1
|
Cui Y, Auclair H, He R, Zhang Q. GPCR-mediated regulation of beige adipocyte formation: Implications for obesity and metabolic health. Gene 2024; 915:148421. [PMID: 38561165 DOI: 10.1016/j.gene.2024.148421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/10/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
Obesity and its associated complications pose a significant burden on health. The non-shivering thermogenesis (NST) and metabolic capacity properties of brown adipose tissue (BAT), which are distinct from those of white adipose tissue (WAT), in combating obesity and its related metabolic diseases has been well documented. However, beige adipose tissue, the third and relatively novel type of adipose tissue, which emerges in extensive presence of WAT and shares similar favorable metabolic properties with BAT, has garnered considerable attention in recent years. In this review, we focused on the role of G protein-coupled receptors (GPCRs), the largest receptor family and the most successful class of drug targets in humans, in the induction of beige adipocytes. More importantly, we highlight researchers' clinical treatment attempts to ameliorate obesity and other related metabolic diseases through the formation and activation of beige adipose tissue. In summary, this review provides valuable insights into the formation of beige adipose tissue and the involvement of GPCRs, based on the latest advancements in scientific research.
Collapse
Affiliation(s)
- Yuanxu Cui
- Animal Zoology Department, Kunming Medical University, Kunming, China; Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, China
| | - Hugo Auclair
- Faculty of Medicine, François-Rabelais University, Tours, France
| | - Rong He
- Animal Zoology Department, Kunming Medical University, Kunming, China
| | - Qiang Zhang
- Animal Zoology Department, Kunming Medical University, Kunming, China.
| |
Collapse
|
2
|
Shapey IM, Summers A, Yiannoullou P, Fullwood C, Augustine T, Rutter MK, van Dellen D. Donor noradrenaline use is associated with better allograft survival in recipients of pancreas transplantation. Ann R Coll Surg Engl 2024; 106:19-28. [PMID: 36927080 PMCID: PMC10757882 DOI: 10.1308/rcsann.2022.0161] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2022] [Indexed: 03/18/2023] Open
Abstract
INTRODUCTION Outcomes following pancreas transplantation are suboptimal and better donor selection is required to improve this. Vasoactive drugs (VaD) are commonly used to correct the abnormal haemodynamics of organ donors in intensive care units. VaDs can differentially affect insulin secretion positively (dobutamine) or negatively (noradrenaline). The hypothesis was that some VaDs might induce beta-cell stress or rest and therefore impact pancreas transplant outcomes. The aim of the study was to assess relationships between VaD use and pancreas transplant graft survival. METHODS Data from the UK Transplant Registry on all pancreas transplants performed between 2004 and 2016 with complete follow-up data were included. Univariable- and multivariable-adjusted Cox regression analyses determined risks of graft failure associated with VaD use. RESULTS In 2,183 pancreas transplants, VaDs were used in the following numbers of donors: dobutamine 76 (3.5%), dopamine 84 (3.8%), adrenaline 161 (7.4%), noradrenaline 1,589 (72.8%) and vasopressin 1,219 (55.8%). In multivariable models, adjusted for covariates and the co-administration of other VaDs, noradrenaline use (vs non-use) was a strong predictor of better graft survival (hazard ratio [95% confidence interval] 0.77 [0.64-0.94], p = 0.01). CONCLUSIONS Noradrenaline use was associated with better graft survival in models adjusted for donor and recipient variables - this may be related to inhibition of pancreatic insulin secretion initiating pancreatic beta-cell 'rest'. Further research is required to replicate these findings and establish whether relationships are causal. Identification of alternative methods of inducing beta-cell rest could be valuable in improving graft outcomes.
Collapse
Affiliation(s)
- IM Shapey
- University of Manchester, UK
- Manchester University NHS Foundation Trust, UK
| | - A Summers
- Manchester University NHS Foundation Trust, UK
| | | | - C Fullwood
- University of Manchester, UK
- Manchester University NHS Foundation Trust, UK
| | - T Augustine
- Manchester University NHS Foundation Trust, UK
| | - MK Rutter
- University of Manchester, UK
- Manchester University NHS Foundation Trust, UK
| | | |
Collapse
|
3
|
Ceddia RP, Zurawski Z, Thompson Gray A, Adegboye F, McDonald-Boyer A, Shi F, Liu D, Maldonado J, Feng J, Li Y, Alford S, Ayala JE, McGuinness OP, Collins S, Hamm HE. Gβγ-SNAP25 exocytotic brake removal enhances insulin action, promotes adipocyte browning, and protects against diet-induced obesity. J Clin Invest 2023; 133:e160617. [PMID: 37561580 PMCID: PMC10541194 DOI: 10.1172/jci160617] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/08/2023] [Indexed: 08/12/2023] Open
Abstract
Negative regulation of exocytosis from secretory cells is accomplished through inhibitory signals from Gi/o GPCRs by Gβγ subunit inhibition of 2 mechanisms: decreased calcium entry and direct interaction of Gβγ with soluble N-ethylmaleimide-sensitive factor attachment protein (SNAP) receptor (SNARE) plasma membrane fusion machinery. Previously, we disabled the second mechanism with a SNAP25 truncation (SNAP25Δ3) that decreased Gβγ affinity for the SNARE complex, leaving exocytotic fusion and modulation of calcium entry intact and removing GPCR-Gβγ inhibition of SNARE-mediated exocytosis. Here, we report substantial metabolic benefit in mice carrying this mutation. Snap25Δ3/Δ3 mice exhibited enhanced insulin sensitivity and beiging of white fat. Metabolic protection was amplified in Snap25Δ3/Δ3 mice challenged with a high-fat diet. Glucose homeostasis, whole-body insulin action, and insulin-mediated glucose uptake into white adipose tissue were improved along with resistance to diet-induced obesity. Metabolic protection in Snap25Δ3/Δ3 mice occurred without compromising the physiological response to fasting or cold. All metabolic phenotypes were reversed at thermoneutrality, suggesting that basal autonomic activity was required. Direct electrode stimulation of sympathetic neuron exocytosis from Snap25Δ3/Δ3 inguinal adipose depots resulted in enhanced and prolonged norepinephrine release. Thus, the Gβγ-SNARE interaction represents a cellular mechanism that deserves further exploration as an additional avenue for combating metabolic disease.
Collapse
Affiliation(s)
- Ryan P. Ceddia
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Zack Zurawski
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois, USA
| | | | - Feyisayo Adegboye
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
| | | | - Fubiao Shi
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Dianxin Liu
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jose Maldonado
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Jiesi Feng
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| | - Simon Alford
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Julio E. Ayala
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Owen P. McGuinness
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Sheila Collins
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Heidi E. Hamm
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
4
|
Rehmani S, McLaughlin CM, Eltaher HM, Moffett RC, Flatt PR, Dixon JE. Orally-delivered insulin-peptide nanocomplexes enhance transcytosis from cellular depots and improve diabetic blood glucose control. J Control Release 2023; 360:93-109. [PMID: 37315695 DOI: 10.1016/j.jconrel.2023.06.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/23/2023] [Accepted: 06/04/2023] [Indexed: 06/16/2023]
Abstract
Insulin regulates blood glucose levels, and is the mainstay for the treatment of type-1 diabetes and type-2 when other drugs provide inadequate control. Therefore, effective oral Insulin delivery would be a significant advance in drug delivery. Herein, we report the use of the modified cell penetrating peptide (CPP) platform, Glycosaminoglycan-(GAG)-binding-enhanced-transduction (GET), as an efficacious transepithelial delivery vector in vitro and to mediate oral Insulin activity in diabetic animals. Insulin can be conjugated with GET via electrostatic interaction to form nanocomplexes (Insulin GET-NCs). These NCs (size and charge; 140 nm, +27.10 mV) greatly enhanced Insulin transport in differentiated in vitro intestinal epithelium models (Caco2 assays; >22-fold increased translocation) with progressive and significant apical and basal release of up-taken Insulin. Delivery resulted in intracellular accumulation of NCs, enabling cells to act as depots for subsequent sustained release without affecting viability and barrier integrity. Importantly Insulin GET-NCs have enhanced proteolytic stability, and retained significant Insulin biological activity (exploiting Insulin-responsive reporter assays). Our study culminates in demonstrating oral delivery of Insulin GET-NCs which can control elevated blood-glucose levels in streptozotocin (STZ)-induced diabetic mice over several days with serial dosing. As GET promotes Insulin absorption, transcytosis and intracellular release, along with in vivo function, our simplistic complexation platform could allow effective bioavailability of other oral peptide therapeutics and help transform the treatment of diabetes.
Collapse
Affiliation(s)
- Sahrish Rehmani
- Regenerative Medicine & Cellular Therapies, The University of Nottingham Biodiscovery Institute (BDI), School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Christopher M McLaughlin
- Diabetes Research Centre, School of Biomedical Sciences, Ulster University, Coleraine, Co. Londonderry BT52 1SA, UK
| | - Hoda M Eltaher
- Regenerative Medicine & Cellular Therapies, The University of Nottingham Biodiscovery Institute (BDI), School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - R Charlotte Moffett
- Diabetes Research Centre, School of Biomedical Sciences, Ulster University, Coleraine, Co. Londonderry BT52 1SA, UK
| | - Peter R Flatt
- Diabetes Research Centre, School of Biomedical Sciences, Ulster University, Coleraine, Co. Londonderry BT52 1SA, UK
| | - James E Dixon
- Regenerative Medicine & Cellular Therapies, The University of Nottingham Biodiscovery Institute (BDI), School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK.
| |
Collapse
|
5
|
Li S, Yuan H, Yang K, Li Q, Xiang M. Pancreatic sympathetic innervation disturbance in type 1 diabetes. Clin Immunol 2023; 250:109319. [PMID: 37024024 DOI: 10.1016/j.clim.2023.109319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/15/2023] [Accepted: 03/06/2023] [Indexed: 04/08/2023]
Abstract
Pancreatic sympathetic innervation can directly affect the function of islet. The disorder of sympathetic innervation in islets during the occurrence of type 1 diabetes (T1D) has been reported to be controversial with the inducing factor unclarified. Several studies have uncovered the critical role that sympathetic signals play in controlling the local immune system. The survival and operation of endocrine cells can be regulated by immune cell infiltration in islets. In the current review, we focused on the impact of sympathetic signals working on islets cell regulation, and discussed the potential factors that can induce the sympathetic innervation disorder in the islets. We also summarized the effect of interference with the islet sympathetic signals on the T1D occurrence. Overall, complete understanding of the regulatory effect of sympathetic signals on islet cells and local immune system could facilitate to design better strategies to control inflammation and protect β cells in T1D therapy.
Collapse
Affiliation(s)
- Senlin Li
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Huimin Yuan
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Keshan Yang
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qing Li
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ming Xiang
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
6
|
The Use of Vasopressors During Deceased Donor Pancreas Procurement Decreases the Risk of Pancreas Transplant Graft Failure. Pancreas 2022; 51:747-751. [PMID: 36395398 DOI: 10.1097/mpa.0000000000002103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVES The objective of this study was to identify the effect of various vasopressors on pancreas graft failure and patient survival. METHODS A retrospective analysis of the United Network for Organ Sharing database was performed between 2000 and 2019. Patient and graft survival rates were analyzed up to 5 years posttransplant. RESULTS The data included 17,348 pancreas transplant recipients: 12,857 simultaneous pancreas-kidney, 1440 pancreas transplant alone, and 3051 pancreas-after-kidney transplant recipients. Use of dopamine during deceased donor procurement increased graft failure by 18% (hazard ratio [HR], 1.18; P < 0.001). Absence of vasopressor caused graft failure to rise by 8% (HR, 1.08; P = 0.09). Dopamine increased the mortality rate by 37% (HR, 1.37; P < 0.001) and the absence of vasopressor increased the mortality rate by 14% (HR, 1.14; P = 0.02). Phenylephrine and norepinephrine reduced the mortality rate by 10% (HR, 0.90; P = 0.05) and 11% (HR, 0.89; P = 0.10), respectively. CONCLUSIONS The absence of vasopressor use or the use of dopamine is associated with a higher risk of both pancreas transplant graft failure and recipient mortality. The use of phenylephrine and norepinephrine reduces the risk of mortality. This information should guide deceased donor hemodynamic support management in anticipation of pancreas procurement for future transplantation.
Collapse
|
7
|
Thor D. G protein-coupled receptors as regulators of pancreatic islet functionality. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119235. [PMID: 35151663 DOI: 10.1016/j.bbamcr.2022.119235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 01/03/2023]
Abstract
Glucose homeostasis is maintained by hormones secreted from different types of pancreatic islets and its dysregulation can result in diseases including diabetes mellitus. The secretion of hormones from pancreatic islets is highly complex and tightly controlled by G protein-coupled receptors (GPCRs). Moreover, GPCR signaling may play a role in enhancing islet cell replication and proliferation. Thus, targeting GPCRs offers a promising strategy for regulating the functionality of pancreatic islets. Here, available RNAseq datasets from human and mouse islets were used to identify the GPCR expression profile and the impact of GPCR signaling for normal islet functionality is discussed.
Collapse
Affiliation(s)
- Doreen Thor
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, 04103 Leipzig, Germany.
| |
Collapse
|
8
|
Moullé VS. Autonomic control of pancreatic beta cells: What is known on the regulation of insulin secretion and beta-cell proliferation in rodents and humans. Peptides 2022; 148:170709. [PMID: 34896576 DOI: 10.1016/j.peptides.2021.170709] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/17/2021] [Accepted: 12/07/2021] [Indexed: 11/21/2022]
Abstract
Insulin secretion and pancreatic beta-cell proliferation are tightly regulated by several signals such as hormones, nutrients, and neurotransmitters. However, the autonomic control of beta cells is not fully understood. In this review, we describe mechanisms involved in insulin secretion as well as metabolic and mitogenic actions on its target tissues. Since pancreatic islets are physically connected to the brain by nerves, parasympathetic and sympathetic neurotransmitters can directly potentiate or repress insulin secretion and beta-cell proliferation. Finally, we highlight the role of the autonomic nervous system in metabolic diseases such as diabetes and obesity.
Collapse
|
9
|
Pancreatic Islets Exhibit Dysregulated Adaptation of Insulin Secretion after Chronic Epinephrine Exposure. Curr Issues Mol Biol 2021; 43:240-250. [PMID: 34071501 PMCID: PMC8929152 DOI: 10.3390/cimb43010020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 01/11/2023] Open
Abstract
Chronic adrenergic stimulation is the dominant factor in impairment of the β-cell function. Sustained adrenergic exposure generates dysregulated insulin secretion in fetal sheep. Similar results have been shown in Min6 under the elevated epinephrine condition, but impairments after adrenergic removal are still unknown and a high rate of proliferation in Min6 has been ignored. Therefore, we incubated primary rats' islets with half maximal inhibitory concentrations of epinephrine for three days, then determined their insulin secretion responsiveness and related signals two days after removal of adrenaline via radioimmunoassay and qPCR. Insulin secretion was not different between the exposure group (1.07 ± 0.04 ng/islet/h) and control (1.23 ± 0.17 ng/islet/h), but total islet insulin content after treatment (5.46 ± 0.87 ng/islet/h) was higher than control (3.17 ± 0.22 ng/islet/h, p < 0.05), and the fractional insulin release was 36% (p < 0.05) lower after the treatment. Meanwhile, the mRNA expression of Gαs, Gαz and Gβ1-2 decreased by 42.8% 19.4% and 24.8%, respectively (p < 0.05). Uncoupling protein 2 (Ucp2), sulphonylurea receptor 1 (Sur1) and superoxide dismutase 2 (Sod2) were significantly reduced (38.5%, 23.8% and 53.8%, p < 0.05). Chronic adrenergic exposure could impair insulin responsiveness in primary pancreatic islets. Decreased G proteins and Sur1 expression affect the regulation of insulin secretion. In conclusion, the sustained under-expression of Ucp2 and Sod2 may further change the function of β-cell, which helps to understand the long-term adrenergic adaptation of pancreatic β-cell.
Collapse
|
10
|
Kalwat MA, Huang Z, Binns DD, McGlynn K, Cobb MH. α 2-Adrenergic Disruption of β Cell BDNF-TrkB Receptor Tyrosine Kinase Signaling. Front Cell Dev Biol 2020; 8:576396. [PMID: 33178692 PMCID: PMC7593622 DOI: 10.3389/fcell.2020.576396] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/14/2020] [Indexed: 12/11/2022] Open
Abstract
Adrenergic signaling is a well-known input into pancreatic islet function. Specifically, the insulin-secreting islet β cell expresses the Gi/o-linked α2-adrenergic receptor, which upon activation suppresses insulin secretion. The use of the adrenergic agonist epinephrine at micromolar doses may have supraphysiological effects. We found that pretreating β cells with micromolar concentrations of epinephrine differentially inhibited activation of receptor tyrosine kinases. We chose TrkB as an example because of its relative sensitivity to the effects of epinephrine and due to its potential regulatory role in the β cell. Our characterization of brain-derived neurotrophic factor (BDNF)-TrkB signaling in MIN6 β cells showed that TrkB is activated by BDNF as expected, leading to canonical TrkB autophosphorylation and subsequent downstream signaling, as well as chronic effects on β cell growth. Micromolar, but not nanomolar, concentrations of epinephrine blocked BDNF-induced TrkB autophosphorylation and downstream mitogen-activated protein kinase pathway activation, suggesting an inhibitory phenomenon at the receptor level. We determined epinephrine-mediated inhibition of TrkB activation to be Gi/o-dependent using pertussis toxin, arguing against an off-target effect of high-dose epinephrine. Published data suggested that inhibition of potassium channels or phosphoinositide-3-kinase signaling may abrogate the negative effects of epinephrine; however, these did not rescue TrkB signaling in our experiments. Taken together, these results show that (1) TrkB kinase signaling occurs in β cells and (2) use of epinephrine in studies of insulin secretion requires careful consideration of concentration-dependent effects. BDNF-TrkB signaling in β cells may underlie pro-survival or growth signaling and warrants further study.
Collapse
Affiliation(s)
- Michael A. Kalwat
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, United States
| | | | | | | | | |
Collapse
|
11
|
Thompson Gray AD, Simonetti J, Adegboye F, Jones CK, Zurawski Z, Hamm HE. Sexual Dimorphism in Stress-induced Hyperthermia in SNAP25Δ3 mice, a mouse model with disabled Gβγ regulation of the exocytotic fusion apparatus. Eur J Neurosci 2020; 52:2815-2826. [PMID: 32449556 DOI: 10.1111/ejn.14836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 05/14/2020] [Accepted: 05/18/2020] [Indexed: 11/28/2022]
Abstract
Behavioral assays in the mouse can show marked differences between male and female animals of a given genotype. These differences identified in such preclinical studies may have important clinical implications. We recently made a mouse model with impaired presynaptic inhibition through Gβγ-SNARE signaling. Here, we examine the role of sexual dimorphism in the severity of the phenotypes of this model, the SNAP25Δ3 mouse. In males, we already reported that SNAP25Δ3 homozygotes demonstrated phenotypes in motor coordination, nociception, spatial memory and stress processing. We now report that while minimal sexually dimorphic effects were observed for the nociceptive, motor or memory phenotypes, large differences were observed in the stress-induced hyperthermia paradigm, with male SNAP25Δ3 homozygotes exhibiting an increase in body temperature subsequent to handling relative to wild-type littermates, while no such genotype-dependent effect was observed in females. This suggests sexually dimorphic mechanisms of Gβγ-SNARE signaling for stress processing or thermoregulation within the mouse. Second, we examined the effects of heterozygosity with respect to the SNAP25Δ3 mutation. Heterozygote SNAP25Δ3 animals were tested alongside homozygote and wild-type littermates in all of the aforementioned paradigms and displayed phenotypes similar to wild-type animals or an intermediate state. From this, we conclude that the SNAP25Δ3 mutation does not behave in an autosomal dominant manner, but rather displays incomplete dominance for many phenotypes.
Collapse
Affiliation(s)
| | - Justice Simonetti
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Feyisayo Adegboye
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Carrie K Jones
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA
| | - Zack Zurawski
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.,Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Heidi E Hamm
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
12
|
The SNAP-25 Protein Family. Neuroscience 2019; 420:50-71. [DOI: 10.1016/j.neuroscience.2018.09.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 08/31/2018] [Accepted: 09/14/2018] [Indexed: 01/04/2023]
|
13
|
Zurawski Z, Thompson Gray AD, Brady LJ, Page B, Church E, Harris NA, Dohn MR, Yim YY, Hyde K, Mortlock DP, Jones CK, Winder DG, Alford S, Hamm HE. Disabling the Gβγ-SNARE interaction disrupts GPCR-mediated presynaptic inhibition, leading to physiological and behavioral phenotypes. Sci Signal 2019; 12:12/569/eaat8595. [PMID: 30783011 DOI: 10.1126/scisignal.aat8595] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
G protein-coupled receptors (GPCRs) that couple to Gi/o proteins modulate neurotransmission presynaptically by inhibiting exocytosis. Release of Gβγ subunits from activated G proteins decreases the activity of voltage-gated Ca2+ channels (VGCCs), decreasing excitability. A less understood Gβγ-mediated mechanism downstream of Ca2+ entry is the binding of Gβγ to SNARE complexes, which facilitate the fusion of vesicles with the cell plasma membrane in exocytosis. Here, we generated mice expressing a form of the SNARE protein SNAP25 with premature truncation of the C terminus and that were therefore partially deficient in this interaction. SNAP25Δ3 homozygote mice exhibited normal presynaptic inhibition by GABAB receptors, which inhibit VGCCs, but defective presynaptic inhibition by receptors that work directly on the SNARE complex, such as 5-hydroxytryptamine (serotonin) 5-HT1b receptors and adrenergic α2a receptors. Simultaneously stimulating receptors that act through both mechanisms showed synergistic inhibitory effects. SNAP25Δ3 homozygote mice had various behavioral phenotypes, including increased stress-induced hyperthermia, defective spatial learning, impaired gait, and supraspinal nociception. These data suggest that the inhibition of exocytosis by Gi/o-coupled GPCRs through the Gβγ-SNARE interaction is a crucial component of numerous physiological and behavioral processes.
Collapse
Affiliation(s)
- Zack Zurawski
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.,Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | - Lillian J Brady
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Brian Page
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Emily Church
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Nicholas A Harris
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Michael R Dohn
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Yun Young Yim
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Karren Hyde
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Douglas P Mortlock
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Carrie K Jones
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA
| | - Danny G Winder
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Simon Alford
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Heidi E Hamm
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
14
|
Zurawski Z, Yim YY, Alford S, Hamm HE. The expanding roles and mechanisms of G protein-mediated presynaptic inhibition. J Biol Chem 2019; 294:1661-1670. [PMID: 30710014 PMCID: PMC6364771 DOI: 10.1074/jbc.tm118.004163] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Throughout the past five decades, tremendous advancements have been made in our understanding of G protein signaling and presynaptic inhibition, many of which were published in the Journal of Biological Chemistry under the tenure of Herb Tabor as Editor-in-Chief. Here, we identify these critical advances, including the formulation of the ternary complex model of G protein-coupled receptor signaling and the discovery of Gβγ as a critical signaling component of the heterotrimeric G protein, along with the nature of presynaptic inhibition and its physiological role. We provide an overview for the discovery and physiological relevance of the two known Gβγ-mediated mechanisms for presynaptic inhibition: first, the action of Gβγ on voltage-gated calcium channels to inhibit calcium influx to the presynaptic active zone and, second, the direct binding of Gβγ to the SNARE complex to displace synaptotagmin downstream of calcium entry, which has been demonstrated to be important in neurons and secretory cells. These two mechanisms act in tandem with each other in a synergistic manner to provide more complete spatiotemporal control over neurotransmitter release.
Collapse
Affiliation(s)
- Zack Zurawski
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-6600; Department of Anatomy and Cell Biology, University of Illinois, Chicago, Illinois 60612-7308
| | - Yun Young Yim
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-6600
| | - Simon Alford
- Department of Anatomy and Cell Biology, University of Illinois, Chicago, Illinois 60612-7308
| | - Heidi E Hamm
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-6600.
| |
Collapse
|
15
|
Abstract
Modulation of neurotransmitter exocytosis by activated Gi/o coupled G-protein coupled receptors (GPCRs) is a universal regulatory mechanism used both to avoid overstimulation and to influence circuitry. One of the known modulation mechanisms is the interaction between Gβγ and the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNAREs). There are 5 Gβ and 12 Gγ subunits, but specific Gβγs activated by a given GPCR and the specificity to effectors, such as SNARE, in vivo are not known. Although less studied, Gβγ binding to the exocytic fusion machinery (i.e. SNARE) provides a more direct regulatory mechanism for neurotransmitter release. Here, we review some recent insights in the architecture of the synaptic terminal, modulation of synaptic transmission, and implications of G protein modulation of synaptic transmission in diseases. Numerous presynaptic proteins are involved in the architecture of synaptic terminals, particularly the active zone, and their importance in the regulation of exocytosis is still not completely understood. Further understanding of the Gβγ-SNARE interaction and the architecture and mechanisms of exocytosis may lead to the discovery of novel therapeutic targets to help patients with various disorders such as hypertension, attention-deficit/hyperactivity disorder, post-traumatic stress disorder, and acute/chronic pain.
Collapse
Affiliation(s)
- Yun Young Yim
- Department of Pharmacology, Vanderbilt University, Nashville 37232-6600, TN, United States
| | - Zack Zurawski
- Department of Pharmacology, Vanderbilt University, Nashville 37232-6600, TN, United States
| | - Heidi Hamm
- Department of Pharmacology, Vanderbilt University, Nashville 37232-6600, TN, United States.
| |
Collapse
|
16
|
Kelly AC, Bidwell CA, Chen X, Macko AR, Anderson MJ, Limesand SW. Chronic Adrenergic Signaling Causes Abnormal RNA Expression of Proliferative Genes in Fetal Sheep Islets. Endocrinology 2018; 159:3565-3578. [PMID: 30124804 PMCID: PMC6150948 DOI: 10.1210/en.2018-00540] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 08/10/2018] [Indexed: 12/22/2022]
Abstract
Intrauterine growth restriction (IUGR) increases the risk of developing diabetes in later life, which indicates developmental programming of islets. IUGR fetuses with placental insufficiency develop hypoxemia, elevating epinephrine and norepinephrine (NE) concentrations throughout late gestation. To isolate the programming effects of chronically elevated catecholamines, NE was continuously infused into normally grown sheep fetuses for 7 days. High plasma NE concentrations suppress insulin, but after the NE infusion was terminated, persistent hypersecretion of insulin occurred. Our objective was to identify differential gene expression with RNA sequencing (RNAseq) in fetal islets after chronic adrenergic stimulation. After determining the NE-regulated genes, we identified the subset of differentially expressed genes that were common to both islets from NE fetuses and fetuses with IUGR to delineate the adrenergic-induced transcriptional responses. A portion of these genes were investigated in mouse insulinoma (Min6) cells chronically treated with epinephrine to better approximate the β-cell response. In islets from NE fetuses, RNAseq identified 321 differentially expressed genes that were overenriched for metabolic and hormone processes, and the subset of 96 differentially expressed genes common to IUGR islets were overenriched for protein digestion, vitamin metabolism, and cell replication pathways. Thirty-eight of the 96 NE-regulated IUGR genes changed similarly between models with functional enrichment for proliferation. In Min6 cells, chronic epinephrine stimulation slowed proliferation and augmented insulin secretion after treatment. These data establish molecular mechanisms underlying persistent adrenergic stimulation in hyperfunctional fetal islets and identify a subset of genes dysregulated by catecholamines in IUGR islets that may represent programming of β-cell proliferation capacity.
Collapse
Affiliation(s)
- Amy C Kelly
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona
| | | | - Xiaochuan Chen
- Chongqing Key Laboratory of Forage & Herbivore, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Antoni R Macko
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona
| | - Miranda J Anderson
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona
| | - Sean W Limesand
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona
- Correspondence: Sean W. Limesand, PhD, School of Animal and Comparative Biomedical Sciences, University of Arizona, 1650 East Limberlost Drive, Tucson, Arizona 85719. E-mail:
| |
Collapse
|
17
|
Kelly AC, Camacho LE, Pendarvis K, Davenport HM, Steffens NR, Smith KE, Weber CS, Lynch RM, Papas KK, Limesand SW. Adrenergic receptor stimulation suppresses oxidative metabolism in isolated rat islets and Min6 cells. Mol Cell Endocrinol 2018; 473:136-145. [PMID: 29360563 PMCID: PMC6045463 DOI: 10.1016/j.mce.2018.01.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 01/17/2018] [Accepted: 01/18/2018] [Indexed: 01/24/2023]
Abstract
Insulin secretion is stimulated by glucose metabolism and inhibited by catecholamines through adrenergic receptor stimulation. We determined whether catecholamines suppress oxidative metabolism in β-cells through adrenergic receptors. In Min6 cells and isolated rat islets, epinephrine decreased oxygen consumption rates compared to vehicle control or co-administration of epinephrine with α2-adrenergic receptor antagonist yohimbine. Epinephrine also decreased forskolin-stimulated oxygen consumption rates, indicating cAMP dependent and independent actions. Furthermore, glucose oxidation rates were decreased with epinephrine, independent of the exocytosis of insulin, which was blocked with yohimbine. We evaluated metabolic targets through proteomic analysis after 4 h epinephrine exposure that revealed 466 differentially expressed proteins that were significantly enriched for processes including oxidative metabolism, protein turnover, exocytosis, and cell proliferation. These results demonstrate that acute α2-adrenergic stimulation suppresses glucose oxidation in β-cells independent of nutrient availability and insulin exocytosis, while cAMP concentrations are elevated. Proteomics and immunoblots revealed changes in electron transport chain proteins that were correlated with lower metabolic reducing equivalents, intracellular ATP concentrations, and altered mitochondrial membrane potential implicating a new role for adrenergic control of mitochondrial function and ultimately insulin secretion.
Collapse
Affiliation(s)
- Amy C Kelly
- School of Comparative Animal and Biomedical Sciences, University of Arizona, Tucson AZ, United States
| | - Leticia E Camacho
- School of Comparative Animal and Biomedical Sciences, University of Arizona, Tucson AZ, United States
| | - Ken Pendarvis
- School of Comparative Animal and Biomedical Sciences, University of Arizona, Tucson AZ, United States
| | - Hailey M Davenport
- School of Comparative Animal and Biomedical Sciences, University of Arizona, Tucson AZ, United States
| | - Nathan R Steffens
- School of Comparative Animal and Biomedical Sciences, University of Arizona, Tucson AZ, United States
| | - Kate E Smith
- Department of Surgery, University of Arizona, Tucson AZ, United States
| | - Craig S Weber
- Department of Physiology, University of Arizona, Tucson AZ, United States
| | - Ronald M Lynch
- Department of Physiology, University of Arizona, Tucson AZ, United States
| | - Klearchos K Papas
- Department of Surgery, University of Arizona, Tucson AZ, United States
| | - Sean W Limesand
- School of Comparative Animal and Biomedical Sciences, University of Arizona, Tucson AZ, United States.
| |
Collapse
|
18
|
Zurawski Z, Page B, Chicka MC, Brindley RL, Wells CA, Preininger AM, Hyde K, Gilbert JA, Cruz-Rodriguez O, Currie KPM, Chapman ER, Alford S, Hamm HE. Gβγ directly modulates vesicle fusion by competing with synaptotagmin for binding to neuronal SNARE proteins embedded in membranes. J Biol Chem 2017; 292:12165-12177. [PMID: 28515322 DOI: 10.1074/jbc.m116.773523] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 05/10/2017] [Indexed: 01/11/2023] Open
Abstract
Gi/o-coupled G protein-coupled receptors can inhibit neurotransmitter release at synapses via multiple mechanisms. In addition to Gβγ-mediated modulation of voltage-gated calcium channels (VGCC), inhibition can also be mediated through the direct interaction of Gβγ subunits with the soluble N-ethylmaleimide attachment protein receptor (SNARE) complex of the vesicle fusion apparatus. Binding studies with soluble SNARE complexes have shown that Gβγ binds to both ternary SNARE complexes, t-SNARE heterodimers, and monomeric SNAREs, competing with synaptotagmin 1(syt1) for binding sites on t-SNARE. However, in secretory cells, Gβγ, SNAREs, and synaptotagmin interact in the lipid environment of a vesicle at the plasma membrane. To approximate this environment, we show that fluorescently labeled Gβγ interacts specifically with lipid-embedded t-SNAREs consisting of full-length syntaxin 1 and SNAP-25B at the membrane, as measured by fluorescence polarization. Fluorescently labeled syt1 undergoes competition with Gβγ for SNARE-binding sites in lipid environments. Mutant Gβγ subunits that were previously shown to be more efficacious at inhibiting Ca2+-triggered exocytotic release than wild-type Gβγ were also shown to bind SNAREs at a higher affinity than wild type in a lipid environment. These mutant Gβγ subunits were unable to inhibit VGCC currents. Specific peptides corresponding to regions on Gβ and Gγ shown to be important for the interaction disrupt the interaction in a concentration-dependent manner. In in vitro fusion assays using full-length t- and v-SNAREs embedded in liposomes, Gβγ inhibited Ca2+/synaptotagmin-dependent fusion. Together, these studies demonstrate the importance of these regions for the Gβγ-SNARE interaction and show that the target of Gβγ, downstream of VGCC, is the membrane-embedded SNARE complex.
Collapse
Affiliation(s)
- Zack Zurawski
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232-6600
| | - Brian Page
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois 60612-7308
| | - Michael C Chicka
- Howard Hughes Medical Institute and Department of Neuroscience, University of Wisconsin, Madison, Wisconsin, 53705
| | - Rebecca L Brindley
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-6600
| | - Christopher A Wells
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232-6600
| | - Anita M Preininger
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232-6600
| | - Karren Hyde
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232-6600
| | - James A Gilbert
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232-6600
| | - Osvaldo Cruz-Rodriguez
- Departments of Pharmacology and Biological Chemistry, Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109
| | - Kevin P M Currie
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232-6600; Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-6600
| | - Edwin R Chapman
- Howard Hughes Medical Institute and Department of Neuroscience, University of Wisconsin, Madison, Wisconsin, 53705
| | - Simon Alford
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois 60612-7308
| | - Heidi E Hamm
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232-6600.
| |
Collapse
|
19
|
Ito K, Dezaki K, Yoshida M, Yamada H, Miura R, Rita RS, Ookawara S, Tabei K, Kawakami M, Hara K, Morishita Y, Yada T, Kakei M. Endogenous α2A-Adrenoceptor-Operated Sympathoadrenergic Tones Attenuate Insulin Secretion via cAMP/TRPM2 Signaling. Diabetes 2017; 66:699-709. [PMID: 28028077 DOI: 10.2337/db16-1166] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 12/21/2016] [Indexed: 11/13/2022]
Abstract
In pancreatic β-cells, pharmacological concentrations of catecholamines, including adrenaline, have been used to inhibit insulin release and explore the multiple mechanisms involved. However, the significance of these signaling pathways for physiological adrenergic functions in β-cells is largely unknown. In the process of glucose-induced insulin secretion, opening of background current through nonselective cation channels (NSCCs) might facilitate membrane depolarization by closure of the ATP-sensitive K+ channels. Here, we examined whether physiological insulinostatic adrenaline action is mediated via the transient receptor potential melastatin 2 (TRPM2) channel, a type of NSCC, in β-cells. Results showed that physiological concentrations of adrenaline strongly suppressed glucose-induced and incretin-potentiated cAMP production and insulin secretion and inhibited NSCCs current and membrane excitability via the α2A-adrenoceptor in wild-type mice; however, insulin secretion was not attenuated in TRPM2-knockout (KO) mice. Administration of yohimbine, an α2-adrenoceptor antagonist, failed to affect glucose tolerance in TRPM2-KO mice, in contrast to an improved glucose tolerance in wild-type mice receiving the antagonist. The current study demonstrated that a physiological concentration of adrenaline attenuates insulin release via coupling of α2A-adrenoceptor to cAMP/TRPM2 signaling, thereby providing a potential therapeutic tool to treat patients with type 2 diabetes.
Collapse
Affiliation(s)
- Kiyonori Ito
- First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Katsuya Dezaki
- Division of Integrative Physiology, Department of Physiology, Jichi Medical University, Tochigi, Japan
| | - Masashi Yoshida
- First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Hodaka Yamada
- First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Rina Miura
- Division of Integrative Physiology, Department of Physiology, Jichi Medical University, Tochigi, Japan
| | - Rauza Sukma Rita
- Division of Integrative Physiology, Department of Physiology, Jichi Medical University, Tochigi, Japan
| | - Susumu Ookawara
- First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Kaoru Tabei
- First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
- Minamiuonuma City Hospital, Niigata, Japan
| | - Masanobu Kawakami
- First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
- Nerima Hikarigaoka Hospital, Tokyo, Japan
| | - Kazuo Hara
- First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Yoshiyuki Morishita
- First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Toshihiko Yada
- Division of Integrative Physiology, Department of Physiology, Jichi Medical University, Tochigi, Japan
| | - Masafumi Kakei
- First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
- Saitama Citizens Medical Center, Saitama, Japan
| |
Collapse
|
20
|
Zhao Y, Fang Q, Straub SG, Lindau M, Sharp GWG. Prostaglandin E1 inhibits endocytosis in the β-cell endocytosis. J Endocrinol 2016; 229:287-94. [PMID: 27068696 DOI: 10.1530/joe-15-0435] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 04/11/2016] [Indexed: 12/23/2022]
Abstract
Prostaglandins inhibit insulin secretion in a manner similar to that of norepinephrine (NE) and somatostatin. As NE inhibits endocytosis as well as exocytosis, we have now examined the modulation of endocytosis by prostaglandin E1 (PGE1). Endocytosis following exocytosis was recorded by whole-cell patch clamp capacitance measurements in INS-832/13 cells. Prolonged depolarizing pulses producing a high level of Ca(2+) influx were used to stimulate maximal exocytosis and to deplete the readily releasable pool (RRP) of granules. This high Ca(2+) influx eliminates the inhibitory effect of PGE1 on exocytosis and allows specific characterization of the inhibitory effect of PGE1 on the subsequent compensatory endocytosis. After stimulating exocytosis, endocytosis was apparent under control conditions but was inhibited by PGE1 in a Pertussis toxin-sensitive (PTX)-insensitive manner. Dialyzing a synthetic peptide mimicking the C-terminus of the α-subunit of the heterotrimeric G-protein Gz into the cells blocked the inhibition of endocytosis by PGE1, whereas a control-randomized peptide was without effect. These results demonstrate that PGE1 inhibits endocytosis and Gz mediates the inhibition.
Collapse
Affiliation(s)
- Ying Zhao
- Department of Molecular MedicineCornell University, Ithaca, New York, USA School of Applied and Engineering PhysicsCornell University, Ithaca, New York, USA Laboratory for Nanoscale Cell BiologyMax-Planck-Institute for Biophysical Chemistry, Goettingen, Germany
| | - Qinghua Fang
- School of Applied and Engineering PhysicsCornell University, Ithaca, New York, USA Laboratory for Nanoscale Cell BiologyMax-Planck-Institute for Biophysical Chemistry, Goettingen, Germany
| | - Susanne G Straub
- Department of Molecular MedicineCornell University, Ithaca, New York, USA
| | - Manfred Lindau
- School of Applied and Engineering PhysicsCornell University, Ithaca, New York, USA Laboratory for Nanoscale Cell BiologyMax-Planck-Institute for Biophysical Chemistry, Goettingen, Germany
| | - Geoffrey W G Sharp
- Department of Molecular MedicineCornell University, Ithaca, New York, USA
| |
Collapse
|
21
|
Zurawski Z, Rodriguez S, Hyde K, Alford S, Hamm HE. Gβγ Binds to the Extreme C Terminus of SNAP25 to Mediate the Action of Gi/o-Coupled G Protein-Coupled Receptors. Mol Pharmacol 2016; 89:75-83. [PMID: 26519224 PMCID: PMC4702098 DOI: 10.1124/mol.115.101600] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 10/30/2015] [Indexed: 11/22/2022] Open
Abstract
Gi/o-coupled G protein-coupled receptors can exert an inhibitory effect on vesicle release through several G protein-driven mechanisms, more than one of which may be concurrently present in individual presynaptic terminals. The synaptosomal-associated protein of 25 kDa (SNAP25) is a key downstream effector of Gβγ subunits. It has previously been shown that proteolytic cleavage of SNAP25 by botulinum toxin A reduces the ability of Gβγ to compete with the calcium sensor synaptotagmin 1 (Syt1) for binding to SNAP25 in a calcium-dependent manner. These truncated SNAP25 proteins sustain a low level of exocytosis but are unable to support serotonin-mediated inhibition of exocytosis in lamprey spinal neurons. Here, we generate a SNAP25 extreme C-terminal mutant that is deficient in its ability to bind Gβγ while retaining normal calcium-dependent Syt1 binding to soluble N-ethylmaleimide attachment protein receptor (SNARE) and vesicle release. The SNAP25Δ3 mutant, in which residue G204 is replaced by a stop codon, features a partial reduction in Gβ1γ2 binding in vitro as well as a partial reduction in the ability of the lamprey 5-hydroxytryptamine1b-type serotonin receptor to reduce excitatory postsynaptic current amplitudes, an effect previously shown to be mediated through the interaction of Gβγ with SNAP25. Syt1 calcium-dependent binding to SNAP25Δ3 was reduced by a small extent compared with the wild type. We conclude that the extreme C terminus of SNAP25 is a critical region for the Gβγ-SNARE interaction.
Collapse
Affiliation(s)
- Zack Zurawski
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee (Z.Z., K.H., H.E.H.); and Department of Biological Sciences, University of Illinois, Chicago, Illinois (S.R., S.A.)
| | - Shelagh Rodriguez
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee (Z.Z., K.H., H.E.H.); and Department of Biological Sciences, University of Illinois, Chicago, Illinois (S.R., S.A.)
| | - Karren Hyde
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee (Z.Z., K.H., H.E.H.); and Department of Biological Sciences, University of Illinois, Chicago, Illinois (S.R., S.A.)
| | - Simon Alford
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee (Z.Z., K.H., H.E.H.); and Department of Biological Sciences, University of Illinois, Chicago, Illinois (S.R., S.A.)
| | - Heidi E Hamm
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee (Z.Z., K.H., H.E.H.); and Department of Biological Sciences, University of Illinois, Chicago, Illinois (S.R., S.A.)
| |
Collapse
|
22
|
Thompson PM, Cruz DA, Fucich EA, Olukotun DY, Takahashi M, Itakura M. SNAP-25a/b Isoform Levels in Human Brain Dorsolateral Prefrontal Cortex and Anterior Cingulate Cortex. MOLECULAR NEUROPSYCHIATRY 2015; 1:220-34. [PMID: 27606314 DOI: 10.1159/000441224] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 09/09/2015] [Indexed: 01/03/2023]
Abstract
SNAP-25 is a neurotransmitter vesicular docking protein which has been associated with brain disorders such as attention deficit hyperactivity disorder, bipolar disorder and schizophrenia. In this project, we were interested if clinical factors are associated with differential SNAP-25 expression. We examined the SNAP-25 isoform mRNA and protein levels in postmortem cortex Brodmann's area 9 (BA9) and BA24 (n = 29). Subjects were divided by psychiatric diagnosis, clinical variables including mood state in the last week of life and lifetime impulsiveness. We found affected subjects with a diagnosis of alcohol use disorder (AUD) had a lower level of SNAP-25b BA24 protein compared to those without AUD. Hispanic subjects had lower levels of SNAP-25a, b and BA9 mRNA than Anglo-American subjects. Subjects who smoked had a total pan (total) SNAP-25 BA9/BA24 ratio. Subjects in the group with a low level of anxious-psychotic symptoms had higher SNAP-25a BA24 mRNA compared to normal controls, and both the high and low symptoms groups had higher pan (total) SNAP-25 BA9/BA24 ratios than normal controls. These data expand our understanding of clinical factors associated with SNAP-25. They suggest that SNAP-25 total and isoform levels may be useful biomarkers beyond limited neurological and psychiatric diagnostic categories.
Collapse
Affiliation(s)
| | - Dianne A Cruz
- Departments of Psychiatry, University of Texas Health Science Center San Antonio, San Antonio, Tex., USA
| | - Elizabeth A Fucich
- Departments of Pharmacology, University of Texas Health Science Center San Antonio, San Antonio, Tex., USA
| | - Dianna Y Olukotun
- Departments of Psychiatry, University of Texas Health Science Center San Antonio, San Antonio, Tex., USA
| | - Masami Takahashi
- Department of Biochemistry, Kitasato University School of Medicine, Tokyo, Japan
| | - Makoto Itakura
- Department of Biochemistry, Kitasato University School of Medicine, Tokyo, Japan
| |
Collapse
|
23
|
McKillop AM, Ng MT, Abdel-Wahab YHA, Flatt PR. Evidence for inhibitory autocrine effects of proinsulin C-peptide on pancreatic β-cell function and insulin secretion. Diabetes Obes Metab 2014; 16:937-46. [PMID: 24702738 DOI: 10.1111/dom.12300] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 02/28/2014] [Accepted: 03/31/2014] [Indexed: 12/21/2022]
Abstract
AIMS Autocrine and paracrine regulatory mechanisms ensure integrated secretion of islet hormones that respond efficiently to changes in metabolic need. As proinsulin C-peptide exerts various biological effects and binds to cell membranes including insulin-secreting β cells, its physiological role in insulin release was examined. METHODS Insulin releasing activity of human and rat C-peptides were studied in the clonal pancreatic cell line, BRIN-BD11, with findings substantiated using isolated islets and in vivo studies employing SWISS TO mice. RESULTS Acute exposure of clonal β cells to human C-peptide resulted in concentration-dependent inhibitory effects on insulin secretion at 5.6 mM (p < 0.05-p < 0.001) and 16.7 mM (p < 0.01-p < 0.001) glucose. At physiologically relevant intra-islet concentrations (10(-9) -10(-6) M), C-peptide suppressed the insulin-secretory responses to a range of secretagogues acting at different points in the β cell stimulus-secretion coupling pathway including alanine (p < 0.05), Ca(2+) (p < 0.001), arginine (p < 0.05), tolbutamide (p < 0.001), glucagon-like peptide 1 (GLP-1) (p < 0.001), isobutylmethylxanthine (IBMX) (p < 0.01) and KCl (p < 0.05). Similar results were obtained using isolated mouse pancreatic islets. Human C-peptide (3 × 10(-7) M, p < 0.001), somatostatin-14 (3 × 10(-7) M, p < 0.01) and diazoxide (300 µM, p < 0.001) reduced both alanine and glucose-stimulated insulin release by 43, 25 and 48%, respectively. The effects of human C-peptide were reproduced using rat C-peptide I and II. C-peptide also inhibited in vivo glucose-stimulated insulin release and impaired glucose tolerance in mice. CONCLUSIONS C-peptide is a biologically active endogenous peptide hormone that exerts inhibitory autocrine effects on pancreatic β-cell function. Mechanisms involving the activation of K(+) channels and a distal effect downstream of increased cytoplasmic Ca(2+) appear to be implicated in the inhibition of insulin secretion.
Collapse
Affiliation(s)
- A M McKillop
- SAAD Centre for Pharmacy & Diabetes, School of Biomedical Sciences, University of Ulster, Coleraine, UK
| | | | | | | |
Collapse
|
24
|
Pedersen MG, Salunkhe VA, Svedin E, Edlund A, Eliasson L. Calcium current inactivation rather than pool depletion explains reduced exocytotic rate with prolonged stimulation in insulin-secreting INS-1 832/13 cells. PLoS One 2014; 9:e103874. [PMID: 25105407 PMCID: PMC4126658 DOI: 10.1371/journal.pone.0103874] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 07/02/2014] [Indexed: 11/19/2022] Open
Abstract
Impairment in beta-cell exocytosis is associated with reduced insulin secretion and diabetes. Here we aimed to investigate the dynamics of Ca2+-dependent insulin exocytosis with respect to pool depletion and Ca2+-current inactivation. We studied exocytosis, measured as increase in membrane capacitance (ΔCm), as a function of calcium entry (Q) in insulin secreting INS-1 832/13 cells using patch clamp and mixed-effects statistical analysis. The observed linear relationship between ΔCm and Q suggests that Ca2+-channel inactivation rather than granule pool restrictions is responsible for the decline in exocytosis observed at longer depolarizations. INS-1 832/13 cells possess an immediately releasable pool (IRP) of ∼10 granules and most exocytosis of granules occurs from a large pool. The latter is attenuated by the calcium-buffer EGTA, while IRP is unaffected. These findings suggest that most insulin release occurs away from Ca2+-channels, and that pool depletion plays a minor role in the decline of exocytosis upon prolonged stimulation.
Collapse
Affiliation(s)
- Morten Gram Pedersen
- Islet Cell Exocytosis, Lund University Diabetes Centre, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
- * E-mail:
| | - Vishal Ashok Salunkhe
- Islet Cell Exocytosis, Lund University Diabetes Centre, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Emma Svedin
- Center for Infectious Medicine, Department of Medicine, The Karolinska Institute, Huddinge University Hospital, Stockholm, Sweden
| | - Anna Edlund
- Islet Cell Exocytosis, Lund University Diabetes Centre, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Lena Eliasson
- Islet Cell Exocytosis, Lund University Diabetes Centre, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| |
Collapse
|
25
|
Kimple ME, Neuman JC, Linnemann AK, Casey PJ. Inhibitory G proteins and their receptors: emerging therapeutic targets for obesity and diabetes. Exp Mol Med 2014; 46:e102. [PMID: 24946790 PMCID: PMC4081554 DOI: 10.1038/emm.2014.40] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 02/10/2014] [Accepted: 02/17/2014] [Indexed: 12/21/2022] Open
Abstract
The worldwide prevalence of obesity is steadily increasing, nearly doubling between 1980 and 2008. Obesity is often associated with insulin resistance, a major risk factor for type 2 diabetes mellitus (T2DM): a costly chronic disease and serious public health problem. The underlying cause of T2DM is a failure of the beta cells of the pancreas to continue to produce enough insulin to counteract insulin resistance. Most current T2DM therapeutics do not prevent continued loss of insulin secretion capacity, and those that do have the potential to preserve beta cell mass and function are not effective in all patients. Therefore, developing new methods for preventing and treating obesity and T2DM is very timely and of great significance. There is now considerable literature demonstrating a link between inhibitory guanine nucleotide-binding protein (G protein) and G protein-coupled receptor (GPCR) signaling in insulin-responsive tissues and the pathogenesis of obesity and T2DM. These studies are suggesting new and emerging therapeutic targets for these conditions. In this review, we will discuss inhibitory G proteins and GPCRs that have primary actions in the beta cell and other peripheral sites as therapeutic targets for obesity and T2DM, improving satiety, insulin resistance and/or beta cell biology.
Collapse
Affiliation(s)
- Michelle E Kimple
- Department of Medicine-Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI, USA
| | - Joshua C Neuman
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Amelia K Linnemann
- Department of Medicine-Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI, USA
| | - Patrick J Casey
- Duke University Medical Center Department of Pharmacology and Cancer Biology, Durham, NC, USA
| |
Collapse
|
26
|
Kelly AC, Steyn LV, Kitzmann JP, Anderson MJ, Mueller KR, Hart NJ, Lynch RM, Papas KK, Limesand SW. Function and expression of sulfonylurea, adrenergic, and glucagon-like peptide 1 receptors in isolated porcine islets. Xenotransplantation 2014; 21:385-91. [PMID: 24801676 DOI: 10.1111/xen.12101] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 03/14/2014] [Indexed: 11/29/2022]
Abstract
The scarcity of human cadaveric pancreata limits large-scale application of islet transplantation for patients with diabetes. Islets isolated from pathogen-free pigs provide an economical and abundant alternative source assuming immunologic barriers are appropriate. Membrane receptors involved in insulin secretion that also have potential as imaging targets were investigated in isolated porcine islets. Quantitative (q)PCR revealed that porcine islets express mRNA transcripts for sulfonylurea receptor 1 (Sur1), inward rectifying potassium channel (Kir6.2, associated with Sur1), glucagon-like peptide 1 receptor (GLP1R), and adrenergic receptor alpha 2A (ADRα2A). Receptor function was assessed in static incubations with stimulatory glucose concentrations, and in the presence of receptor agonists. Glibenclamide, an anti-diabetic sulfonylurea, and exendin-4, a GLP-1 mimetic, potentiated glucose-stimulated insulin secretion >2-fold. Conversely, epinephrine maximally reduced insulin secretion 72 ± 9% (P < 0.05) and had a half maximal inhibitory concentration of 60 nm in porcine islets (95% confidence interval of 45-830 nm). The epinephrine action was inhibited by the ADRα2A antagonist yohimbine. Our findings demonstrate that porcine islets express and are responsive to both stimulatory and inhibitory membrane localized receptors, which can be used as imaging targets after transplantation or to modify insulin secretion.
Collapse
Affiliation(s)
- Amy C Kelly
- School of Comparative Animal and Biomedical Sciences, University of Arizona, Tucson, AZ, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Secreting von Willebrand factor in a Gα-SNAP. Blood 2014; 123:312-3. [PMID: 24434997 DOI: 10.1182/blood-2013-10-531913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this issue of Blood, Rusu et al use a state-of-the-art combination of pharmacological, genetic, and molecular techniques to dissect a mechanism for von Willebrand factor (vWF) secretion from endothelial cells mediated via Gaq/11 and Ga12 that can be triggered in basal or stimulated conditions. Indeed, although the storage of vWF in Weibel-Palade bodies (WPBs) of endothelial cells has been known for decades, the molecular mechanisms governing WPB docking with plasma membrane and vWF secretion remains undefined. One of the reasons this is still a very active area of investigation is that understanding the mechanism behind WPB docking is crucial for understanding potential pharmacological targets for pathological conditions associated with platelet aggregation/thrombi (e.g., stroke), where vWF levels directly correlate with severity of disease progress. The work by Rusu et al opens up a new area of investigation into G-protein-coupled receptors as triggers for WPB fusion at the plasma membrane and for vWF secretion.
Collapse
|
28
|
Abstract
The peptide hormone somatostatin (SST) is produced in the brain, the gut, and in δ-cells in pancreatic islets of Langerhans. SST secretion from δ-cells is stimulated by glucose, amino acids, and glucagon-like peptide-1. Exogenous SST strongly inhibits the secretion of the blood glucose-regulating hormones insulin and glucagon from pancreatic β-cells and α-cells, respectively. Endogenous SST secreted from δ-cells is a paracrine regulator of insulin and glucagon secretion, although the exact physiological significance of this regulation is unclear. Secreted SST binds to specific receptors (SSTRs), which are coupled to Gi/o proteins. In both β- and α-cells, activation of SSTRs suppresses hormone secretion by reducing cAMP levels, inhibiting electrical activity, decreasing Ca²⁺ influx through voltage-gated Ca²⁺ channels and directly reducing exocytosis in a Ca²⁺ and cAMP-independent manner. In rodents, β-cells express predominantly SSTR5, whereas α-cells express SSTR2. In human islets, SSTR2 is the dominant receptor in both β- and α-cells, but other isoforms also contribute to the SST effects. Evidence from rodent models suggests that SST secretion from δ-cells is dysregulated in diabetes mellitus, which may contribute to the metabolic disturbances in this disease. SST analogues are currently used for the treatment of hyperinsulinism and other endocrine disorders, including acromegaly and Cushing's syndrome.
Collapse
Affiliation(s)
- Matthias Braun
- Alberta Diabetes Institute, Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
29
|
Pedram A, Razandi M, Narayanan R, Dalton JT, McKinsey TA, Levin ER. Estrogen regulates histone deacetylases to prevent cardiac hypertrophy. Mol Biol Cell 2013; 24:3805-18. [PMID: 24152730 PMCID: PMC3861078 DOI: 10.1091/mbc.e13-08-0444] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Angiotensin II stimulation of HDAC2 production, phosphorylation by CK2, and resulting modulation of target genes, which promote cardiac hypertrophy, are opposed by estrogen/ERβ. Angiotensin II also represses class II HDAC4 and 5 production and stimulates their phosphorylation, which expels them from the nucleus, and estrogen prevents this. The development and progression of cardiac hypertrophy often leads to heart failure and death, and important modulators of hypertrophy include the histone deacetylase proteins (HDACs). Estrogen inhibits cardiac hypertrophy and progression in animal models and humans. We therefore investigated the influence of 17-β-estradiol on the production, localization, and functions of prohypertrophic (class I) and antihypertrophic (class II) HDACs in cultured neonatal rat cardiomyocytes. 17-β-Estradiol or estrogen receptor β agonists dipropylnitrile and β-LGND2 comparably suppressed angiotensin II–induced HDAC2 (class I) production, HDAC-activating phosphorylation, and the resulting prohypertrophic mRNA expression. In contrast, estrogenic compounds derepressed the opposite effects of angiotensin II on the same parameters for HDAC4 and 5 (class II), resulting in retention of these deacetylases in the nucleus to inhibit hypertrophic gene expression. Key aspects were confirmed in vivo from the hearts of wild-type but not estrogen receptor β (ERβ) gene–deleted mice administered angiotensin II and estrogenic compounds. Our results identify a novel dual regulation of cardiomyocyte HDACs, shown here for the antihypertrophic sex steroid acting at ERβ. This mechanism potentially supports using ERβ agonists as HDAC modulators to treat cardiac disease.
Collapse
Affiliation(s)
- Ali Pedram
- Division of Endocrinology, Department of Medicine, University of California, Irvine, Irvine, CA 92717 Department of Veterans Affairs Medical Center, Long Beach, CA 90822 GTx, Inc., Memphis, TN 38163 Division of Cardiology, Department of Medicine, University of Colorado, Aurora, CO 80045
| | | | | | | | | | | |
Collapse
|
30
|
Komatsu M, Takei M, Ishii H, Sato Y. Glucose-stimulated insulin secretion: A newer perspective. J Diabetes Investig 2013; 4:511-6. [PMID: 24843702 PMCID: PMC4020243 DOI: 10.1111/jdi.12094] [Citation(s) in RCA: 167] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 03/12/2013] [Indexed: 01/23/2023] Open
Abstract
Existing concepts and models for glucose-stimulated insulin secretion (GSIS) are overviewed and a newer perspective has been formulated toward the physiological understanding of GSIS. A conventional model has been created on the basis of in vitro data on application of a square wave high glucose in the absence of any other stimulatory inputs. Glucose elicits rapid insulin release through an adenosine triphosphate-sensitive K(+) channel (KATP channel)-dependent mechanism, which is gradually augmented in a KATP channel-independent manner. Biphasic GSIS thus occurs. In the body, the β-cells are constantly exposed to stimulatory signals, such as glucagon-like peptide 1 (GLP-1), parasympathetic inputs, free fatty acid (FFA), amino acids and slightly suprathreshold levels of glucose, even at fasting. GLP-1 increases cellular cyclic adenosine monophosphate, parasympathetic stimulation activates protein kinase C, and FFA, amino acids and glucose generate metabolic amplification factors. Plasma glucose concentration gradually rises postprandially under such tonic stimulation. We hypothesize that these stimulatory inputs together make the β-cells responsive to glucose independently from its action on KATP channels. Robust GSIS in patients with a loss of function mutation of the sulfonylurea receptor, a subunit of KATP channels, is compatible with this hypothesis. Furthermore, pre-exposure of the islets to an activator of protein kinase A and/or C makes β-cells responsive to glucose in a KATP channel- and Ca(2+)-independent manner. We hypothesize that GSIS occurs in islet β-cells without glucose regulation of KATP channels in vivo, for which priming with cyclic adenosine monophosphate, protein kinase C and non-glucose nutrients are required. To understand the physiology of GSIS, comprehensive integration of accumulated knowledge is required.
Collapse
Affiliation(s)
- Mitsuhisa Komatsu
- Department of Internal Medicine Division of Diabetes, Endocrinology and Metabolism Shinshu University School of Medicine Matsumoto Nagano Japan
| | - Masahiro Takei
- Department of Internal Medicine Division of Diabetes, Endocrinology and Metabolism Shinshu University School of Medicine Matsumoto Nagano Japan
| | - Hiroaki Ishii
- Department of Internal Medicine Division of Diabetes, Endocrinology and Metabolism Shinshu University School of Medicine Matsumoto Nagano Japan
| | - Yoshihiko Sato
- Department of Internal Medicine Division of Diabetes, Endocrinology and Metabolism Shinshu University School of Medicine Matsumoto Nagano Japan
| |
Collapse
|
31
|
Garcia-Olivares J, Torres-Salazar D, Owens WA, Baust T, Siderovski DP, Amara SG, Zhu J, Daws LC, Torres GE. Inhibition of dopamine transporter activity by G protein βγ subunits. PLoS One 2013; 8:e59788. [PMID: 23555781 PMCID: PMC3608556 DOI: 10.1371/journal.pone.0059788] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 02/18/2013] [Indexed: 12/15/2022] Open
Abstract
Uptake through the Dopamine Transporter (DAT) is the primary mechanism of terminating dopamine signaling within the brain, thus playing an essential role in neuronal homeostasis. Deregulation of DAT function has been linked to several neurological and psychiatric disorders including ADHD, schizophrenia, Parkinson’s disease, and drug addiction. Over the last 15 years, several studies have revealed a plethora of mechanisms influencing the activity and cellular distribution of DAT; suggesting that fine-tuning of dopamine homeostasis occurs via an elaborate interplay of multiple pathways. Here, we show for the first time that the βγ subunits of G proteins regulate DAT activity. In heterologous cells and brain tissue, a physical association between Gβγ subunits and DAT was demonstrated by co-immunoprecipitation. Furthermore, in vitro pull-down assays using purified proteins established that this association occurs via a direct interaction between the intracellular carboxy-terminus of DAT and Gβγ. Functional assays performed in the presence of the non-hydrolyzable GTP analog GTP-γ-S, Gβγ subunit overexpression, or the Gβγ activator mSIRK all resulted in rapid inhibition of DAT activity in heterologous systems. Gβγ activation by mSIRK also inhibited dopamine uptake in brain synaptosomes and dopamine clearance from mouse striatum as measured by high-speed chronoamperometry in vivo. Gβγ subunits are intracellular signaling molecules that regulate a multitude of physiological processes through interactions with enzymes and ion channels. Our findings add neurotransmitter transporters to the growing list of molecules regulated by G-proteins and suggest a novel role for Gβγ signaling in the control of dopamine homeostasis.
Collapse
Affiliation(s)
- Jennie Garcia-Olivares
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Delany Torres-Salazar
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - William A. Owens
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Tracy Baust
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - David P. Siderovski
- Department of Pharmacology and UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Susan G. Amara
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Jun Zhu
- Department of Pharmaceutical and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina, United States of America
| | - Lynette C. Daws
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Gonzalo E. Torres
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
32
|
Schwetz TA, Ustione A, Piston DW. Neuropeptide Y and somatostatin inhibit insulin secretion through different mechanisms. Am J Physiol Endocrinol Metab 2013; 304:E211-21. [PMID: 23211512 PMCID: PMC3543566 DOI: 10.1152/ajpendo.00374.2012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pancreatic β-cells regulate glucose homeostasis by secreting insulin in response to glucose elevation and G protein-coupled receptor (GPCR) activation. Neuropeptide Y (NPY) and somatostatin (SST) attenuate insulin secretion through G(i) activation of Y(1) and SSTR(1&5) receptors, respectively. The downstream pathways altered by NPY and SST are poorly understood. Thus, we investigated these underlying mechanisms. NPY and SST increase cellular redox potential, suggesting that their inhibitory effect may not be mediated through metabolic inhibition. NPY does not affect intracellular calcium ([Ca(2+)](i)) activity upon glucose stimulation, whereas SST alters this response. G(βγ)-subunit inhibition by gallein attenuates insulin secretion but does not alter metabolism or [Ca(2+)](i). mSIRK-induced G(βγ) activation does not modulate glucose metabolism but increases [Ca(2+)](i) activity and potentiates insulin release. Cotreatment with gallein and NPY or SST reduces insulin secretion to levels similar to that of gallein alone. mSIRK and NPY cotreatment potentiates insulin secretion similarly to mSIRK alone, whereas mSIRK and SST treatment decreases insulin release. The data support a model where SST attenuates secretion through G(βγ) inhibition of Ca(2+) activity, while NPY activates a Ca(2+)-independent pathway mediated by G(α). GPCR ligands signal through multiple pathways to inhibit insulin secretion, and determining these mechanisms could lead to novel diabetic therapies.
Collapse
Affiliation(s)
- Tara A Schwetz
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | |
Collapse
|
33
|
Wells CA, Zurawski Z, Betke KM, Yim YY, Hyde K, Rodriguez S, Alford S, Hamm HE. Gβγ inhibits exocytosis via interaction with critical residues on soluble N-ethylmaleimide-sensitive factor attachment protein-25. Mol Pharmacol 2012; 82:1136-49. [PMID: 22962332 PMCID: PMC3502621 DOI: 10.1124/mol.112.080507] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 09/07/2012] [Indexed: 11/22/2022] Open
Abstract
Spatial and temporal regulation of neurotransmitter release is a complex process accomplished by the exocytotic machinery working in tandem with numerous regulatory proteins. G-protein βγ dimers regulate the core process of exocytosis by interacting with the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins soluble N-ethylmaleimide-sensitive factor attachment protein-25 (SNAP-25), syntaxin 1A, and synaptobrevin. Gβγ binding to ternary SNAREs overlaps with calcium-dependent binding of synaptotagmin, inhibiting synaptotagmin-1 binding and fusion of the synaptic vesicle. To further explore the binding sites of Gβγ on SNAP-25, peptides based on the sequence of SNAP-25 were screened for Gβγ binding. Peptides that bound Gβγ were subjected to alanine scanning mutagenesis to determine their relevance to the Gβγ-SNAP-25 interaction. Peptides from this screen were tested in protein-protein interaction assays for their ability to modulate the interaction of Gβγ with SNAP-25. A peptide from the C terminus, residues 193 to 206, significantly inhibited the interaction. In addition, Ala mutants of SNAP-25 residues from the C terminus of SNAP-25, as well as from the amino-terminal region decreased binding to Gβ₁γ₁. When SNAP-25 with eight residues mutated to alanine was assembled with syntaxin 1A, there was significantly reduced affinity of this mutated t-SNARE for Gβγ, but it still interacted with synaptotagmin-1 in a Ca²⁺ -dependent manner and reconstituted evoked exocytosis in botulinum neurotoxin E-treated neurons. However, the mutant SNAP-25 could no longer support 5-hydroxytryptamine-mediated inhibition of exocytosis.
Collapse
Affiliation(s)
- Christopher A Wells
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232-6600, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Upreti C, Zhang XL, Alford S, Stanton PK. Role of presynaptic metabotropic glutamate receptors in the induction of long-term synaptic plasticity of vesicular release. Neuropharmacology 2012; 66:31-9. [PMID: 22626985 DOI: 10.1016/j.neuropharm.2012.05.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 05/07/2012] [Accepted: 05/09/2012] [Indexed: 11/24/2022]
Abstract
While postsynaptic ionotropic and metabotropic glutamate receptors have received the lions share of attention in studies of long-term activity-dependent synaptic plasticity, it is becoming clear that presynaptic metabotropic glutamate receptors play critical roles in both short-term and long-term plasticity of vesicular transmitter release, and that they act both at the level of voltage-dependent calcium channels and directly on proteins of the vesicular release machinery. Activation of G protein-coupled receptors can transiently inhibit vesicular release through the release of Gβγ which binds to both voltage-dependent calcium channels to reduce calcium influx, and directly to the C-terminus region of the SNARE protein SNAP-25. Our recent work has revealed that the binding of Gβγ to SNAP-25 is necessary, but not sufficient, to elicit long-term depression (LTD) of vesicular glutamate release, and that the concomitant release of Gα(i) and the second messenger nitric oxide are also necessary steps in the presynaptic LTD cascade. Here, we review the current state of knowledge of the molecular steps mediating short-term and long-term plasticity of vesicular release at glutamatergic synapses, and the many gaps that remain to be addressed. This article is part of a Special Issue entitled 'Metabotropic Glutamate Receptors'.
Collapse
Affiliation(s)
- Chirag Upreti
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | |
Collapse
|
35
|
Straub SG, Sharp GWG. Evolving insights regarding mechanisms for the inhibition of insulin release by norepinephrine and heterotrimeric G proteins. Am J Physiol Cell Physiol 2012; 302:C1687-98. [PMID: 22492651 DOI: 10.1152/ajpcell.00282.2011] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Norepinephrine has for many years been known to have three major effects on the pancreatic β-cell which lead to the inhibition of insulin release. These are activation of K(+) channels to hyperpolarize the cell and prevent the gating of voltage-dependent Ca(2+) channels that increase intracellular Ca(2+) concentration ([Ca(2+)](i)) and trigger release; inhibition of adenylyl cyclases, thus preventing the augmentation of stimulated insulin release by cyclic AMP; and a "distal" effect that occurs downstream of increased [Ca(2+)](i) to inhibit exocytosis. All three are mediated by the pertussis toxin (PTX)-sensitive heterotrimeric Gi and Go proteins. The distal inhibitory effect on exocytosis is now known to be due to the binding of G protein βγ subunits to the synaptosomal-associated protein of 25 kDa (SNAP-25) on the soluble NSF attachment protein receptor (SNARE) complex. Recent studies have uncovered two more actions of norepinephrine on the β-cell: 1) retardation of the refilling of the readily releasable granule pool after it has been discharged, an action that is mediated by Gαi(1) and/or Gαi(2); and 2) inhibition of endocytosis that is mediated by Gz. Of importance also are new findings that Gαo regulates the number of docked granules in the β-cell, and that Gαo(2) maintains a tonic inhibitory influence on secretion. The latter provides another explanation as to why PTX, which blocks the effect of Gαo(2), was initially called "islet activating protein." Finally, there is clear evidence that overexpression of α(2A)-adrenergic receptors in β-cells can cause type 2 diabetes.
Collapse
Affiliation(s)
- Susanne G Straub
- Department of Molecular Medicine, Cornell University, Ithaca, New York 14853-6401, USA
| | | |
Collapse
|
36
|
Go2 G protein mediates galanin inhibitory effects on insulin release from pancreatic β cells. Proc Natl Acad Sci U S A 2012; 109:2636-41. [PMID: 22308501 DOI: 10.1073/pnas.1200100109] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The neuropeptide galanin regulates numerous physiological activities in the body, including feeding and metabolism, learning and memory, nociception and spinal reflexes, and anxiety and related behaviors. Modulation of blood glucose levels by suppressing insulin release was the first reported activity for galanin. This inhibition was mediated by one or more pertussis toxin-sensitive G proteins of the G(i/o) subfamily. However, the molecular identities of the specific G protein(s) and intracellular effectors have not been fully revealed. Recently, we demonstrated that mice lacking G(o)2, but not other members of the G(i/o) protein family, secrete more insulin than controls upon glucose challenge, indicating that G(o)2 is a major transducer for the inhibitory regulation of insulin secretion. In this study, we investigated galanin signaling mechanisms in β cells using cell biological and electrophysiological approaches. We found that islets lacking G(o)2, but not other G(i/o) proteins, lose the inhibitory effect of galanin on insulin release. Potentiation of ATP-sensitive potassium (K(ATP)) and inhibition of calcium currents by galanin were disrupted by anti-G(o)2α antibodies. Galanin actions on K(ATP) and calcium currents were completely lost in G(o)2(-/-) β cells. Furthermore, the hyperglycemic effect of galanin is also blunted in G(o)2(-/-) mice. Our results demonstrate that G(o)2 mediates the inhibition of insulin release by galanin by regulating both K(ATP) and Ca(2+) channels in mice. Our findings provide insight into galanin's action in glucose homeostasis. The results may also be relevant to the understanding of galanin signaling in other biological systems, especially the central nervous system.
Collapse
|
37
|
Betke KM, Wells CA, Hamm HE. GPCR mediated regulation of synaptic transmission. Prog Neurobiol 2012; 96:304-21. [PMID: 22307060 DOI: 10.1016/j.pneurobio.2012.01.009] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 01/12/2012] [Accepted: 01/20/2012] [Indexed: 02/06/2023]
Abstract
Synaptic transmission is a finely regulated mechanism of neuronal communication. The release of neurotransmitter at the synapse is not only the reflection of membrane depolarization events, but rather, is the summation of interactions between ion channels, G protein coupled receptors, second messengers, and the exocytotic machinery itself which exposes the components within a synaptic vesicle to the synaptic cleft. The focus of this review is to explore the role of G protein signaling as it relates to neurotransmission, as well as to discuss the recently determined inhibitory mechanism of Gβγ dimers acting directly on the exocytotic machinery proteins to inhibit neurotransmitter release.
Collapse
Affiliation(s)
- Katherine M Betke
- Vanderbilt University Medical Center, 442 Robinson Research Building, 23rd Ave. South @ Pierce, Nashville, TN 37232-6600, USA.
| | | | | |
Collapse
|
38
|
Wells CA, Betke KM, Lindsley CW, Hamm HE. Label-free detection of G protein-SNARE interactions and screening for small molecule modulators. ACS Chem Neurosci 2012; 3:69-78. [PMID: 22368765 DOI: 10.1021/cn200102d] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
G(i/o)-coupled presynaptic GPCRs are major targets in neuropsychiatric diseases. For example, presynaptic auto- or heteroreceptors include the D(2) dopamine receptor, H(3) histamine receptor, 5HT(1) serotonin receptors, M(4) acetylcholine receptors, GABA(B) receptors, Class II and III metabotropic glutamate receptors, opioid receptors, as well as many other receptors. These GPCRs exert their influence by decreasing exocytosis of synaptic vesicles. One mechanism by which they act is through direct interaction of the Gβγ subunit with members of the SNARE complex downstream of voltage-dependent calcium channels, and specifically with the C-terminus of SNAP25 and the H3 domain of syntaxin1A(1-3). Small molecule inhibitors of the Gβγ-SNARE interaction would allow the study of the relative importance of this mechanism in more detail. We have utilized novel, label-free technology to detect this protein-protein interaction and screen for several small molecule compounds that perturb the interaction, demonstrating the viability of this approach. Interestingly, the screen also produced enhancers of the Gβγ-SNARE interaction.
Collapse
Affiliation(s)
- Christopher A. Wells
- Department
of Pharmacology and §Department of Chemistry, Vanderbilt University Medical Center, 442 Robinson Research Building, 23rd
Avenue South @ Pierce, Nashville, Tennessee 37232-6600, United States
| | - Katherine M. Betke
- Department
of Pharmacology and §Department of Chemistry, Vanderbilt University Medical Center, 442 Robinson Research Building, 23rd
Avenue South @ Pierce, Nashville, Tennessee 37232-6600, United States
| | - Craig W. Lindsley
- Department
of Pharmacology and §Department of Chemistry, Vanderbilt University Medical Center, 442 Robinson Research Building, 23rd
Avenue South @ Pierce, Nashville, Tennessee 37232-6600, United States
| | - Heidi E. Hamm
- Department
of Pharmacology and §Department of Chemistry, Vanderbilt University Medical Center, 442 Robinson Research Building, 23rd
Avenue South @ Pierce, Nashville, Tennessee 37232-6600, United States
| |
Collapse
|
39
|
Lindau M. High resolution electrophysiological techniques for the study of calcium-activated exocytosis. Biochim Biophys Acta Gen Subj 2011; 1820:1234-42. [PMID: 22209782 DOI: 10.1016/j.bbagen.2011.12.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 12/09/2011] [Accepted: 12/10/2011] [Indexed: 11/30/2022]
Abstract
BACKGROUND Neurotransmitters, neuropeptides and hormones are released from secretory vesicles of nerve terminals and neuroendocrine cells by calcium-activated exocytosis. A key step in this process is the formation of a fusion pore between the vesicle membrane and the plasma membrane. Exocytotic fusion leads to an increase in plasma membrane area that can be measured as a proportional increase in plasma membrane capacitance. SCOPE OF REVIEW High resolution capacitance measurements in single cells, nerve terminals and small membrane patches have become possible with the development of the patch clamp technique. This review discusses the methods of whole cell patch clamp capacitance measurements and their use in conjunction with voltage clamp pulse stimulation and with stimulation by photorelease of caged calcium. It also discusses patch capacitance measurements for the study of single exocytotic events and fusion pore properties in neuroendocrine cells and nerve terminals. MAJOR CONCLUSIONS Capacitance measurements provide high resolution information on the extent and time course of fusion for the characterization of vesicle pools and the kinetics of exocytosis. They allow the characterization of the mode of fusion including distinction of single vesicle full fusion, transient kiss-and-run fusion or multivesicular compound exocytosis. Furthermore, measurement of fusion pore conductances and their dynamic behavior has enabled the characterization of fusion pore properties in a way that resembles the characterization of ion channel function through single channel recordings. GENERAL SIGNIFICANCE The combination of patch clamp capacitance measurements with pharmacological and molecular manipulations of exocytosis is emerging as a powerful approach to investigate the molecular mechanisms of calcium-activated exocytotic fusion pore formation. This article is part of a Special Issue entitled Biochemical, biophysical and genetic approaches to intracellular calcium signalling.
Collapse
Affiliation(s)
- Manfred Lindau
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
40
|
Augmented glucose-induced insulin release in mice lacking G(o2), but not G(o1) or G(i) proteins. Proc Natl Acad Sci U S A 2011; 108:1693-8. [PMID: 21220323 DOI: 10.1073/pnas.1018903108] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Insulin secretion by pancreatic β cells is a complex and highly regulated process. Disruption of this process can lead to diabetes mellitus. One of the various pathways involved in the regulation of insulin secretion is the activation of heterotrimeric G proteins. Bordetella pertussis toxin (PTX) promotes insulin secretion, suggesting the involvement of one or more of three G(i) and/or two G(o) proteins as suppressors of insulin secretion from β cells. However, neither the mechanism of this inhibitory modulation of insulin secretion nor the identity of the G(i/o) proteins involved has been elucidated. Here we show that one of the two splice variants of G(o), G(o2), is a key player in the control of glucose-induced insulin secretion by β cells. Mice lacking G(o2)α, but not those lacking α subunits of either G(o1) or any G(i) proteins, handle glucose loads more efficiently than wild-type (WT) mice, and do so by increased glucose-induced insulin secretion. We thus provide unique genetic evidence that the G(o2) protein is a transducer in an inhibitory pathway that prevents damaging oversecretion of insulin.
Collapse
|
41
|
Štrbák V. Cell Swelling-induced Peptide Hormone Secretion. Cell Physiol Biochem 2011; 28:1155-68. [DOI: 10.1159/000335849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2011] [Indexed: 11/19/2022] Open
|
42
|
Zhao Y, Fang Q, Straub SG, Lindau M, Sharp GWG. Hormonal inhibition of endocytosis: novel roles for noradrenaline and G protein G(z). J Physiol 2010; 588:3499-509. [PMID: 20643775 DOI: 10.1113/jphysiol.2010.190116] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The modulation of endocytosis following exocytosis by noradrenaline (NA), a physiological inhibitor of insulin secretion, was investigated in INS 832/13 cells using patch-clamp capacitance measurements. Endocytosis was inhibited by NA in a pertussis toxin-insensitive manner. Dialysing a synthetic peptide mimicking the C-terminus of the α-subunit of G(z) into the cells blocked the inhibition of endocytosis by NA. Cell-attached capacitance measurements indicated that inhibition by NA was due to a decreased number of endocytotic events without a change in vesicle size. Analysis of fission pore closure kinetics revealed two distinct fission modes, with NA selectively inhibiting the rapid fission pore closure events. Comparison of the actions of NA and deltamethrin, a calcineurin antagonist and potent inhibitor of endocytosis, demonstrated that they inhibit endocytosis by different mechanisms. These findings establish novel actions for NA and G(z) in insulin-secreting cells and possibly other cell types.
Collapse
Affiliation(s)
- Ying Zhao
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853-6401, USA
| | | | | | | | | |
Collapse
|