to assess the currently available evidence for the use of external stimulation to modulate neural activity and promote peripheral nerve regeneration. The most common external stimulations are electrical stimulation (ES), optogenetic stimulation (OS), and magnetic stimulation (MS). Understanding the comparative effectiveness of these stimulation methods is pivotal in advancing therapeutic interventions for peripheral nerve injuries. This systematic review focused on these three external stimulation modalities as potential strategies to enhance peripheral nerve repair (PNR). We used the Preferred Reporting Items for Systematic Reviews and Meta-Analyses framework to systematically evaluate and compare the efficiency of ES, OS, and MS in PNR. The review included studies published between 2018 and 2023 using ES, OS, or MS for PNR focused on enhancing recovery of peripheral nerve injuries in rodent models identified through PubMed and Google Scholar. The search strategies and inclusion criteria identified 19 studies (13 ES, 4 OS, and 2 MS) for detailed analysis, focusing on critical parameters such as functional recovery, histological outcomes, and electrophysiological data. Although ES demonstrated a consistent improvement in all the analyses, high-frequency repetitive MS (HFr-MS) emerged as a promising modality. HFr-MS demonstrated accelerated PNR, as histological and electrophysiological evidence indicated. In contrast, OS exhibited superior functional recovery outcomes. Notable limitations include constrained MS and OS data sets and the challenge of comparing relative improvements because of methodological diversity in evaluation techniques. Our findings underscore the potential of HFr-MS and OS in PNR while emphasizing the critical need for standardized testing protocols to facilitate meaningful cross-study comparisons. External stimulations have the potential to improve functional recovery in patients with nerve injury.
Collapse
Affiliation(s)
- Priya Kaluskar
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, Australia
- Perron Institute for Neurological and Translational Science, Perth, Australia
- ARC Training Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Sciences, University of Melbourne, Melbourne, Australia
| | - Dhruv Bharadwaj
- Medical School, The University of Western Australia, Nedlands, WA, Australia
| | - K. Swaminathan Iyer
- School of Molecular Sciences, the University of Western Australia, Perth, Australia
- ARC Training Centre for Next-Gen Technologies in Biomedical Analysis, School of Molecular Sciences, the University of Western Australia, Perth, Australia
| | - Christopher Dy
- Orthopaedic Surgery Division of Hand and Microsurgery, Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO
| | - Minghao Zheng
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, Australia
- Perron Institute for Neurological and Translational Science, Perth, Australia
| | - David M. Brogan
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
16
|
Gouriou E, Schneider C. Brain and muscles magnetic stimulation in a drug-free case of Parkinson's disease: Motor improvements concomitant to neuroplasticty. Heliyon 2024; 10:e35563. [PMID: 39170374 PMCID: PMC11336729 DOI: 10.1016/j.heliyon.2024.e35563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/23/2024] Open
Abstract
Noninvasive stimulation of the nervous system is of growing interest in Parkinson's disease (PD) to slow-down motor decline and decrease medication and its side-effects. Repetitive transcranial magnetic stimulation (rTMS) used in PD to modulate the excitability of the primary motor cortex (M1) provided controversial results, in part because of interactions with medication. This warrants to administer rTMS in drug-free patients. Repetitive peripheral magnetic stimulation (rPMS of muscles) has not yet been tested in PD. Its influence on M1 plasticity (as tested by TMS, transcranial magnetic stimulation) and sensorimotor disorders in other health conditions makes it worth be explored in PD. Thus, rTMS and rPMS were tested in a drug-free woman (52 years old, PD-diagnosed 10 years ago) in four different rTMS + rPMS combinations (one week apart): sham-sham, real-real, real-sham, sham-real. rTMS was applied over M1 contralateral to the most impaired bodyside, and rPMS on muscles of the legs, trunk, and arms, bilaterally. M1 plasticity (TMS measures) and motor symptoms and function (clinical outcomes) were measured at different timepoints. The real-real session induced the largest motor improvements, with possible summation of effects between sessions, and maintenance at follow-up (80 days later). This was paralleled by changes of M1 facilitation and inhibition. This sheds a new light on the link between TMS measures of M1 plasticity and motor changes in PD and informs on the remaining potential for neuroplasticity and functional improvement after 10 years of PD with no antiparkinsonian drug. De novo patients with PD (drug-free) should be motivated to participate in future randomized clinical trials to further test the slow-down or delay of motor decline under noninvasive neurostimulation regimens, whatever the stage of the disease.
Collapse
Affiliation(s)
- Estelle Gouriou
- Noninvasive neurostimulation laboratory, Research center of CHU de Québec–Université Laval, Neuroscience Division, Quebec, Canada
- Faculty of Medicine, Université Laval, Quebec, Canada
| | - Cyril Schneider
- Noninvasive neurostimulation laboratory, Research center of CHU de Québec–Université Laval, Neuroscience Division, Quebec, Canada
- Faculty of Medicine, Université Laval, Quebec, Canada
- School of Rehabilitation Sciences, Faculty of Medicine, Université Laval, Quebec, Canada
| |
Collapse
|
17
|
Kuhn YA, Egger S, Bugnon M, Lehmann N, Taubert M, Taube W. Age-related decline in GABAergic intracortical inhibition can be counteracted by long-term learning of balance skills. J Physiol 2024; 602:3737-3753. [PMID: 38949035 DOI: 10.1113/jp285706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 06/11/2024] [Indexed: 07/02/2024] Open
Abstract
Ageing induces a decline in GABAergic intracortical inhibition, which seems to be associated not only with decremental changes in well-being, sleep quality, cognition and pain management but also with impaired motor control. So far, little is known regarding whether targeted interventions can prevent the decline of intracortical inhibition in the primary motor cortex in the elderly. Therefore, the present study investigated whether age-related cortical dis-inhibition could be reversed after 6 months of balance learning and whether improvements in postural control correlated with the extent of reversed dis-inhibition. The results demonstrated that intracortical inhibition can be upregulated in elderly subjects after long-term balance learning and revealed a correlation between changes in balance performance and intracortical inhibition. This is the first study to show physical activity-related upregulation of GABAergic inhibition in a population with chronic dis-inhibition and may therefore be seminal for many pathologies in which the equilibrium between inhibitory and excitatory neurotransmitters is disturbed. KEY POINTS: Ageing induces a decline in GABAergic intracortical inhibition. So far, little is known regarding whether targeted interventions can prevent the decline of intracortical inhibition in the primary motor cortex in the elderly. After 6 months of balance learning, intracortical inhibition can be upregulated in elderly subjects. The results of this study also revealed a correlation between changes in balance performance and intracortical inhibition. This is the first study to show physical activity-related upregulation of GABAergic inhibition in a population with chronic dis-inhibition.
Collapse
Affiliation(s)
- Yves-Alain Kuhn
- Department of Neurosciences and Movement Science, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Sven Egger
- Department of Neurosciences and Movement Science, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Matteo Bugnon
- Department of Neurosciences and Movement Science, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Nico Lehmann
- Department of Neurosciences and Movement Science, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
- Department of Sport Science, Institute III, Faculty of Humanities, Otto von Guericke University, Magdeburg, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Collaborative Research Center 1436 Neural Resources of Cognition, Otto von Guericke University, Magdeburg, Germany
| | - Marco Taubert
- Department of Sport Science, Institute III, Faculty of Humanities, Otto von Guericke University, Magdeburg, Germany
- Collaborative Research Center 1436 Neural Resources of Cognition, Otto von Guericke University, Magdeburg, Germany
- Center for Behavioral and Brain Science (CBBS), Otto von Guericke University, Universitätsplatz 2, Magdeburg, Germany
| | - Wolfgang Taube
- Department of Neurosciences and Movement Science, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
18
|
Wilkins EW, Young RJ, Houston D, Kawana E, Lopez Mora E, Sunkara MS, Riley ZA, Poston B. Non-Dominant Hemisphere Excitability Is Unaffected during and after Transcranial Direct Current Stimulation of the Dominant Hemisphere. Brain Sci 2024; 14:694. [PMID: 39061434 PMCID: PMC11274959 DOI: 10.3390/brainsci14070694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Transcranial direct current stimulation (tDCS) increases primary motor cortex (M1) excitability and improves motor performance when applied unilaterally to the dominant hemisphere. However, the influence of tDCS on contralateral M1 excitability both during and after application has not been quantified. The purpose was to determine the influence of tDCS applied to the dominant M1 on the excitability of the contralateral non-dominant M1. This study employed a double-blind, randomized, SHAM-controlled, within-subject crossover experimental design. Eighteen young adults performed two experimental sessions (tDCS, SHAM) in counterbalanced order separated by a one-week washout. Transcranial magnetic stimulation (TMS) was used to quantify the excitability of the contralateral M1 to which anodal tDCS was applied for 20 min with a current strength of 1 mA. Motor evoked potential (MEP) amplitudes were assessed in 5 TMS test blocks (Pre, D5, D10, D15, and Post). The Pre and Post TMS test blocks were performed immediately before and after tDCS application, whereas the TMS test blocks performed during tDCS were completed at the 5, 10, and 15 min stimulation timepoints. MEPs were analyzed with a 2 condition (tDCS, SHAM) × 5 test (Pre, D5, D10, D15, Post) within-subject ANOVA. The main effect for condition (p = 0.213), the main effect for test (p = 0.502), and the condition × test interaction (p = 0.860) were all not statistically significant. These results indicate that tDCS does not modulate contralateral M1 excitability during or immediately after application, at least under the current set of common tDCS parameters of stimulation.
Collapse
Affiliation(s)
- Erik W. Wilkins
- Department of Kinesiology and Nutrition Sciences, University of Nevada, Las Vegas, NV 89154, USA;
- Interdisciplinary Ph.D. Program in Neuroscience, University of Nevada, Las Vegas, NV 89154, USA;
| | - Richard J. Young
- Interdisciplinary Ph.D. Program in Neuroscience, University of Nevada, Las Vegas, NV 89154, USA;
| | - Daniel Houston
- School of Medicine, University of Nevada, Las Vegas, NV 89154, USA; (D.H.); (E.K.); (E.L.M.)
| | - Eric Kawana
- School of Medicine, University of Nevada, Las Vegas, NV 89154, USA; (D.H.); (E.K.); (E.L.M.)
| | - Edgar Lopez Mora
- School of Medicine, University of Nevada, Las Vegas, NV 89154, USA; (D.H.); (E.K.); (E.L.M.)
| | - Meghana S. Sunkara
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284, USA;
| | - Zachary A. Riley
- Department of Kinesiology, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA;
| | - Brach Poston
- Department of Kinesiology and Nutrition Sciences, University of Nevada, Las Vegas, NV 89154, USA;
- Interdisciplinary Ph.D. Program in Neuroscience, University of Nevada, Las Vegas, NV 89154, USA;
| |
Collapse
|
19
|
Vogelnik Žakelj K, Trošt M, Tomše P, Petrović IN, Tomić Pešić A, Radovanović S, Kojović M. Zolpidem improves task-specific dystonia: A randomized clinical trial integrating exploratory transcranial magnetic stimulation and [18F] FDG-PET imaging. Parkinsonism Relat Disord 2024; 124:107014. [PMID: 38823169 DOI: 10.1016/j.parkreldis.2024.107014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/27/2024] [Accepted: 05/15/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND Task-specific dystonia (TSFD) is a disabling movement disorder. Effective treatment options are currently limited. Zolpidem was reported to improve primary focal and generalized dystonia in a proportion of patients. The mechanisms underlying its therapeutic effects have not yet been investigated. METHODS We conducted a randomized, double-blind, placebo-controlled, crossover trial of single-dose zolpidem in 24 patients with TSFD. Patients were clinically assessed using Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS), Writers' Cramp Rating Scale (WCRS), and Visual Analogue Scale (VAS), before and after receiving placebo and zolpidem. Transcranial magnetic stimulation was conducted on placebo and zolpidem to compare corticospinal excitability - active and resting motor thresholds (AMT and RMT), resting and active input/output curves and intracortical excitability - cortical silent period (CSP), short-interval intracortical inhibition curve (SICI), long-interval intracortical inhibition (LICI) and intracortical facilitation (ICF). Eight patients underwent brain FDG-PET imaging on zolpidem and placebo. RESULTS Zolpidem treatment improved TSFD. Zolpidem compared to placebo flattened rest and active input/output curves, reduced ICF and was associated with hypometabolism in the right cerebellum and hypermetabolism in the left inferior parietal lobule and left cingulum. Correlations were found between changes in dystonia severity on WCRS and changes in active input/output curve and in brain metabolism, respectively. Patients with lower RMT, and higher rest and active input/output curves exhibited better response to zolpidem compared to placebo. CONCLUSIONS Zolpidem improved TSFD by reducing corticomotor output and influencing crucial nodes in higher-order sensory and motor networks.
Collapse
Affiliation(s)
- Katarina Vogelnik Žakelj
- Department of Neurology, University Medical Centre Ljubljana, Ljubljana, Slovenia; Institute of Clinical Neurophysiology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Maja Trošt
- Department of Neurology, University Medical Centre Ljubljana, Ljubljana, Slovenia; Department of Nuclear Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia; Medical Faculty, University of Ljubljana, Slovenia
| | - Petra Tomše
- Department of Nuclear Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Igor N Petrović
- Neurology Clinic, Clinical Center of Serbia, University of Belgrade, Belgrade, Serbia
| | | | - Saša Radovanović
- Neurology Clinic, Clinical Center of Serbia, University of Belgrade, Belgrade, Serbia
| | - Maja Kojović
- Department of Neurology, University Medical Centre Ljubljana, Ljubljana, Slovenia; Medical Faculty, University of Ljubljana, Slovenia.
| |
Collapse
|
20
|
de Albuquerque LL, Pantovic M, Wilkins EW, Morris D, Clingo M, Boss S, Riley ZA, Poston B. Exploring the Influence of Inter-Trial Interval on the Assessment of Short-Interval Intracortical Inhibition. Bioengineering (Basel) 2024; 11:645. [PMID: 39061727 PMCID: PMC11274151 DOI: 10.3390/bioengineering11070645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/05/2024] [Accepted: 06/17/2024] [Indexed: 07/28/2024] Open
Abstract
Short-interval intracortical inhibition (SICI) is a common paired-pulse transcranial magnetic stimulation (TMS) measure used to assess primary motor cortex (M1) interneuron activity in healthy populations and in neurological disorders. Many of the parameters of TMS stimulation to most accurately measure SICI have been determined. However, one TMS parameter that has not been investigated is the time between SICI trials (termed inter-trial interval; ITI). This is despite a series of single-pulse TMS studies which have reported that motor evoked potential (MEP) amplitude were suppressed for short, but not long ITIs in approximately the initial ten trials of a TMS block of 20-30 trials. The primary purpose was to examine the effects of ITI on the quantification of SICI at rest. A total of 23 healthy adults completed an experimental session that included four SICI trial blocks. Each block utilized a different ITI (4, 6, 8, and 10 s) and was comprised of a total of 26 SICI trials divided into three epochs. ANOVA revealed that the main effects for ITI and epoch as well as their interaction were all non-statistically significant for SICI. We conclude that the shorter (4-6 s) ITIs used in studies investigating SICI should not alter the interpretation of M1 activity, while having the advantages of being more comfortable to participants and reducing the experimental time needed to evaluate perform single and paired-pulse TMS experiments.
Collapse
Affiliation(s)
- Lidio Lima de Albuquerque
- School of Health and Applied Human Sciences, University of North Carolina Wilmington, Wilmington, NC 28403, USA;
| | - Milan Pantovic
- Health and Human Performance Department, Utah Tech University, St. George, UT 84770, USA;
| | - Erik W. Wilkins
- Department of Kinesiology and Nutrition Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA;
| | - Desiree Morris
- School of Medicine, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA; (D.M.); (M.C.)
| | - Mitchell Clingo
- School of Medicine, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA; (D.M.); (M.C.)
| | - Sage Boss
- School of Life Sciences, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA;
| | - Zachary A. Riley
- Department of Kinesiology, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA;
| | - Brach Poston
- Department of Kinesiology and Nutrition Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA;
| |
Collapse
|
21
|
Lányi O, Koleszár B, Schulze Wenning A, Balogh D, Engh MA, Horváth AA, Fehérvari P, Hegyi P, Molnár Z, Unoka Z, Csukly G. Excitation/inhibition imbalance in schizophrenia: a meta-analysis of inhibitory and excitatory TMS-EMG paradigms. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:56. [PMID: 38879590 PMCID: PMC11180212 DOI: 10.1038/s41537-024-00476-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/16/2024] [Indexed: 06/19/2024]
Abstract
Cortical excitation-inhibition (E/I) imbalance is a potential model for the pathophysiology of schizophrenia. Previous research using transcranial magnetic stimulation (TMS) and electromyography (EMG) has suggested inhibitory deficits in schizophrenia. In this meta-analysis we assessed the reliability and clinical potential of TMS-EMG paradigms in schizophrenia following the methodological recommendations of the PRISMA guideline and the Cochrane Handbook. The search was conducted in three databases in November 2022. Included articles reported Short-Interval Intracortical Inhibition (SICI), Intracortical Facilitation (ICF), Long-Interval Intracortical Inhibition (LICI) and Cortical Silent Period (CSP) in patients with schizophrenia and healthy controls. Meta-analyses were conducted using a random-effects model. Subgroup analysis and meta-regressions were used to assess heterogeneity. Results of 36 studies revealed a robust inhibitory deficit in schizophrenia with a significant decrease in SICI (Cohen's d: 0.62). A trend-level association was found between SICI and antipsychotic medication. Our findings support the E/I imbalance hypothesis in schizophrenia and suggest that SICI may be a potential pathophysiological characteristic of the disorder.
Collapse
Affiliation(s)
- Orsolya Lányi
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Boróka Koleszár
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | | | - David Balogh
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Marie Anne Engh
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
| | - András Attila Horváth
- Neurocognitive Research Center, Nyírő Gyula National Institute of Psychiatry and Addictology, Budapest, Hungary
| | - Péter Fehérvari
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Department of Biostatistics, University of Veterinary Medicine Budapest, Budapest, Hungary
| | - Péter Hegyi
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Institute of Pancreatic Diseases, Semmelweis University, Budapest, Hungary
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Zsolt Molnár
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Department of Anesthesiology and Intensive Therapy, Semmelweis University, Budapest, Hungary
- Department of Anesthesiology and Intensive Therapy, Poznan University of Medical Sciences, Poznan, Poland
| | - Zsolt Unoka
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Gábor Csukly
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
22
|
Giustiniani A, Quartarone A. Defining the concept of reserve in the motor domain: a systematic review. Front Neurosci 2024; 18:1403065. [PMID: 38745935 PMCID: PMC11091373 DOI: 10.3389/fnins.2024.1403065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 04/08/2024] [Indexed: 05/16/2024] Open
Abstract
A reserve in the motor domain may underlie the capacity exhibited by some patients to maintain motor functionality in the face of a certain level of disease. This form of "motor reserve" (MR) could include cortical, cerebellar, and muscular processes. However, a systematic definition has not been provided yet. Clarifying this concept in healthy individuals and patients would be crucial for implementing prevention strategies and rehabilitation protocols. Due to its wide application in the assessment of motor system functioning, non-invasive brain stimulation (NIBS) may support such definition. Here, studies focusing on reserve in the motor domain and studies using NIBS were revised. Current literature highlights the ability of the motor system to create a reserve and a possible role for NIBS. MR could include several mechanisms occurring in the brain, cerebellum, and muscles, and NIBS may support the understanding of such mechanisms.
Collapse
|
23
|
Fong PY, Rothwell JC, Rocchi L. The Past, Current and Future Research in Cerebellar TMS Evoked Responses-A Narrative Review. Brain Sci 2024; 14:432. [PMID: 38790411 PMCID: PMC11118133 DOI: 10.3390/brainsci14050432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
Transcranial magnetic stimulation coupled with electroencephalography (TMS-EEG) is a novel technique to investigate cortical physiology in health and disease. The cerebellum has recently gained attention as a possible new hotspot in the field of TMS-EEG, with several reports published recently. However, EEG responses obtained by cerebellar stimulation vary considerably across the literature, possibly due to different experimental methods. Compared to conventional TMS-EEG, which involves stimulation of the cortex, cerebellar TMS-EEG presents some technical difficulties, including strong muscle twitches in the neck area and a loud TMS click when double-cone coils are used, resulting in contamination of responses by electromyographic activity and sensory potentials. Understanding technical difficulties and limitations is essential for the development of cerebellar TMS-EEG research. In this review, we summarize findings of cerebellar TMS-EEG studies, highlighting limitations in experimental design and potential issues that can result in discrepancies between experimental outcomes. Lastly, we propose a possible direction for academic and clinical research with cerebellar TMS-EEG.
Collapse
Affiliation(s)
- Po-Yu Fong
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK; (J.C.R.)
- Division of Movement Disorders, Department of Neurology and Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
- Medical School, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - John C. Rothwell
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK; (J.C.R.)
| | - Lorenzo Rocchi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK; (J.C.R.)
- Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy
| |
Collapse
|
24
|
Matsumoto A, Ogawa A, Oshima C, Aruga R, Ikeda M, Sasaya R, Toriyama M, Irie K, Liang N. Attentional focus differentially modulates the corticospinal and intracortical excitability during dynamic and static exercise. J Appl Physiol (1985) 2024; 136:807-820. [PMID: 38357730 DOI: 10.1152/japplphysiol.00821.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/26/2024] [Accepted: 02/12/2024] [Indexed: 02/16/2024] Open
Abstract
Although attentional focus affects motor performance, whether corticospinal excitability and intracortical modulations differ between focus strategies depending on the exercise patterns remains unclear. In the present study, using single- and paired-pulse transcranial magnetic stimulation and peripheral nerve stimulation, we demonstrated changes in the cortical and spinal excitability under external focus (EF) and internal focus (IF) conditions with dynamic or static exercise. Participants performed the ramp-and-hold contraction task of right index finger abduction against an object (sponge or wood) with both exercises. They were asked to concentrate on the pressure on the sponge/wood induced by finger abduction under the EF condition, and on the index finger itself under the IF condition. Motor-evoked potential (MEP) and F-wave in the premotor, phasic, or tonic phase, and short- and long-interval intracortical inhibition (SICI and LICI, respectively), and intracortical facilitation (ICF) in the premotor phase were examined by recording surface electromyographic activity in the right first dorsal interosseous muscle. Increments in the MEP amplitude were larger under the EF condition than under the IF condition in the dynamic, but not static, exercise. The F-wave, SICI, and LICI did not differ between focus conditions in both exercises. In the dynamic exercise, interestingly, ICF was greater under the EF condition than under the IF condition and positively correlated with the MEP amplitude. These results indicate that corticospinal excitability and intracortical modulations to attentional focus differ depending on exercise patterns, suggesting that attentional focus differentially affects the central nervous system responsible for diverse motor behaviors.NEW & NOTEWORTHY We investigated attentional focus-dependent corticospinal and intracortical modulations in dynamic or static exercise. The corticospinal excitability was modulated differentially depending on the focus of attention during dynamic, but not static exercise. Although the reduction of intracortical GABAergic inhibition was comparable between focus conditions in both exercises, intracortical facilitation was smaller when focusing on the internal environments in the dynamic exercise, resulting in lower activation of the corticospinal tract.
Collapse
Affiliation(s)
- Amiri Matsumoto
- Cognitive Motor Neuroscience, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akari Ogawa
- Cognitive Motor Neuroscience, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Chihiro Oshima
- Cognitive Motor Neuroscience, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Rieko Aruga
- Cognitive Motor Neuroscience, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Mai Ikeda
- Cognitive Motor Neuroscience, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ren Sasaya
- Cognitive Motor Neuroscience, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Miyabi Toriyama
- Cognitive Motor Neuroscience, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Keisuke Irie
- Cognitive Motor Neuroscience, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Nan Liang
- Cognitive Motor Neuroscience, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
25
|
Batzianouli ET, Caranzano L, Nguepnjo Nguissi NA, Miaz B, Herrmann FR, Benninger DH. The paired-pulse TMS paradigm of short intracortical inhibition is mediated by a reduction of repetitive motor neuron discharges. J Neurophysiol 2024; 131:541-547. [PMID: 38264793 DOI: 10.1152/jn.00346.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 01/25/2024] Open
Abstract
Transcranial magnetic stimulation (TMS) causes repetitive spinal motoneuron discharges (repMNDs), but the effects of short-interval intracortical inhibition (SICI) and intracortical facilitation (ICF) on repMNDs remain unknown. Triple stimulation technique (TST) and the extended TST-protocols that include a fourth and fifth stimulation, the Quadruple (QuadS) and Quintuple (QuintS) stimulation, respectively, offer a precise estimate of cortical and spinal motor neuron discharges, including repMNDs. The objective of our study was to explore the effects of SICI and ICF on repMNDs. We explored conventional paired-pulse TMS protocols of SICI and ICF with the TMS, TST, the QuadS, and the QuintS protocols, in a randomized study design in 20 healthy volunteers. We found significantly less repMNDs in the SICI paradigm compared with a single-pulse TMS (SP-TMS). No significant difference was observed in the ICF paradigm. There was a significant inter- and intrasubject variability in both SICI and ICF. We demonstrate a significant reduction of repMNDs in SICI, which may result from the suppression of later I-waves and mediate the inhibition of motor-evoked potential (MEP). There is no increase in repMNDs in ICF suggesting another mechanism underlying facilitation. This study provides the proof that a reduction of repMNDs mediates the inhibition seen in SICI.NEW & NOTEWORTHY Significant reduction of repetitive motor neuron discharges (repMNDs) in short-interval intracortical inhibition (SICI) may result from the suppression of later I-waves and mediate the inhibition of motor-evoked potential (MEP). There is no change in the number of repMNDs in intracortical facilitation (ICF). There was a significant variability in SICI and ICF in healthy subjects.
Collapse
Affiliation(s)
- Eleni T Batzianouli
- Neurology Service, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- Lemanic Neuroscience Doctoral School, Faculté de Biologie et de Médecine, Université de Lausanne, Lausanne, Switzerland
| | - Leonardo Caranzano
- Neurology Service, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Nathalie A Nguepnjo Nguissi
- Neurology Service, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Baptiste Miaz
- Neurology Service, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - François R Herrmann
- Division of Geriatrics and rehabilitation, Department of Rehabilitation and Geriatrics, University Hospitals and University of Geneva, Geneva, Switzerland
| | - David H Benninger
- Neurology Service, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| |
Collapse
|
26
|
Remahi S, Mabika M, Côté S, Iorio-Morin C, Near J, Hui SCN, Edden RAE, Théoret H, Whittingstall K, Lepage JF. Neurotransmitter levels in the basal ganglia are associated with intracortical circuit activity of the primary motor cortex in healthy humans. Prog Neuropsychopharmacol Biol Psychiatry 2024; 129:110892. [PMID: 37952692 DOI: 10.1016/j.pnpbp.2023.110892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/10/2023] [Accepted: 11/01/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND The basal ganglia are strongly connected to the primary motor cortex (M1) and play a crucial role in movement control. Interestingly, several disorders showing abnormal neurotransmitter levels in basal ganglia also present concomitant anomalies in intracortical function within M1. OBJECTIVE/HYPOTHESIS The main aim of this study was to clarify the relationship between neurotransmitter content in the basal ganglia and intracortical function at M1 in healthy individuals. We hypothesized that neurotransmitter content of the basal ganglia would be significant predictors of M1 intracortical function. METHODS We combined magnetic resonance spectroscopy (MRS) and transcranial magnetic stimulation (TMS) to test this hypothesis in 20 healthy adults. An extensive TMS battery probing common measures of intracortical, and corticospinal excitability was administered, and GABA and glutamate-glutamine levels were assessed from voxels placed over the basal ganglia and the occipital cortex (control region). RESULTS Regression models using metabolite concentration as predictor and TMS metrics as outcome measures showed that glutamate level in the basal ganglia significantly predicted short interval intracortical inhibition (SICI) and intracortical facilitation (ICF), while GABA content did not. No model using metabolite measures from the occipital control voxel was significant. CONCLUSIONS Taken together, these results converge with those obtained in clinical populations and suggest that intracortical circuits in human M1 are associated with the neurotransmitter content of connected but distal subcortical structures crucial for motor function.
Collapse
Affiliation(s)
- Sarah Remahi
- Sherbrooke University Hospital Research Center, Sherbrooke, Canada; Department of Pediatrics, Faculty of Medicine and Health Sciences, Sherbrooke University, Sherbrooke, Canada
| | - Madora Mabika
- University of Galway, School of Medicine, Galway, Ireland
| | - Samantha Côté
- Sherbrooke University Hospital Research Center, Sherbrooke, Canada; Department of Pediatrics, Faculty of Medicine and Health Sciences, Sherbrooke University, Sherbrooke, Canada; Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Sherbrooke University, Sherbrooke, Canada
| | - Christian Iorio-Morin
- Sherbrooke University Hospital Research Center, Sherbrooke, Canada; Department of Surgery, Faculty of Medicine and Health Sciences, Sherbrooke University, Sherbrooke, Canada
| | - Jamie Near
- Physical Sciences Platform, SunnyBrook Health Sciences Center, Toronto, Canada
| | - Steve C N Hui
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Hugo Théoret
- Department of Psychology, Faculty of Arts and Sciences, Université de Montréal, Montréal, Canada
| | - Kevin Whittingstall
- Sherbrooke University Hospital Research Center, Sherbrooke, Canada; Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Sherbrooke University, Sherbrooke, Canada
| | - Jean-François Lepage
- Sherbrooke University Hospital Research Center, Sherbrooke, Canada; Department of Pediatrics, Faculty of Medicine and Health Sciences, Sherbrooke University, Sherbrooke, Canada.
| |
Collapse
|
27
|
Desmons M, Cherif A, Rohel A, de Oliveira FCL, Mercier C, Massé-Alarie H. Corticomotor Control of Lumbar Erector Spinae in Postural and Voluntary Tasks: The Influence of Transcranial Magnetic Stimulation Current Direction. eNeuro 2024; 11:ENEURO.0454-22.2023. [PMID: 38167617 PMCID: PMC10883751 DOI: 10.1523/eneuro.0454-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/30/2023] [Accepted: 12/16/2023] [Indexed: 01/05/2024] Open
Abstract
Lumbar erector spinae (LES) contribute to spine postural and voluntary control. Transcranial magnetic stimulation (TMS) preferentially depolarizes different neural circuits depending on the direction of electrical currents evoked in the brain. Posteroanterior current (PA-TMS) and anteroposterior (AP-TMS) current would, respectively, depolarize neurons in the primary motor cortex (M1) and the premotor cortex. These regions may contribute differently to LES control. This study examined whether responses evoked by PA- and AP-TMS are different during the preparation and execution of LES voluntary and postural tasks. Participants performed a reaction time task. A Warning signal indicated to prepare to flex shoulders (postural; n = 15) or to tilt the pelvis (voluntary; n = 13) at the Go signal. Single- and paired-pulse TMS (short-interval intracortical inhibition-SICI) were applied using PA- and AP-TMS before the Warning signal (baseline), between the Warning and Go signals (preparation), or 30 ms before the LES onset (execution). Changes from baseline during preparation and execution were calculated in AP/PA-TMS. In the postural task, MEP amplitude was higher during the execution than that during preparation independently of the current direction (p = 0.0002). In the voluntary task, AP-MEP amplitude was higher during execution than that during preparation (p = 0.016). More PA inhibition (SICI) was observed in execution than that in preparation (p = 0.028). Different neural circuits are preferentially involved in the two motor tasks assessed, as suggested by different patterns of change in execution of the voluntary task (AP-TMS, increase; PA-TMS, no change). Considering that PA-TMS preferentially depolarize neurons in M1, it questions their importance in LES voluntary control.
Collapse
Affiliation(s)
- Mikaël Desmons
- Center for Interdisciplinary Research in Rehabilitation and Social Integration (Cirris), CIUSSS de la Capitale-Nationale, Quebec City, Quebec G1M 2S8, Canada
- Rehabilitation Department, University Laval, Quebec City, Quebec G1V 0A6, Canada, G1V 0A6
| | - Amira Cherif
- Center for Interdisciplinary Research in Rehabilitation and Social Integration (Cirris), CIUSSS de la Capitale-Nationale, Quebec City, Quebec G1M 2S8, Canada
- Rehabilitation Department, University Laval, Quebec City, Quebec G1V 0A6, Canada, G1V 0A6
| | - Antoine Rohel
- Center for Interdisciplinary Research in Rehabilitation and Social Integration (Cirris), CIUSSS de la Capitale-Nationale, Quebec City, Quebec G1M 2S8, Canada
- Rehabilitation Department, University Laval, Quebec City, Quebec G1V 0A6, Canada, G1V 0A6
| | - Fábio Carlos Lucas de Oliveira
- Center for Interdisciplinary Research in Rehabilitation and Social Integration (Cirris), CIUSSS de la Capitale-Nationale, Quebec City, Quebec G1M 2S8, Canada
- Rehabilitation Department, University Laval, Quebec City, Quebec G1V 0A6, Canada, G1V 0A6
| | - Catherine Mercier
- Center for Interdisciplinary Research in Rehabilitation and Social Integration (Cirris), CIUSSS de la Capitale-Nationale, Quebec City, Quebec G1M 2S8, Canada
- Rehabilitation Department, University Laval, Quebec City, Quebec G1V 0A6, Canada, G1V 0A6
| | - Hugo Massé-Alarie
- Center for Interdisciplinary Research in Rehabilitation and Social Integration (Cirris), CIUSSS de la Capitale-Nationale, Quebec City, Quebec G1M 2S8, Canada
- Rehabilitation Department, University Laval, Quebec City, Quebec G1V 0A6, Canada, G1V 0A6
| |
Collapse
|
28
|
Paparella G, De Riggi M, Cannavacciuolo A, Costa D, Birreci D, Passaretti M, Angelini L, Colella D, Guerra A, Berardelli A, Bologna M. Interhemispheric imbalance and bradykinesia features in Parkinson's disease. Brain Commun 2024; 6:fcae020. [PMID: 38370448 PMCID: PMC10873583 DOI: 10.1093/braincomms/fcae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/14/2023] [Accepted: 01/25/2024] [Indexed: 02/20/2024] Open
Abstract
In patients with Parkinson's disease, the connectivity between the two primary motor cortices may be altered. However, the correlation between asymmetries of abnormal interhemispheric connections and bradykinesia features has not been investigated. Furthermore, the potential effects of dopaminergic medications on this issue remain largely unclear. The aim of the present study is to investigate the interhemispheric connections in Parkinson's disease by transcranial magnetic stimulation and explore the potential relationship between interhemispheric inhibition and bradykinesia feature asymmetry in patients. Additionally, we examined the impact of dopaminergic therapy on neurophysiological and motor characteristics. Short- and long-latency interhemispheric inhibition was measured in 18 Parkinson's disease patients and 18 healthy controls, bilaterally. We also assessed the corticospinal and intracortical excitability of both primary motor cortices. We conducted an objective analysis of finger-tapping from both hands. Correlation analyses were performed to explore potential relationships among clinical, transcranial magnetic stimulation and kinematic data in patients. We found that short- and long-latency interhemispheric inhibition was reduced (less inhibition) from both hemispheres in patients than controls. Compared to controls, finger-tapping movements in patients were slower, more irregular, of smaller amplitudes and characterized by a progressive amplitude reduction during movement repetition (sequence effect). Among Parkinson's disease patients, the degree of short-latency interhemispheric inhibition imbalance towards the less affected primary motor cortex correlated with the global clinical motor scores, as well as with the sequence effect on the most affected hand. The greater the interhemispheric inhibition imbalance towards the less affected hemisphere (i.e. less inhibition from the less to the most affected primary motor cortex than that measured from the most to the less affected primary motor cortex), the more severe the bradykinesia in patients. In conclusion, the inhibitory connections between the two primary motor cortices in Parkinson's disease are reduced. The interhemispheric disinhibition of the primary motor cortex may have a role in the pathophysiology of specific bradykinesia features in patients, i.e. the sequence effect.
Collapse
Affiliation(s)
- Giulia Paparella
- IRCCS Neuromed, Pozzilli, IS 86077, Italy
- Department of Human Neurosciences, Sapienza, University of Rome, Rome 00185, Italy
| | - Martina De Riggi
- Department of Human Neurosciences, Sapienza, University of Rome, Rome 00185, Italy
| | | | - Davide Costa
- Department of Human Neurosciences, Sapienza, University of Rome, Rome 00185, Italy
| | - Daniele Birreci
- Department of Human Neurosciences, Sapienza, University of Rome, Rome 00185, Italy
| | | | | | - Donato Colella
- Department of Human Neurosciences, Sapienza, University of Rome, Rome 00185, Italy
| | - Andrea Guerra
- Parkinson and Movement Disorders Unit, Study Center for Neurodegeneration (CESNE), Department of Neuroscience, University of Padua, Padua 35121, Italy
- Padova Neuroscience Center (PNC), University of Padua, Padua 35131, Italy
| | - Alfredo Berardelli
- IRCCS Neuromed, Pozzilli, IS 86077, Italy
- Department of Human Neurosciences, Sapienza, University of Rome, Rome 00185, Italy
| | - Matteo Bologna
- IRCCS Neuromed, Pozzilli, IS 86077, Italy
- Department of Human Neurosciences, Sapienza, University of Rome, Rome 00185, Italy
| |
Collapse
|
29
|
Sparling T, Iyer L, Pasquina P, Petrus E. Cortical Reorganization after Limb Loss: Bridging the Gap between Basic Science and Clinical Recovery. J Neurosci 2024; 44:e1051232024. [PMID: 38171645 PMCID: PMC10851691 DOI: 10.1523/jneurosci.1051-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/28/2023] [Accepted: 09/29/2023] [Indexed: 01/05/2024] Open
Abstract
Despite the increasing incidence and prevalence of amputation across the globe, individuals with acquired limb loss continue to struggle with functional recovery and chronic pain. A more complete understanding of the motor and sensory remodeling of the peripheral and central nervous system that occurs postamputation may help advance clinical interventions to improve the quality of life for individuals with acquired limb loss. The purpose of this article is to first provide background clinical context on individuals with acquired limb loss and then to provide a comprehensive review of the known motor and sensory neural adaptations from both animal models and human clinical trials. Finally, the article bridges the gap between basic science researchers and clinicians that treat individuals with limb loss by explaining how current clinical treatments may restore function and modulate phantom limb pain using the underlying neural adaptations described above. This review should encourage the further development of novel treatments with known neurological targets to improve the recovery of individuals postamputation.Significance Statement In the United States, 1.6 million people live with limb loss; this number is expected to more than double by 2050. Improved surgical procedures enhance recovery, and new prosthetics and neural interfaces can replace missing limbs with those that communicate bidirectionally with the brain. These advances have been fairly successful, but still most patients experience persistent problems like phantom limb pain, and others discontinue prostheses instead of learning to use them daily. These problematic patient outcomes may be due in part to the lack of consensus among basic and clinical researchers regarding the plasticity mechanisms that occur in the brain after amputation injuries. Here we review results from clinical and animal model studies to bridge this clinical-basic science gap.
Collapse
Affiliation(s)
- Tawnee Sparling
- Department of Physical Medicine and Rehabilitation, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | - Laxmi Iyer
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland 20817
| | - Paul Pasquina
- Department of Physical Medicine and Rehabilitation, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | - Emily Petrus
- Department of Anatomy, Physiology and Genetics, Uniformed Services University, Bethesda, Maryland 20814
| |
Collapse
|
30
|
Herrero Babiloni A, Jodoin M, Provost C, Charlebois-Plante C, De Koninck BP, Apinis-Deshaies A, Lavigne GJ, De Beaumont L. Females with painful temporomandibular disorders present higher intracortical facilitation relative to pain-free controls. Clin Oral Investig 2023; 28:12. [PMID: 38129743 DOI: 10.1007/s00784-023-05412-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
OBJECTIVES This study aimed to investigate cortical excitability differences in the primary motor cortex (M1) hand representation between individuals with temporomandibular disorders (TMD) and healthy controls. We assessed resting motor thresholds, motor-evoked potentials (MEPs), intracortical inhibition, and intracortical facilitation and explored potential associations with clinical and psychosocial characteristics in the TMD group. MATERIALS AND METHODS We recruited 36 female participants with TMD and 17 pain-free controls. Transcranial magnetic stimulation (TMS) was used to assess M1 cortical excitability. Correlations between clinical and psychosocial factors and cortical excitability measures were also evaluated. RESULTS Patients with TMD showed significantly higher intracortical facilitation at 12 ms (z = 1.98, p = 0.048) and 15 ms (z = 2.65, p = 0.008) when compared to controls. Correlations revealed associations between intracortical facilitation and pain interference, sleep quality, depressive symptoms, and pain catastrophizing in the TMD group. CONCLUSIONS Females with TMD exhibit heightened motor cortex intracortical facilitation in the hand representation, potentially indicating altered cortical excitability beyond the motor face area. This suggests a role for cortical excitability in TMD pathophysiology, influenced by psychosocial factors. CLINICAL RELEVANCE Understanding cortical excitability in TMD may inform targeted interventions. Psychosocial variables may play a role in cortical excitability, emphasizing the multidimensional nature of TMD-related pain. Further research is needed to confirm and expand upon these findings, with potential implications for the management of TMD and related pain conditions.
Collapse
Affiliation(s)
- Alberto Herrero Babiloni
- Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada.
- Sacre-Coeur Hospital, CIUSSS NIM Research Center, CEAMS, 5400 Boul Gouin O, Montreal, QC, H4J 1C5, Canada.
| | - Marianne Jodoin
- Sacre-Coeur Hospital, CIUSSS NIM Research Center, CEAMS, 5400 Boul Gouin O, Montreal, QC, H4J 1C5, Canada
- Department of Psychology, University of Montreal, Montreal, Quebec, Canada
| | - Catherine Provost
- Sacre-Coeur Hospital, CIUSSS NIM Research Center, CEAMS, 5400 Boul Gouin O, Montreal, QC, H4J 1C5, Canada
| | - Camille Charlebois-Plante
- Sacre-Coeur Hospital, CIUSSS NIM Research Center, CEAMS, 5400 Boul Gouin O, Montreal, QC, H4J 1C5, Canada
- Department of Psychology, University of Montreal, Montreal, Quebec, Canada
| | - Beatrice P De Koninck
- Sacre-Coeur Hospital, CIUSSS NIM Research Center, CEAMS, 5400 Boul Gouin O, Montreal, QC, H4J 1C5, Canada
- Department of Psychology, University of Montreal, Montreal, Quebec, Canada
| | - Amelie Apinis-Deshaies
- Sacre-Coeur Hospital, CIUSSS NIM Research Center, CEAMS, 5400 Boul Gouin O, Montreal, QC, H4J 1C5, Canada
| | - Gilles J Lavigne
- Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
- Sacre-Coeur Hospital, CIUSSS NIM Research Center, CEAMS, 5400 Boul Gouin O, Montreal, QC, H4J 1C5, Canada
- Faculty of Dental Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Louis De Beaumont
- Sacre-Coeur Hospital, CIUSSS NIM Research Center, CEAMS, 5400 Boul Gouin O, Montreal, QC, H4J 1C5, Canada
- Department of Psychology, University of Montreal, Montreal, Quebec, Canada
| |
Collapse
|
31
|
Wei Y, Ye S, Jiang H, Chen Y, Qiu Y, Zhang L, Ma R, Gao Q. Effects of non-invasive brain stimulation over supplementary motor area in people with Parkinson's disease: a protocol for a systematic review and meta-analysis of randomised controlled trials. BMJ Open 2023; 13:e076948. [PMID: 38070907 PMCID: PMC10729189 DOI: 10.1136/bmjopen-2023-076948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 11/19/2023] [Indexed: 12/18/2023] Open
Abstract
INTRODUCTION Individuals with Parkinson's disease (PD) often experience initial hesitation, slowness of movements, decreased balance and impaired standing ability, which can significantly impact their independence. Transcranial magnetic stimulation and transcranial direct current stimulation are two widely used and promising non-invasive brain stimulation (NIBS) modalities for treating PD. The supplementary motor area (SMA), associated with motor behaviour and processing, has received increasing attention as a potential stimulation target to alleviate PD-related symptoms. However, the data on NIBS over SMA in PD individuals are inconsistent and has not been synthesised. In this article, we will review the evidence for NIBS over SMA in PD individuals and evaluate its efficacy in improving PD function. METHOD AND ANALYSIS Randomised controlled clinical trials comparing the effects of NIBS and sham stimulation on motor function, activities of daily living and participation for people with PD will be included. A detailed computer-aided search of the literature will be performed from inception to February 2023 in the following databases: PubMed, EMBASE, Physiotherapy Evidence Database (PEDro), Web of Science (WOS) and The Chinese National Knowledge Infrastructure (CNKI). Two independent reviewers will screen articles for relevance and methodological validity. The PEDro scale will be used to evaluate the risk of bias of selected studies. Data from included studies will be extracted by two independent reviewers through a customised, preset data extraction sheet. ETHICS AND DISSEMINATION Ethical approval is not required for this systematic review. The study's findings will be presented at scientific meetings and published in peer-reviewed journals. PROSPERO REGISTRATION NUMBER CRD42023399945.
Collapse
Affiliation(s)
- Yixin Wei
- Department of Rehabilitation Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Saiqing Ye
- Department of Rehabilitation Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Hanhong Jiang
- Department of Rehabilitation Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yawen Chen
- Department of Rehabilitation Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong, People's Republic of China
| | - Yitong Qiu
- Department of Rehabilitation Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Li Zhang
- Department of Rehabilitation Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Runting Ma
- Department of Rehabilitation Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Qiang Gao
- Department of Rehabilitation Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
32
|
Pantovic M, Boss R, Noorda KJ, Premyanov MI, Aynlender DG, Wilkins EW, Boss S, Riley ZA, Poston B. The Influence of Different Inter-Trial Intervals on the Quantification of Intracortical Facilitation in the Primary Motor Cortex. Bioengineering (Basel) 2023; 10:1278. [PMID: 38002401 PMCID: PMC10669180 DOI: 10.3390/bioengineering10111278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
Intracortical facilitation (ICF) is a paired-pulse transcranial magnetic stimulation (TMS) measurement used to quantify interneuron activity in the primary motor cortex (M1) in healthy populations and motor disorders. Due to the prevalence of the technique, most of the stimulation parameters to optimize ICF quantification have been established. However, the underappreciated methodological issue of the time between ICF trials (inter-trial interval; ITI) has been unstandardized, and different ITIs have never been compared in a paired-pulse TMS study. This is important because single-pulse TMS studies have found motor evoked potential (MEP) amplitude reductions over time during TMS trial blocks for short, but not long ITIs. The primary purpose was to determine the influence of different ITIs on the measurement of ICF. Twenty adults completed one experimental session that involved 4 separate ICF trial blocks with each utilizing a different ITI (4, 6, 8, and 10 s). Two-way ANOVAs indicated no significant ITI main effects for test MEP amplitudes, condition-test MEP amplitudes, and therefore ICF. Accordingly, all ITIs studied provided nearly identical ICF values when averaged over entire trial blocks. Therefore, it is recommended that ITIs of 4-6 s be utilized for ICF quantification to optimize participant comfort and experiment time efficiency.
Collapse
Affiliation(s)
- Milan Pantovic
- Health and Human Performance Department, Utah Tech University, St. George, UT 84770, USA;
| | - Rhett Boss
- School of Medicine, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA; (R.B.); (K.J.N.); (M.I.P.); (D.G.A.)
| | - Kevin J. Noorda
- School of Medicine, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA; (R.B.); (K.J.N.); (M.I.P.); (D.G.A.)
| | - Mario I. Premyanov
- School of Medicine, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA; (R.B.); (K.J.N.); (M.I.P.); (D.G.A.)
| | - Daniel G. Aynlender
- School of Medicine, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA; (R.B.); (K.J.N.); (M.I.P.); (D.G.A.)
| | - Erik W. Wilkins
- Department of Kinesiology and Nutrition Sciences, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA;
| | - Sage Boss
- School of Life Sciences, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA;
| | - Zachary A. Riley
- Department of Kinesiology, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA;
| | - Brach Poston
- Department of Kinesiology and Nutrition Sciences, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA;
| |
Collapse
|
33
|
Alkolfat F, Abdel Galeel A, Bassiouny AR, Eldeeb H, Radwan A, Ashram YA. Patterns of Visual Task-based Functional MRI Activation in Chronic Posterior Cerebral Artery Stroke Patients. Clin Neuroradiol 2023; 33:769-781. [PMID: 36867244 PMCID: PMC10449980 DOI: 10.1007/s00062-023-01274-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 01/29/2023] [Indexed: 03/04/2023]
Abstract
PURPOSE Stroke is a principal cause of disability worldwide. In motor stroke, the tools for stratification and prognostication are plentiful. Conversely, in stroke causing mainly visual and cognitive problems, there is still no gold standard modality to use. The purpose of this study was to explore the fMRI recruitment pattern in chronic posterior cerebral artery (PCA) stroke patients and to investigate fMRI as a biomarker of disability in these patients. METHODS The study included 10 chronic PCA stroke patients and another 10 age-matched volunteer controls. The clinical presentation, cognitive state, and performance in visual perceptual skills battery (TVPS-3) were determined for both patients and control groups. Task-based fMRI scans were acquired while performing a passive visual task. Individual and group analyses of the fMRI scans as well as correlation analysis with the clinical and behavioral data were done. RESULTS At the level of behavioral assessment there was non-selective global impairment in all visual skills subtests. On visual task-based fMRI, patients recruited more brain areas than controls. These activations were present in the ipsilesional side distributed in the ipsilesional cerebellum, dorsolateral prefrontal cortex mainly Brodmann area (BA) 9, superior parietal lobule (somatosensory associative cortex, BA 7), superior temporal gyrus (BA 22), supramarginal gyrus (BA 40), and contralesional associative visual cortex (BA 19). Spearman's rank correlation was computed to assess the relationship between the TVPS scores and the numbers of fMRI neuronal clusters in each patient above the main control activations, there was a negative correlation between the two variables, r(10) = -0.85, p ≤ 0.001. CONCLUSION In chronic PCA stroke patients with residual visual impairments, the brain attempts to recruit more neighboring and distant functional areas for executing the impaired visual skill. This intense recruitment pattern in poorly recovering patients appears to be a sign of failed compensation. Consequently, fMRI has the potential for clinically relevant prognostic assessment in patients surviving PCA stroke; however, as this study included no longitudinal data, this potential should be further investigated in longitudinal imaging studies, with a larger cohort, and multiple time points.
Collapse
Affiliation(s)
- Fatma Alkolfat
- Department of Neurology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Aya Abdel Galeel
- Department of Radiology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Ahmad R. Bassiouny
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Hany Eldeeb
- Department of Neurology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Ahmed Radwan
- Department of Imaging and Pathology, Translational MRI, KU Leuven, Leuven, Belgium
- Leuven Brain Institute (LBI), Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Yasmine A. Ashram
- Department of Physiology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
34
|
Gómez-Feria J, Martín-Rodríguez JF, Mir P. Corticospinal adaptations following resistance training and its relationship with strength: A systematic review and multivariate meta-analysis. Neurosci Biobehav Rev 2023; 152:105289. [PMID: 37353049 DOI: 10.1016/j.neubiorev.2023.105289] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 05/21/2023] [Accepted: 06/18/2023] [Indexed: 06/25/2023]
Abstract
Neural adaptations to resistance training (RT) and their correlation with muscle strength remain partially understood. We conducted a systematic review and multivariate meta-analysis to examine the effects of metronome-paced (MP), self-paced (SP), and isometric (IM) training on M1 and corticospinal pathway activity. Following MP RT, a significant increase in corticospinal excitability was observed, correlating with increased strength. Conversely, no significant relationship was found after SP or IM training. RT also reduced the duration of the cortical silent period, but this change did not predict strength changes and was not specific to any training modality. No significant effects were found for short-interval intracortical inhibition. Our findings suggest that changes in corticospinal excitability may contribute to strength gains after RT. Furthermore, the relationship between these adaptations and strength appears dependent on the type of training performed.
Collapse
Affiliation(s)
- José Gómez-Feria
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Juan Francisco Martín-Rodríguez
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Departamento de Psicología Experimental, Facultad de Psicología, Universidad de Sevilla, Seville, Spain.
| | - Pablo Mir
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Departamento de Medicina, Facultad de Medicina, Universidad de Sevilla, Seville, Spain.
| |
Collapse
|
35
|
Dinse HR, Höffken O, Tegenthoff M. Cortical excitability in human somatosensory and visual cortex: implications for plasticity and learning - a minireview. Front Hum Neurosci 2023; 17:1235487. [PMID: 37662638 PMCID: PMC10469727 DOI: 10.3389/fnhum.2023.1235487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
The balance of excitation and inhibition plays a key role in plasticity and learning. A frequently used, reliable approach to assess intracortical inhibition relies on measuring paired-pulse behavior. Moreover, recent developments of magnetic resonance spectroscopy allows measuring GABA and glutamate concentrations. We give an overview about approaches employed to obtain information about excitatory states in human participants and discuss their putative relation. We summarize paired-pulse techniques and basic findings characterizing paired-pulse suppression in somatosensory (SI) and (VI) visual areas. Paired-pulse suppression describes the effect of paired sensory stimulation at short interstimulus intervals where the cortical response to the second stimulus is significantly suppressed. Simultaneous assessments of paired-pulse suppression in SI and VI indicated that cortical excitability is not a global phenomenon, but instead reflects the properties of local sensory processing. We review studies using non-invasive brain stimulation and perceptual learning experiments that assessed both perceptual changes and accompanying changes of cortical excitability in parallel. Independent of the nature of the excitation/inhibition marker used these data imply a close relationship between altered excitability and altered performance. These results suggest a framework where increased or decreased excitability is linked with improved or impaired perceptual performance. Recent findings have expanded the potential role of cortical excitability by demonstrating that inhibition markers such as GABA concentrations, paired-pulse suppression or alpha power predict to a substantial degree subsequent perceptual learning outcome. This opens the door for a targeted intervention where subsequent plasticity and learning processes are enhanced by altering prior baseline states of excitability.
Collapse
|
36
|
de Albuquerque LL, Pantovic M, Clingo M, Fischer K, Jalene S, Landers M, Mari Z, Poston B. A Single Application of Cerebellar Transcranial Direct Current Stimulation Fails to Enhance Motor Skill Acquisition in Parkinson's Disease: A Pilot Study. Biomedicines 2023; 11:2219. [PMID: 37626716 PMCID: PMC10452618 DOI: 10.3390/biomedicines11082219] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder that leads to numerous impairments in motor function that compromise the ability to perform activities of daily living. Practical and effective adjunct therapies are needed to complement current treatment approaches in PD. Transcranial direct current stimulation applied to the cerebellum (c-tDCS) can increase motor skill in young and older adults. Because the cerebellum is involved in PD pathology, c-tDCS application during motor practice could potentially enhance motor skill in PD. The primary purpose was to examine the influence of c-tDCS on motor skill acquisition in a complex, visuomotor isometric precision grip task (PGT) in PD in the OFF-medication state. The secondary purpose was to determine the influence of c-tDCS on transfer of motor skill in PD. The study utilized a double-blind, SHAM-controlled, within-subjects design. A total of 16 participants completed a c-tDCS condition and a SHAM condition in two experimental sessions separated by a 7-day washout period. Each session involved practice of the PGT concurrent with either c-tDCS or SHAM. Additionally, motor transfer tasks were quantified before and after the practice and stimulation period. The force error in the PGT was not significantly different between the c-tDCS and SHAM conditions. Similarly, transfer task performance was not significantly different between the c-tDCS and SHAM conditions. These findings indicate that a single session of c-tDCS does not elicit acute improvements in motor skill acquisition or transfer in hand and arm tasks in PD while participants are off medications.
Collapse
Affiliation(s)
- Lidio Lima de Albuquerque
- School of Health and Applied Human Sciences, University of North Carolina Wilmington, Wilmington, NC 28403, USA;
| | - Milan Pantovic
- Department of Kinesiology and Nutrition Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA; (M.P.); (K.F.); (S.J.)
| | - Mitchell Clingo
- School of Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA;
| | - Katherine Fischer
- Department of Kinesiology and Nutrition Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA; (M.P.); (K.F.); (S.J.)
| | - Sharon Jalene
- Department of Kinesiology and Nutrition Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA; (M.P.); (K.F.); (S.J.)
| | - Merrill Landers
- Department of Physical Therapy, University of Nevada Las Vegas, Las Vegas, NV 89154, USA;
| | - Zoltan Mari
- Movement Disorders Program, Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV 89106, USA;
| | - Brach Poston
- Department of Kinesiology and Nutrition Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA; (M.P.); (K.F.); (S.J.)
| |
Collapse
|
37
|
Spampinato DA, Ibanez J, Rocchi L, Rothwell J. Motor potentials evoked by transcranial magnetic stimulation: interpreting a simple measure of a complex system. J Physiol 2023; 601:2827-2851. [PMID: 37254441 PMCID: PMC10952180 DOI: 10.1113/jp281885] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 05/18/2023] [Indexed: 06/01/2023] Open
Abstract
Transcranial magnetic stimulation (TMS) is a non-invasive technique that is increasingly used to study the human brain. One of the principal outcome measures is the motor-evoked potential (MEP) elicited in a muscle following TMS over the primary motor cortex (M1), where it is used to estimate changes in corticospinal excitability. However, multiple elements play a role in MEP generation, so even apparently simple measures such as peak-to-peak amplitude have a complex interpretation. Here, we summarize what is currently known regarding the neural pathways and circuits that contribute to the MEP and discuss the factors that should be considered when interpreting MEP amplitude measured at rest in the context of motor processing and patients with neurological conditions. In the last part of this work, we also discuss how emerging technological approaches can be combined with TMS to improve our understanding of neural substrates that can influence MEPs. Overall, this review aims to highlight the capabilities and limitations of TMS that are important to recognize when attempting to disentangle sources that contribute to the physiological state-related changes in corticomotor excitability.
Collapse
Affiliation(s)
- Danny Adrian Spampinato
- Department of Clinical and Movement NeurosciencesUniversity College LondonLondonUK
- Department of Human NeurosciencesSapienza University of RomeRomeItaly
- Department of Clinical and Behavioral NeurologyIRCCS Santa Lucia FoundationRomeItaly
| | - Jaime Ibanez
- Department of Clinical and Movement NeurosciencesUniversity College LondonLondonUK
- BSICoS group, I3A Institute and IIS AragónUniversity of ZaragozaZaragozaSpain
- Department of Bioengineering, Centre for NeurotechnologiesImperial College LondonLondonUK
| | - Lorenzo Rocchi
- Department of Clinical and Movement NeurosciencesUniversity College LondonLondonUK
- Department of Medical Sciences and Public HealthUniversity of CagliariCagliariItaly
| | - John Rothwell
- Department of Clinical and Movement NeurosciencesUniversity College LondonLondonUK
| |
Collapse
|
38
|
Ginatempo F, Manzo N, Loi N, Belvisi D, Cutrona C, Conte A, Berardelli A, Deriu F. Abnormalities in the face primary motor cortex in oromandibular dystonia. Clin Neurophysiol 2023; 151:151-160. [PMID: 37150654 DOI: 10.1016/j.clinph.2023.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/17/2023] [Accepted: 04/15/2023] [Indexed: 05/09/2023]
Abstract
OBJECTIVE To comprehensively investigate excitability in face and hand M1 and sensorimotor integration in oromandibular dystonia (OMD) patients. METHODS Short-interval intracortical inhibition (SICI), intracortical facilitation (ICF), short (SAI) and long (LAI) afferent inhibition were investigated in face and hand M1 using transcranial magnetic stimulation protocols in 10 OMD patients. Data were compared with those obtained in 10 patients with focal hand dystonia (FHD), in 10 patients with blepharospasm (BSP), and 10 matched healthy subjects (HS). RESULTS Results demonstrated that in OMD patients SICI was reduced in face M1 (p < 0.001), but not in hand M1, compared to HS. In FHD, SICI was significantly impaired in hand M1 (p = 0.029), but not in face M1. In BSP, SICI was normal in both face and hand M1 while ICF and LAI were normal in all patient groups and cortical area tested. SAI was significantly reduced (p = 0.003) only in the face M1 of OMD patients. CONCLUSIONS In OMD, SICI and SAI were significantly reduced. These abnormalities are specific to the motor cortical area innervating the muscular district involved in focal dystonia. SIGNIFICANCE In OMD, the integration between sensory inflow and motor output seem to be disrupted at cortical level with topographic specificity.
Collapse
Affiliation(s)
| | - Nicoletta Manzo
- Department of Human Neurosciences, Sapienza, University of Rome, Viale Dell' Università 30, 00185 Rome, Italy; IRCCS San Camillo Hospital, Via Alberoni 70, Venice 30126, Italy
| | - Nicola Loi
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Daniele Belvisi
- Department of Human Neurosciences, Sapienza, University of Rome, Viale Dell' Università 30, 00185 Rome, Italy; IRCCS NEUROMED, Via Atinense, 18, 86077 Pozzilli, IS, Italy
| | - Carolina Cutrona
- Department of Human Neurosciences, Sapienza, University of Rome, Viale Dell' Università 30, 00185 Rome, Italy
| | - Antonella Conte
- Department of Human Neurosciences, Sapienza, University of Rome, Viale Dell' Università 30, 00185 Rome, Italy; IRCCS NEUROMED, Via Atinense, 18, 86077 Pozzilli, IS, Italy
| | - Alfredo Berardelli
- Department of Human Neurosciences, Sapienza, University of Rome, Viale Dell' Università 30, 00185 Rome, Italy; IRCCS NEUROMED, Via Atinense, 18, 86077 Pozzilli, IS, Italy
| | - Franca Deriu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy; Unit of Endocrinology, Nutritional and Metabolic Disorders, AOU Sassari, Sassari, Italy.
| |
Collapse
|
39
|
Santos DHND, Lima ILB, Lopes LW. Translation into Brazilian Portuguese and transcultural adaptation of the Apraxia of Speech Rating Scale 3.5. Codas 2023; 35:e20220012. [PMID: 37403877 DOI: 10.1590/2317-1782/20232022012pt] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/15/2022] [Indexed: 07/06/2023] Open
Abstract
PURPOSE To present the translation into Brazilian Portuguese and cross-cultural adaptation of the Apraxia of Speech Rating Scale (ASRS) version 3.5. METHODS Validation study restricted to translation and cross-cultural adaptation. The following steps were carried out: translation and synthesis of translations; verification of applicability of the scale synthesis by judges recruited for this purpose; analysis of the relevance and feasibility of the scale calculated by the Content Validity Index (CVI), individual (CVI-I) and total (CVI-T). Eighteen speech therapists were selected. Their answers were used for the analysis of agreement (intraclass correlation coefficients - ICC) and for the calculation of the Content Validity Index (CVI). Finally, the synthesis of the translation was matched in terms of semantic, idiomatic, experiential, conceptual, syntactic, grammatical, and operational equivalence. RESULTS The ICC ranged between 0.83 and 0.94. Six items obtained values higher than 0.9. The other items presented values between 0.8 and 0.9. The CVI-I and CVI-T had excellent values (CVI ≥ 0.78) for relevance and feasibility. CONCLUSION The Brazilian version of the ASRS 3.5 presents semantic, idiomatic, experiential, conceptual, and syntactic/grammatical equivalence to the original document. Thus, it is ready for the next validation steps.
Collapse
Affiliation(s)
| | | | - Leonardo Wanderley Lopes
- Programa Associado de Pós-graduação em Fonoaudiologia, Universidade Federal da Paraíba - UFPB - João Pessoa (PB), Brasil
- Departamento de Fonoaudiologia, Universidade Federal da Paraíba - UFPB - João Pessoa (PB), Brasil
| |
Collapse
|
40
|
Barbi C, Vernillo G, Emadi Andani M, Giuriato G, Laginestra FG, Cavicchia A, Fiorini Aloisi G, Martignon C, Pedrinolla A, Schena F, Venturelli M. Comparison between conventional and neuronavigated strategies to assess corticospinal responsiveness in unfatigued and fatigued knee-extensor muscles. Neurosci Lett 2023:137351. [PMID: 37321388 DOI: 10.1016/j.neulet.2023.137351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 05/27/2023] [Accepted: 06/12/2023] [Indexed: 06/17/2023]
Abstract
In studying neuromuscular fatigability, researchers commonly use functional criteria to position and hold the transcranial magnetic stimulation (TMS) coil during testing sessions. This could influence the magnitude of corticospinal excitability and inhibition responses due to imprecise and unsteady positions of the coil. To reduce coil position and orientation variability, neuronavigated TMS (nTMS) could be used. We evaluated the accuracy of nTMS and a standardized function-guided procedure for maintaining TMS coil position both in unfatigued and fatigued knee extensors. Eighteen participants (10F/8M) volunteered in two identical and randomized sessions. Maximal and submaximal neuromuscular evaluations were performed with TMS three times before (PRE_1) and three times after (PRE_2) a 2 min resting session and one time immediately after (POST) a 2-min sustained maximal voluntary isometric contraction (MVIC). The located "hotspot" [the location that evoked the largest motor-evoked potential (MEP) responses in the rectus femoris] was maintained either with or without nTMS. MEP, silent period (SP) and the distance between the "hotspot" and the actual coil position were recorded. A time × contraction intensity × testing session × muscle interaction was not observed for MEP, SP, and distance. Bland-Altman plots presented adequate agreements for MEP and SP. Spatial accuracy of TMS coil position over the motor cortex did not influence corticospinal excitability and inhibition in unfatigued and fatigued knee extensors. The variability in MEP and SP responses may be due to spontaneous fluctuations in corticospinal excitability and inhibition, and it is not altered by the spatial stability of the stimulation point.
Collapse
Affiliation(s)
- C Barbi
- Department of Neuroscience, Biomedicine, and Movement, University of Verona, Italy
| | - G Vernillo
- Department of Biomedical Sciences for Health, University of Milan, Italy
| | - M Emadi Andani
- Department of Neuroscience, Biomedicine, and Movement, University of Verona, Italy
| | - G Giuriato
- Department of Neuroscience, Biomedicine, and Movement, University of Verona, Italy
| | - F G Laginestra
- Department of Neuroscience, Biomedicine, and Movement, University of Verona, Italy
| | - A Cavicchia
- Department of Neuroscience, Biomedicine, and Movement, University of Verona, Italy
| | - G Fiorini Aloisi
- Department of Neuroscience, Biomedicine, and Movement, University of Verona, Italy
| | - C Martignon
- Department of Neuroscience, Biomedicine, and Movement, University of Verona, Italy
| | - A Pedrinolla
- Department of Neuroscience, Biomedicine, and Movement, University of Verona, Italy
| | - F Schena
- Department of Neuroscience, Biomedicine, and Movement, University of Verona, Italy
| | - M Venturelli
- Department of Neuroscience, Biomedicine, and Movement, University of Verona, Italy.
| |
Collapse
|
41
|
Vucic S, Stanley Chen KH, Kiernan MC, Hallett M, Benninger DH, Di Lazzaro V, Rossini PM, Benussi A, Berardelli A, Currà A, Krieg SM, Lefaucheur JP, Long Lo Y, Macdonell RA, Massimini M, Rosanova M, Picht T, Stinear CM, Paulus W, Ugawa Y, Ziemann U, Chen R. Clinical diagnostic utility of transcranial magnetic stimulation in neurological disorders. Updated report of an IFCN committee. Clin Neurophysiol 2023; 150:131-175. [PMID: 37068329 PMCID: PMC10192339 DOI: 10.1016/j.clinph.2023.03.010] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/28/2023] [Accepted: 03/09/2023] [Indexed: 03/31/2023]
Abstract
The review provides a comprehensive update (previous report: Chen R, Cros D, Curra A, Di Lazzaro V, Lefaucheur JP, Magistris MR, et al. The clinical diagnostic utility of transcranial magnetic stimulation: report of an IFCN committee. Clin Neurophysiol 2008;119(3):504-32) on clinical diagnostic utility of transcranial magnetic stimulation (TMS) in neurological diseases. Most TMS measures rely on stimulation of motor cortex and recording of motor evoked potentials. Paired-pulse TMS techniques, incorporating conventional amplitude-based and threshold tracking, have established clinical utility in neurodegenerative, movement, episodic (epilepsy, migraines), chronic pain and functional diseases. Cortical hyperexcitability has emerged as a diagnostic aid in amyotrophic lateral sclerosis. Single-pulse TMS measures are of utility in stroke, and myelopathy even in the absence of radiological changes. Short-latency afferent inhibition, related to central cholinergic transmission, is reduced in Alzheimer's disease. The triple stimulation technique (TST) may enhance diagnostic utility of conventional TMS measures to detect upper motor neuron involvement. The recording of motor evoked potentials can be used to perform functional mapping of the motor cortex or in preoperative assessment of eloquent brain regions before surgical resection of brain tumors. TMS exhibits utility in assessing lumbosacral/cervical nerve root function, especially in demyelinating neuropathies, and may be of utility in localizing the site of facial nerve palsies. TMS measures also have high sensitivity in detecting subclinical corticospinal lesions in multiple sclerosis. Abnormalities in central motor conduction time or TST correlate with motor impairment and disability in MS. Cerebellar stimulation may detect lesions in the cerebellum or cerebello-dentato-thalamo-motor cortical pathways. Combining TMS with electroencephalography, provides a novel method to measure parameters altered in neurological disorders, including cortical excitability, effective connectivity, and response complexity.
Collapse
Affiliation(s)
- Steve Vucic
- Brain, Nerve Research Center, The University of Sydney, Sydney, Australia.
| | - Kai-Hsiang Stanley Chen
- Department of Neurology, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - Matthew C Kiernan
- Brain and Mind Centre, The University of Sydney; and Department of Neurology, Royal Prince Alfred Hospital, Australia
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, Maryland, United States
| | - David H Benninger
- Department of Neurology, University Hospital of Lausanne (CHUV), Switzerland
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico of Rome, Rome, Italy
| | - Paolo M Rossini
- Department of Neurosci & Neurorehab IRCCS San Raffaele-Rome, Italy
| | - Alberto Benussi
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Alfredo Berardelli
- IRCCS Neuromed, Pozzilli; Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Antonio Currà
- Department of Medico-Surgical Sciences and Biotechnologies, Alfredo Fiorini Hospital, Sapienza University of Rome, Terracina, LT, Italy
| | - Sandro M Krieg
- Department of Neurosurgery, Technical University Munich, School of Medicine, Klinikum rechts der Isar, Munich, Germany
| | - Jean-Pascal Lefaucheur
- Univ Paris Est Creteil, EA4391, ENT, Créteil, France; Clinical Neurophysiology Unit, Henri Mondor Hospital, AP-HP, Créteil, France
| | - Yew Long Lo
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore, and Duke-NUS Medical School, Singapore
| | | | - Marcello Massimini
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, Milan, Italy; Istituto Di Ricovero e Cura a Carattere Scientifico, Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Mario Rosanova
- Department of Biomedical and Clinical Sciences University of Milan, Milan, Italy
| | - Thomas Picht
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Cluster of Excellence: "Matters of Activity. Image Space Material," Humboldt University, Berlin Simulation and Training Center (BeST), Charité-Universitätsmedizin Berlin, Germany
| | - Cathy M Stinear
- Department of Medicine Waipapa Taumata Rau, University of Auckland, Auckland, Aotearoa, New Zealand
| | - Walter Paulus
- Department of Neurology, Ludwig-Maximilians-Universität München, München, Germany
| | - Yoshikazu Ugawa
- Department of Human Neurophysiology, School of Medicine, Fukushima Medical University, Japan
| | - Ulf Ziemann
- Department of Neurology and Stroke, Eberhard Karls University of Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany; Hertie Institute for Clinical Brain Research, Eberhard Karls University of Tübingen, Otfried-Müller-Straße 27, 72076 Tübingen, Germany
| | - Robert Chen
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital-UHN, Division of Neurology-University of Toronto, Toronto Canada
| |
Collapse
|
42
|
Hernandez-Pavon JC, Schneider-Garces N, Begnoche JP, Miller LE, Raij T. Targeted Modulation of Human Brain Interregional Effective Connectivity With Spike-Timing Dependent Plasticity. Neuromodulation 2023; 26:745-754. [PMID: 36404214 PMCID: PMC10188658 DOI: 10.1016/j.neurom.2022.10.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/23/2022] [Accepted: 10/04/2022] [Indexed: 11/19/2022]
Abstract
OBJECTIVE The ability to selectively up- or downregulate interregional brain connectivity would be useful for research and clinical purposes. Toward this aim, cortico-cortical paired associative stimulation (ccPAS) protocols have been developed in which two areas are repeatedly stimulated with a millisecond-level asynchrony. However, ccPAS results in humans using bifocal transcranial magnetic stimulation (TMS) have been variable, and the mechanisms remain unproven. In this study, our goal was to test whether ccPAS mechanism is spike-timing-dependent plasticity (STDP). MATERIALS AND METHODS Eleven healthy participants received ccPAS to the left primary motor cortex (M1) → right M1 with three different asynchronies (5 milliseconds shorter, equal to, or 5 milliseconds longer than the 9-millisecond transcallosal conduction delay) in separate sessions. To observe the neurophysiological effects, single-pulse TMS was delivered to the left M1 before and after ccPAS while cortico-cortical evoked responses were extracted from the contralateral M1 using source-resolved electroencephalography. RESULTS Consistent with STDP mechanisms, the effects on synaptic strengths flipped depending on the asynchrony. Further implicating STDP, control experiments suggested that the effects were unidirectional and selective to the targeted connection. CONCLUSION The results support the idea that ccPAS induces STDP and may selectively up- or downregulate effective connectivity between targeted regions in the human brain.
Collapse
Affiliation(s)
- Julio C Hernandez-Pavon
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Center for Brain Stimulation, Shirley Ryan AbilityLab, Chicago, IL, USA; Legs + Walking Lab, Shirley Ryan AbilityLab, Chicago, IL, USA
| | | | | | - Lee E Miller
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA; Limb Motor Control Lab, Shirley Ryan AbilityLab, Chicago, IL, USA
| | - Tommi Raij
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Center for Brain Stimulation, Shirley Ryan AbilityLab, Chicago, IL, USA; Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
43
|
Desmons M, Theberge M, Mercier C, Massé-Alarie H. Contribution of neural circuits tested by transcranial magnetic stimulation in corticomotor control of low back muscle: a systematic review. Front Neurosci 2023; 17:1180816. [PMID: 37304019 PMCID: PMC10247989 DOI: 10.3389/fnins.2023.1180816] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/10/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction Transcranial magnetic stimulation (TMS) is widely used to investigate central nervous system mechanisms underlying motor control. Despite thousands of TMS studies on neurophysiological underpinnings of corticomotor control, a large majority of studies have focused on distal muscles, and little is known about axial muscles (e.g., low back muscles). Yet, differences between corticomotor control of low back and distal muscles (e.g., gross vs. fine motor control) suggest differences in the neural circuits involved. This systematic review of the literature aims at detailing the organisation and neural circuitry underlying corticomotor control of low back muscles tested with TMS in healthy humans. Methods The literature search was performed in four databases (CINAHL, Embase, Medline (Ovid) and Web of science) up to May 2022. Included studies had to use TMS in combination with EMG recording of paraspinal muscles (between T12 and L5) in healthy participants. Weighted average was used to synthesise quantitative study results. Results Forty-four articles met the selection criteria. TMS studies of low back muscles provided consistent evidence of contralateral and ipsilateral motor evoked potentials (with longer ipsilateral latencies) as well as of short intracortical inhibition/facilitation. However, few or no studies using other paired pulse protocols were found (e.g., long intracortical inhibition, interhemispheric inhibition). In addition, no study explored the interaction between different cortical areas using dual TMS coil protocol (e.g., between primary motor cortex and supplementary motor area). Discussion Corticomotor control of low back muscles are distinct from hand muscles. Our main findings suggest: (i) bilateral projections from each single primary motor cortex, for which contralateral and ipsilateral tracts are probably of different nature (contra: monosynaptic; ipsi: oligo/polysynaptic) and (ii) the presence of intracortical inhibitory and excitatory circuits in M1 influencing the excitability of the contralateral corticospinal cells projecting to low back muscles. Understanding of these mechanisms are important for improving the understanding of neuromuscular function of low back muscles and to improve the management of clinical populations (e.g., low back pain, stroke).
Collapse
Affiliation(s)
- Mikaël Desmons
- Center for Interdisciplinary Research in Rehabilitation and Social Integration (Cirris), CIUSSS de la Capitale-Nationale, Quebec, QC, Canada
- Rehabilitation Department, Université Laval, Quebec, QC, Canada
| | - Michael Theberge
- Center for Interdisciplinary Research in Rehabilitation and Social Integration (Cirris), CIUSSS de la Capitale-Nationale, Quebec, QC, Canada
| | - Catherine Mercier
- Center for Interdisciplinary Research in Rehabilitation and Social Integration (Cirris), CIUSSS de la Capitale-Nationale, Quebec, QC, Canada
- Rehabilitation Department, Université Laval, Quebec, QC, Canada
| | - Hugo Massé-Alarie
- Center for Interdisciplinary Research in Rehabilitation and Social Integration (Cirris), CIUSSS de la Capitale-Nationale, Quebec, QC, Canada
- Rehabilitation Department, Université Laval, Quebec, QC, Canada
| |
Collapse
|
44
|
Fong PY, Spampinato D, Michell K, Mancuso M, Brown K, Ibáñez J, Santo AD, Latorre A, Bhatia K, Rothwell JC, Rocchi L. EEG responses induced by cerebellar TMS at rest and during visuomotor adaptation. Neuroimage 2023; 275:120188. [PMID: 37230209 DOI: 10.1016/j.neuroimage.2023.120188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND Connections between the cerebellum and the cortex play a critical role in learning and executing complex behaviours. Dual-coil transcranial magnetic stimulation (TMS) can be used non-invasively to probe connectivity changes between the lateral cerebellum and motor cortex (M1) using the motor evoked potential as an outcome measure (cerebellar-brain inhibition, CBI). However, it gives no information about cerebellar connections to other parts of cortex. OBJECTIVES We used electroencephalography (EEG) to investigate whether it was possible to detect activity evoked in any areas of cortex by single-pulse TMS of the cerebellum (cerebellar TMS evoked potentials, cbTEPs). A second experiment tested if these responses were influenced by the performance of a cerebellar-dependent motor learning paradigm. METHODS In the first series of experiments, TMS was applied over either the right or left cerebellar cortex, and scalp EEG was recorded simultaneously. Control conditions that mimicked auditory and somatosensory inputs associated with cerebellar TMS were included to identify responses due to non-cerebellar sensory stimulation. We conducted a follow-up experiment that evaluated whether cbTEPs are behaviourally sensitive by assessing individuals before and after learning a visuomotor reach adaptation task. RESULTS A TMS pulse over the lateral cerebellum evoked EEG responses that could be distinguished from those caused by auditory and sensory artefacts. Significant positive (P80) and negative peaks (N110) over the contralateral frontal cerebral area were identified with a mirrored scalp distribution after left vs. right cerebellar stimulation. The P80 and N110 peaks were replicated in the cerebellar motor learning experiment and changed amplitude at different stages of learning. The change in amplitude of the P80 peak was associated with the degree of learning that individuals retained following adaptation. Due to overlap with sensory responses, the N110 should be interpreted with caution. CONCLUSIONS Cerebral potentials evoked by TMS of the lateral cerebellum provide a neurophysiological probe of cerebellar function that complements the existing CBI method. They may provide novel insight into mechanisms of visuomotor adaptation and other cognitive processes.
Collapse
Affiliation(s)
- Po-Yu Fong
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK; Division of Movement Disorders, Department of Neurology and Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan City, Taiwan; Medical School, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Danny Spampinato
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK; Non-invasive Brain Stimulation Unit, IRCCS Santa Lucia Foundation, Via Ardeatina 306/354, 00142, Rome, Italy
| | - Kevin Michell
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Marco Mancuso
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Katlyn Brown
- Department of Kinesiology, University of Waterloo, Waterloo, ON, Canada
| | - Jaime Ibáñez
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK; BSICoS group, I3A Institute, University of Zaragoza, IIS Aragón, Zaragoza, Spain; Department of Bioengineering, Imperial College, London, UK
| | - Alessandro Di Santo
- NEuroMuscular Omnicentre (NEMO), Serena Onlus, AOS Monaldi, Naples, Italy; Unit of Neurology, Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy
| | - Anna Latorre
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Kailash Bhatia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - John C Rothwell
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Lorenzo Rocchi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK; Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| |
Collapse
|
45
|
Mirdamadi JL, Xu J, Arevalo-Alas KM, Kam LK, Borich MR. State-dependent interhemispheric inhibition reveals individual differences in motor behavior in chronic stroke. Clin Neurophysiol 2023; 149:157-167. [PMID: 36965468 PMCID: PMC10101934 DOI: 10.1016/j.clinph.2023.02.177] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/05/2023] [Accepted: 02/26/2023] [Indexed: 03/11/2023]
Abstract
OBJECTIVE To investigate state-dependent interhemispheric inhibition (IHI) in chronic stroke survivors compared to neurotypical older adult controls, and test whether abnormal IHI modulation was associated with upper extremity motor behavior. METHODS Dual-coil transcranial magnetic stimulation (TMS) measured IHI bi-directionally, between non-lesioned and lesioned motor cortex (M1) in two activity states: (1) at rest and (2) during contralateral isometric hand muscle contraction. IHI was tested by delivering a conditioning stimulus 8-msec or 50-msec prior to a test stimulus over contralateral M1. Paretic motor behavior was assessed by clinical measures of impairment, strength, and dexterity, and mirroring activity in the non-paretic hand. RESULTS Stroke survivors demonstrated reduced IHI at rest, and less IHI modulation (active - rest) compared to controls. Individual differences in IHI modulation were related to motor behavior differences where greater IHI modulation was associated with greater motor impairment and more mirroring. In contrast, there were no relationships between IHI at rest and motor behavior. CONCLUSIONS Abnormal state-dependent interhemispheric circuit activity may be more sensitive to post-stroke motor deficits than when assessed in a single motor state. SIGNIFICANCE Characterizing state-dependent changes in neural circuitry may enhance models of stroke recovery and inform rehabilitation interventions.
Collapse
Affiliation(s)
- Jasmine L Mirdamadi
- Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Jing Xu
- Department of Kinesiology, University of Georgia, Athens, GA, USA
| | - Karla M Arevalo-Alas
- Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Liana K Kam
- Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Michael R Borich
- Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
46
|
Morita T, Takemura H, Naito E. Functional and Structural Properties of Interhemispheric Interaction between Bilateral Precentral Hand Motor Regions in a Top Wheelchair Racing Paralympian. Brain Sci 2023; 13:brainsci13050715. [PMID: 37239187 DOI: 10.3390/brainsci13050715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/14/2023] [Accepted: 04/23/2023] [Indexed: 05/28/2023] Open
Abstract
Long-term motor training can cause functional and structural changes in the human brain. Assessing how the training of specific movements affects specific parts of the neural circuitry is essential to understand better the underlying mechanisms of motor training-induced plasticity in the human brain. We report a single-case neuroimaging study that investigated functional and structural properties in a professional athlete of wheelchair racing. As wheelchair racing requires bilateral synchronization of upper limb movements, we hypothesized that functional and structural properties of interhemispheric interactions in the central motor system might differ between the professional athlete and controls. Functional and diffusion magnetic resonance imaging (fMRI and dMRI) data were obtained from a top Paralympian (P1) in wheelchair racing. With 23 years of wheelchair racing training starting at age eight, she holds an exceptional competitive record. Furthermore, fMRI and dMRI data were collected from three other paraplegic participants (P2-P4) with long-term wheelchair sports training other than wheelchair racing and 37 able-bodied control volunteers. Based on the fMRI data analyses, P1 showed activation in the bilateral precentral hand sections and greater functional connectivity between these sections during a right-hand unimanual task. In contrast, other paraplegic participants and controls showed activation in the contralateral hemisphere and deactivation in the ipsilateral hemisphere. Moreover, dMRI data analysis revealed that P1 exhibited significantly lower mean diffusivity along the transcallosal pathway connecting the bilateral precentral motor regions than control participants, which was not observed in the other paraplegic participants. These results suggest that long-term training with bilaterally synchronized upper-limb movements may promote bilateral recruitment of the precentral hand sections. Such recruitment may affect the structural circuitry involved in the interhemispheric interaction between the bilateral precentral regions. This study provides valuable evidence of the extreme adaptability of the human brain.
Collapse
Affiliation(s)
- Tomoyo Morita
- Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology (NICT), 2A6 1-4 Yamadaoka, Suita 565-0871, Osaka, Japan
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita 565-0871, Osaka, Japan
| | - Hiromasa Takemura
- Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology (NICT), 2A6 1-4 Yamadaoka, Suita 565-0871, Osaka, Japan
- Division of Sensory and Cognitive Brain Mapping, Department of System Neuroscience, National Institute for Physiological Sciences, 38 Nishigonaka Myodaiji, Okazaki 444-8585, Aichi, Japan
- The Graduate Institute for Advanced Studies, SOKENDAI, Shonan Village, Hayama 240-0193, Kanagawa, Japan
| | - Eiichi Naito
- Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology (NICT), 2A6 1-4 Yamadaoka, Suita 565-0871, Osaka, Japan
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita 565-0871, Osaka, Japan
| |
Collapse
|
47
|
He L, Guo QF, Hu Y, Tan HX, Chen Y, Wang CH, Zhou TY, Gao Q. Bibliometric and visualised analysis on non-invasive cerebellar stimulation from 1995 to 2021. Front Neurosci 2023; 17:1047238. [PMID: 37065918 PMCID: PMC10102618 DOI: 10.3389/fnins.2023.1047238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 03/13/2023] [Indexed: 04/03/2023] Open
Abstract
BackgroundThe non-invasive cerebellar stimulation (NICS) is a neural modulation technique, which shows the therapeutic and diagnostic potentials for rehabilitating brain functions in neurological or psychiatric diseases. There is a rapid growth in the clinical research related to NICS in recent years. Hence, we applied a bibliometric approach to analyze the current status, the hot spots, and the trends of NICS visually and systematically.MethodsWe searched the NICS publications from the Web of Science (Wos) between 1995 and 2021. Both VOSviewer (1.6.18) and Citespace (Version 6.1.2) software were used to generate the co-occurrence or co-cited network maps about the authors, institutions, countries, journals, and keywords.ResultsA total of 710 articles were identified in accordance with our inclusion criteria. The linear regression analysis shows a statistical increase in the number of publications per year on NICS research over time (p < 0.001). The Italy and University College London ranked the first in this field with 182 and 33 publications, respectively. Koch, Giacomo was the most prolific author (36 papers). The journal of Cerebellum, Brain stimulation and Clinical neurophysiology were the most three productive journals to publish NICS-related articles.ConclusionOur findings provide the useful information regarding to the global trends and frontiers in NICS field. Hot topic was focused on the interaction between the transcranial direct current stimulation and functional connectivity in the brain. It could guide the future research and clinical application of NICS.
Collapse
Affiliation(s)
- Lin He
- West China Hospital, Sichuan University, Chengdu, China
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Qi-Fan Guo
- West China Hospital, Sichuan University, Chengdu, China
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Hu
- Department of Rehabilitation Medicine, The Third People's Hospital of Chengdu, Chengdu, China
| | - Hui-Xin Tan
- West China Hospital, Sichuan University, Chengdu, China
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Chen
- West China Hospital, Sichuan University, Chengdu, China
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Chen-Han Wang
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tian-Yu Zhou
- MSk Lab, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Qiang Gao
- West China Hospital, Sichuan University, Chengdu, China
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Qiang Gao
| |
Collapse
|
48
|
Champagne PL, Blanchette AK, Schneider C. Continuous, and not intermittent, theta-burst stimulation of the unlesioned hemisphere improved brain and hand function in chronic stroke: A case study. BRAIN DISORDERS 2023. [DOI: 10.1016/j.dscb.2022.100062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
49
|
Van Malderen S, Hehl M, Verstraelen S, Swinnen SP, Cuypers K. Dual-site TMS as a tool to probe effective interactions within the motor network: a review. Rev Neurosci 2023; 34:129-221. [PMID: 36065080 DOI: 10.1515/revneuro-2022-0020] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 07/02/2022] [Indexed: 02/07/2023]
Abstract
Dual-site transcranial magnetic stimulation (ds-TMS) is well suited to investigate the causal effect of distant brain regions on the primary motor cortex, both at rest and during motor performance and learning. However, given the broad set of stimulation parameters, clarity about which parameters are most effective for identifying particular interactions is lacking. Here, evidence describing inter- and intra-hemispheric interactions during rest and in the context of motor tasks is reviewed. Our aims are threefold: (1) provide a detailed overview of ds-TMS literature regarding inter- and intra-hemispheric connectivity; (2) describe the applicability and contributions of these interactions to motor control, and; (3) discuss the practical implications and future directions. Of the 3659 studies screened, 109 were included and discussed. Overall, there is remarkable variability in the experimental context for assessing ds-TMS interactions, as well as in the use and reporting of stimulation parameters, hindering a quantitative comparison of results across studies. Further studies examining ds-TMS interactions in a systematic manner, and in which all critical parameters are carefully reported, are needed.
Collapse
Affiliation(s)
- Shanti Van Malderen
- Department of Movement Sciences, Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Heverlee 3001, Belgium.,Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, Diepenbeek 3590, Belgium
| | - Melina Hehl
- Department of Movement Sciences, Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Heverlee 3001, Belgium.,Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, Diepenbeek 3590, Belgium
| | - Stefanie Verstraelen
- Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, Diepenbeek 3590, Belgium
| | - Stephan P Swinnen
- Department of Movement Sciences, Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Heverlee 3001, Belgium.,KU Leuven, Leuven Brain Institute (LBI), Leuven, Belgium
| | - Koen Cuypers
- Department of Movement Sciences, Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Heverlee 3001, Belgium.,Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, Diepenbeek 3590, Belgium
| |
Collapse
|
50
|
Pan LJ, Zhu HQ, Zhang XA, Wang XQ. The mechanism and effect of repetitive transcranial magnetic stimulation for post-stroke pain. Front Mol Neurosci 2023; 15:1091402. [PMID: 36683849 PMCID: PMC9855274 DOI: 10.3389/fnmol.2022.1091402] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/05/2022] [Indexed: 01/08/2023] Open
Abstract
Post-stroke pain (PSP) is a common complication after stroke and affects patients' quality of life. Currently, drug therapy and non-invasive brain stimulation are common treatments for PSP. Given the poor efficacy of drug therapy and various side effects, non-invasive brain stimulation, such as repetitive transcranial magnetic stimulation (rTMS), has been accepted by many patients and attracted the attention of many researchers because of its non-invasive and painless nature. This article reviews the therapeutic effect of rTMS on PSP and discusses the possible mechanisms. In general, rTMS has a good therapeutic effect on PSP. Possible mechanisms of its analgesia include altering cortical excitability and synaptic plasticity, modulating the release of related neurotransmitters, and affecting the structural and functional connectivity of brain regions involved in pain processing and modulation. At present, studies on the mechanism of rTMS in the treatment of PSP are lacking, so we hope this review can provide a theoretical basis for future mechanism studies.
Collapse
Affiliation(s)
- Long-Jin Pan
- College of Kinesiology, Shenyang Sport University, Shenyang, China,Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Hui-Qi Zhu
- College of Kinesiology, Shenyang Sport University, Shenyang, China,Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Xin-An Zhang
- College of Kinesiology, Shenyang Sport University, Shenyang, China,*Correspondence: Xin-An Zhang ✉
| | - Xue-Qiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China,Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China,Xue-Qiang Wang ✉
| |
Collapse
|