1
|
Dong Y, Liu F. Modeling Fibroblast-Cardiomyocyte Interactions: Unveiling the Role of Ion Currents in Action Potential Modulation. Int J Mol Sci 2024; 25:13396. [PMID: 39769159 PMCID: PMC11677627 DOI: 10.3390/ijms252413396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/01/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
Fibrotic cardiomyopathy represents a significant pathological condition characterized by the interaction between cardiomyocytes and fibroblasts in the heart, and it currently lacks an effective cure. In vitro platforms, such as engineered heart tissue (EHT) developed through the co-culturing of cardiomyocytes and fibroblasts, are under investigation to elucidate and manipulate these cellular interactions. We present the first integration of mathematical electrophysiological models that encapsulate fibroblast-cardiomyocyte interactions with experimental EHT studies to identify and modulate the ion channels governing these dynamics. Our findings resolve a long-standing debate regarding the effect of fibroblast coupling on cardiomyocyte action potential duration (APD). We demonstrate that these seemingly contradictory outcomes are contingent upon the specific properties of the cardiomyocyte to which the fibroblast is coupled, particularly the relative magnitudes of the fast Na+ and transient outward K+ currents within the cardiomyocyte. Our results emphasize the critical importance of detailed ionic current representation in cardiomyocytes for accurately predicting the interactions between cardiomyocytes and fibroblasts in EHT. Surprisingly, complex ion channel-based models of fibroblast electrophysiology did not outperform simplified resistance-capacitance models in this analysis. Collectively, our findings highlight the promising potential of synergizing in vitro and in silico approaches to identify therapeutic targets for cardiomyopathies.
Collapse
Affiliation(s)
- Yuqing Dong
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China;
- Bioinspired Engineering and Biomechanics Center, Xi’an Jiaotong University, Xi’an 710049, China
| | - Fusheng Liu
- Bioinspired Engineering and Biomechanics Center, Xi’an Jiaotong University, Xi’an 710049, China
- State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi’an Jiaotong University, Xi’an 710049, China
| |
Collapse
|
2
|
Yaar S, Filatova TS, England E, Kompella SN, Hancox JC, Bechtold DA, Venetucci L, Abramochkin DV, Shiels HA. Global Air Pollutant Phenanthrene and Arrhythmic Outcomes in a Mouse Model. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:117002. [PMID: 37909723 PMCID: PMC10619431 DOI: 10.1289/ehp12775] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 11/03/2023]
Abstract
BACKGROUND The three-ringed polycyclic aromatic hydrocarbon (PAH) phenanthrene (Phe) has been implicated in the cardiotoxicity of petroleum-based pollution in aquatic systems, where it disrupts the contractile and electrical function of the fish heart. Phe is also found adsorbed to particulate matter and in the gas phase of air pollution, but to date, no studies have investigated the impact of Phe on mammalian cardiac function. OBJECTIVES Our objectives were to determine the arrhythmogenic potential of acute Phe exposure on mammalian cardiac function and define the underlying mechanisms to provide insight into the toxicity risk to humans. METHODS Ex vivo Langendorff-perfused mouse hearts were used to test the arrhythmogenic potential of Phe on myocardial function, and voltage- and current-clamp recordings were used to define underlying cellular mechanisms in isolated cardiomyocytes. RESULTS Mouse hearts exposed to ∼ 8 μ M Phe for 15-min exhibited a significantly slower heart rate (p = 0.0006 , N = 10 hearts), a prolonged PR interval (p = 0.036 , N = 8 hearts), and a slower conduction velocity (p = 0.0143 , N = 7 hearts). Whole-cell recordings from isolated cardiomyocytes revealed action potential (AP) duration prolongation (at 80% repolarization; p = 0.0408 , n = 9 cells) and inhibition of key murine repolarizing currents-transient outward potassium current (I to ) and ultrarapid potassium current (I Kur )-following Phe exposure. A significant reduction in AP upstroke velocity (p = 0.0445 , n = 9 cells) and inhibition of the fast sodium current (I Na ; p = 0.001 , n = 8 cells) and calcium current (I Ca ; p = 0.0001 ) were also observed, explaining the slowed conduction velocity in intact hearts. Finally, acute exposure to ∼ 8 μ M Phe significantly increased susceptibility to arrhythmias (p = 0.0455 , N = 9 hearts). DISCUSSION To the best of our knowledge, this is the first evidence of direct inhibitory effects of Phe on mammalian cardiac electrical activity at both the whole-heart and cell levels. This electrical dysfunction manifested as an increase in arrhythmia susceptibility due to impairment of both conduction and repolarization. Similar effects in humans could have serious health consequences, warranting greater regulatory attention and toxicological investigation into this ubiquitous PAH pollutant generated from fossil-fuel combustion. https://doi.org/10.1289/EHP12775.
Collapse
Affiliation(s)
- Sana Yaar
- Faculty of Biology, Medicine, and Health, Division of Cardiovascular Sciences, University of Manchester, Manchester, UK
| | - Tatiana S. Filatova
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Moscow, Russia
| | - Ellie England
- Faculty of Biology, Medicine, and Health, Division of Cardiovascular Sciences, University of Manchester, Manchester, UK
| | - Shiva N. Kompella
- Faculty of Biology, Medicine, and Health, Division of Cardiovascular Sciences, University of Manchester, Manchester, UK
| | - Jules C. Hancox
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - David A. Bechtold
- Faculty of Biology, Medicine, and Health, Division of Cardiovascular Sciences, University of Manchester, Manchester, UK
| | - Luigi Venetucci
- Faculty of Biology, Medicine, and Health, Division of Cardiovascular Sciences, University of Manchester, Manchester, UK
| | - Denis V. Abramochkin
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Moscow, Russia
| | - Holly A. Shiels
- Faculty of Biology, Medicine, and Health, Division of Cardiovascular Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
3
|
Giommi A, Gurgel ARB, Smith GL, Workman AJ. Does the small conductance Ca 2+-activated K + current I SK flow under physiological conditions in rabbit and human atrial isolated cardiomyocytes? J Mol Cell Cardiol 2023; 183:70-80. [PMID: 37704101 DOI: 10.1016/j.yjmcc.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/16/2023] [Accepted: 09/02/2023] [Indexed: 09/15/2023]
Abstract
BACKGROUND The small conductance Ca2+-activated K+ current (ISK) is a potential therapeutic target for treating atrial fibrillation. AIM To clarify, in rabbit and human atrial cardiomyocytes, the intracellular [Ca2+]-sensitivity of ISK, and its contribution to action potential (AP) repolarisation, under physiological conditions. METHODS Whole-cell-patch clamp, fluorescence microscopy: to record ion currents, APs and [Ca2+]i; 35-37°C. RESULTS In rabbit atrial myocytes, 0.5 mM Ba2+ (positive control) significantly decreased whole-cell current, from -12.8 to -4.9 pA/pF (P < 0.05, n = 17 cells, 8 rabbits). By contrast, the ISK blocker apamin (100 nM) had no effect on whole-cell current, at any set [Ca2+]i (∼100-450 nM). The ISK blocker ICAGEN (1 μM: ≥2 x IC50) also had no effect on current over this [Ca2+]i range. In human atrial myocytes, neither 1 μM ICAGEN (at [Ca2+]i ∼ 100-450 nM), nor 100 nM apamin ([Ca2+]i ∼ 250 nM) affected whole-cell current (5-10 cells, 3-5 patients/group). APs were significantly prolonged (at APD30 and APD70) by 2 mM 4-aminopyridine (positive control) in rabbit atrial myocytes, but 1 μM ICAGEN had no effect on APDs, versus either pre-ICAGEN or time-matched controls. High concentration (10 μM) ICAGEN (potentially ISK-non-selective) moderately increased APD70 and APD90, by 5 and 26 ms, respectively. In human atrial myocytes, 1 μM ICAGEN had no effect on APD30-90, whether stimulated at 1, 2 or 3 Hz (6-9 cells, 2-4 patients/rate). CONCLUSION ISK does not flow in human or rabbit atrial cardiomyocytes with [Ca2+]i set within the global average diastolic-systolic range, nor during APs stimulated at physiological or supra-physiological (≤3 Hz) rates.
Collapse
Affiliation(s)
- Alessandro Giommi
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Aline R B Gurgel
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Godfrey L Smith
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Antony J Workman
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK.
| |
Collapse
|
4
|
Abstract
Cardiac alternans arises from dynamical instabilities in the electrical and calcium cycling systems of the heart, and often precedes ventricular arrhythmias and sudden cardiac death. In this review, we integrate clinical observations with theory and experiment to paint a holistic portrait of cardiac alternans: the underlying mechanisms, arrhythmic manifestations and electrocardiographic signatures. We first summarize the cellular and tissue mechanisms of alternans that have been demonstrated both theoretically and experimentally, including 3 voltage-driven and 2 calcium-driven alternans mechanisms. Based on experimental and simulation results, we describe their relevance to mechanisms of arrhythmogenesis under different disease conditions, and their link to electrocardiographic characteristics of alternans observed in patients. Our major conclusion is that alternans is not only a predictor, but also a causal mechanism of potentially lethal ventricular and atrial arrhythmias across the full spectrum of arrhythmia mechanisms that culminate in functional reentry, although less important for anatomic reentry and focal arrhythmias.
Collapse
Affiliation(s)
- Zhilin Qu
- Departments of Medicine (Cardiology), Physiology, and Computational Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - James N. Weiss
- Departments of Medicine (Cardiology), Physiology, and Computational Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA
| |
Collapse
|
5
|
Zhou H, Zhang Z, Zhu L, Li P, Hong S, Liu L, Liu X. Prediction of drug pro-arrhythmic cardiotoxicity using a semi-physiologically based pharmacokinetic model linked to cardiac ionic currents inhibition. Toxicol Appl Pharmacol 2022; 457:116312. [PMID: 36343672 DOI: 10.1016/j.taap.2022.116312] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/23/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
Drug-induced torsades de pointes (TdP) risks are responsible for the withdrawal of many drugs from the market. Nowadays, assessments of drug-induced TdP risks are mainly based on maximum effective free therapeutic plasma concentration (EFTPCmax) and cardiac ionic current inhibitions using the human ventricular myocytes model (Tor-ORd model). Myocytes are targets of drug-induced TdP. The TdP risks may be directly linked to myocyte drug concentrations. We aimed to develop a semi-physiologically based pharmacokinetic (Semi-PBPK) model linked to cardiac ionic current inhibition (pharmacodynamics, PD) (Semi-PBPK-PD) to simultaneously predict myocyte drug concentrations and their TdP risks in humans. Alterations in action potential duration (ΔAPD90) were simulated using the Tor-ORd model and ionic current inhibition parameters based on myocyte or plasma drug concentrations. The predicted ΔAPD90 values were translated into in vivo alterations in QT interval(ΔQTc) induced by moxifloxacin, dofetilide, or sotalol. Myocyte drug concentrations of moxifloxacin, dofetilide, and sotalol gave better predictions of ΔQTc than plasma. Following validating the developed semi-PBPK-PD model, TdP risks of 37 drugs were assessed using ΔAPD90 and early afterdepolarization occurrence, which were estimated based on 10 × EFTPCmax and 10 × EFTMCmax (maximum effective free therapeutic myocyte concentration). 10 × EFTMCmax gave more sensitive and accurate predictions of pro-arrhythmic cardiotoxicity and the predicted TdP risks were also closer to clinic practice than 10 × EFTPCmax. In conclusion, pharmacokinetics and TdP risks of 37 drugs were successfully predicted using the semi-PBPK-PD model. Myocyte drug concentrations gave better predictions of ΔQTc and TdP risks than plasma.
Collapse
Affiliation(s)
- Han Zhou
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zexin Zhang
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Liang Zhu
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Ping Li
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Shijin Hong
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Li Liu
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Xiaodong Liu
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
6
|
Lotteau S, Zhang R, Hazan A, Grabar C, Gonzalez D, Aynaszyan S, Philipson KD, Ottolia M, Goldhaber JI. Acute Genetic Ablation of Cardiac Sodium/Calcium Exchange in Adult Mice: Implications for Cardiomyocyte Calcium Regulation, Cardioprotection, and Arrhythmia. J Am Heart Assoc 2021; 10:e019273. [PMID: 34472363 PMCID: PMC8649274 DOI: 10.1161/jaha.120.019273] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background Sodium‐calcium (Ca2+) exchanger isoform 1 (NCX1) is the dominant Ca2+ efflux mechanism in cardiomyocytes and is critical to maintaining Ca2+ homeostasis during excitation‐contraction coupling. NCX1 activity has been implicated in the pathogenesis of cardiovascular diseases, but a lack of specific NCX1 blockers complicates experimental interpretation. Our aim was to develop a tamoxifen‐inducible NCX1 knockout (KO) mouse to investigate compensatory adaptations of acute ablation of NCX1 on excitation‐contraction coupling and intracellular Ca2+ regulation, and to examine whether acute KO of NCX1 confers resistance to triggered arrhythmia and ischemia/reperfusion injury. Methods and Results We used the α‐myosin heavy chain promoter (Myh6)‐MerCreMer promoter to create a tamoxifen‐inducible cardiac‐specific NCX1 KO mouse. Within 1 week of tamoxifen injection, NCX1 protein expression and current were dramatically reduced. Diastolic Ca2+ increased despite adaptive reductions in Ca2+ current and action potential duration and compensatory increases in excitation‐contraction coupling gain, sarcoplasmic reticulum Ca2+ ATPase 2 and plasma membrane Ca2+ ATPase. As these adaptations progressed over 4 weeks, diastolic Ca2+ normalized and SR Ca2+ load increased. Left ventricular function remained normal, but mild fibrosis and hypertrophy developed. Transcriptomics revealed modification of cardiovascular‐related gene networks including cell growth and fibrosis. NCX1 KO reduced spontaneous action potentials triggered by delayed afterdepolarizations and reduced scar size in response to ischemia/reperfusion. Conclusions Tamoxifen‐inducible NCX1 KO mice adapt to acute genetic ablation of NCX1 by reducing Ca2+ influx, increasing alternative Ca2+ efflux pathways, and increasing excitation‐contraction coupling gain to maintain contractility at the cost of mild Ca2+‐activated hypertrophy and fibrosis and decreased survival. Nevertheless, KO myocytes are protected against spontaneous action potentials and ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Sabine Lotteau
- Smidt Heart Institute Cedars-Sinai Medical Center Los Angeles CA
| | - Rui Zhang
- Smidt Heart Institute Cedars-Sinai Medical Center Los Angeles CA
| | - Adina Hazan
- Smidt Heart Institute Cedars-Sinai Medical Center Los Angeles CA
| | - Christina Grabar
- Smidt Heart Institute Cedars-Sinai Medical Center Los Angeles CA
| | - Devina Gonzalez
- Smidt Heart Institute Cedars-Sinai Medical Center Los Angeles CA
| | | | - Kenneth D Philipson
- Department of Physiology David Geffen School of Medicine at UCLA Los Angeles CA
| | - Michela Ottolia
- Division of Molecular Medicine Department of Anesthesiology and Perioperative Medicine David Geffen School of Medicine at UCLA Los Angeles CA
| | | |
Collapse
|
7
|
Trum M, Riechel J, Wagner S. Cardioprotection by SGLT2 Inhibitors-Does It All Come Down to Na +? Int J Mol Sci 2021; 22:ijms22157976. [PMID: 34360742 PMCID: PMC8347698 DOI: 10.3390/ijms22157976] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/22/2021] [Accepted: 07/22/2021] [Indexed: 12/15/2022] Open
Abstract
Sodium-glucose co-transporter 2 inhibitors (SGLT2i) are emerging as a new treatment strategy for heart failure with reduced ejection fraction (HFrEF) and—depending on the wistfully awaited results of two clinical trials (DELIVER and EMPEROR-Preserved)—may be the first drug class to improve cardiovascular outcomes in patients suffering from heart failure with preserved ejection fraction (HFpEF). Proposed mechanisms of action of this class of drugs are diverse and include metabolic and hemodynamic effects as well as effects on inflammation, neurohumoral activation, and intracellular ion homeostasis. In this review we focus on the growing body of evidence for SGLT2i-mediated effects on cardiac intracellular Na+ as an upstream mechanism. Therefore, we will first give a short overview of physiological cardiomyocyte Na+ handling and its deterioration in heart failure. On this basis we discuss the salutary effects of SGLT2i on Na+ homeostasis by influencing NHE1 activity, late INa as well as CaMKII activity. Finally, we highlight the potential relevance of these effects for systolic and diastolic dysfunction as well as arrhythmogenesis.
Collapse
|
8
|
Verkerk AO, Marchal GA, Zegers JG, Kawasaki M, Driessen AHG, Remme CA, de Groot JR, Wilders R. Patch-Clamp Recordings of Action Potentials From Human Atrial Myocytes: Optimization Through Dynamic Clamp. Front Pharmacol 2021; 12:649414. [PMID: 33912059 PMCID: PMC8072333 DOI: 10.3389/fphar.2021.649414] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/18/2021] [Indexed: 11/29/2022] Open
Abstract
Introduction: Atrial fibrillation (AF) is the most common cardiac arrhythmia. Consequently, novel therapies are being developed. Ultimately, the impact of compounds on the action potential (AP) needs to be tested in freshly isolated human atrial myocytes. However, the frequent depolarized state of these cells upon isolation seriously hampers reliable AP recordings. Purpose: We assessed whether AP recordings from single human atrial myocytes could be improved by providing these cells with a proper inward rectifier K+ current (IK1), and consequently with a regular, non-depolarized resting membrane potential (RMP), through “dynamic clamp”. Methods: Single myocytes were enzymatically isolated from left atrial appendage tissue obtained from patients with paroxysmal AF undergoing minimally invasive surgical ablation. APs were elicited at 1 Hz and measured using perforated patch-clamp methodology, injecting a synthetic IK1 to generate a regular RMP. The injected IK1 had strong or moderate rectification. For comparison, a regular RMP was forced through injection of a constant outward current. A wide variety of ion channel blockers was tested to assess their modulatory effects on AP characteristics. Results: Without any current injection, RMPs ranged from −9.6 to −86.2 mV in 58 cells. In depolarized cells (RMP positive to −60 mV), RMP could be set at −80 mV using IK1 or constant current injection and APs could be evoked upon stimulation. AP duration differed significantly between current injection methods (p < 0.05) and was shortest with constant current injection and longest with injection of IK1 with strong rectification. With moderate rectification, AP duration at 90% repolarization (APD90) was similar to myocytes with regular non-depolarized RMP, suggesting that a synthetic IK1 with moderate rectification is the most appropriate for human atrial myocytes. Importantly, APs evoked using each injection method were still sensitive to all drugs tested (lidocaine, nifedipine, E-4031, low dose 4-aminopyridine, barium, and apamin), suggesting that the major ionic currents of the atrial cells remained functional. However, certain drug effects were quantitatively dependent on the current injection approach used. Conclusion: Injection of a synthetic IK1 with moderate rectification facilitates detailed AP measurements in human atrial myocytes. Therefore, dynamic clamp represents a promising tool for testing novel antiarrhythmic drugs.
Collapse
Affiliation(s)
- Arie O Verkerk
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Department of Experimental Cardiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Gerard A Marchal
- Department of Experimental Cardiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Jan G Zegers
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Makiri Kawasaki
- Department of Experimental Cardiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Antoine H G Driessen
- Department of Cardiothoracic Surgery, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Carol Ann Remme
- Department of Experimental Cardiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Joris R de Groot
- Department of Cardiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Ronald Wilders
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
9
|
Verkerk AO, Wilders R. Dynamic Clamp in Electrophysiological Studies on Stem Cell-Derived Cardiomyocytes-Why and How? J Cardiovasc Pharmacol 2021; 77:267-279. [PMID: 33229908 DOI: 10.1097/fjc.0000000000000955] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/31/2020] [Indexed: 12/15/2022]
Abstract
ABSTRACT Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) are supposed to be a good human-based model, with virtually unlimited cell source, for studies on mechanisms underlying cardiac development and cardiac diseases, and for identification of drug targets. However, a major drawback of hPSC-CMs as a model system, especially for electrophysiological studies, is their depolarized state and associated spontaneous electrical activity. Various approaches are used to overcome this drawback, including the injection of "synthetic" inward rectifier potassium current (IK1), which is computed in real time, based on the recorded membrane potential ("dynamic clamp"). Such injection of an IK1-like current results in quiescent hPSC-CMs with a nondepolarized resting potential that show "adult-like" action potentials on stimulation, with functional availability of the most important ion channels involved in cardiac electrophysiology. These days, dynamic clamp has become a widely appreciated electrophysiological tool. However, setting up a dynamic clamp system can still be laborious and difficult, both because of the required hardware and the implementation of the dedicated software. In the present review, we first summarize the potential mechanisms underlying the depolarized state of hPSC-CMs and the functional consequences of this depolarized state. Next, we explain how an existing manual patch clamp setup can be extended with dynamic clamp. Finally, we shortly validate the extended setup with atrial-like and ventricular-like hPSC-CMs. We feel that dynamic clamp is a highly valuable tool in the field of cellular electrophysiological studies on hPSC-CMs and hope that our directions for setting up such dynamic clamp system may prove helpful.
Collapse
Affiliation(s)
- Arie O Verkerk
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands ; and
- Department of Experimental Cardiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Ronald Wilders
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands ; and
| |
Collapse
|
10
|
Trum M, Islam MMT, Lebek S, Baier M, Hegner P, Eaton P, Maier LS, Wagner S. Inhibition of cardiac potassium currents by oxidation-activated protein kinase A contributes to early afterdepolarizations in the heart. Am J Physiol Heart Circ Physiol 2020; 319:H1347-H1357. [PMID: 33035439 PMCID: PMC7792712 DOI: 10.1152/ajpheart.00182.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS) have been shown to prolong cardiac action potential duration resulting in afterdepolarizations, the cellular basis of triggered arrhythmias. As previously shown, protein kinase A type I (PKA I) is readily activated by oxidation of its regulatory subunits. However, the relevance of this mechanism of activation for cardiac pathophysiology is still elusive. In this study, we investigated the effects of oxidation-activated PKA I on cardiac electrophysiology. Ventricular cardiomyocytes were isolated from redox-dead PKA-RI Cys17Ser knock-in (KI) and wild-type (WT) mice and exposed to H2O2 (200 µmol/L) or vehicle (Veh) solution. In WT myocytes, exposure to H2O2 significantly increased oxidation of the regulatory subunit I (RI) and thus its dimerization (threefold increase in PKA RI dimer). Whole cell current clamp and voltage clamp were used to measure cardiac action potentials (APs), transient outward potassium current (Ito) and inward rectifying potassium current (IK1), respectively. In WT myocytes, H2O2 exposure significantly prolonged AP duration due to significantly decreased Ito and IK1 resulting in frequent early afterdepolarizations (EADs). Preincubation with the PKA-specific inhibitor Rp-8-Br-cAMPS (10 µmol/L) completely abolished the H2O2-dependent decrease in Ito and IK1 in WT myocytes. Intriguingly, H2O2 exposure did not prolong AP duration, nor did it decrease Ito, and only slightly enhanced EAD frequency in KI myocytes. Treatment of WT and KI cardiomyocytes with the late INa inhibitor TTX (1 µmol/L) completely abolished EAD formation. Our results suggest that redox-activated PKA may be important for H2O2-dependent arrhythmias and could be important for the development of specific antiarrhythmic drugs.NEW & NOTEWORTHY Oxidation-activated PKA type I inhibits transient outward potassium current (Ito) and inward rectifying potassium current (IK1) and contributes to ROS-induced APD prolongation as well as generation of early afterdepolarizations in murine ventricular cardiomyocytes.
Collapse
Affiliation(s)
- M. Trum
- 1Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - M. M. T. Islam
- 2Department of Biochemistry and Molecular Biology, University of Dhaka, Bangladesh
- 3Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany
| | - S. Lebek
- 1Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - M. Baier
- 1Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - P. Hegner
- 1Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - P. Eaton
- 4The William Harvey Research Institute, Charterhouse Square, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - L. S. Maier
- 1Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - S. Wagner
- 1Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
11
|
Yuxiang L, Fujiu K. Frozen Heart and Arrhythmia. Int Heart J 2019; 60:1019-1021. [PMID: 31564707 DOI: 10.1536/ihj.19-407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Liu Yuxiang
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo
| | - Katsuhito Fujiu
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo.,Department of Advanced Cardiology, Graduate School of Medicine, The University of Tokyo
| |
Collapse
|
12
|
Colman MA. Arrhythmia mechanisms and spontaneous calcium release: Bi-directional coupling between re-entrant and focal excitation. PLoS Comput Biol 2019; 15:e1007260. [PMID: 31393876 PMCID: PMC6687119 DOI: 10.1371/journal.pcbi.1007260] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/09/2019] [Indexed: 12/14/2022] Open
Abstract
Spontaneous sub-cellular calcium release events (SCRE) are conjectured to promote rapid arrhythmias associated with conditions such as heart failure and atrial fibrillation: they can underlie the emergence of spontaneous action potentials in single cells which can lead to arrhythmogenic triggers in tissue. The multi-scale mechanisms of the development of SCRE into arrhythmia triggers, and their dynamic interaction with the tissue substrate, remain elusive; rigorous and simultaneous study of dynamics from the nanometre to the centimetre scale is a major challenge. The aim of this study was to develop a computational approach to overcome this challenge and study potential bi-directional coupling between sub-cellular and tissue-scale arrhythmia phenomena. A framework comprising a hierarchy of computational models was developed, which includes detailed single-cell models describing spatio-temporal calcium dynamics in 3D, efficient non-spatial cell models, and both idealised and realistic tissue models. A phenomenological approach was implemented to reproduce SCRE morphology and variability in the efficient cell models, comprising the definition of analytical Spontaneous Release Functions (SRF) whose parameters may be randomly sampled from appropriate distributions in order to match either the 3D cell models or experimental data. Pro-arrhythmogenic pacing protocols were applied to initiate re-entry and promote calcium overload, leading to the emergence of SCRE. The SRF accurately reproduced the dynamics of SCRE and its dependence on environment variables under multiple different conditions. Sustained re-entrant excitation promoted calcium overload, and led to the emergence of focal excitations after termination. A purely functional mechanism of re-entry and focal activity localisation was demonstrated, related to the unexcited spiral wave core. In conclusion, a novel approach has been developed to dynamically model SCRE at the tissue scale, which facilitates novel, detailed multi-scale mechanistic analysis. It was revealed that complex re-entrant excitation patterns and SCRE may be bi-directionally coupled, promoting novel mechanisms of arrhythmia perpetuation.
Collapse
Affiliation(s)
- Michael A. Colman
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
13
|
Kettlewell S, Saxena P, Dempster J, Colman MA, Myles RC, Smith GL, Workman AJ. Dynamic clamping human and rabbit atrial calcium current: narrowing I CaL window abolishes early afterdepolarizations. J Physiol 2019; 597:3619-3638. [PMID: 31093979 PMCID: PMC6767690 DOI: 10.1113/jp277827] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 05/13/2019] [Indexed: 11/08/2022] Open
Abstract
Key points Early‐afterdepolarizations (EADs) are abnormal action potential oscillations and a known cause of cardiac arrhythmias. Ventricular EADs involve reactivation of a Ca2+ current (ICaL) in its ‘window region’ voltage range. However, electrical mechanisms of atrial EADs, a potential cause of atrial fibrillation, are poorly understood. Atrial cells were obtained from consenting patients undergoing heart surgery, as well as from rabbits. ICaL was blocked with nifedipine and then a hybrid patch clamp/mathematical‐modelling technique, ‘dynamic clamping’, was used to record action potentials at the same time as injecting an artificial, modifiable, ICaL (ICaL,D‐C). Progressively widening the ICaL,D‐C window region produced EADs of various types, dependent on window width. EAD production was strongest upon moving the activation (vs. inactivation) side of the window. EADs were then induced by a different method: increasing ICaL,D‐C amplitude and/or K+ channel‐blockade (4‐aminopyridine). Narrowing of the ICaL,D‐C window by ∼10 mV abolished these EADs. Atrial ICaL window narrowing is worthy of further testing as a potential anti‐atrial fibrillation drug mechanism.
Abstract Atrial early‐afterdepolarizations (EADs) may contribute to atrial fibrillation (AF), perhaps involving reactivation of L‐type Ca2+ current (ICaL) in its window region voltage range. The present study aimed (i) to validate the dynamic clamp technique for modifying the ICaL contribution to atrial action potential (AP) waveform; (ii) to investigate the effects of widening the window ICaL on EAD‐propensity; and (iii) to test whether EADs from increased ICaL and AP duration are supressed by narrowing the window ICaL. ICaL and APs were recorded from rabbit and human atrial myocytes by whole‐cell‐patch clamp. During AP recording, ICaL was inhibited (3 µm nifedipine) and replaced by a dynamic clamp model current, ICaL,D‐C (tuned to native ICaL characteristics), computed in real‐time (every 50 µs) based on myocyte membrane potential. ICaL,D‐C‐injection restored the nifedipine‐suppressed AP plateau. Widening the window ICaL,D‐C, symmetrically by stepwise simultaneous equal shifts of half‐voltages (V0.5) of ICaL,D‐C activation (negatively) and inactivation (positively), generated EADs (single, multiple or preceding repolarization failure) in a window width‐dependent manner, as well as AP alternans. A stronger EAD‐generating effect resulted from independently shifting activation V0.5 (asymmetrical widening) than inactivation V0.5; for example, a 15 mV activation shift produced EADs in nine of 17 (53%) human atrial myocytes vs. 0 of 18 from inactivation shift (P < 0.05). In 11 rabbit atrial myocytes in which EADs were generated either by increasing the conductance of normal window width ICaL,D‐C or subsequent 4‐aminopyridine (2 mm), window ICaL,D‐C narrowing (10 mV) abolished EADs of all types (P < 0.05). The present study validated the dynamic clamp for ICaL, which is novel in atrial cardiomyocytes, and showed that EADs of various types are generated by widening (particularly asymmetrically) the window ICaL, as well as abolished by narrowing it. Window ICaL narrowing is a potential therapeutic mechanism worth pursuing in the search for improved anti‐AF drugs. Early‐afterdepolarizations (EADs) are abnormal action potential oscillations and a known cause of cardiac arrhythmias. Ventricular EADs involve reactivation of a Ca2+ current (ICaL) in its ‘window region’ voltage range. However, electrical mechanisms of atrial EADs, a potential cause of atrial fibrillation, are poorly understood. Atrial cells were obtained from consenting patients undergoing heart surgery, as well as from rabbits. ICaL was blocked with nifedipine and then a hybrid patch clamp/mathematical‐modelling technique, ‘dynamic clamping’, was used to record action potentials at the same time as injecting an artificial, modifiable, ICaL (ICaL,D‐C). Progressively widening the ICaL,D‐C window region produced EADs of various types, dependent on window width. EAD production was strongest upon moving the activation (vs. inactivation) side of the window. EADs were then induced by a different method: increasing ICaL,D‐C amplitude and/or K+ channel‐blockade (4‐aminopyridine). Narrowing of the ICaL,D‐C window by ∼10 mV abolished these EADs. Atrial ICaL window narrowing is worthy of further testing as a potential anti‐atrial fibrillation drug mechanism.
Collapse
Affiliation(s)
- Sarah Kettlewell
- Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow, UK
| | - Priyanka Saxena
- Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow, UK
| | - John Dempster
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | | | - Rachel C Myles
- Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow, UK
| | - Godfrey L Smith
- Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow, UK
| | - Antony J Workman
- Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
14
|
Ni H, Zhang H, Grandi E, Narayan SM, Giles WR. Transient outward K + current can strongly modulate action potential duration and initiate alternans in the human atrium. Am J Physiol Heart Circ Physiol 2019; 316:H527-H542. [PMID: 30576220 PMCID: PMC6415821 DOI: 10.1152/ajpheart.00251.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/27/2018] [Accepted: 08/15/2018] [Indexed: 01/14/2023]
Abstract
Efforts to identify the mechanisms for the initiation and maintenance of human atrial fibrillation (AF) often focus on changes in specific elements of the atrial "substrate," i.e., its electrophysiological properties and/or structural components. We used experimentally validated mathematical models of the human atrial myocyte action potential (AP), both at baseline in sinus rhythm (SR) and in the setting of chronic AF, to identify significant contributions of the Ca2+-independent transient outward K+ current ( Ito) to electrophysiological instability and arrhythmia initiation. First, we explored whether changes in the recovery or restitution of the AP duration (APD) and/or its dynamic stability (alternans) can be modulated by Ito. Recent reports have identified disease-dependent spatial differences in expression levels of the specific K+ channel α-subunits that underlie Ito in the left atrium. Therefore, we studied the functional consequences of this by deletion of 50% of native Ito (Kv4.3) and its replacement with Kv1.4. Interestingly, significant changes in the short-term stability of the human atrial AP waveform were revealed. Specifically, this K+ channel isoform switch produced discontinuities in the initial slope of the APD restitution curve and appearance of APD alternans. This pattern of in silico results resembles some of the changes observed in high-resolution clinical electrophysiological recordings. Important insights into mechanisms for these changes emerged from known biophysical properties (reactivation kinetics) of Kv1.4 versus those of Kv4.3. These results suggest new approaches for pharmacological management of AF, based on molecular properties of specific K+ isoforms and their changed expression during progressive disease. NEW & NOTEWORTHY Clinical studies identify oscillations (alternans) in action potential (AP) duration as a predictor for atrial fibrillation (AF). The abbreviated AP in AF also involves changes in K+ currents and early repolarization of the AP. Our simulations illustrate how substitution of Kv1.4 for the native current, Kv4.3, alters the AP waveform and enhances alternans. Knowledge of this "isoform switch" and related dynamics in the AF substrate may guide new approaches for detection and management of AF.
Collapse
Affiliation(s)
- Haibo Ni
- Biological Physics Group, School of Physics and Astronomy, University of Manchester , Manchester , United Kingdom
- Department of Pharmacology, University of California , Davis, California
| | - Henggui Zhang
- Biological Physics Group, School of Physics and Astronomy, University of Manchester , Manchester , United Kingdom
| | - Eleonora Grandi
- Department of Pharmacology, University of California , Davis, California
| | - Sanjiv M Narayan
- Division of Cardiology, Cardiovascular Institute, Stanford University , Stanford, California
| | - Wayne R Giles
- Faculties of Kinesiology and Medicine, University of Calgary , Calgary, Alberta , Canada
| |
Collapse
|
15
|
Hu Z, Du D, Du Y. Generalized polynomial chaos-based uncertainty quantification and propagation in multi-scale modeling of cardiac electrophysiology. Comput Biol Med 2018; 102:57-74. [PMID: 30248513 DOI: 10.1016/j.compbiomed.2018.09.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 09/11/2018] [Accepted: 09/11/2018] [Indexed: 11/19/2022]
Abstract
Uncertainty and physiological variability are ubiquitous in cardiac electrical signaling. It is important to address the uncertainty and variability in cardiac modeling to provide reliable and realistic predictions of heart function, thus ensuring trustworthy computer-aided medical decision-making and treatment planning. Statistical techniques such as Monte Carlo (MC) simulations have been applied to uncertainty quantification and propagation in cardiac modeling. However, MC simulation-based methods are computationally prohibitive for complex cardiac models with a great number of parameters and governing equations. In this paper, we propose to use the Generalized Polynomial Chaos (gPC) expansion in combination with Galerkin projection to analytically quantify parametric uncertainty in ion channel models of mouse ventricular cell, and further propagate the uncertainty across different organizational levels of cell and tissue. To identify the most significant parametric uncertainty in cardiac ion channel and cell models, variance decomposition-based sensitivity analysis was first performed. Following this, gPC was integrated with deterministic cardiac models to propagate uncertainty through ion current, ventricular cell, 1D cable, and 2D tissue to account for the stochasticity and cell-to-cell variability. As compared to MC, the gPC in this work shows the superior performance in terms of computational efficiency. In addition, the gPC models can provide a measure of confidence in model predictions, which can improve the reliability of computer simulations of cardiac electrophysiology for clinical applications.
Collapse
Affiliation(s)
- Zhiyong Hu
- Department of Industrial, Manufacturing and Systems Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| | - Dongping Du
- Department of Industrial, Manufacturing and Systems Engineering, Texas Tech University, Lubbock, TX, 79409, USA.
| | - Yuncheng Du
- Department of Chemical and Biomolecular Engineering, Clarkson University, Potsdam, NY, 33613, USA.
| |
Collapse
|
16
|
Colman MA, Saxena P, Kettlewell S, Workman AJ. Description of the Human Atrial Action Potential Derived From a Single, Congruent Data Source: Novel Computational Models for Integrated Experimental-Numerical Study of Atrial Arrhythmia Mechanisms. Front Physiol 2018; 9:1211. [PMID: 30245635 PMCID: PMC6137999 DOI: 10.3389/fphys.2018.01211] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 08/13/2018] [Indexed: 11/13/2022] Open
Abstract
Introduction: The development of improved diagnosis, management, and treatment strategies for human atrial fibrillation (AF) is a significant and important challenge in order to improve quality of life for millions and reduce the substantial social-economic costs of the condition. As a complex condition demonstrating high variability and relation to other cardiac conditions, the study of AF requires approaches from multiple disciplines including single-cell experimental electrophysiology and computational modeling. Models of human atrial cells are less well parameterized than those of the human ventricle or other mammal species, largely due to the inherent challenges in patch clamping human atrial cells. Such challenges include, frequently, unphysiologically depolarized resting potentials and thus injection of a compensatory hyperpolarizing current, as well as detecting certain ion currents which may be disrupted by the cell isolation process. The aim of this study was to develop a laboratory specific model of human atrial electrophysiology which reproduces exactly the conditions of isolated-cell experiments, including testing of multiple experimental interventions. Methods: Formulations for the primary ion currents characterized by isolated-cell experiments in the Workman laboratory were fit directly to voltage-clamp data; the fast sodium-current was parameterized based on experiments relating resting membrane potential to maximal action potential upstroke velocity; compensatory hyperpolarizing current was included as a constant applied current. These formulations were integrated with three independent human atrial cell models to provide a family of novel models. Extrapolated intact-cell models were developed through removal of the hyperpolarizing current and introduction of terminal repolarization potassium currents. Results: The isolated-cell models quantitatively reproduced experimentally measured properties of excitation in both control and pharmacological and dynamic-clamp interventions. Comparison of isolated and intact-cell models highlighted the importance of reproducing this cellular environment when comparing experimental and simulation data. Conclusion: We have developed a laboratory specific model of the human atrial cell which directly reproduces the experimental isolated-cell conditions and captures human atrial excitation properties. The model may be particularly useful for directly relating model to experiment, and offers a complementary tool to the available set of human atrial cell models with specific advantages resulting from the congruent input data source.
Collapse
Affiliation(s)
- Michael A Colman
- Leeds Computational Physiology Lab, School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | - Priyanka Saxena
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Sarah Kettlewell
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Antony J Workman
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
17
|
Yeo JM, Tse V, Kung J, Lin HY, Lee YT, Kwan J, Yan BP, Tse G. Isolated heart models for studying cardiac electrophysiology: a historical perspective and recent advances. J Basic Clin Physiol Pharmacol 2018; 28:191-200. [PMID: 28063261 DOI: 10.1515/jbcpp-2016-0110] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 10/12/2016] [Indexed: 01/25/2023]
Abstract
Experimental models used in cardiovascular research range from cellular to whole heart preparations. Isolated whole hearts show higher levels of structural and functional integration than lower level models such as tissues or cellular fragments. Cardiovascular diseases are multi-factorial problems that are dependent on highly organized structures rather than on molecular or cellular components alone. This article first provides a general introduction on the animal models of cardiovascular diseases. It is followed by a detailed overview and a historical perspective of the different isolated heart systems with a particular focus on the Langendorff perfusion method for the study of cardiac arrhythmias. The choice of species, perfusion method, and perfusate composition are discussed in further detail with particular considerations of the theoretical and practical aspects of experimental settings.
Collapse
Affiliation(s)
- Jie Ming Yeo
- School of Medicine, Imperial College London, London
| | - Vivian Tse
- Department of Physiology, McGill University, Montreal, Quebec
| | - Judy Kung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, SAR, P.R
| | - Hiu Yu Lin
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, SAR, P.R
| | - Yee Ting Lee
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, SAR, P.R
| | - Joseph Kwan
- Department of Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, SAR, P.R
| | - Bryan P Yan
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne
| | - Gary Tse
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong, SAR, P.R
| |
Collapse
|
18
|
Ortega FA, Grandi E, Krogh-Madsen T, Christini DJ. Applications of Dynamic Clamp to Cardiac Arrhythmia Research: Role in Drug Target Discovery and Safety Pharmacology Testing. Front Physiol 2018; 8:1099. [PMID: 29354069 PMCID: PMC5758594 DOI: 10.3389/fphys.2017.01099] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 12/13/2017] [Indexed: 12/31/2022] Open
Abstract
Dynamic clamp, a hybrid-computational-experimental technique that has been used to elucidate ionic mechanisms underlying cardiac electrophysiology, is emerging as a promising tool in the discovery of potential anti-arrhythmic targets and in pharmacological safety testing. Through the injection of computationally simulated conductances into isolated cardiomyocytes in a real-time continuous loop, dynamic clamp has greatly expanded the capabilities of patch clamp outside traditional static voltage and current protocols. Recent applications include fine manipulation of injected artificial conductances to identify promising drug targets in the prevention of arrhythmia and the direct testing of model-based hypotheses. Furthermore, dynamic clamp has been used to enhance existing experimental models by addressing their intrinsic limitations, which increased predictive power in identifying pro-arrhythmic pharmacological compounds. Here, we review the recent advances of the dynamic clamp technique in cardiac electrophysiology with a focus on its future role in the development of safety testing and discovery of anti-arrhythmic drugs.
Collapse
Affiliation(s)
- Francis A Ortega
- Physiology, Biophysics, and Systems Biology Graduate Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, United States
| | - Eleonora Grandi
- Department of Pharmacology, University of California, Davis, Davis, CA, United States
| | - Trine Krogh-Madsen
- Greenberg Division of Cardiology, Weill Cornell Medical College, New York, NY, United States
| | - David J Christini
- Physiology, Biophysics, and Systems Biology Graduate Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, United States.,Greenberg Division of Cardiology, Weill Cornell Medical College, New York, NY, United States
| |
Collapse
|
19
|
ICaL and Ito mediate rate-dependent repolarization in rabbit atrial myocytes. J Physiol Biochem 2017; 74:57-67. [DOI: 10.1007/s13105-017-0603-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 12/04/2017] [Indexed: 01/01/2023]
|
20
|
Wang X, Fitts RH. Ventricular action potential adaptation to regular exercise: role of β-adrenergic and KATP channel function. J Appl Physiol (1985) 2017; 123:285-296. [DOI: 10.1152/japplphysiol.00197.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/21/2017] [Accepted: 05/15/2017] [Indexed: 01/06/2023] Open
Abstract
Regular exercise training is known to affect the action potential duration (APD) and improve heart function, but involvement of β-adrenergic receptor (β-AR) subtypes and/or the ATP-sensitive K+ (KATP) channel is unknown. To address this, female and male Sprague-Dawley rats were randomly assigned to voluntary wheel-running or control groups; they were anesthetized after 6–8 wk of training, and myocytes were isolated. Exercise training significantly increased APD of apex and base myocytes at 1 Hz and decreased APD at 10 Hz. Ca2+ transient durations reflected the changes in APD, while Ca2+ transient amplitudes were unaffected by wheel running. The nonselective β-AR agonist isoproterenol shortened the myocyte APD, an effect reduced by wheel running. The isoproterenol-induced shortening of APD was largely reversed by the selective β1-AR blocker atenolol, but not the β2-AR blocker ICI 118,551, providing evidence that wheel running reduced the sensitivity of the β1-AR. At 10 Hz, the KATP channel inhibitor glibenclamide prolonged the myocyte APD more in exercise-trained than control rats, implicating a role for this channel in the exercise-induced APD shortening at 10 Hz. A novel finding of this work was the dual importance of altered β1-AR responsiveness and KATP channel function in the training-induced regulation of APD. Of physiological importance to the beating heart, the reduced response to adrenergic agonists would enhance cardiac contractility at resting rates, where sympathetic drive is low, by prolonging APD and Ca2+ influx; during exercise, an increase in KATP channel activity would shorten APD and, thus, protect the heart against Ca2+ overload or inadequate filling. NEW & NOTEWORTHY Our data demonstrated that regular exercise prolonged the action potential and Ca2+ transient durations in myocytes isolated from apex and base regions at 1-Hz and shortened both at 10-Hz stimulation. Novel findings were that wheel running shifted the β-adrenergic receptor agonist dose-response curve rightward compared with controls by reducing β1-adrenergic receptor responsiveness and that, at the high activation rate, myocytes from trained animals showed higher KATP channel function.
Collapse
Affiliation(s)
- Xinrui Wang
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin
| | - Robert H. Fitts
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin
| |
Collapse
|
21
|
Pandit SV, Workman AJ. Atrial Electrophysiological Remodeling and Fibrillation in Heart Failure. CLINICAL MEDICINE INSIGHTS-CARDIOLOGY 2016; 10:41-46. [PMID: 27812293 PMCID: PMC5089851 DOI: 10.4137/cmc.s39713] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/24/2016] [Accepted: 09/09/2016] [Indexed: 11/21/2022]
Abstract
Heart failure (HF) causes complex, chronic changes in atrial structure and function, which can cause substantial electrophysiological remodeling and predispose the individual to atrial fibrillation (AF). Pharmacological treatments for preventing AF in patients with HF are limited. Improved understanding of the atrial electrical and ionic/molecular mechanisms that promote AF in these patients could lead to the identification of novel therapeutic targets. Animal models of HF have identified numerous changes in atrial ion currents, intracellular calcium handling, action potential waveform and conduction, as well as expression and signaling of associated proteins. These studies have shown that the pattern of electrophysiological remodeling likely depends on the duration of HF, the underlying cardiac pathology, and the species studied. In atrial myocytes and tissues obtained from patients with HF or left ventricular systolic dysfunction, the data on changes in ion currents and action potentials are largely equivocal, probably owing mainly to difficulties in controlling for the confounding influences of multiple variables, such as patient’s age, sex, disease history, and drug treatments, as well as the technical challenges in obtaining such data. In this review, we provide a summary and comparison of the main animal and human electrophysiological studies to date, with the aim of highlighting the consistencies in some of the remodeling patterns, as well as identifying areas of contention and gaps in the knowledge, which warrant further investigation.
Collapse
Affiliation(s)
- Sandeep V Pandit
- Department of Internal Medicine - Cardiology, Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI, USA
| | - Antony J Workman
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
22
|
Colatsky T, Fermini B, Gintant G, Pierson JB, Sager P, Sekino Y, Strauss DG, Stockbridge N. The Comprehensive in Vitro Proarrhythmia Assay (CiPA) initiative - Update on progress. J Pharmacol Toxicol Methods 2016; 81:15-20. [PMID: 27282641 DOI: 10.1016/j.vascn.2016.06.002] [Citation(s) in RCA: 303] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 06/01/2016] [Accepted: 06/04/2016] [Indexed: 11/17/2022]
Abstract
The implementation of the ICH S7B and E14 guidelines has been successful in preventing the introduction of potentially torsadogenic drugs to the market, but it has also unduly constrained drug development by focusing on hERG block and QT prolongation as essential determinants of proarrhythmia risk. The Comprehensive in Vitro Proarrhythmia Assay (CiPA) initiative was established to develop a new paradigm for assessing proarrhythmic risk, building on the emergence of new technologies and an expanded understanding of torsadogenic mechanisms beyond hERG block. An international multi-disciplinary team of regulatory, industry and academic scientists are working together to develop and validate a set of predominantly nonclinical assays and methods that eliminate the need for the thorough-QT study and enable a more precise prediction of clinical proarrhythmia risk. The CiPA effort is led by a Steering Team that provides guidance, expertise and oversight to the various working groups and includes partners from US FDA, HESI, CSRC, SPS, EMA, Health Canada, Japan NIHS, and PMDA. The working groups address the three pillars of CiPA that evaluate drug effects on: 1) human ventricular ionic channel currents in heterologous expression systems, 2) in silico integration of cellular electrophysiologic effects based on ionic current effects, the ion channel effects, and 3) fully integrated biological systems (stem-cell-derived cardiac myocytes and the human ECG). This article provides an update on the progress of the initiative towards its target date of December 2017 for completing validation.
Collapse
Affiliation(s)
- Thomas Colatsky
- US FDA, 10903 New Hampshire Ave, Silver Spring, MD 20993, United States.
| | - Bernard Fermini
- Pfizer, Eastern Point Road MS 4083, Groton, CT 06340, United States.
| | - Gary Gintant
- AbbVie, R46R AP-9, 1 North Waukegan Rd, North Chicago, IL 60064-6118, United States.
| | - Jennifer B Pierson
- ILSI-Health and Environmental Sciences Institute, 1156 15th Street NW, Suite 200, Washington, DC 20005, United States.
| | - Philip Sager
- Stanford University, 719 Carolina St., San Francisco, CA 94107, United States.
| | - Yuko Sekino
- NIHS Japan, Kamiyoga 1-18-1, Setagaya-ku, Tokyo 158-8501, Japan.
| | - David G Strauss
- US FDA, 10903 New Hampshire Ave, Silver Spring, MD 20993, United States.
| | - Norman Stockbridge
- US FDA, 10903 New Hampshire Ave, Silver Spring, MD 20993, United States.
| |
Collapse
|
23
|
Genome-wide screening identifies a KCNIP1 copy number variant as a genetic predictor for atrial fibrillation. Nat Commun 2016; 7:10190. [PMID: 26831368 PMCID: PMC4740744 DOI: 10.1038/ncomms10190] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 11/16/2015] [Indexed: 01/01/2023] Open
Abstract
Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia. Previous genome-wide association studies had identified single-nucleotide polymorphisms in several genomic regions to be associated with AF. In human genome, copy number variations (CNVs) are known to contribute to disease susceptibility. Using a genome-wide multistage approach to identify AF susceptibility CNVs, we here show a common 4,470-bp diallelic CNV in the first intron of potassium interacting channel 1 gene (KCNIP1) is strongly associated with AF in Taiwanese populations (odds ratio=2.27 for insertion allele; P=6.23 × 10(-24)). KCNIP1 insertion is associated with higher KCNIP1 mRNA expression. KCNIP1-encoded protein potassium interacting channel 1 (KCHIP1) is physically associated with potassium Kv channels and modulates atrial transient outward current in cardiac myocytes. Overexpression of KCNIP1 results in inducible AF in zebrafish. In conclusions, a common CNV in KCNIP1 gene is a genetic predictor of AF risk possibly pointing to a functional pathway.
Collapse
|
24
|
Ravagli E, Bucchi A, Bartolucci C, Paina M, Baruscotti M, DiFrancesco D, Severi S. Cell-specific Dynamic Clamp analysis of the role of funny If current in cardiac pacemaking. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2015; 120:50-66. [PMID: 26718599 DOI: 10.1016/j.pbiomolbio.2015.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/18/2015] [Accepted: 12/16/2015] [Indexed: 01/01/2023]
Abstract
We used the Dynamic Clamp technique for i) comparative validation of conflicting computational models of the hyperpolarization-activated funny current, If, and ii) quantification of the role of If in mediating autonomic modulation of heart rate. Experimental protocols based on the injection of a real-time recalculated synthetic If current in sinoatrial rabbit cells were developed. Preliminary results of experiments mimicking the autonomic modulation of If demonstrated the need for a customization procedure to compensate for cellular heterogeneity. For this reason, we used a cell-specific approach, scaling the maximal conductance of the injected current based on the cell's spontaneous firing rate. The pacemaking rate, which was significantly reduced after application of Ivabradine, was restored by the injection of synthetic current based on the Severi-DiFrancesco formulation, while the injection of synthetic current based on the Maltsev-Lakatta formulation did not produce any significant variation. A positive virtual shift of the If activation curve, mimicking the Isoprenaline effects, led to a significant increase in pacemaking rate (+17.3 ± 6.7%, p < 0.01), although of lower magnitude than that induced by real Isoprenaline (+45.0 ± 26.1%). Similarly, a negative virtual shift of the activation curve significantly lowered the pacemaking rate (-11.8 ± 1.9%, p < 0.001), as did the application of real Acetylcholine (-20.5 ± 5.1%). The Dynamic Clamp approach, applied to the If study in cardiomyocytes for the first time and rate-adapted to manage intercellular variability, indicated that: i) the quantitative description of the If current in the Severi-DiFrancesco model accurately reproduces the effects of the real current on rabbit sinoatrial cell pacemaking rate and ii) a significant portion (50-60%) of the physiological autonomic rate modulation is due to the shift of the If activation curve.
Collapse
Affiliation(s)
- E Ravagli
- Computational Physiopathology Unit, Laboratory of Cellular and Molecular Engineering, D.E.I., University of Bologna, Via Venezia 52, 47521 Cesena, Italy
| | - A Bucchi
- The PaceLab, Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milano, Italy
| | - C Bartolucci
- Computational Physiopathology Unit, Laboratory of Cellular and Molecular Engineering, D.E.I., University of Bologna, Via Venezia 52, 47521 Cesena, Italy
| | - M Paina
- The PaceLab, Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milano, Italy
| | - M Baruscotti
- The PaceLab, Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milano, Italy
| | - D DiFrancesco
- The PaceLab, Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milano, Italy
| | - S Severi
- Computational Physiopathology Unit, Laboratory of Cellular and Molecular Engineering, D.E.I., University of Bologna, Via Venezia 52, 47521 Cesena, Italy.
| |
Collapse
|
25
|
Abstract
Blood circulation is the result of the beating of the heart, which provides the mechanical force to pump oxygenated blood to, and deoxygenated blood away from, the peripheral tissues. This depends critically on the preceding electrical activation. Disruptions in the orderly pattern of this propagating cardiac excitation wave can lead to arrhythmias. Understanding of the mechanisms underlying their generation and maintenance requires knowledge of the ionic contributions to the cardiac action potential, which is discussed in the first part of this review. A brief outline of the different classification systems for arrhythmogenesis is then provided, followed by a detailed discussion for each mechanism in turn, highlighting recent advances in this area.
Collapse
|
26
|
Humphries ESA, Dart C. Neuronal and Cardiovascular Potassium Channels as Therapeutic Drug Targets: Promise and Pitfalls. JOURNAL OF BIOMOLECULAR SCREENING 2015; 20:1055-73. [PMID: 26303307 PMCID: PMC4576507 DOI: 10.1177/1087057115601677] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 07/26/2015] [Accepted: 07/28/2015] [Indexed: 12/21/2022]
Abstract
Potassium (K(+)) channels, with their diversity, often tissue-defined distribution, and critical role in controlling cellular excitability, have long held promise of being important drug targets for the treatment of dysrhythmias in the heart and abnormal neuronal activity within the brain. With the exception of drugs that target one particular class, ATP-sensitive K(+) (KATP) channels, very few selective K(+) channel activators or inhibitors are currently licensed for clinical use in cardiovascular and neurological disease. Here we review what a range of human genetic disorders have told us about the role of specific K(+) channel subunits, explore the potential of activators and inhibitors of specific channel populations as a therapeutic strategy, and discuss possible reasons for the difficulty in designing clinically relevant K(+) channel modulators.
Collapse
Affiliation(s)
| | - Caroline Dart
- Institute of Integrative Biology, University of Liverpool, UK
| |
Collapse
|
27
|
Cordeiro JM, Zeina T, Goodrow R, Kaplan AD, Thomas LM, Nesterenko VV, Treat JA, Hawel L, Byus C, Bett GC, Rasmusson RL, Panama BK. Regional variation of the inwardly rectifying potassium current in the canine heart and the contributions to differences in action potential repolarization. J Mol Cell Cardiol 2015; 84:52-60. [PMID: 25889894 DOI: 10.1016/j.yjmcc.2015.04.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 03/09/2015] [Accepted: 04/08/2015] [Indexed: 10/23/2022]
Abstract
The inward rectifier potassium current, IK1, contributes to the terminal phase of repolarization of the action potential (AP), as well as the value and stability of the resting membrane potential. Regional variation in IK1 has been noted in the canine heart, but the biophysical properties have not been directly compared. We examined the properties and functional contribution of IK1 in isolated myocytes from ventricular, atrial and Purkinje tissue. APs were recorded from canine left ventricular midmyocardium, left atrial and Purkinje tissue. The terminal rate of repolarization of the AP in ventricle, but not in Purkinje, depended on changes in external K(+) ([K(+)]o). Isolated ventricular myocytes had the greatest density of IK1 while atrial myocytes had the lowest. Furthermore, the outward component of IK1 in ventricular cells exhibited a prominent outward component and steep negative slope conductance, which was also enhanced in 10 mM [K(+)]o. In contrast, both Purkinje and atrial cells exhibited little outward IK1, even in the presence of 10 mM [K(+)]o, and both cell types showed more persistent current at positive potentials. Expression of Kir2.1 in the ventricle was 76.9-fold higher than that of atria and 5.8-fold higher than that of Purkinje, whereas the expression of Kir2.2 and Kir2.3 subunits was more evenly distributed in Purkinje and atria. Finally, AP clamp data showed distinct contributions of IK1 for each cell type. IK1 and Kir2 subunit expression varies dramatically in regions of the canine heart and these regional differences in Kir2 expression likely underlie regional distinctions in IK1 characteristics, contributing to variations in repolarization in response to in [K(+)]o changes.
Collapse
Affiliation(s)
- Jonathan M Cordeiro
- Department of Experimental Cardiology, Masonic Medical Research Laboratory, Utica, NY, United States
| | - Tanya Zeina
- Department of Experimental Cardiology, Masonic Medical Research Laboratory, Utica, NY, United States
| | - Robert Goodrow
- Department of Experimental Cardiology, Masonic Medical Research Laboratory, Utica, NY, United States
| | - Aaron D Kaplan
- Department of Physiology and Biophysics, State University of New York, University of Buffalo, Buffalo, NY, United States
| | - Lini M Thomas
- Department of Experimental Cardiology, Masonic Medical Research Laboratory, Utica, NY, United States
| | - Vladislav V Nesterenko
- Department of Experimental Cardiology, Masonic Medical Research Laboratory, Utica, NY, United States
| | - Jacqueline A Treat
- Department of Experimental Cardiology, Masonic Medical Research Laboratory, Utica, NY, United States
| | - Leo Hawel
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Craig Byus
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Glenna C Bett
- Department of Physiology and Biophysics, State University of New York, University of Buffalo, Buffalo, NY, United States; Department of Obstetrics and Gynecology, State University of New York, University of Buffalo, Buffalo, NY, United States
| | - Randall L Rasmusson
- Department of Physiology and Biophysics, State University of New York, University of Buffalo, Buffalo, NY, United States
| | - Brian K Panama
- Department of Experimental Cardiology, Masonic Medical Research Laboratory, Utica, NY, United States.
| |
Collapse
|
28
|
Nguyen TP, Singh N, Xie Y, Qu Z, Weiss JN. Repolarization reserve evolves dynamically during the cardiac action potential: effects of transient outward currents on early afterdepolarizations. Circ Arrhythm Electrophysiol 2015; 8:694-702. [PMID: 25772542 DOI: 10.1161/circep.114.002451] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 02/20/2015] [Indexed: 11/16/2022]
Abstract
BACKGROUND Transient outward K currents (Ito) have been reported both to suppress and to facilitate early afterdepolarizations (EADs) when repolarization reserve is reduced. Here, we used the dynamic clamp technique to analyze how Ito accounts for these paradoxical effects on EADs by influencing the dynamic evolution of repolarization reserve during the action potential. METHODS AND RESULTS Isolated patch-clamped rabbit ventricular myocytes were exposed to either oxidative stress (H2O2) or hypokalemia to induce bradycardia-dependent EADs at a long pacing cycle length of 6 s, when native rabbit Ito is substantial. EADs disappeared when the pacing cycle length was shortened to 1 s, when Ito becomes negligible because of incomplete recovery from inactivation. During 6-s pacing cycle length, EADs were blocked by the Ito blocker 4-aminopyridine, but reappeared when a virtual current with appropriate Ito-like properties was reintroduced using the dynamic clamp (n=141 trials). During 1-s pacing cycle length in the absence of 4-aminopyridine, adding a virtual Ito-like current (n=1113 trials) caused EADs to reappear over a wide range of Ito conductance (0.005-0.15 nS/pF), particularly when inactivation kinetics were slow (τinact≥20 ms) and the pedestal (noninactivating component) was small (<25% of peak Ito). Faster inactivation or larger pedestals tended to suppress EADs. CONCLUSIONS Repolarization reserve evolves dynamically during the cardiac action potential. Whereas sufficiently large Ito can suppress EADs, a wide range of intermediate Ito properties can promote EADs by influencing the temporal evolution of other currents affecting late repolarization reserve. These findings raise caution in targeting Ito as an antiarrhythmic strategy.
Collapse
Affiliation(s)
- Thao P Nguyen
- From the UCLA Cardiovascular Research Laboratory, Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles.
| | - Neha Singh
- From the UCLA Cardiovascular Research Laboratory, Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles
| | - Yuanfang Xie
- From the UCLA Cardiovascular Research Laboratory, Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles
| | - Zhilin Qu
- From the UCLA Cardiovascular Research Laboratory, Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles
| | - James N Weiss
- From the UCLA Cardiovascular Research Laboratory, Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles
| |
Collapse
|
29
|
Turnow K, Metzner K, Cotella D, Morales MJ, Schaefer M, Christ T, Ravens U, Wettwer E, Kämmerer S. Interaction of DPP10a with Kv4.3 channel complex results in a sustained current component of human transient outward current Ito. Basic Res Cardiol 2015; 110:5. [PMID: 25600224 DOI: 10.1007/s00395-014-0457-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 11/21/2014] [Accepted: 12/09/2014] [Indexed: 01/19/2023]
Abstract
The sustained component of the K(+) outward current in human atrial myocytes is believed to be due to the slowly inactivating ultra-rapid potassium current I Kur and not to the fast inactivating transient outward current Ito. Here we provide evidence for contribution of Ito to this late current due to the effects of dipeptidyl peptidase-like protein (DPP) 10 (DPP10a) interacting with Kv4.3 channels. We studied the late current component of Ito in human atrial myocytes and CHO cells co-expressing Kv4.3 or Kv4.3/KChIP2 (control) and DPP proteins using voltage-clamp technique and a pharmacological approach. A voltage dependent and slowly inactivating late current (43% of peak amplitude) could be observed in atrial myocytes. We found a similar current in CHO cells expressing Kv4.3/KChIP2 + DPP10a, but not in cells co-expressing Kv4.3 + DPP or Kv4.3/KChIP2 + DPP6-S. Assuming that DPP10a influences atrial Ito, we detected DPP10 expression of three alternatively spliced mRNAs, DPP10 protein and colocalization of Kv4.3 and DPP10 proteins in human atrial myocytes. DPP10a did not affect properties of expressed Kv1.5 excluding a contribution to the sustained IKur in atrial cells. To test for the contribution of Kv4-based Ito on sustained K(+) outward currents in human atrial myocytes, we used 4-AP to block IKur, in combination with Heteropoda toxin 2 to block Kv4 channels. We could clearly separate an Ito fraction of about 19% contributing to the late current in atrial myocytes. Thus, the interaction of DPP10a, expressed in human atrium, with Kv4.3 channels generates a sustained current component of Ito, which may affect late repolarization phase of atrial action potentials.
Collapse
Affiliation(s)
- K Turnow
- Department of Pharmacology and Toxicology, Dresden University of Technology, Dresden, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Maoz A, Christini DJ, Krogh-Madsen T. Dependence of phase-2 reentry and repolarization dispersion on epicardial and transmural ionic heterogeneity: a simulation study. Europace 2014; 16:458-65. [PMID: 24569901 DOI: 10.1093/europace/eut379] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
AIMS Phase-2 reentry (P2R) is a local arrhythmogenic phenomenon where electrotonic current propagates from a spike-and-dome action potential region to re-excite a loss-of-dome action potential region. While ionic heterogeneity has been shown to underlie P2R within the epicardium and has been hypothesized to occur transmurally, we are unaware of any study that has investigated the effects of combining these heterogeneities as they occur in the heart. Thus, we tested the hypothesis that P2R can result by either epicardial or transmural heterogeneity and that the realistic combination of the two would increase the likelihood of P2R. METHODS AND RESULTS We used computational ionic models of cardiac myocyte dynamics to investigate initiation and development of P2R in simulated tissues with different ionic heterogeneities. In one-dimensional transmural cable simulations, P2R occurred when the conductance of the transient outward current in the epicardial region was near the range for which epicardial action potentials switched intermittently between spike-and-dome and loss-of-dome morphologies. Phase-2 reentry was more likely in two-dimensional tissue simulations by both epicardial and transmural heterogeneity and could expand beyond its local initiation site to create a macroscopic reentry. CONCLUSION The characteristics and stability of action potential morphology in the epicardium are important determinants of the occurrence of both transmural and epicardial P2R and its associated arrhythmogenesis.
Collapse
Affiliation(s)
- Anat Maoz
- Greenberg Division of Cardiology, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | | | | |
Collapse
|
31
|
Kharche SR, Stary T, Colman MA, Biktasheva IV, Workman AJ, Rankin AC, Holden AV, Zhang H. Effects of human atrial ionic remodelling by β-blocker therapy on mechanisms of atrial fibrillation: a computer simulation. Europace 2014; 16:1524-1533. [PMID: 25085203 PMCID: PMC4640177 DOI: 10.1093/europace/euu084] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS Atrial anti-arrhythmic effects of β-adrenoceptor antagonists (β-blockers) may involve both a suppression of pro-arrhythmic effects of catecholamines, and an adaptational electrophysiological response to chronic β-blocker use; so-called 'pharmacological remodelling'. In human atrium, such remodelling decreases the transient outward (Ito) and inward rectifier (IK1) K(+) currents, and increases the cellular action potential duration (APD) and effective refractory period (ERP). However, the consequences of these changes on mechanisms of genesis and maintenance of atrial fibrillation (AF) are unknown. Using mathematical modelling, we tested the hypothesis that the long-term adaptational decrease in human atrial Ito and IK1 caused by chronic β-blocker therapy, i.e. independent of acute electrophysiological effects of β-blockers, in an otherwise un-remodelled atrium, could suppress AF. METHODS AND RESULTS Contemporarily, biophysically detailed human atrial cell and tissue models were used to investigate effects of the β-blocker-based pharmacological remodelling. Chronic β-blockade remodelling prolonged atrial cell APD and ERP. The incidence of small amplitude APD alternans in the CRN model was reduced. At the 1D tissue level, β-blocker remodelling decreased the maximum pacing rate at which APs could be conducted. At the three-dimensional organ level, β-blocker remodelling reduced the life span of re-entry scroll waves. CONCLUSION This study improves our understanding of the electrophysiological mechanisms of AF suppression by chronic β-blocker therapy. Atrial fibrillation suppression may involve a reduced propensity for maintenance of re-entrant excitation waves, as a consequence of increased APD and ERP.
Collapse
Affiliation(s)
- Sanjay R Kharche
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, EX4 4QF, UK Biological Physics Group, School of Physics and Astronomy, University of Manchester, Manchester M13 9PL, UK
| | - Tomas Stary
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, EX4 4QF, UK
| | - Michael A Colman
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Manchester M13 9PL, UK
| | - Irina V Biktasheva
- Department of Computer Sciences, University of Liverpool, Liverpool, L69 3BX, UK
| | - Antony J Workman
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Andrew C Rankin
- School of Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Arun V Holden
- School of Biomedical Sciences, University of Leeds, Leeds, LS6 9JT, UK
| | - Henggui Zhang
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Manchester M13 9PL, UK
| |
Collapse
|
32
|
Lu YY, Chung FP, Chen YC, Tsai CF, Kao YH, Chao TF, Huang JH, Chen SA, Chen YJ. Distinctive electrophysiological characteristics of right ventricular out-flow tract cardiomyocytes. J Cell Mol Med 2014; 18:1540-8. [PMID: 24913286 PMCID: PMC4190900 DOI: 10.1111/jcmm.12329] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 04/15/2014] [Indexed: 12/19/2022] Open
Abstract
Ventricular arrhythmias commonly originate from the right ventricular out-flow tract (RVOT). However, the electrophysiological characteristics and Ca(2+) homoeostasis of RVOT cardiomyocytes remain unclear. Whole-cell patch clamp and indo-1 fluorometric ratio techniques were used to investigate action potentials, Ca(2+) homoeostasis and ionic currents in isolated cardiomyocytes from the rabbit RVOT and right ventricular apex (RVA). Conventional microelectrodes were used to record the electrical activity before and after (KN-93, a Ca(2+) /calmodulin-dependent kinase II inhibitor, or ranolazine, a late sodium current inhibitor) treatment in RVOT and RVA tissue preparations under electrical pacing and ouabain (Na(+) /K(+) ATPase inhibitor) administration. In contrast to RVA cardiomyocytes, RVOT cardiomyocytes were characterized by longer action potential duration measured at 90% and 50% repolarization, larger Ca(2+) transients, higher Ca(2+) stores, higher late Na(+) and transient outward K(+) currents, but smaller delayed rectifier K(+) , L-type Ca(2+) currents and Na(+) -Ca(2+) exchanger currents. RVOT cardiomyocytes showed significantly more pacing-induced delayed afterdepolarizations (22% versus 0%, P < 0.05) and ouabain-induced ventricular arrhythmias (94% versus 61%, P < 0.05) than RVA cardiomyocytes. Consistently, it took longer time (9 ± 1 versus 4 ± 1 min., P < 0.05) to eliminate ouabain-induced ventricular arrhythmias after application of KN-93 (but not ranolazine) in the RVOT in comparison with the RVA. These results indicate that RVOT cardiomyocytes have distinct electrophysiological characteristics with longer AP duration and greater Ca(2+) content, which could contribute to the high RVOT arrhythmogenic activity.
Collapse
Affiliation(s)
- Yen-Yu Lu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Cardiology, Department of Internal Medicine, Sijhih Cathay General Hospital, New Taipei City, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Schmitt N, Grunnet M, Olesen SP. Cardiac potassium channel subtypes: new roles in repolarization and arrhythmia. Physiol Rev 2014; 94:609-53. [PMID: 24692356 DOI: 10.1152/physrev.00022.2013] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
About 10 distinct potassium channels in the heart are involved in shaping the action potential. Some of the K+ channels are primarily responsible for early repolarization, whereas others drive late repolarization and still others are open throughout the cardiac cycle. Three main K+ channels drive the late repolarization of the ventricle with some redundancy, and in atria this repolarization reserve is supplemented by the fairly atrial-specific KV1.5, Kir3, KCa, and K2P channels. The role of the latter two subtypes in atria is currently being clarified, and several findings indicate that they could constitute targets for new pharmacological treatment of atrial fibrillation. The interplay between the different K+ channel subtypes in both atria and ventricle is dynamic, and a significant up- and downregulation occurs in disease states such as atrial fibrillation or heart failure. The underlying posttranscriptional and posttranslational remodeling of the individual K+ channels changes their activity and significance relative to each other, and they must be viewed together to understand their role in keeping a stable heart rhythm, also under menacing conditions like attacks of reentry arrhythmia.
Collapse
|
34
|
Berecki G, Verkerk AO, van Ginneken ACG, Wilders R. Dynamic clamp as a tool to study the functional effects of individual membrane currents. Methods Mol Biol 2014; 1183:309-326. [PMID: 25023318 DOI: 10.1007/978-1-4939-1096-0_20] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Today, the patch-clamp technique is the main technique in electrophysiology to record action potentials or membrane current from isolated cells, using a patch pipette to gain electrical access to the cell. The common recording modes of the patch-clamp technique are current clamp and voltage clamp. In the current clamp mode, the current injected through the patch pipette is under control while the free-running membrane potential of the cell is recorded. Current clamp allows for measurements of action potentials that may either occur spontaneously or in response to an injected stimulus current. In voltage clamp mode, the membrane potential is held at a set level through a feedback circuit, which allows for the recording of the net membrane current at a given membrane potential.A less common configuration of the patch-clamp technique is the dynamic clamp. In this configuration, a specific non-predetermined membrane current can be added to or removed from the cell while it is in free-running current clamp mode. This current may be computed in real time, based on the recorded action potential of the cell, and injected into the cell. Instead of being computed, this current may also be recorded from a heterologous expression system such as a HEK-293 cell that is voltage-clamped by the free-running action potential of the cell ("dynamic action potential clamp"). Thus, one may directly test the effects of an additional or mutated membrane current, a synaptic current or a gap junctional current on the action potential of a patch-clamped cell. In the present chapter, we describe the dynamic clamp on the basis of its application in cardiac cellular electrophysiology.
Collapse
Affiliation(s)
- Géza Berecki
- Health Innovations Research Institute, RMIT University, Melbourne, VIC, Australia
| | | | | | | |
Collapse
|
35
|
Smaill BH, Zhao J, Trew ML. Three-dimensional impulse propagation in myocardium: arrhythmogenic mechanisms at the tissue level. Circ Res 2013; 112:834-48. [PMID: 23449546 DOI: 10.1161/circresaha.111.300157] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Impulse propagation in the heart depends on the excitability of individual cardiomyocytes, impulse transmission between adjacent myocytes, and the 3-dimensional arrangement of those cells. Here, we review the role of each of these factors in normal and aberrant cardiac electric activation, with particular emphasis on the effects of 3-dimensional myocyte architecture at the tissue scale. The analysis draws on findings from in vivo and in vitro experiments, as well as biophysically based computer models that have been used to integrate and interpret these experimental data. It indicates that discontinuous arrangement of myocytes and extracellular connective tissue at the tissue scale can give rise to current source-to-sink mismatch, spatiotemporal distribution of refractoriness, and rate-sensitive electric instability, which contribute to the initiation and maintenance of reentrant cardiac arrhythmia. This exacerbates the risk of rhythm disturbance associated with heart disease. We conclude that structure-based, multiscale computer models that incorporate accurate information about local cellular electric activity provide a powerful platform for investigating the basis of reentrant cardiac arrhythmia. However, it is important that these models capture key features of structure and related electric function at the tissue scale.
Collapse
Affiliation(s)
- Bruce H Smaill
- Auckland Bioengineering Institute, University of Auckland, Auckland Mail Centre, Auckland 1142, New Zealand.
| | | | | |
Collapse
|
36
|
Kettlewell S, Burton FL, Smith GL, Workman AJ. Chronic myocardial infarction promotes atrial action potential alternans, afterdepolarizations, and fibrillation. Cardiovasc Res 2013; 99:215-24. [PMID: 23568957 PMCID: PMC3687753 DOI: 10.1093/cvr/cvt087] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Aims Atrial fibrillation (AF) is increased in patients with heart failure resulting from myocardial infarction (MI). We aimed to determine the effects of chronic ventricular MI in rabbits on the susceptibility to AF, and underlying atrial electrophysiological and Ca2+-handling mechanisms. Methods and results In Langendorff-perfused rabbit hearts, under β-adrenergic stimulation with isoproterenol (ISO; 1 µM), 8 weeks MI decreased AF threshold, indicating increased AF susceptibility. This was associated with increased atrial action potential duration (APD)-alternans at 90% repolarization, by 147%, and no significant change in the mean APD or atrial global conduction velocity (CV; n = 6–13 non-MI hearts, 5–12 MI). In atrial isolated myocytes, also under β-stimulation, L-type Ca2+ current (ICaL) density and intracellular Ca2+-transient amplitude were decreased by MI, by 35 and 41%, respectively, and the frequency of spontaneous depolarizations (SDs) was substantially increased. MI increased atrial myocyte size and capacity, and markedly decreased transverse-tubule density. In non-MI hearts perfused with ISO, the ICaL-blocker nifedipine, at a concentration (0.02 µM) causing an equivalent ICaL reduction (35%) to that from the MI, did not affect AF susceptibility, and decreased APD. Conclusion Chronic MI in rabbits remodels atrial structure, electrophysiology, and intracellular Ca2+ handling. Increased susceptibility to AF by MI, under β-adrenergic stimulation, may result from associated production of atrial APD alternans and SDs, since steady-state APD and global CV were unchanged under these conditions, and may be unrelated to the associated reduction in whole-cell ICaL. Future studies may clarify potential contributions of local conduction changes, and cellular and subcellular mechanisms of alternans, to the increased AF susceptibility.
Collapse
Affiliation(s)
- Sarah Kettlewell
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow G128TA, UK
| | | | | | | |
Collapse
|
37
|
Karagueuzian HS, Nguyen TP, Qu Z, Weiss JN. Oxidative stress, fibrosis, and early afterdepolarization-mediated cardiac arrhythmias. Front Physiol 2013; 4:19. [PMID: 23423152 PMCID: PMC3573324 DOI: 10.3389/fphys.2013.00019] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 01/25/2013] [Indexed: 01/06/2023] Open
Abstract
Animal and clinical studies have demonstrated that oxidative stress, a common pathophysiological factor in cardiac disease, reduces repolarization reserve by enhancing the L-type calcium current, the late Na, and the Na-Ca exchanger, promoting early afterdepolarizations (EADs) that can initiate ventricular tachycardia and ventricular fibrillation (VT/VF) in structurally remodeled hearts. Increased ventricular fibrosis plays a key facilitatory role in allowing oxidative-stress induced EADs to manifest as triggered activity and VT/VF, since normal non-fibrotic hearts are resistant to arrhythmias when challenged with similar or higher levels of oxidative stress. The findings imply that antifibrotic therapy, in addition to therapies designed to suppress EAD formation at the cellular level, may be synergistic in reducing the risk of sudden cardiac death.
Collapse
Affiliation(s)
- Hrayr S Karagueuzian
- Cardiovascular Research Laboratory, Translational Arrhythmia Research Section, David Geffen School of Medicine at UCLA Los Angeles, CA, USA
| | | | | | | |
Collapse
|
38
|
Radicke S, Riedel T, Cotella D, Turnow K, Ravens U, Schaefer M, Wettwer E. Accessory subunits alter the temperature sensitivity of Kv4.3 channel complexes. J Mol Cell Cardiol 2013; 56:8-18. [PMID: 23291429 DOI: 10.1016/j.yjmcc.2012.12.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 12/19/2012] [Accepted: 12/20/2012] [Indexed: 01/11/2023]
Abstract
In human atrial myocytes the transient outward current I(to) develops a conspicuous faster inactivation with increasing temperatures. Since β-subunits are known to modulate I(to) current kinetics, we hypothesized that the temperature sensitivity of I(to) is not only determined by the property of the ion-passing α-subunit Kv4.3 but also by its interaction with accessory β-subunits. We therefore studied the influence of the transmembrane β-subunits KCNE1, KCNE2 and DPP6 on Kv4.3/KChIP2 channels in CHO cells at room temperature and at physiological temperature. Exposure to 37°C caused a significant acceleration of the channel kinetics, whereas current densities and voltage dependences remained unaltered at 37°C compared to 23°C. However, Kv4.3/KChIP2 channels without transmembrane β-subunits showed the strongest temperature sensitivity with considerably increased rates of activation and inactivation at 37°C. KCNE2 significantly slowed the current kinetics at 37°C compared to Kv4.3/KChIP2 channels, whereas KCNE1 did not influence the channel properties at both temperatures. Interestingly, the accelerating effects of DPP6 on current kinetics described at 23°C were diminished at physiological temperature, thus at 37°C current kinetics became remarkably similar for channel complexes Kv4.3/KChIP2 with and without DPP6 isoforms. A Markov state model was developed on the basis of experimental measurements to simulate the influence of β-subunits on Kv4.3 channel complex at both temperatures. In conclusion, the remarkably fast kinetics of the native I(to) at 37°C could be reproduced by co-expressing Kv4.3, KChIP2, KCNE2 and DPP6 in CHO cells, whereas the high temperature sensitivity of human I(to) could be not mimicked.
Collapse
Affiliation(s)
- S Radicke
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, Härtelstr.16-18, 04107 Leipzig, Germany.
| | | | | | | | | | | | | |
Collapse
|