1
|
Topolski MA, Gilmore BL, Khondaker R, Michniak JA, Studtmann C, Chen Y, Wagner GN, Pozo‐Aranda AE, Farris S, Swanger SA. Input-Specific Localization of NMDA Receptor GluN2 Subunits in Thalamocortical Neurons. J Neurochem 2025; 169:e70049. [PMID: 40123534 PMCID: PMC11931474 DOI: 10.1111/jnc.70049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 02/10/2025] [Accepted: 03/12/2025] [Indexed: 03/25/2025]
Abstract
Molecular and functional diversity among synapses is generated, in part, by differential expression of neurotransmitter receptors and their associated protein complexes. N-methyl-D-aspartate receptors (NMDARs) are tetrameric ionotropic glutamate receptors that most often comprise two GluN1 and two GluN2 subunits. NMDARs generate functionally diverse synapses across neuron populations through cell-type-specific expression patterns of GluN2 subunits (GluN2A-2D), which have vastly different functional properties and distinct downstream signaling. Diverse NMDAR function has also been observed at anatomically distinct inputs to a single neuron population. However, the mechanisms that generate input-specific NMDAR function remain unknown, as few studies have investigated subcellular GluN2 subunit localization in native brain tissue. We investigated NMDAR synaptic localization in thalamocortical (TC) neurons expressing all four GluN2 subunits. Utilizing high-resolution fluorescence imaging and knockout-validated antibodies, we revealed subtype- and input-specific GluN2 localization at corticothalamic (CT) versus sensory inputs to TC neurons in 4-week-old male and female C57Bl/6J mice. GluN2B was the most abundant postsynaptic subunit across all glutamatergic synapses, followed by GluN2A and GluN2C, and GluN2D was localized to the fewest synapses. GluN2B was preferentially localized to CT synapses over sensory synapses, while GluN2A and GluN2C were more abundant at sensory inputs compared to CT inputs. Furthermore, postsynaptic scaffolding proteins PSD-95 and SAP102 were preferentially colocalized with specific GluN2 subunits, and SAP102 was more abundant at sensory synapses than PSD-95. This work indicates that TC neurons exhibit subtype- and input-specific localization of diverse NMDARs and associated scaffolding proteins that likely contribute to functional differences between CT and sensory synapses.
Collapse
Affiliation(s)
| | | | - Rabeya Khondaker
- Fralin Biomedical Research Institute at VTCRoanokeVirginiaUSA
- Graduate Program in Translational Biology, Medicine, and HealthVirginia TechBlacksburgVirginiaUSA
| | - Juliana A. Michniak
- Fralin Biomedical Research Institute at VTCRoanokeVirginiaUSA
- Department of Biological Systems EngineeringVirginia TechBlacksburgVirginiaUSA
| | - Carleigh Studtmann
- Fralin Biomedical Research Institute at VTCRoanokeVirginiaUSA
- Graduate Program in Translational Biology, Medicine, and HealthVirginia TechBlacksburgVirginiaUSA
| | - Yang Chen
- Fralin Biomedical Research Institute at VTCRoanokeVirginiaUSA
- Graduate Program in Translational Biology, Medicine, and HealthVirginia TechBlacksburgVirginiaUSA
| | - Gwen N. Wagner
- Fralin Biomedical Research Institute at VTCRoanokeVirginiaUSA
| | - Aaron E. Pozo‐Aranda
- Fralin Biomedical Research Institute at VTCRoanokeVirginiaUSA
- School of NeuroscienceVirginia TechBlacksburgVirginiaUSA
| | - Shannon Farris
- Fralin Biomedical Research Institute at VTCRoanokeVirginiaUSA
- Department of Biomedical Sciences and PathobiologyVirginia‐Maryland College of Veterinary Medicine, Virginia TechBlacksburgVirginiaUSA
- Department of Internal MedicineVirginia Tech Carilion School of MedicineRoanokeVirginiaUSA
| | - Sharon A. Swanger
- Fralin Biomedical Research Institute at VTCRoanokeVirginiaUSA
- Department of Biomedical Sciences and PathobiologyVirginia‐Maryland College of Veterinary Medicine, Virginia TechBlacksburgVirginiaUSA
- Department of Internal MedicineVirginia Tech Carilion School of MedicineRoanokeVirginiaUSA
| |
Collapse
|
2
|
Kuo CC, McCall JG. Neural circuit-selective, multiplexed pharmacological targeting of prefrontal cortex-projecting locus coeruleus neurons drives antinociception. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.08.598059. [PMID: 38895281 PMCID: PMC11185789 DOI: 10.1101/2024.06.08.598059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Selective manipulation of neural circuits using optogenetics and chemogenetics holds great translational potential but requires genetic access to neurons. Here, we demonstrate a general framework for identifying genetic tool-independent, pharmacological strategies for neural circuit-selective modulation. We developed an economically accessible calcium imaging-based approach for large-scale pharmacological scans of endogenous receptor-mediated neural activity. As a testbed for this approach, we used the mouse locus coeruleus due to the combination of its widespread, modular efferent neural circuitry and its wide variety of endogenously expressed GPCRs. Using machine learning-based action potential deconvolution and retrograde tracing, we identified an agonist cocktail that selectively inhibits medial prefrontal cortex-projecting locus coeruleus neurons. In vivo, this cocktail produces synergistic antinociception, consistent with selective pharmacological blunting of this neural circuit. This framework has broad utility for selective targeting of other neural circuits under different physiological and pathological states, facilitating non-genetic translational applications arising from cell type-selective discoveries.
Collapse
Affiliation(s)
- Chao-Cheng Kuo
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA; Center for Clinical Pharmacology, University of Health Sciences and Pharmacy in St. Louis and Washington University School of Medicine, St. Louis, MO, USA; Washington University Pain Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Jordan G. McCall
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA; Center for Clinical Pharmacology, University of Health Sciences and Pharmacy in St. Louis and Washington University School of Medicine, St. Louis, MO, USA; Washington University Pain Center, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
3
|
Topolski MA, Gilmore BL, Khondaker R, Michniak JA, Studtmann C, Chen Y, Wagner GN, Pozo-Aranda AE, Farris S, Swanger SA. Input-specific localization of NMDA receptor GluN2 subunits in thalamocortical neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.23.607324. [PMID: 39229083 PMCID: PMC11370540 DOI: 10.1101/2024.08.23.607324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Molecular and functional diversity among synapses is generated, in part, by differential expression of neurotransmitter receptors and their associated protein complexes. N-methyl-D-aspartate receptors (NMDARs) are tetrameric ionotropic glutamate receptors that most often comprise two GluN1 and two GluN2 subunits. NMDARs generate functionally diverse synapses across neuron populations through cell-type-specific expression patterns of GluN2 subunits (GluN2A - 2D), which have vastly different functional properties and distinct downstream signaling. Diverse NMDAR function has also been observed at anatomically distinct inputs to a single neuron population. However, the mechanisms that generate input-specific NMDAR function remain unknown as few studies have investigated subcellular GluN2 subunit localization in native brain tissue. We investigated NMDAR synaptic localization in thalamocortical (TC) neurons expressing all four GluN2 subunits. Utilizing super resolution imaging and knockout-validated antibodies, we revealed subtype- and input-specific GluN2 localization at corticothalamic (CT) versus sensory inputs to TC neurons in 4-week-old male and female C57Bl/6J mice. GluN2B was the most abundant postsynaptic subunit across all glutamatergic synapses followed by GluN2A and GluN2C, and GluN2D was localized to the fewest synapses. GluN2B was preferentially localized to CT synapses over sensory synapses, while GluN2A and GluN2C were more abundant at sensory inputs compared to CT inputs. Furthermore, postsynaptic scaffolding proteins PSD95 and SAP102 were preferentially localized with specific GluN2 subunits, and SAP102 was more abundant at sensory synapses than PSD95. This work indicates that TC neurons exhibit subtype- and input-specific localization of diverse NMDARs and associated scaffolding proteins that likely contribute to functional differences between CT and sensory synapses.
Collapse
Affiliation(s)
| | - Brian L. Gilmore
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA
| | - Rabeya Khondaker
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA, USA
| | - Juliana A. Michniak
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Carleigh Studtmann
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA, USA
| | - Yang Chen
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA, USA
| | - Gwen N. Wagner
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA
| | - Aaron E. Pozo-Aranda
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA
- School of Neuroscience, Virginia Tech, Blacksburg, VA, USA
| | - Shannon Farris
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
- Department of Internal Medicine, Virginia Tech Carilion School of Medicine, Roanoke, VA, USA
| | - Sharon A. Swanger
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
- Department of Internal Medicine, Virginia Tech Carilion School of Medicine, Roanoke, VA, USA
| |
Collapse
|
4
|
Studtmann C, Ladislav M, Safari M, Khondaker R, Chen Y, Vaughan GA, Topolski MA, Tomović E, Balík A, Swanger SA. Ventral posterolateral and ventral posteromedial thalamocortical neurons have distinct physiological properties. J Neurophysiol 2023; 130:1492-1507. [PMID: 37937368 PMCID: PMC11068404 DOI: 10.1152/jn.00525.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 10/09/2023] [Accepted: 11/01/2023] [Indexed: 11/09/2023] Open
Abstract
Somatosensory information is propagated from the periphery to the cerebral cortex by two parallel pathways through the ventral posterolateral (VPL) and ventral posteromedial (VPM) thalamus. VPL and VPM neurons receive somatosensory signals from the body and head, respectively. VPL and VPM neurons may also receive cell type-specific GABAergic input from the reticular nucleus of the thalamus. Although VPL and VPM neurons have distinct connectivity and physiological roles, differences in their functional properties remain unclear as they are often studied as one ventrobasal thalamus neuron population. Here, we directly compared synaptic and intrinsic properties of VPL and VPM neurons in C57Bl/6J mice of both sexes aged P25-P32. VPL neurons showed greater depolarization-induced spike firing and spike frequency adaptation than VPM neurons. VPL and VPM neurons fired similar numbers of spikes during hyperpolarization rebound bursts, but VPM neurons exhibited shorter burst latency compared with VPL neurons, which correlated with larger sag potential. VPM neurons had larger membrane capacitance and more complex dendritic arbors. Recordings of spontaneous and evoked synaptic transmission suggested that VPL neurons receive stronger excitatory synaptic input, whereas inhibitory synapse strength was stronger in VPM neurons. This work indicates that VPL and VPM thalamocortical neurons have distinct intrinsic and synaptic properties. The observed functional differences could have important implications for their specific physiological and pathophysiological roles within the somatosensory thalamocortical network.NEW & NOTEWORTHY This study revealed that somatosensory thalamocortical neurons in the VPL and VPM have substantial differences in excitatory synaptic input and intrinsic firing properties. The distinct properties suggest that VPL and VPM neurons could process somatosensory information differently and have selective vulnerability to disease. This work improves our understanding of nucleus-specific neuron function in the thalamus and demonstrates the critical importance of studying these parallel somatosensory pathways separately.
Collapse
Affiliation(s)
- Carleigh Studtmann
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia, United States
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, Virginia, United States
| | - Marek Ladislav
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia, United States
| | - Mona Safari
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia, United States
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, Virginia, United States
| | - Rabeya Khondaker
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia, United States
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, Virginia, United States
| | - Yang Chen
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia, United States
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, Virginia, United States
| | - Grace A Vaughan
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia, United States
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, Virginia, United States
| | - Mackenzie A Topolski
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia, United States
| | - Eni Tomović
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia, United States
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Aleš Balík
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Sharon A Swanger
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia, United States
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, United States
- Department of Internal Medicine, Virginia Tech Carilion School of Medicine, Roanoke, Virginia, United States
| |
Collapse
|
5
|
Bagnato S. The role of plasticity in the recovery of consciousness. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:375-395. [PMID: 35034750 DOI: 10.1016/b978-0-12-819410-2.00020-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Disorders of consciousness (DOCs), i.e., coma, vegetative state, and minimally conscious state are the consequences of a severe brain injury that disrupts the brain ability to generate consciousness. Recovery from DOCs requires functional and structural changes in the brain. The sites where these plastic changes take place vary according to the pathophysiology of the DOC. The ascending reticular activating system of the brainstem and its complex connections with the thalamus and cortex are involved in the pathophysiology of coma. Subcortical structures, such as the striatum and globus pallidus, together with thalamocortical and corticothalamic projections, the basal forebrain, and several networks among different cortical areas are probably involved in vegetative and minimally conscious states. Some mechanisms of plasticity that allegedly operate in each of these sites to promote recovery of consciousness will be discussed in this chapter. While some mechanisms of plasticity work at a local level, others produce functional changes in complex neuronal networks, for example by entraining neuronal oscillations. The specific mechanisms of brain plasticity represent potential targets for future treatments aiming to restore consciousness in patients with severe DOCs.
Collapse
Affiliation(s)
- Sergio Bagnato
- Unit of Neurophysiology and Unit for Severe Acquired Brain Injuries, Rehabilitation Department, Giuseppe Giglio Foundation, Cefalù (PA), Italy.
| |
Collapse
|
6
|
Logiaco L, Abbott LF, Escola S. Thalamic control of cortical dynamics in a model of flexible motor sequencing. Cell Rep 2021; 35:109090. [PMID: 34077721 PMCID: PMC8449509 DOI: 10.1016/j.celrep.2021.109090] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/04/2021] [Accepted: 04/16/2021] [Indexed: 12/26/2022] Open
Abstract
The neural mechanisms that generate an extensible library of motor motifs and flexibly string them into arbitrary sequences are unclear. We developed a model in which inhibitory basal ganglia output neurons project to thalamic units that are themselves bidirectionally connected to a recurrent cortical network. We model the basal ganglia inhibitory patterns as silencing some thalamic neurons while leaving others disinhibited and free to interact with cortex during specific motifs. We show that a small number of disinhibited thalamic neurons can control cortical dynamics to generate specific motor output in a noise-robust way. Additionally, a single "preparatory" thalamocortical network can produce fast cortical dynamics that support rapid transitions between any pair of learned motifs. If the thalamic units associated with each sequence component are segregated, many motor outputs can be learned without interference and then combined in arbitrary orders for the flexible production of long and complex motor sequences.
Collapse
Affiliation(s)
- Laureline Logiaco
- Zuckerman Institute, Department of Neuroscience, Columbia University, New York, NY 10027, USA; Zuckerman Institute, Department of Psychiatry, Columbia University, New York, NY 10027, USA.
| | - L F Abbott
- Zuckerman Institute, Department of Neuroscience, Columbia University, New York, NY 10027, USA
| | - Sean Escola
- Zuckerman Institute, Department of Psychiatry, Columbia University, New York, NY 10027, USA
| |
Collapse
|
7
|
Crunelli V, Lőrincz ML, Connelly WM, David F, Hughes SW, Lambert RC, Leresche N, Errington AC. Dual function of thalamic low-vigilance state oscillations: rhythm-regulation and plasticity. Nat Rev Neurosci 2018; 19:107-118. [PMID: 29321683 DOI: 10.1038/nrn.2017.151] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
During inattentive wakefulness and non-rapid eye movement (NREM) sleep, the neocortex and thalamus cooperatively engage in rhythmic activities that are exquisitely reflected in the electroencephalogram as distinctive rhythms spanning a range of frequencies from <1 Hz slow waves to 13 Hz alpha waves. In the thalamus, these diverse activities emerge through the interaction of cell-intrinsic mechanisms and local and long-range synaptic inputs. One crucial feature, however, unifies thalamic oscillations of different frequencies: repetitive burst firing driven by voltage-dependent Ca2+ spikes. Recent evidence reveals that thalamic Ca2+ spikes are inextricably linked to global somatodendritic Ca2+ transients and are essential for several forms of thalamic plasticity. Thus, we propose herein that alongside their rhythm-regulation function, thalamic oscillations of low-vigilance states have a plasticity function that, through modifications of synaptic strength and cellular excitability in local neuronal assemblies, can shape ongoing oscillations during inattention and NREM sleep and may potentially reconfigure thalamic networks for faithful information processing during attentive wakefulness.
Collapse
Affiliation(s)
- Vincenzo Crunelli
- Department of Physiology and Biochemistry, University of Malta, Msida, Malta; and the Neuroscience Division, School of Bioscience, Cardiff University, Cardiff, UK
| | - Magor L Lőrincz
- Research Group for Cellular and Network Neurophysiology of the Hungarian Academy of Sciences, Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
| | - William M Connelly
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - François David
- Lyon Neuroscience Research Center, Centre national de la recherche scientifique (CNRS) unité mixte de recherche (UMR) 5292- INSERM U1028-Université Claude Bernard, Lyon, France
| | | | - Régis C Lambert
- Sorbonne Universités, University Pierre and Marie Curie (UPMC) Univ. Paris 06, INSERM, Centre national de la recherche scientifique (CNRS), Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Paris, France
| | - Nathalie Leresche
- Sorbonne Universités, University Pierre and Marie Curie (UPMC) Univ. Paris 06, INSERM, Centre national de la recherche scientifique (CNRS), Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Paris, France
| | - Adam C Errington
- Neuroscience and Mental Health Research Institute, School of Medicine, Cardiff University, Cardiff, UK
| |
Collapse
|
8
|
Form and Function of Sleep Spindles across the Lifespan. Neural Plast 2016; 2016:6936381. [PMID: 27190654 PMCID: PMC4848449 DOI: 10.1155/2016/6936381] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 03/16/2016] [Indexed: 01/11/2023] Open
Abstract
Since the advent of EEG recordings, sleep spindles have been identified as hallmarks of non-REM sleep. Despite a broad general understanding of mechanisms of spindle generation gleaned from animal studies, the mechanisms underlying certain features of spindles in the human brain, such as “global” versus “local” spindles, are largely unknown. Neither the topography nor the morphology of sleep spindles remains constant throughout the lifespan. It is likely that changes in spindle phenomenology during development and aging are the result of dramatic changes in brain structure and function. Across various developmental windows, spindle activity is correlated with general cognitive aptitude, learning, and memory; however, these correlations vary in strength, and even direction, depending on age and metrics used. Understanding these differences across the lifespan should further clarify how these oscillations are generated and their function under a variety of circumstances. We discuss these issues, and their translational implications for human cognitive function. Because sleep spindles are similarly affected in disorders of neurodevelopment (such as schizophrenia) and during aging (such as neurodegenerative conditions), both types of disorders may benefit from therapies based on a better understanding of spindle function.
Collapse
|
9
|
Kim Y, Hsu CL, Cembrowski MS, Mensh BD, Spruston N. Dendritic sodium spikes are required for long-term potentiation at distal synapses on hippocampal pyramidal neurons. eLife 2015; 4:e06414. [PMID: 26247712 PMCID: PMC4576155 DOI: 10.7554/elife.06414] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 08/05/2015] [Indexed: 12/12/2022] Open
Abstract
Dendritic integration of synaptic inputs mediates rapid neural computation as well as longer-lasting plasticity. Several channel types can mediate dendritically initiated spikes (dSpikes), which may impact information processing and storage across multiple timescales; however, the roles of different channels in the rapid vs long-term effects of dSpikes are unknown. We show here that dSpikes mediated by Nav channels (blocked by a low concentration of TTX) are required for long-term potentiation (LTP) in the distal apical dendrites of hippocampal pyramidal neurons. Furthermore, imaging, simulations, and buffering experiments all support a model whereby fast Nav channel-mediated dSpikes (Na-dSpikes) contribute to LTP induction by promoting large, transient, localized increases in intracellular calcium concentration near the calcium-conducting pores of NMDAR and L-type Cav channels. Thus, in addition to contributing to rapid neural processing, Na-dSpikes are likely to contribute to memory formation via their role in long-lasting synaptic plasticity.
Collapse
Affiliation(s)
- Yujin Kim
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
- Department of Neurobiology, Northwestern University, Evanston, United States
| | - Ching-Lung Hsu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
- Department of Neurobiology, Northwestern University, Evanston, United States
| | - Mark S Cembrowski
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Brett D Mensh
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Nelson Spruston
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
- Department of Neurobiology, Northwestern University, Evanston, United States
| |
Collapse
|
10
|
Scherder EJA, Plooij B, Achterberg WP, Pieper M, Wiegersma M, Lobbezoo F, Oosterman JM. Chronic pain in "probable" vascular dementia: preliminary findings. PAIN MEDICINE 2014; 16:442-50. [PMID: 25529977 DOI: 10.1111/pme.12637] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND In a previous study, the levels of pain reported by patients with "possible" vascular dementia (VaD) were higher than those reported by older individuals without dementia. OBJECTIVE To examine experienced pain in patients with "probable" VaD, confirmed by brain imaging. STUDY DESIGN Observational, cross sectional. SETTING Nursing home. METHODS The participants were 20 nursing home residents (14 females, 6 males) who met the NINDS-AIREN criteria for "probable" VaD and 22 nursing home residents with a normal mental status (18 females, 4 males). The patients were in a mild to moderate stage of dementia. All of the participants were suffering from arthritis/arthrosis or osteoporosis. Global cognitive functioning was measured by the Mini-Mental State Examination. Pain was assessed by the Coloured Analogue Scale (CAS: original and modified version) and the Faces Pain Scale. The Geriatric Depression Scale and the Symptom Checklist-90 were used to assess mood. RESULTS The main finding was that, after controlling for mood, the pain levels indicated by patients with "probable" VaD (M = 102.32; standard deviation [SD] = 53.42) were significantly higher than those indicated by the control group (M = 59.17; SD = 38.75), only according to the CAS modified version (F[1,29]) = 5.62, P = 0.01, η2 = 0.16). CONCLUSION As VaD patients may experience greater pain than controls, it is essential for prescribers to be aware of the presence of this neuropathology if these patients are to receive adequate treatment.
Collapse
Affiliation(s)
- Erik J A Scherder
- Department of Clinical Neuropsychology, VU University, Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
11
|
Min MY, Yang HW, Yen CT, Chen CC, Cheng SJ. ERK, synaptic plasticity and acid-induced-muscle pain. Commun Integr Biol 2014. [DOI: 10.4161/cib.15694] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
12
|
Neubauer FB, Sederberg A, MacLean JN. Local changes in neocortical circuit dynamics coincide with the spread of seizures to thalamus in a model of epilepsy. Front Neural Circuits 2014; 8:101. [PMID: 25232306 PMCID: PMC4153318 DOI: 10.3389/fncir.2014.00101] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Accepted: 08/01/2014] [Indexed: 11/13/2022] Open
Abstract
During the generalization of epileptic seizures, pathological activity in one brain area recruits distant brain structures into joint synchronous discharges. However, it remains unknown whether specific changes in local circuit activity are related to the aberrant recruitment of anatomically distant structures into epileptiform discharges. Further, it is not known whether aberrant areas recruit or entrain healthy ones into pathological activity. Here we study the dynamics of local circuit activity during the spread of epileptiform discharges in the zero-magnesium in vitro model of epilepsy. We employ high-speed multi-photon imaging in combination with dual whole-cell recordings in acute thalamocortical (TC) slices of the juvenile mouse to characterize the generalization of epileptic activity between neocortex and thalamus. We find that, although both structures are exposed to zero-magnesium, the initial onset of focal epileptiform discharge occurs in cortex. This suggests that local recurrent connectivity that is particularly prevalent in cortex is important for the initiation of seizure activity. Subsequent recruitment of thalamus into joint, generalized discharges is coincident with an increase in the coherence of local cortical circuit activity that itself does not depend on thalamus. Finally, the intensity of population discharges is positively correlated between both brain areas. This suggests that during and after seizure generalization not only the timing but also the amplitude of epileptiform discharges in thalamus is entrained by cortex. Together these results suggest a central role of neocortical activity for the onset and the structure of pathological recruitment of thalamus into joint synchronous epileptiform discharges.
Collapse
Affiliation(s)
- Florian B Neubauer
- Department of Neurobiology, The University of Chicago Chicago, IL, USA ; Department of Physiology, University of Bern Bern, Switzerland
| | - Audrey Sederberg
- Department of Neurobiology, The University of Chicago Chicago, IL, USA
| | - Jason N MacLean
- Department of Neurobiology, The University of Chicago Chicago, IL, USA ; Committee on Computational Neuroscience, The University of Chicago Chicago, IL, USA
| |
Collapse
|
13
|
Hulme SR, Connelly WM. L-type calcium channel-dependent inhibitory plasticity in the thalamus. J Neurophysiol 2014; 112:2037-9. [PMID: 24623510 PMCID: PMC4274923 DOI: 10.1152/jn.00918.2013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Thalamocortical neurons integrate sensory and cortical activity and are regulated by input from inhibitory neurons in the thalamic reticular nucleus. Evidence suggests that during bursts of action potentials, dendritic calcium transients are seen throughout the dendritic tree of thalamocortical cells. Here, we review a recent study that suggests these calcium transients regulate inhibitory input, and we attempt to reconcile studies that differ on which ion channels are the source of the calcium.
Collapse
Affiliation(s)
- Sarah R Hulme
- School of Physiology and Pharmacology, School of Medical Sciences, Bristol, United Kingdom; and
| | - William M Connelly
- Neuroscience Division, Cardiff School of Biosciences, Cardiff, United Kingdom
| |
Collapse
|
14
|
Bagnato S, Boccagni C, Sant'angelo A, Fingelkurts AA, Fingelkurts AA, Galardi G. Emerging from an unresponsive wakefulness syndrome: Brain plasticity has to cross a threshold level. Neurosci Biobehav Rev 2013; 37:2721-36. [PMID: 24060531 DOI: 10.1016/j.neubiorev.2013.09.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 08/29/2013] [Accepted: 09/12/2013] [Indexed: 12/27/2022]
Affiliation(s)
- Sergio Bagnato
- Unit of Neurophysiology and Unit for Severe Acquired Brain Injury, Rehabilitation Department, Fondazione Istituto San Raffaele G. Giglio, Cefalù, PA, Italy.
| | | | | | | | | | | |
Collapse
|
15
|
Abstract
The thalamus integrates and transmits sensory information to the neocortex. The activity of thalamocortical relay (TC) cells is modulated by specific inhibitory circuits. Although this inhibition plays a crucial role in regulating thalamic activity, little is known about long-term changes in synaptic strength at these inhibitory synapses. Therefore, we studied long-term plasticity of inhibitory inputs to TC cells in the posterior medial nucleus of the thalamus by combining patch-clamp recordings with two-photon fluorescence microscopy in rat brain slices. We found that specific activity patterns in the postsynaptic TC cell induced inhibitory long-term potentiation (iLTP). This iLTP was non-Hebbian because it did not depend on the timing between presynaptic and postsynaptic activity, but it could be induced by postsynaptic burst activity alone. iLTP required postsynaptic dendritic Ca(2+) influx evoked by low-threshold Ca(2+) spikes. In contrast, tonic postsynaptic spiking from a depolarized membrane potential (-50 mV), which suppressed these low-threshold Ca(2+) spikes, induced no plasticity. The postsynaptic dendritic Ca(2+) increase triggered the synthesis of nitric oxide that retrogradely activated presynaptic guanylyl cyclase, resulting in the presynaptic expression of iLTP. The dependence of iLTP on the membrane potential and therefore on the postsynaptic discharge mode suggests that this form of iLTP might occur during sleep, when TC cells discharge in bursts. Therefore, iLTP might be involved in sleep state-dependent modulation of thalamic information processing and thalamic oscillations.
Collapse
|
16
|
Adams RA, Shipp S, Friston KJ. Predictions not commands: active inference in the motor system. Brain Struct Funct 2013; 218:611-43. [PMID: 23129312 PMCID: PMC3637647 DOI: 10.1007/s00429-012-0475-5] [Citation(s) in RCA: 406] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 10/25/2012] [Indexed: 12/04/2022]
Abstract
The descending projections from motor cortex share many features with top-down or backward connections in visual cortex; for example, corticospinal projections originate in infragranular layers, are highly divergent and (along with descending cortico-cortical projections) target cells expressing NMDA receptors. This is somewhat paradoxical because backward modulatory characteristics would not be expected of driving motor command signals. We resolve this apparent paradox using a functional characterisation of the motor system based on Helmholtz's ideas about perception; namely, that perception is inference on the causes of visual sensations. We explain behaviour in terms of inference on the causes of proprioceptive sensations. This explanation appeals to active inference, in which higher cortical levels send descending proprioceptive predictions, rather than motor commands. This process mirrors perceptual inference in sensory cortex, where descending connections convey predictions, while ascending connections convey prediction errors. The anatomical substrate of this recurrent message passing is a hierarchical system consisting of functionally asymmetric driving (ascending) and modulatory (descending) connections: an arrangement that we show is almost exactly recapitulated in the motor system, in terms of its laminar, topographic and physiological characteristics. This perspective casts classical motor reflexes as minimising prediction errors and may provide a principled explanation for why motor cortex is agranular.
Collapse
Affiliation(s)
- Rick A Adams
- The Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, 12 Queen Square, London, WC1N 3BG, UK.
| | | | | |
Collapse
|
17
|
Abstract
Tonic inhibitory GABA(A) receptor-mediated currents are observed in numerous cell types in the CNS, including thalamocortical neurons of the ventrobasal thalamus, dentate gyrus granule cells, and cerebellar granule cells. Here we show that in rat brain slices, activation of postsynaptic GABA(B) receptors enhances the magnitude of the tonic GABA(A) current recorded in these cell types via a pathway involving G G proteins, adenylate cyclase, and cAMP-dependent protein kinase. Using a combination of pharmacology and knockout mice, we show that this pathway is independent of potassium channels or GABA transporters. Furthermore, the enhancement in tonic current is sufficient to significantly alter the excitability of thalamocortical neurons. These results demonstrate for the first time a postsynaptic crosstalk between GABA(B) and GABA(A) receptors.
Collapse
|
18
|
T-type calcium channels consolidate tonic action potential output of thalamic neurons to neocortex. J Neurosci 2012; 32:12228-36. [PMID: 22933804 DOI: 10.1523/jneurosci.1362-12.2012] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The thalamic output during different behavioral states is strictly controlled by the firing modes of thalamocortical neurons. During sleep, their hyperpolarized membrane potential allows activation of the T-type calcium channels, promoting rhythmic high-frequency burst firing that reduces sensory information transfer. In contrast, in the waking state thalamic neurons mostly exhibit action potentials at low frequency (i.e., tonic firing), enabling the reliable transfer of incoming sensory inputs to cortex. Because of their nearly complete inactivation at the depolarized potentials that are experienced during the wake state, T-channels are not believed to modulate tonic action potential discharges. Here, we demonstrate using mice brain slices that activation of T-channels in thalamocortical neurons maintained in the depolarized/wake-like state is critical for the reliable expression of tonic firing, securing their excitability over changes in membrane potential that occur in the depolarized state. Our results establish a novel mechanism for the integration of sensory information by thalamocortical neurons and point to an unexpected role for T-channels in the early stage of information processing.
Collapse
|
19
|
Min MY, Yang HW, Yen CT, Chen CC, Chen CC, Cheng SJ. ERK, synaptic plasticity and acid-induced muscle pain. Commun Integr Biol 2011; 4:394-6. [PMID: 21966555 DOI: 10.4161/cib.4.4.15694] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 04/04/2011] [Indexed: 11/19/2022] Open
Abstract
Chronic pain is characterized by post-injury pain hypersensitivity. Current evidence suggests that it might result from altered neuronal excitability and/or synaptic functions in pain-related pathways and brain areas, an effect known as central sensitization. Increased activity of extracellular signal-regulated kinase (ERK) has been well-demonstrated in the dorsal horn of the spinal cord in chronic pain animal models. Recently, increased ERK activity has also been identified in two supraspinal areas, the central amygdala and the paraventricular thalamic nucleus anterior. Our recent work on the capsular central amygdala has shown that this increased ERK activity can enhance synaptic transmission, which might account for central sensitization and behavior hypersensitivity in animals receiving noxious stimuli.
Collapse
Affiliation(s)
- Ming-Yuan Min
- Institute of Zoology and College of Life Science; National Taiwan University; Taipei
| | | | | | | | | | | |
Collapse
|