1
|
Di Domenico H, Rupp T, Morel B, Brocherie F, Périard JD, Racinais S, Girard O. Time-continuous analysis of muscle and cerebral oxygenation during repeated treadmill sprints under heat stress: a statistical parametric mapping study. Eur J Appl Physiol 2025; 125:1167-1178. [PMID: 39609290 DOI: 10.1007/s00421-024-05666-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 11/13/2024] [Indexed: 11/30/2024]
Abstract
PURPOSE We examined how heat exposure affects muscle and cerebral oxygenation kinetics using statistical parametric mapping (SPM) during repeated treadmill sprints. METHODS Eleven recreationally active males performed three sets of five 5-s sprints with 25 s of recovery and 3 min between sets in hot (38 °C) and temperate (25 °C) conditions. Continuous measurements of muscle (vastus lateralis) and cerebral (prefrontal cortex) tissue oxygenation were obtained using near-infrared spectroscopy. One-way ANOVA SPM{F} statistics were applied to pooled sprint data, with each condition including 15 time-series (three sets of five sprints) combined. Each time-series included the sprint and subsequent recovery phases. RESULTS Muscle tissue saturation index further decreased in hot compared to temperate condition, from the middle of the 5-s sprint phase (~ 2.9 s) until the end of the recovery period (p < 0.001), while total hemoglobin concentration was significantly higher in the early phase of recovery (from 5.1 to 11.8 s, p = 0.003). Cerebral tissue saturation index decreased from 0.7 s to 13.0 s (p < 0.001) in the heat. Total hemoglobin concentration was lower in hot condition during both the sprint phase and the initial third of the recovery (from 0 to 11.7 s, p < 0.001), as well as during the recovery (from 20.5 to 24.8 s, p = 0.007). CONCLUSION Adding heat stress to repeating treadmill sprints further lowered muscle oxygenation levels during both the sprint and recovery phases, and limited cerebral tissue perfusion during the sprint and the initial recovery phases. The use of SPM for continuous analysis of near-infrared spectroscopy data provides new insights beyond summary statistics.
Collapse
Affiliation(s)
- Hervé Di Domenico
- Inter-University Laboratory of Human Movement Sciences, EA 7424, Univ Savoie Mont-Blanc, Chambéry, France
| | - Thomas Rupp
- Inter-University Laboratory of Human Movement Sciences, EA 7424, Univ Savoie Mont-Blanc, Chambéry, France
| | - Baptiste Morel
- Inter-University Laboratory of Human Movement Sciences, EA 7424, Univ Savoie Mont-Blanc, Chambéry, France
| | - Franck Brocherie
- Laboratory Sport, Expertise and Performance (EA 7370), French Institute of Sport (INSEP), Paris, France
| | - Julien D Périard
- Research Institute for Sport and Exercise, University of Canberra, Canberra, ACT, Australia
- Aspetar Orthopaedic and Sports Medicine Hospital, FIFA Medical Centre of Excellence, Doha, Qatar
| | - Sébastien Racinais
- Aspetar Orthopaedic and Sports Medicine Hospital, FIFA Medical Centre of Excellence, Doha, Qatar
- UMR 866, DMEM, INRAE/University of Montpellier, Montpellier, France
- Environmental Stress Unit, CREPS Montpellier-Font Romeu, Montpellier, France
| | - Olivier Girard
- Aspetar Orthopaedic and Sports Medicine Hospital, FIFA Medical Centre of Excellence, Doha, Qatar.
- Exercise and Sport Science Department, School of Human Sciences, The University of Western Australia, Perth, WA, Australia.
| |
Collapse
|
2
|
Sotiridis A, Makris A, Koskolou M, Geladas ND. On the mechanisms of stress-induced human spleen contraction: training for a higher blood oxygen-carrying capacity. Eur J Appl Physiol 2024; 124:3477-3493. [PMID: 39207549 DOI: 10.1007/s00421-024-05589-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
Despite its comparatively limited size in humans, spleen has been shown able to expel red-blood cells in the circulation and thus augment blood oxygen-carrying capacity under certain physiologic conditions. In the present state-of-the-art review, the short- and long-term regulation of spleen volume will be discussed. With regards to the physiological mechanism underlying spleen contraction, sympathetic activation stands as the prime contributor to the response. A dose-dependent relationship between specific interventions of apnea, exercise and hypoxia (imposed separately or in combination) and spleen contraction alleges to the trainability of the spleen organ. The trainability of the spleen is further substantiated by virtue of cross-sectional and longitudinal studies reporting robust increases in both organ volume at rest and subsequent spleen contraction. Alternative ways to assess the relationship between hematologic gains and the magnitude of spleen contraction (i.e., the reduction of spleen volume) will be presented herein. In extension of changes in the conventional measures of hemoglobin concentration and hematocrit, assessment of hemoglobin mass and total blood volume using the (safe, low-cost and time-efficient) CO-rebreathing technique could deepen scientific knowledge on the efficiency of human spleen contraction.
Collapse
Affiliation(s)
- Alexandros Sotiridis
- Section of Sports Medicine and Biology of Exercise, School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece.
- Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia.
| | - Anastasios Makris
- Section of Sports Medicine and Biology of Exercise, School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Koskolou
- Section of Sports Medicine and Biology of Exercise, School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Nickos D Geladas
- Section of Sports Medicine and Biology of Exercise, School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
3
|
Francisco R, Jesus F, Santos P, Trbovšek P, Moreira AS, Nunes CL, Alvim M, Sardinha LB, Lukaski H, Mendonca GV, Silva AM. Does acute dehydration affect the neuromuscular function in healthy adults?-a systematic review. Appl Physiol Nutr Metab 2024; 49:1441-1460. [PMID: 39047298 DOI: 10.1139/apnm-2024-0192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
The effects of acute dehydration on neuromuscular function have been studied. However, whether the mechanisms underpinning such function are central or peripheral is still being determined, and the results are inconsistent. This systematic review aims to elucidate the influence of acute dehydration on neuromuscular function, including a novel aspect of investigating the central and peripheral neuromuscular mechanisms. Three databases were used for the article search: PubMed, Web of Science, and Scopus. Studies were included if they had objective measurements of dehydration, muscle performance, and electromyography data or transcranial magnetic stimulation or peripheral nerve stimulation measurements with healthy individuals aged 18-65 years. Twenty-three articles met the eligibility criteria. The studies exhibited considerable heterogeneity in the methods used to induce and quantify dehydration. Despite being inconsistent, the literature shows some evidence that acute dehydration does not affect maximal strength during isometric or moderate-speed isokinetic contractions. Conversely, acute dehydration significantly reduces maximal strength during slow-speed isokinetic contractions and fatigue resistance in response to endurance tasks. The studies report that dehydration does not affect the motor cortical output or spinal circuity. The effects occur at the peripheral level within the muscle.
Collapse
Affiliation(s)
- Rúben Francisco
- Exercise and Health Laboratory, CIPER, Faculdade Motricidade Humana, Universidade de Lisboa, Lisbon, Portugal
| | - Filipe Jesus
- Exercise and Health Laboratory, CIPER, Faculdade Motricidade Humana, Universidade de Lisboa, Lisbon, Portugal
| | - Paulo Santos
- Neuromuscular Research Lab, CIPER, Faculdade Motricidade Humana, Universidade de Lisboa, Lisbon, Portugal
| | - Pia Trbovšek
- Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia
| | - Alexandre S Moreira
- Exercise and Health Laboratory, CIPER, Faculdade Motricidade Humana, Universidade de Lisboa, Lisbon, Portugal
| | - Catarina L Nunes
- Atlântica, Instituto Universitário, Fábrica da Pólvora de Barcarena, 2730-036 Barcarena, Portugal
| | - Marta Alvim
- National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
| | - Luís B Sardinha
- Exercise and Health Laboratory, CIPER, Faculdade Motricidade Humana, Universidade de Lisboa, Lisbon, Portugal
| | - Henry Lukaski
- Department of Kinesiology and Public Health Education, Hyslop Sports Center, University of North Dakota, Grand Forks, ND, USA
| | - Gonçalo V Mendonca
- Neuromuscular Research Lab, CIPER, Faculdade Motricidade Humana, Universidade de Lisboa, Lisbon, Portugal
| | - Analiza M Silva
- Exercise and Health Laboratory, CIPER, Faculdade Motricidade Humana, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
4
|
Plakias S, Tsatalas T, Mina MA, Kokkotis C, Flouris AD, Giakas G. The Impact of Heat Exposure on the Health and Performance of Soccer Players: A Narrative Review and Bibliometric Analysis. Sports (Basel) 2024; 12:249. [PMID: 39330726 PMCID: PMC11436032 DOI: 10.3390/sports12090249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/28/2024] Open
Abstract
The impact of heat exposure on the health and performance of soccer players is a widely discussed topic. The purpose of this study is to provide a comprehensive overview of the international literature that has addressed this issue. To achieve this objective, we initially conducted a bibliometric analysis and a literature review of the main topics that emerged through bibliometric techniques. For the bibliometric analysis, we employed VOSviewer software (version 1.6.20.0) and used documents found in the Scopus database. The analysis ultimately included 133 documents published in 66 sources. Key journals and authors were identified, highlighting significant contributions to the field. Science mapping revealed collaboration networks and research focus areas such as physical health, safety, soccer performance, dehydration and hydration, physiological mechanisms and monitoring, nutrition, fluid intake, and cooling techniques. Based on the key areas highlighted in the identified clusters, which emerged from the co-occurrence analysis of the author keywords, the following three topics were developed in the literature review: (a) the physiology and health of football players; (b) performance impacts; and (c) strategies to prevent negative consequences. The review showed that high heat exposure can reduce the physical and cognitive performance of athletes and prove detrimental to their health. To mitigate the negative consequences, appropriate hydration strategies, heat acclimatization, and cooling techniques have been proposed. Our findings provide the international scientific community with comprehensive knowledge of the existing literature, laying the foundation for future research while simultaneously offering coaches and athletes the necessary theoretical knowledge to help improve safety and performance.
Collapse
Affiliation(s)
- Spyridon Plakias
- Department of Physical Education and Sport Science, University of Thessaly, Karyes, 42100 Trikala, Greece; (S.P.); (T.T.)
| | - Themistoklis Tsatalas
- Department of Physical Education and Sport Science, University of Thessaly, Karyes, 42100 Trikala, Greece; (S.P.); (T.T.)
| | - Minas A. Mina
- Department of Sport, Outdoor and Exercise Science, School of Human Sciences & Human Sciences Research Centre, University of Derby, Kedleston Road, Derby DE22 1GB, UK;
| | - Christos Kokkotis
- Department of Physical Education and Sport Science, Democritus University of Thrace, 69100 Komotini, Greece;
| | - Andreas D. Flouris
- FAME Laboratory, Department of Exercise Science, University of Thessaly, 42100 Trikala, Greece;
| | - Giannis Giakas
- Department of Physical Education and Sport Science, University of Thessaly, Karyes, 42100 Trikala, Greece; (S.P.); (T.T.)
| |
Collapse
|
5
|
Watanabe K, Koch Esteves N, Gibson OR, Akiyama K, Watanabe S, González-Alonso J. Heat-related changes in the velocity and kinetic energy of flowing blood influence the human heart's output during hyperthermia. J Physiol 2024; 602:2227-2251. [PMID: 38690610 DOI: 10.1113/jp285760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 04/03/2024] [Indexed: 05/02/2024] Open
Abstract
Passive whole-body hyperthermia increases limb blood flow and cardiac output (Q ̇ $\dot Q$ ), but the interplay between peripheral and central thermo-haemodynamic mechanisms remains unclear. Here we tested the hypothesis that local hyperthermia-induced alterations in peripheral blood flow and blood kinetic energy modulate flow to the heart andQ ̇ $\dot Q$ . Body temperatures, regional (leg, arm, head) and systemic haemodynamics, and left ventricular (LV) volumes and functions were assessed in eight healthy males during: (1) 3 h control (normothermic condition); (2) 3 h of single-leg heating; (3) 3 h of two-leg heating; and (4) 2.5 h of whole-body heating. Leg, forearm, and extracranial blood flow increased in close association with local rises in temperature while brain perfusion remained unchanged. Increases in blood velocity with small to no changes in the conduit artery diameter underpinned the augmented limb and extracranial perfusion. In all heating conditions,Q ̇ $\dot Q$ increased in association with proportional elevations in systemic vascular conductance, related to enhanced blood flow, blood velocity, vascular conductance and kinetic energy in the limbs and head (all R2 ≥ 0.803; P < 0.001), but not in the brain. LV systolic (end-systolic elastance and twist) and diastolic functional profiles (untwisting rate), pulmonary ventilation and systemic aerobic metabolism were only altered in whole-body heating. These findings substantiate the idea that local hyperthermia-induced selective alterations in peripheral blood flow modulate the magnitude of flow to the heart andQ ̇ $\dot Q$ through changes in blood velocity and kinetic energy. Localised heat-activated events in the peripheral circulation therefore affect the human heart's output. KEY POINTS: Local and whole-body hyperthermia increases limb and systemic perfusion, but the underlying peripheral and central heat-sensitive mechanisms are not fully established. Here we investigated the regional (leg, arm and head) and systemic haemodynamics (cardiac output:Q ̇ $\dot Q$ ) during passive single-leg, two-leg and whole-body hyperthermia to determine the contribution of peripheral and central thermosensitive factors in the control of human circulation. Single-leg, two-leg, and whole-body hyperthermia induced graded increases in leg blood flow andQ ̇ $\dot Q$ . Brain blood flow, however, remained unchanged in all conditions. Ventilation, extracranial blood flow and cardiac systolic and diastolic functions only increased during whole-body hyperthermia. The augmentedQ ̇ $\dot Q$ with hyperthermia was tightly related to increased limb and head blood velocity, flow and kinetic energy. The findings indicate that local thermosensitive mechanisms modulate regional blood velocity, flow and kinetic energy, thereby controlling the magnitude of flow to the heart and thus the coupling of peripheral and central circulation during hyperthermia.
Collapse
Affiliation(s)
- Kazuhito Watanabe
- Division of Sport, Health and Exercise Sciences, Department of Life Sciences, Brunel University London, Uxbridge, UK
- Faculty of Education and Human Studies, Akita University, Akita, Japan
| | - Nuno Koch Esteves
- Division of Sport, Health and Exercise Sciences, Department of Life Sciences, Brunel University London, Uxbridge, UK
- Research Centre, University College of Osteopathy, London, UK
| | - Oliver R Gibson
- Division of Sport, Health and Exercise Sciences, Department of Life Sciences, Brunel University London, Uxbridge, UK
- Centre for Physical Activity in Health and Disease, Brunel University London, Uxbridge, UK
| | - Koichi Akiyama
- Department of Anesthesiology, Kindai University Hospital, Osaka, Japan
| | - Sumie Watanabe
- Division of Sport, Health and Exercise Sciences, Department of Life Sciences, Brunel University London, Uxbridge, UK
- Faculty of Education and Human Studies, Akita University, Akita, Japan
| | - José González-Alonso
- Division of Sport, Health and Exercise Sciences, Department of Life Sciences, Brunel University London, Uxbridge, UK
| |
Collapse
|
6
|
Kim JS, Han JW, Oh DJ, Suh SW, Kwon MJ, Park J, Jo S, Kim JH, Kim KW. Effects of sleep quality on diurnal variation of brain volume in older adults: A retrospective cross-sectional study. Neuroimage 2024; 288:120533. [PMID: 38340880 DOI: 10.1016/j.neuroimage.2024.120533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/02/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024] Open
Abstract
AIM Brain volume is influenced by several factors that can change throughout the day. In addition, most of these factors are influenced by sleep quality. This study investigated diurnal variation in brain volume and its relation to overnight sleep quality. METHODS We enrolled 1,003 healthy Koreans without any psychiatric disorders aged 60 years or older. We assessed sleep quality and average wake time using the Pittsburgh Sleep Quality Index, and divided sleep quality into good, moderate, and poor groups. We estimated the whole and regional brain volumes from three-dimensional T1-weighted brain MRI scans. We divided the interval between average wake-up time and MRI acquisition time (INT) into tertile groups: short (INT1), medium (INT2), and long (INT3). RESULTS Whole and regional brain volumes showed no significance with respect to INT. However, the `interaction between INT and sleep quality showed significance for whole brain, cerebral gray matter, and cerebrospinal fluid volumes (p < .05). The INT2 group showed significantly lower volumes of whole brain, whole gray matter, cerebral gray matter, cortical gray matter, subcortical gray matter, and cerebrospinal fluid than the INT1 and INT3 groups only in the individuals with good sleep quality. CONCLUSION Human brain volume changes significantly within a day associated with overnight sleep in the individuals with good sleep quality.
Collapse
Affiliation(s)
- Jun Sung Kim
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Ji Won Han
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, South Korea; Department of Psychiatry, Seoul National University, College of Medicine, Seoul, South Korea
| | - Dae Jong Oh
- Department of Psychiatry, Seoul National University, College of Medicine, Seoul, South Korea; Department of Psychiatry, SMG-SNU Boramae Medical Center, Seoul Korea
| | - Seung Wan Suh
- Department of Psychiatry, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Min Jeong Kwon
- Department of Brain and Cognitive Science, Seoul National University College of Natural Sciences, Seoul, South Korea
| | - Jieun Park
- Department of Brain and Cognitive Science, Seoul National University College of Natural Sciences, Seoul, South Korea
| | - Sungman Jo
- Department of Health Science and Technology, Graduate school of convergence science and technology, Seoul National University, Seoul, South Korea
| | - Jae Hyoung Kim
- Department of Radiology, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Ki Woong Kim
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, South Korea; Department of Psychiatry, Seoul National University, College of Medicine, Seoul, South Korea; Department of Brain and Cognitive Science, Seoul National University College of Natural Sciences, Seoul, South Korea; Department of Health Science and Technology, Graduate school of convergence science and technology, Seoul National University, Seoul, South Korea.
| |
Collapse
|
7
|
Pałka T, Rydzik Ł, Koteja PM, Piotrowska A, Bagińska M, Ambroży T, Angelova-Igova B, Javdaneh N, Wiecha S, Filip-Stachnik A, Tota Ł. Effect of Various Hydration Strategies on Work Intensity and Selected Physiological Indices in Young Male Athletes during Prolonged Physical Exercise at High Ambient Temperatures. J Clin Med 2024; 13:982. [PMID: 38398295 PMCID: PMC10888716 DOI: 10.3390/jcm13040982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/26/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Background: In high temperatures, adequate hydration is vital for sustained physical exercise. This study explores the effect of three hydration strategies on physiological indices and work intensity. Methods: The research involved 12 healthy males who engaged in three test series, each separated by a one-week interval. During the trials, participants underwent a 120 min cycling session in a thermal climate chamber (temperature: 31 ± 2 °C, humidity: 60 ± 3%, air movement: <1 m/s). Measurements of rectal temperature (Tre) and heart rate (HR), and assessment of subjective workload perception, and thermal comfort were made both before and during the exercise. The computation of the physical strain index (PSI) relied on Tre and HR values. Three hydration strategies (isotonic drink, water, and no hydration) were administered before, during, and after the exercise. Results: Regardless of the hydration strategy, the participants' mean body mass decreased as a result of the exercise. Statistically significant differences in HR were observed between the no-hydration and water groups (p < 0.036). The mean PSI values significantly varied between hydration strategies, with the no hydration group exhibiting a higher PSI compared to the isotonic drink or water groups (p < 0.001). Conclusions: All hydration strategies contribute to thermoregulatory processes and mitigate the rise in internal body temperature during sustained physical exercise in elevated ambient temperatures.
Collapse
Affiliation(s)
- Tomasz Pałka
- Department of Physiology and Biochemistry, Faculty of Physical Education and Sport, University of Physical Education, 31-571 Kraków, Poland; (T.P.); (Ł.T.)
| | - Łukasz Rydzik
- Institute of Sports Sciences, University of Physical Education, 31-571 Kraków, Poland; (P.M.K.); (T.A.)
| | - Piotr Michał Koteja
- Institute of Sports Sciences, University of Physical Education, 31-571 Kraków, Poland; (P.M.K.); (T.A.)
| | - Anna Piotrowska
- Department of Chemistry and Biochemistry, Faculty of Physiotherapy, University of Physical Education, 31-571 Kraków, Poland;
| | - Małgorzata Bagińska
- Institute of Biomedical Sciences, Department of Physiology and Biochemistry, University of Physical Education, 31-571 Kraków, Poland;
| | - Tadeusz Ambroży
- Institute of Sports Sciences, University of Physical Education, 31-571 Kraków, Poland; (P.M.K.); (T.A.)
| | - Boryana Angelova-Igova
- National Sports Academy Vassil Levski, Philosophy and Sociology of Sport, 1700 Sophia, Bulgaria;
| | - Norollah Javdaneh
- Department of Biomechanics and Sports Injuries, Kharazmi University of Tehran, Tehran 14911-15719, Iran;
| | - Szczepan Wiecha
- Department of Physical Education and Health in Biala Podlaska, Faculty in Biala Podlaska, Jozef Pilsudski University of Physical Education, 00-968 Warsaw, Poland
| | - Aleksandra Filip-Stachnik
- Department of Sports Medicine and Human Nutrition, Institute of Biomedical Sciences, University of Physical Education, 31-571 Kraków, Poland;
| | - Łukasz Tota
- Department of Physiology and Biochemistry, Faculty of Physical Education and Sport, University of Physical Education, 31-571 Kraków, Poland; (T.P.); (Ł.T.)
| |
Collapse
|
8
|
Parikh K, Shepley BR, Tymko MM, Hijmans JG, Hoiland RL, Desouza CA, Sekhon MS, Ainslie PN, Bain AR. Cerebral uptake of microvesicles occurs in normocapnic but not hypocapnic passive hyperthermia in young healthy male adults. J Physiol 2023; 601:5601-5616. [PMID: 37975212 DOI: 10.1113/jp285265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023] Open
Abstract
Passive hyperthermia causes cerebral hypoperfusion primarily from heat-induced respiratory alkalosis. However, despite the cerebral hypoperfusion, it is possible that the mild alkalosis might help to attenuate cerebral inflammation. In this study, the cerebral exchange of extracellular vesicles (microvesicles), which are known to elicit pro-inflammatory responses when released in conditions of stress, were examined in hyperthermia with and without respiratory alkalosis. Ten healthy male adults were heated passively, using a warm water-perfused suit, up to core temperature + 2°C. Blood samples were taken from the radial artery and internal jugular bulb. Microvesicle concentrations were determined in platelet-poor plasma via cells expressing CD62E (activated endothelial cells), CD31+ /CD42b- (apoptotic endothelial cells), CD14 (monocytes) and CD45 (pan-leucocytes). Cerebral blood flow was measured via duplex ultrasound of the internal carotid and vertebral arteries to determine cerebral exchange kinetics. From baseline to poikilocapnic (alkalotic) hyperthermia, there was no change in microvesicle concentration from any cell origin measured (P-values all >0.05). However, when blood CO2 tension was normalized to baseline levels in hyperthermia, there was a marked increase in cerebral uptake of microvesicles expressing CD62E (P = 0.028), CD31+ /CD42b- (P = 0.003) and CD14 (P = 0.031) compared with baseline, corresponding to large increases in arterial but not jugular venous concentrations. In a subset of seven participants who underwent hypercapnia and hypocapnia in the absence of heating, there was no change in microvesicle concentrations or cerebral exchange, suggesting that hyperthermia potentiated the CO2 /pH-mediated cerebral uptake of microvesicles. These data provide insight into a potential beneficial role of respiratory alkalosis in heat stress. KEY POINTS: The hyperthermia-induced hyperventilatory response is observed in most humans, despite causing potentially harmful reductions in cerebral blood flow. We tested the hypothesis that the respiratory-induced alkalosis is associated with lower circulating microvesicle concentrations, specifically in the brain, despite the reductions in blood flow. At core temperature + 2°C with respiratory alkalosis, microvesicles derived from endothelial cells, monocytes and leucocytes were at concentrations similar to baseline in the arterial and cerebral venous circulation, with no changes in cross-brain microvesicle kinetics. However, when core temperature was increased by 2°C with CO2 /pH normalized to resting levels, there was a marked cerebral uptake of microvesicles derived from endothelial cells and monocytes. The CO2 /pH-mediated alteration in cerebral microvesicle uptake occurred only in hyperthermia. These new findings suggest that the heat-induced hyperventilatory response might serve a beneficial role by preventing potentially inflammatory microvesicle uptake in the brain.
Collapse
Affiliation(s)
- Khushali Parikh
- Faculty of Human Kinetics, Department of Kinesiology, University of Windsor, Windsor, ON, Canada
| | - Brooke R Shepley
- Faculty of Human Kinetics, Department of Kinesiology, University of Windsor, Windsor, ON, Canada
| | - Michael M Tymko
- Centre for Heart, Lung and Vascular Health, University of British Columbia, Kelowna, BC, Canada
- Department of Human Health and Nutritional Sciences, College of Biological Science, University of Guelph, Guelph, ON, Canada
| | - Jamie G Hijmans
- Department of Integrative Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Ryan L Hoiland
- Centre for Heart, Lung and Vascular Health, University of British Columbia, Kelowna, BC, Canada
- Division of Critical Care Medicine, Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada
- Collaborative Entity for Researching Brain Ischemia, University of British Columbia, Vancouver, BC, Canada
| | | | - Mypinder S Sekhon
- Division of Critical Care Medicine, Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada
- Collaborative Entity for Researching Brain Ischemia, University of British Columbia, Vancouver, BC, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, University of British Columbia, Kelowna, BC, Canada
| | - Anthony R Bain
- Faculty of Human Kinetics, Department of Kinesiology, University of Windsor, Windsor, ON, Canada
| |
Collapse
|
9
|
Hiura M, Funaki A, Shibutani H, Takahashi K, Katayama Y. Dissociated coupling between cerebral oxygen metabolism and perfusion in the prefrontal cortex during exercise: a NIRS study. Front Physiol 2023; 14:1165939. [PMID: 37565141 PMCID: PMC10411551 DOI: 10.3389/fphys.2023.1165939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 07/07/2023] [Indexed: 08/12/2023] Open
Abstract
Purpose: The present study used near-infrared spectroscopy to investigate the relationships between cerebral oxygen metabolism and perfusion in the prefrontal cortex (PFC) during exercises of different intensities. Methods: A total of 12 recreationally active men (age 24 ± 6 years) were enrolled. They performed 17 min of low-intensity exercise (ExL), followed by 3 min of moderate-intensity exercise (ExM) at constant loads. Exercise intensities for ExL and ExM corresponded to 30% and 45% of the participants' heart rate reserve, respectively. Cardiovascular and respiratory parameters were measured. We used near-infrared time-resolved spectroscopy (TRS) to measure the cerebral hemoglobin oxygen saturation (ScO2) and total hemoglobin concentration ([HbT]), which can indicate the cerebral blood volume (CBV). As the cerebral metabolic rate for oxygen (CMRO2) is calculated using cerebral blood flow (CBF) and ScO2, we assumed a constant power law relationship between CBF and CBV based on investigations by positron emission tomography (PET). We estimated the relative changes in CMRO2 (rCMRO2) and CBV (rCBV) from the baseline. During ExL and ExM, the rate of perceived exertion was monitored, and alterations in the subjects' mood induced by exercise were evaluated using the Profile of Moods Scale-Brief. Results: Three minutes after exercise initiation, ScO2 decreased and rCMRO2 surpassed rCBV in the left PFC. When ExL changed to ExM, cardiovascular variables and the sense of effort increased concomitantly with an increase in [HbT] but not in ScO2, and the relationship between rCMRO2 and rCBV was dissociated in both sides of the PFC. Immediately after ExM, [HbT], and ScO2 increased, and the disassociation between rCMRO2 and rCBV was prominent in both sides of the PFC. While blood pressure decreased and a negative mood state was less prominent following ExM compared with that at rest, ScO2 decreased 15 min after exercise and rCMRO2 surpassed rCBV in the left PFC. Conclusion: Dissociated coupling between cerebral oxidative metabolism and perfusion in the PFC was consistent with the effort required for increased exercise intensity and associated with post-exercise hypotension and altered mood status after exercise. Our result demonstrates the first preliminary results dealing with the coupling between cerebral oxidative metabolism and perfusion in the PFC using TRS.
Collapse
Affiliation(s)
- Mikio Hiura
- Center for Brain and Health Sciences, Aomori University, Aomori, Japan
| | - Akio Funaki
- Faculty of Sociology, Aomori University, Aomori, Japan
| | | | - Katsumi Takahashi
- Faculty of Creative Engineering, Kanagawa Institute of Technology, Atsugi, Japan
| | - Yoichi Katayama
- Center for Brain and Health Sciences, Aomori University, Aomori, Japan
| |
Collapse
|
10
|
Pałka T, Koteja PM, Tota Ł, Rydzik Ł, Kopańska M, Kaczorowska I, Javdaneh N, Mikulakova W, Wolski H, Ambroży T. The Influence of Various Hydration Strategies (Isotonic, Water, and No Hydration) on Hematological Indices, Plasma Volume, and Lactate Concentration in Young Men during Prolonged Cycling in Elevated Ambient Temperatures. BIOLOGY 2023; 12:biology12050687. [PMID: 37237501 DOI: 10.3390/biology12050687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/27/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023]
Abstract
BACKGROUND Increased internal body temperature during dehydration can be accompanied by water-electrolyte imbalances, higher levels of lactate during and after physical exertion, and changes in blood volume. Adequate hydration with carbohydrate-electrolyte fluids during physical activity can prevent dehydration and delay the onset of fatigue, allowing for proper biochemical and hematological reactions during exertion. A suitable drinking plan should consider the pre-exercise hydration level as well as the requirements for fluids, electrolytes, and substrates before, during, and after exercise. The objective of this study was to assess the impact of different hydration strategies (isotonic, water, and no hydration) on hematological indicators (hemoglobin concentration, hematocrit number, erythrocyte count, leukocyte count, and mean corpuscular volume) and lactate concentration during prolonged physical exertion in a high-temperature environment in young men. METHODS The research method was quasi-experimental. The study involved 12 healthy men aged 20.6 ± 0.9 years, who were characterized by a body height (BH) of 177.2 ± 4.8 cm, a body mass (BM) of 74.4 ± 7.6 kg, a lean body mass (LBM) of 61.1 ± 6.1 kg, and a body mass index (BMI) of 23.60 ± 0.48. Measurements were taken of body composition and hematological and biochemical indicators. The main tests consisted of three series of tests separated by a one-week break. During the tests, the men performed a 120 min exercise with an intensity of 110 W on a cycle ergometer in a thermo-climatic chamber at an ambient temperature of 31 ± 2 °C. During exertion, the participants consumed isotonic fluids or water in an amount of 120-150% of the lost water every 15 min. The participants who exercised without hydration did not consume any fluids. RESULTS Significant differences in serum volume were observed between the use of isotonic beverage and no hydration (p = 0.002) and between the use of isotonic beverage and water (p = 0.046). Immediately after the experimental exercise, hemoglobin values were significantly higher with no hydration than with water (p = 0.002). An even stronger significance of differences in hemoglobin was observed between no hydration and isotonic beverage consumption (p < 0.001). There was a statistically significant difference in the number of leukocytes between the consumption of isotonic beverage and no hydration (p = 0.006). CONCLUSIONS Each active hydration strategy allows for a better maintenance of water-electrolyte homeostasis during physical exertion in a high-temperature environment, and isotonic beverage consumption had a greater impact on hydrating extracellular spaces with the smallest changes in hematological indicators.
Collapse
Affiliation(s)
- Tomasz Pałka
- Department of Physiology and Biochemistry, Faculty of Physical Education and Sport, University of Physical Education, 31-571 Kraków, Poland
| | - Piotr Michał Koteja
- Institute of Sports Sciences, University of Physical Education, 31-571 Kraków, Poland
| | - Łukasz Tota
- Department of Physiology and Biochemistry, Faculty of Physical Education and Sport, University of Physical Education, 31-571 Kraków, Poland
| | - Łukasz Rydzik
- Institute of Sports Sciences, University of Physical Education, 31-571 Kraków, Poland
| | - Marta Kopańska
- Department of Pathophysiology, Institute of Medical Sciences, Medical College of Rzeszów University, 35-959 Rzeszów, Poland
| | - Izabela Kaczorowska
- Doctoral Studies Institute of Biomedical Sciences, University of Physical Education, 31-571 Kraków, Poland
| | - Norollah Javdaneh
- Department of Biomechanics and Sports Injuries, Kharazmi University of Tehran, Tehran 14911-15719, Iran
| | - Wioletta Mikulakova
- Department of Physiotherapy, Faculty of Health Care, University of Presov, 080 01 Presov, Slovakia
| | - Hubert Wolski
- Medical Institute, Podhale State Vocational College, 34-400 Nowy Targ, Poland
- Department of Perinatology and Women's Diseases, Poznań University of Medical Sciences, 61-701 Poznań, Poland
| | - Tadeusz Ambroży
- Institute of Sports Sciences, University of Physical Education, 31-571 Kraków, Poland
| |
Collapse
|
11
|
Turner O, Mitchell N, Ruddock A, Purvis A, Ranchordas MK. Fluid Balance, Sodium Losses and Hydration Practices of Elite Squash Players during Training. Nutrients 2023; 15:nu15071749. [PMID: 37049589 PMCID: PMC10096645 DOI: 10.3390/nu15071749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 03/30/2023] [Accepted: 04/01/2023] [Indexed: 04/07/2023] Open
Abstract
Elite squash players are reported to train indoors at high volumes and intensities throughout a microcycle. This may increase hydration demands, with hypohydration potentially impairing many key performance indicators which characterise elite squash performance. Consequently, the main aim of this study was to quantify the sweat rates and sweat [Na+] of elite squash players throughout a training session, alongside their hydration practices. Fourteen (males = seven; females = seven) elite or world class squash player’s fluid balance, sweat [Na+] and hydration practices were calculated throughout a training session in moderate environmental conditions (20 ± 0.4 °C; 40.6 ± 1% RH). Rehydration practices were also quantified post-session until the players’ next training session, with some training the same day and some training the following day. Players had a mean fluid balance of −1.22 ± 1.22% throughout the session. Players had a mean sweat rate of 1.11 ± 0.56 L·h−1, with there being a significant difference between male and female players (p < 0.05), and a mean sweat (Na+) of 46 ± 12 mmol·L−1. Players training the following day were able to replace fluid and sodium losses, whereas players training again on the same day were not. These data suggest the variability in players hydration demands and highlight the need to individualise hydration strategies, as well as training prescription, to ensure players with high hydration demands have ample time to optimally rehydrate.
Collapse
Affiliation(s)
- Ollie Turner
- Academy of Sport & Physical Activity, Sheffield Hallam University, Sheffield S10 2BP, UK
- English Institute of Sport, Manchester M11 3BS, UK
| | | | - Alan Ruddock
- Academy of Sport & Physical Activity, Sheffield Hallam University, Sheffield S10 2BP, UK
| | - Alison Purvis
- Academy of Sport & Physical Activity, Sheffield Hallam University, Sheffield S10 2BP, UK
| | - Mayur K. Ranchordas
- Academy of Sport & Physical Activity, Sheffield Hallam University, Sheffield S10 2BP, UK
| |
Collapse
|
12
|
González‐Alonso J, Calbet JAL, Mora‐Rodríguez R, Kippelen P. Pulmonary ventilation and gas exchange during prolonged exercise in humans: Influence of dehydration, hyperthermia and sympathoadrenal activity. Exp Physiol 2023; 108:188-206. [PMID: 36622358 PMCID: PMC10103888 DOI: 10.1113/ep090909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/30/2022] [Indexed: 01/10/2023]
Abstract
NEW FINDINGS What is the central question of the study? Ventilation increases during prolonged intense exercise, but the impact of dehydration and hyperthermia, with associated blunting of pulmonary circulation, and independent influences of dehydration, hyperthermia and sympathoadrenal discharge on ventilatory and pulmonary gas exchange responses remain unclear. What is the main finding and its importance? Dehydration and hyperthermia led to hyperventilation and compensatory adjustments in pulmonary CO2 and O2 exchange, such that CO2 output increased and O2 uptake remained unchanged despite the blunted circulation. Isolated hyperthermia and adrenaline infusion, but not isolated dehydration, increased ventilation to levels similar to combined dehydration and hyperthermia. Hyperthermia is the main stimulus increasing ventilation during prolonged intense exercise, partly via sympathoadrenal activation. ABSTRACT The mechanisms driving hyperthermic hyperventilation during exercise are unclear. In a series of retrospective analyses, we evaluated the impact of combined versus isolated dehydration and hyperthermia and the effects of sympathoadrenal discharge on ventilation and pulmonary gas exchange during prolonged intense exercise. In the first study, endurance-trained males performed two submaximal cycling exercise trials in the heat. On day 1, participants cycled until volitional exhaustion (135 ± 11 min) while experiencing progressive dehydration and hyperthermia. On day 2, participants maintained euhydration and core temperature (Tc ) during a time-matched exercise (control). At rest and during the first 20 min of exercise, pulmonary ventilation (V ̇ E ${\skew2\dot V_{\rm{E}}}$ ), arterial blood gases, CO2 output and O2 uptake were similar in both trials. At 135 ± 11 min, however,V ̇ E ${\skew2\dot V_{\rm{E}}}$ was elevated with dehydration and hyperthermia, and this was accompanied by lower arterial partial pressure of CO2 , higher breathing frequency, arterial partial pressure of O2 , arteriovenous CO2 and O2 differences, and elevated CO2 output and unchanged O2 uptake despite a reduced pulmonary circulation. The increasedV ̇ E ${\skew2\dot V_{\rm{E}}}$ was closely related to the rise in Tc and circulating catecholamines (R2 ≥ 0.818, P ≤ 0.034). In three additional studies in different participants, hyperthermia independently increasedV ̇ E ${\skew2\dot V_{\rm{E}}}$ to an extent similar to combined dehydration and hyperthermia, whereas prevention of hyperthermia in dehydrated individuals restoredV ̇ E ${\skew2\dot V_{\rm{E}}}$ to control levels. Furthermore, adrenaline infusion during exercise elevated both Tc andV ̇ E ${\skew2\dot V_{\rm{E}}}$ . These findings indicate that: (1) adjustments in pulmonary gas exchange limit homeostatic disturbances in the face of a blunted pulmonary circulation; (2) hyperthermia is the main stimulus increasing ventilation during prolonged intense exercise; and (3) sympathoadrenal activation might partly mediate the hyperthermic hyperventilation.
Collapse
Affiliation(s)
- José González‐Alonso
- Division of SportHealth and Exercise SciencesDepartment of Life SciencesBrunel University LondonUxbridgeUK
| | - José A. L. Calbet
- Department of Physical Education & Research Institute for Biomedical and Health Sciences (IUIBS)University of Las Palmas de Gran CanariaGran CanariaSpain
- Department of Physical PerformanceNorwegian School of Sport SciencesOsloNorway
| | - Ricardo Mora‐Rodríguez
- Department of Physical Activity and Sport SciencesUniversity of Castilla‐La ManchaToledoSpain
| | - Pascale Kippelen
- Division of SportHealth and Exercise SciencesDepartment of Life SciencesBrunel University LondonUxbridgeUK
| |
Collapse
|
13
|
Corticospinal and peripheral responses to heat-induced hypo-hydration: potential physiological mechanisms and implications for neuromuscular function. Eur J Appl Physiol 2022; 122:1797-1810. [PMID: 35362800 PMCID: PMC9287254 DOI: 10.1007/s00421-022-04937-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 03/16/2022] [Indexed: 12/05/2022]
Abstract
Heat-induced hypo-hydration (hyperosmotic hypovolemia) can reduce prolonged skeletal muscle performance; however, the mechanisms are less well understood and the reported effects on all aspects of neuromuscular function and brief maximal contractions are inconsistent. Historically, a 4–6% reduction of body mass has not been considered to impair muscle function in humans, as determined by muscle torque, membrane excitability and peak power production. With the development of magnetic resonance imaging and neurophysiological techniques, such as electromyography, peripheral nerve, and transcranial magnetic stimulation (TMS), the integrity of the brain-to-muscle pathway can be further investigated. The findings of this review demonstrate that heat-induced hypo-hydration impairs neuromuscular function, particularly during repeated and sustained contractions. Additionally, the mechanisms are separate to those of hyperthermia-induced fatigue and are likely a result of modulations to corticospinal inhibition, increased fibre conduction velocity, pain perception and impaired contractile function. This review also sheds light on the view that hypo-hydration has ‘no effect’ on neuromuscular function during brief maximal voluntary contractions. It is hypothesised that irrespective of unchanged force, compensatory reductions in cortical inhibition are likely to occur, in the attempt of achieving adequate force production. Studies using single-pulse TMS have shown that hypo-hydration can reduce maximal isometric and eccentric force, despite a reduction in cortical inhibition, but the cause of this is currently unclear. Future work should investigate the intracortical inhibitory and excitatory pathways within the brain, to elucidate the role of the central nervous system in force output, following heat-induced hypo-hydration.
Collapse
|
14
|
Caldwell HG, Hoiland RL, Smith KJ, Brassard P, Bain AR, Tymko MM, Howe CA, Carr JMJR, Stacey BS, Bailey DM, Drapeau A, Sekhon MS, MacLeod DB, Ainslie PN. Trans-cerebral HCO 3- and PCO 2 exchange during acute respiratory acidosis and exercise-induced metabolic acidosis in humans. J Cereb Blood Flow Metab 2022; 42:559-571. [PMID: 34904461 PMCID: PMC8943603 DOI: 10.1177/0271678x211065924] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/03/2021] [Accepted: 11/11/2021] [Indexed: 01/06/2023]
Abstract
This study investigated trans-cerebral internal jugular venous-arterial bicarbonate ([HCO3-]) and carbon dioxide tension (PCO2) exchange utilizing two separate interventions to induce acidosis: 1) acute respiratory acidosis via elevations in arterial PCO2 (PaCO2) (n = 39); and 2) metabolic acidosis via incremental cycling exercise to exhaustion (n = 24). During respiratory acidosis, arterial [HCO3-] increased by 0.15 ± 0.05 mmol ⋅ l-1 per mmHg elevation in PaCO2 across a wide physiological range (35 to 60 mmHg PaCO2; P < 0.001). The narrowing of the venous-arterial [HCO3-] and PCO2 differences with respiratory acidosis were both related to the hypercapnia-induced elevations in cerebral blood flow (CBF) (both P < 0.001; subset n = 27); thus, trans-cerebral [HCO3-] exchange (CBF × venous-arterial [HCO3-] difference) was reduced indicating a shift from net release toward net uptake of [HCO3-] (P = 0.004). Arterial [HCO3-] was reduced by -0.48 ± 0.15 mmol ⋅ l-1 per nmol ⋅ l-1 increase in arterial [H+] with exercise-induced acidosis (P < 0.001). There was no relationship between the venous-arterial [HCO3-] difference and arterial [H+] with exercise-induced acidosis or CBF; therefore, trans-cerebral [HCO3-] exchange was unaltered throughout exercise when indexed against arterial [H+] or pH (P = 0.933 and P = 0.896, respectively). These results indicate that increases and decreases in systemic [HCO3-] - during acute respiratory/exercise-induced metabolic acidosis, respectively - differentially affect cerebrovascular acid-base balance (via trans-cerebral [HCO3-] exchange).
Collapse
Affiliation(s)
- Hannah G Caldwell
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Ryan L Hoiland
- Department of Anesthesiology, Pharmacology and Therapeutics, Vancouver General Hospital, University of British Columbia, Vancouver, BC, Canada
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Kurt J Smith
- Department of Exercise Science, Physical and Health Education, Faculty of Education, University of Victoria, Victoria, British Columbia, Canada
| | - Patrice Brassard
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada
- Research Center of the Institut Universitaire de Cardiologie et de Pneumologie de Québec, QC, Canada
| | - Anthony R Bain
- Faculty of Human Kinetics, Department of Kinesiology, University of Windsor, Windsor, ON, Canada
| | - Michael M Tymko
- Neurovascular Health Laboratory, Faculty of Kinesiology, Sport and Recreation, University of Alberta, Edmonton, AB, Canada
| | - Connor A Howe
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Jay MJR Carr
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Benjamin S Stacey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, UK
| | - Damian M Bailey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, UK
| | - Audrey Drapeau
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada
- Research Center of the Institut Universitaire de Cardiologie et de Pneumologie de Québec, QC, Canada
| | - Mypinder S Sekhon
- Division of Critical Care Medicine, Department of Medicine, Vancouver General Hospital, Vancouver General Hospital, University of British Columbia, Vancouver, BC, Canada
| | - David B MacLeod
- Human Pharmacology and Physiology Lab, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, Canada
| |
Collapse
|
15
|
Travers G, Kippelen P, Trangmar SJ, González-Alonso J. Physiological Function during Exercise and Environmental Stress in Humans-An Integrative View of Body Systems and Homeostasis. Cells 2022; 11:383. [PMID: 35159193 PMCID: PMC8833916 DOI: 10.3390/cells11030383] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 11/26/2022] Open
Abstract
Claude Bernard's milieu intérieur (internal environment) and the associated concept of homeostasis are fundamental to the understanding of the physiological responses to exercise and environmental stress. Maintenance of cellular homeostasis is thought to happen during exercise through the precise matching of cellular energetic demand and supply, and the production and clearance of metabolic by-products. The mind-boggling number of molecular and cellular pathways and the host of tissues and organ systems involved in the processes sustaining locomotion, however, necessitate an integrative examination of the body's physiological systems. This integrative approach can be used to identify whether function and cellular homeostasis are maintained or compromised during exercise. In this review, we discuss the responses of the human brain, the lungs, the heart, and the skeletal muscles to the varying physiological demands of exercise and environmental stress. Multiple alterations in physiological function and differential homeostatic adjustments occur when people undertake strenuous exercise with and without thermal stress. These adjustments can include: hyperthermia; hyperventilation; cardiovascular strain with restrictions in brain, muscle, skin and visceral organs blood flow; greater reliance on muscle glycogen and cellular metabolism; alterations in neural activity; and, in some conditions, compromised muscle metabolism and aerobic capacity. Oxygen supply to the human brain is also blunted during intense exercise, but global cerebral metabolism and central neural drive are preserved or enhanced. In contrast to the strain seen during severe exercise and environmental stress, a steady state is maintained when humans exercise at intensities and in environmental conditions that require a small fraction of the functional capacity. The impact of exercise and environmental stress upon whole-body functions and homeostasis therefore depends on the functional needs and differs across organ systems.
Collapse
Affiliation(s)
- Gavin Travers
- The European Astronaut Centre, The European Space Agency, Linder Höhe, 51147 Cologne, Germany;
| | - Pascale Kippelen
- Centre for Human Performance, Exercise and Rehabilitation, Brunel University London, Uxbridge UB8 3PH, UK;
- Division of Sport, Health and Exercise Sciences, Department of Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| | - Steven J. Trangmar
- School of Life and Health Sciences, University of Roehampton, London SW15 4JD, UK;
| | - José González-Alonso
- Centre for Human Performance, Exercise and Rehabilitation, Brunel University London, Uxbridge UB8 3PH, UK;
- Division of Sport, Health and Exercise Sciences, Department of Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| |
Collapse
|
16
|
Deshayes TA, Daigle N, Jeker D, Lamontagne-Lacasse M, Perreault-Briere M, Claveau P, Simoneau IL, Chamoux E, Goulet EDB. Impact of Repeated Acute Exposures to Low and Moderate Exercise-Induced Hypohydration on Physiological and Subjective Responses and Endurance Performance. Nutrients 2021; 13:nu13124477. [PMID: 34960028 PMCID: PMC8704556 DOI: 10.3390/nu13124477] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 11/16/2022] Open
Abstract
This study aimed to examine whether repeated exposures to low (2%) and moderate (4%) exercise-induced hypohydration may reverse the potentially deleterious effect of hypohydration on endurance performance. Using a randomized crossover protocol, ten volunteers (23 years, V˙O2max: 54 mL∙kg-1∙min-1) completed two 4-week training blocks interspersed by a 5-week washout period. During one block, participants replaced all fluid losses (EUH) while in the other they were fluid restricted (DEH). Participants completed three exercise sessions per week (walking/running, 55% V˙O2max, 40 °C): (1) 1 h while fluid restricted or drinking ad libitum, (2) until 2 and (3) 4% of body mass has been lost or replaced. During the first and the fourth week of each training block, participants completed a 12 min time-trial immediately after 2% and 4% body mass loss has been reached. Exercise duration and distance completed (14.1 ± 2.7 vs. 6.9 ± 1.5 km) during the fixed-intensity exercise bouts were greater in the 4 compared to the 2% condition (p < 0.01) with no difference between DEH and EUH. During the first week, heart rate, rectal temperature and perceived exertion were higher (p < 0.05) with DEH than EUH, and training did not change these outcomes. Exercise-induced hypohydration of 2% and 4% body mass impaired time-trial performance in a practical manner both at the start and end of the training block. In conclusion, exercise-induced hypohydration of 2% and 4% body mass impairs 12 min walking/running time-trial, and repeated exposures to these hypohydration levels cannot reverse the impairment in performance.
Collapse
Affiliation(s)
- Thomas A. Deshayes
- Faculty of Physical Activity Sciences, University of Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (T.A.D.); (N.D.); (D.J.); (M.L.-L.); (M.P.-B.); (P.C.)
- Research Center on Aging, University of Sherbrooke, Sherbrooke, QC J1H 4C4, Canada
| | - Nicolas Daigle
- Faculty of Physical Activity Sciences, University of Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (T.A.D.); (N.D.); (D.J.); (M.L.-L.); (M.P.-B.); (P.C.)
| | - David Jeker
- Faculty of Physical Activity Sciences, University of Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (T.A.D.); (N.D.); (D.J.); (M.L.-L.); (M.P.-B.); (P.C.)
| | - Martin Lamontagne-Lacasse
- Faculty of Physical Activity Sciences, University of Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (T.A.D.); (N.D.); (D.J.); (M.L.-L.); (M.P.-B.); (P.C.)
| | - Maxime Perreault-Briere
- Faculty of Physical Activity Sciences, University of Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (T.A.D.); (N.D.); (D.J.); (M.L.-L.); (M.P.-B.); (P.C.)
| | - Pascale Claveau
- Faculty of Physical Activity Sciences, University of Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (T.A.D.); (N.D.); (D.J.); (M.L.-L.); (M.P.-B.); (P.C.)
| | - Ivan L. Simoneau
- Centre de Recherche et de Formation par Simulation, Cegep of Sherbrooke, Sherbrooke, QC J1E 4K1, Canada;
| | - Estelle Chamoux
- Faculty of Arts and Science, Biological sciences, Bishop’s University, Sherbrooke, QC J1M 1Z7, Canada;
| | - Eric D. B. Goulet
- Faculty of Physical Activity Sciences, University of Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (T.A.D.); (N.D.); (D.J.); (M.L.-L.); (M.P.-B.); (P.C.)
- Research Center on Aging, University of Sherbrooke, Sherbrooke, QC J1H 4C4, Canada
- Correspondence:
| |
Collapse
|
17
|
Wang J, Guan H, Hostrup M, Rowlands DS, González-Alonso J, Jensen J. The Road to the Beijing Winter Olympics and Beyond: Opinions and Perspectives on Physiology and Innovation in Winter Sport. JOURNAL OF SCIENCE IN SPORT AND EXERCISE 2021; 3:321-331. [PMID: 36304069 PMCID: PMC8475427 DOI: 10.1007/s42978-021-00133-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/24/2021] [Indexed: 11/28/2022]
Abstract
Beijing will host the 2022 Winter Olympics, and China strengthens research on various aspects to allow their athletes to compete successfully in winter sport. Simultaneously, Government-directed initiatives aim to increase public participation in recreational winter sport. These parallel developments allow research to advance knowledge and understanding of the physiological determinants of performance and health related to winter sport. Winter sport athletes often conduct a substantial amount of training with high volumes of low-to-moderate exercise intensity and lower volumes of high-intensity work. Moreover, much of the training occur at low ambient temperatures and winter sport athletes have high risk of developing asthma or asthma-related conditions, such as exercise-induced bronchoconstriction. The high training volumes require optimal nutrition with increased energy and dietary protein requirement to stimulate muscle protein synthesis response in the post-exercise period. Whether higher protein intake is required in the cold should be investigated. Cross-country skiing is performed mostly in Northern hemisphere with a strong cultural heritage and sporting tradition. It is expected that innovative initiatives on recruitment and training during the next few years will target to enhance performance of Chinese athletes in classical endurance-based winter sport. The innovation potential coupled with resourcing and population may be substantial with the potential for China to become a significant winter sport nation. This paper discusses the physiological aspects of endurance training and performance in winter sport highlighting areas where innovation may advance in athletic performance in cold environments. In addition, to ensure sustainable development of snow sport, a quality ski patrol and rescue system is recommended for the safety of increasing mass participation.
Collapse
Affiliation(s)
- Jun Wang
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Hongwei Guan
- Department of Health Promotion and Physical Education, School of Health Sciences and Human Performance, Ithaca College, Ithaca, NY 14850 USA
| | - Morten Hostrup
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - David S. Rowlands
- School of Sport, Exercise, and Nutrition, College of Health, Massey University, Auckland, New Zealand
| | - José González-Alonso
- Centre for Human Performance, Exercise and Rehabilitation, Brunel University London, Uxbridge, UK
| | - Jørgen Jensen
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
- Department of Physical Performance, Norwegian School of Sport Sciences, Ullevål Stadion, P.O.Box 4012, 0806 Oslo, Norway
| |
Collapse
|
18
|
Piil JF, Kingma B, Morris NB, Christiansen L, Ioannou LG, Flouris AD, Nybo L. Proposed framework for forecasting heat-effects on motor-cognitive performance in the Summer Olympics. Temperature (Austin) 2021; 8:262-283. [PMID: 34485620 PMCID: PMC8409751 DOI: 10.1080/23328940.2021.1957367] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Heat strain impairs performance across a broad spectrum of sport disciplines. The impeding effects of hyperthermia and dehydration are often ascribed to compromised cardiovascular and muscular functioning, but expert performance also depends on appropriately tuned sensory, motor and cognitive processes. Considering that hyperthermia has implications for central nervous system (CNS) function and fatigue, it is highly relevant to analyze how heat stress forecasted for the upcoming Olympics may influence athletes. This paper proposes and demonstrates the use of a framework combining expected weather conditions with a heat strain and motor-cognitive model to analyze the impact of heat and associated factors on discipline- and scenario-specific performances during the Tokyo 2021 games. We pinpoint that hyperthermia-induced central fatigue may affect prolonged performances and analyze how hyperthermia may impair complex motor-cognitive performance, especially when accompanied by either moderate dehydration or exposure to severe solar radiation. Interestingly, several short explosive performances may benefit from faster cross-bridge contraction velocities at higher muscle temperatures in sport disciplines with little or no negative heat-effect on CNS fatigue or motor-cognitive performance. In the analyses of scenarios and Olympic sport disciplines, we consider thermal impacts on “motor-cognitive factors” such as decision-making, maximal and fine motor-activation as well as the influence on central fatigue and pacing. From this platform, we also provide perspectives on how athletes and coaches can identify risks for their event and potentially mitigate negative motor-cognitive effects for and optimize performance in the environmental settings projected.
Collapse
Affiliation(s)
- Jacob Feder Piil
- Department of Nutrition, Exercise and Sports, Section for Integrative Physiology, University of Copenhagen, Copenhagen N, Copenhagen, Denmark
| | - Boris Kingma
- Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,TNO, the Netherlands Organization for Applied Scientific Research, Unit Defense, Safety & Security, Soesterberg, The Netherlands
| | - Nathan B Morris
- Department of Nutrition, Exercise and Sports, Section for Integrative Physiology, University of Copenhagen, Copenhagen N, Copenhagen, Denmark
| | - Lasse Christiansen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark
| | - Leonidas G Ioannou
- FAME Laboratory, School of Exercise Science, University of Thessaly, Thessaly, Greece
| | - Andreas D Flouris
- FAME Laboratory, School of Exercise Science, University of Thessaly, Thessaly, Greece
| | - Lars Nybo
- Department of Nutrition, Exercise and Sports, Section for Integrative Physiology, University of Copenhagen, Copenhagen N, Copenhagen, Denmark
| |
Collapse
|
19
|
Périard JD, Eijsvogels TMH, Daanen HAM. Exercise under heat stress: thermoregulation, hydration, performance implications, and mitigation strategies. Physiol Rev 2021; 101:1873-1979. [PMID: 33829868 DOI: 10.1152/physrev.00038.2020] [Citation(s) in RCA: 195] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A rise in body core temperature and loss of body water via sweating are natural consequences of prolonged exercise in the heat. This review provides a comprehensive and integrative overview of how the human body responds to exercise under heat stress and the countermeasures that can be adopted to enhance aerobic performance under such environmental conditions. The fundamental concepts and physiological processes associated with thermoregulation and fluid balance are initially described, followed by a summary of methods to determine thermal strain and hydration status. An outline is provided on how exercise-heat stress disrupts these homeostatic processes, leading to hyperthermia, hypohydration, sodium disturbances, and in some cases exertional heat illness. The impact of heat stress on human performance is also examined, including the underlying physiological mechanisms that mediate the impairment of exercise performance. Similarly, the influence of hydration status on performance in the heat and how systemic and peripheral hemodynamic adjustments contribute to fatigue development is elucidated. This review also discusses strategies to mitigate the effects of hyperthermia and hypohydration on exercise performance in the heat by examining the benefits of heat acclimation, cooling strategies, and hyperhydration. Finally, contemporary controversies are summarized and future research directions are provided.
Collapse
Affiliation(s)
- Julien D Périard
- University of Canberra Research Institute for Sport and Exercise, Bruce, Australia
| | - Thijs M H Eijsvogels
- Department of Physiology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Hein A M Daanen
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
20
|
Kreft B, Bergs J, Shahryari M, Danyel LA, Hetzer S, Braun J, Sack I, Tzschätzsch H. Cerebral Ultrasound Time-Harmonic Elastography Reveals Softening of the Human Brain Due to Dehydration. Front Physiol 2021; 11:616984. [PMID: 33505319 PMCID: PMC7830390 DOI: 10.3389/fphys.2020.616984] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/09/2020] [Indexed: 01/12/2023] Open
Abstract
Hydration influences blood volume, blood viscosity, and water content in soft tissues - variables that determine the biophysical properties of biological tissues including their stiffness. In the brain, the relationship between hydration and stiffness is largely unknown despite the increasing importance of stiffness as a quantitative imaging marker. In this study, we investigated cerebral stiffness (CS) in 12 healthy volunteers using ultrasound time-harmonic elastography (THE) in different hydration states: (i) during normal hydration, (ii) after overnight fasting, and (iii) within 1 h of drinking 12 ml of water per kg body weight. In addition, we correlated shear wave speed (SWS) with urine osmolality and hematocrit. SWS at normal hydration was 1.64 ± 0.02 m/s and decreased to 1.57 ± 0.04 m/s (p < 0.001) after overnight fasting. SWS increased again to 1.63 ± 0.01 m/s within 30 min of water drinking, returning to values measured during normal hydration (p = 0.85). Urine osmolality at normal hydration (324 ± 148 mOsm/kg) increased to 784 ± 107 mOsm/kg (p < 0.001) after fasting and returned to normal (288 ± 128 mOsm/kg, p = 0.83) after water drinking. SWS and urine osmolality correlated linearly (r = -0.68, p < 0.001), while SWS and hematocrit did not correlate (p = 0.31). Our results suggest that mild dehydration in the range of diurnal fluctuations is associated with significant softening of brain tissue, possibly due to reduced cerebral perfusion. To ensure consistency of results, it is important that cerebral elastography with a standardized protocol is performed during normal hydration.
Collapse
Affiliation(s)
- Bernhard Kreft
- Institute of Medical Informatics, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Judith Bergs
- Department of Radiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Mehrgan Shahryari
- Department of Radiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | - Stefan Hetzer
- Bernstein Center of Advanced Neuroimaging, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Jürgen Braun
- Institute of Medical Informatics, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ingolf Sack
- Department of Radiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Heiko Tzschätzsch
- Department of Radiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
21
|
Skattebo Ø, Calbet JAL, Rud B, Capelli C, Hallén J. Contribution of oxygen extraction fraction to maximal oxygen uptake in healthy young men. Acta Physiol (Oxf) 2020; 230:e13486. [PMID: 32365270 PMCID: PMC7540168 DOI: 10.1111/apha.13486] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 12/16/2022]
Abstract
We analysed the importance of systemic and peripheral arteriovenous O2 difference (
a-v¯O2 difference and a‐vfO2 difference, respectively) and O2 extraction fraction for maximal oxygen uptake (
V˙O2max). Fick law of diffusion and the Piiper and Scheid model were applied to investigate whether diffusion versus perfusion limitations vary with
V˙O2max. Articles (n = 17) publishing individual data (n = 154) on
V˙O2max, maximal cardiac output (
Q˙max; indicator‐dilution or the Fick method),
a-v¯O2 difference (catheters or the Fick equation) and systemic O2 extraction fraction were identified. For the peripheral responses, group‐mean data (articles: n = 27; subjects: n = 234) on leg blood flow (LBF; thermodilution), a‐vfO2 difference and O2 extraction fraction (arterial and femoral venous catheters) were obtained.
Q˙max and two‐LBF increased linearly by 4.9‐6.0 L · min–1 per 1 L · min–1 increase in
V˙O2max (R2 = .73 and R2 = .67, respectively; both P < .001). The
a-v¯O2 difference increased from 118‐168 mL · L–1 from a
V˙O2max of 2‐4.5 L · min–1 followed by a reduction (second‐order polynomial: R2 = .27). After accounting for a hypoxemia‐induced decrease in arterial O2 content with increasing
V˙O2max (R2 = .17; P < .001), systemic O2 extraction fraction increased up to ~90% (
V˙O2max: 4.5 L · min–1) with no further change (exponential decay model: R2 = .42). Likewise, leg O2 extraction fraction increased with
V˙O2max to approach a maximal value of ~90‐95% (R2 = .83). Muscle O2 diffusing capacity and the equilibration index Y increased linearly with
V˙O2max (R2 = .77 and R2 = .31, respectively; both P < .01), reflecting decreasing O2 diffusional limitations and accentuating O2 delivery limitations. In conclusion, although O2 delivery is the main limiting factor to
V˙O2max, enhanced O2 extraction fraction (≥90%) contributes to the remarkably high
V˙O2max in endurance‐trained individuals.
Collapse
Affiliation(s)
- Øyvind Skattebo
- Department of Physical Performance Norwegian School of Sport Sciences Oslo Norway
| | - Jose A. L. Calbet
- Department of Physical Performance Norwegian School of Sport Sciences Oslo Norway
- Department of Physical Education and Research Institute of Biomedical and Health Sciences (IUIBS) University of Las Palmas de Gran Canaria Gran Canaria Spain
| | - Bjarne Rud
- Department of Physical Performance Norwegian School of Sport Sciences Oslo Norway
| | - Carlo Capelli
- Department of Physical Performance Norwegian School of Sport Sciences Oslo Norway
- Department of Neurosciences, Biomedicine and Movement Sciences University of Verona Verona Italy
| | - Jostein Hallén
- Department of Physical Performance Norwegian School of Sport Sciences Oslo Norway
| |
Collapse
|
22
|
Furby HV, Warnert EAH, Marley CJ, Bailey DM, Wise RG. Cardiorespiratory fitness is associated with increased middle cerebral arterial compliance and decreased cerebral blood flow in young healthy adults: A pulsed ASL MRI study. J Cereb Blood Flow Metab 2020; 40:1879-1889. [PMID: 31564194 PMCID: PMC7446564 DOI: 10.1177/0271678x19865449] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 06/11/2019] [Indexed: 01/11/2023]
Abstract
Cardiorespiratory fitness is thought to have beneficial effects on systemic vascular health, in part, by decreasing arterial stiffness. However, in the absence of non-invasive methods, it remains unknown whether this effect extends to the cerebrovasculature. The present study uses a novel pulsed arterial spin labelling (pASL) technique to explore the relationship between cardiorespiratory fitness and arterial compliance of the middle cerebral arteries (MCAC). Other markers of cerebrovascular health, including resting cerebral blood flow (CBF) and cerebrovascular reactivity to CO2 (CVRCO2) were also investigated. Eleven healthy males aged 21 ± 2 years with varying levels of cardiorespiratory fitness (maximal oxygen uptake (V · O2MAX) 38-76 ml/min/kg) underwent MRI scanning at 3 Tesla. Higher V · O2MAX was associated with greater MCAC (R2 = 0.64, p < 0.01) and lower resting grey matter CBF (R2 = 0.75, p < 0.01). However, V · O2MAX was not predictive of global grey matter BOLD-based CVR (R2 = 0.47, p = 0.17) or CBF-based CVR (R2 = 0.19, p = 0.21). The current experiment builds upon the established benefits of exercise on arterial compliance in the systemic vasculature, by showing that increased cardiorespiratory fitness is associated with greater cerebral arterial compliance in early adulthood.
Collapse
Affiliation(s)
- Hannah V Furby
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Esther AH Warnert
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands
| | - Christopher J Marley
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, UK
| | - Damian M Bailey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, UK
| | - Richard G Wise
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
| |
Collapse
|
23
|
Moeini M, Cloutier-Tremblay C, Lu X, Kakkar A, Lesage F. Cerebral tissue pO 2 response to treadmill exercise in awake mice. Sci Rep 2020; 10:13358. [PMID: 32770089 PMCID: PMC7414913 DOI: 10.1038/s41598-020-70413-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 07/29/2020] [Indexed: 12/16/2022] Open
Abstract
We exploited two-photon microscopy and Doppler optical coherence tomography to examine the cerebral blood flow and tissue pO2 response to forced treadmill exercise in awake mice. To our knowledge, this is the first study performing both direct measure of brain tissue pO2 during acute forced exercise and underlying microvascular response at capillary and non-capillary levels. We observed that cerebral perfusion and oxygenation are enhanced during running at 5 m/min compared to rest. At faster running speeds (10 and 15 m/min), decreasing trends in arteriolar and capillary flow speed were observed, which could be due to cerebral autoregulation and constriction of arterioles in response to blood pressure increase. However, tissue pO2 was maintained, likely due to an increase in RBC linear density. Higher cerebral oxygenation at exercise levels 5–15 m/min suggests beneficial effects of exercise in situations where oxygen delivery to the brain is compromised, such as in aging, atherosclerosis and Alzheimer Disease.
Collapse
Affiliation(s)
- Mohammad Moeini
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.,Research Center of Montreal Heart Institute, Montréal, QC, Canada
| | - Christophe Cloutier-Tremblay
- Biomedical Engineering Institute, École Polytechnique de Montréal, Succursale Centre-ville, P.O. Box 6079, Montréal, QC, H3C 3A7, Canada
| | - Xuecong Lu
- Research Center of Montreal Heart Institute, Montréal, QC, Canada.,Biomedical Engineering Institute, École Polytechnique de Montréal, Succursale Centre-ville, P.O. Box 6079, Montréal, QC, H3C 3A7, Canada
| | - Ashok Kakkar
- Department of Chemistry, McGill University, Montréal, QC, Canada
| | - Frédéric Lesage
- Research Center of Montreal Heart Institute, Montréal, QC, Canada. .,Biomedical Engineering Institute, École Polytechnique de Montréal, Succursale Centre-ville, P.O. Box 6079, Montréal, QC, H3C 3A7, Canada.
| |
Collapse
|
24
|
James LJ, Funnell MP, James RM, Mears SA. Does Hypohydration Really Impair Endurance Performance? Methodological Considerations for Interpreting Hydration Research. Sports Med 2020; 49:103-114. [PMID: 31696453 PMCID: PMC6901416 DOI: 10.1007/s40279-019-01188-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The impact of alterations in hydration status on human physiology and performance responses during exercise is one of the oldest research topics in sport and exercise nutrition. This body of work has mainly focussed on the impact of reduced body water stores (i.e. hypohydration) on these outcomes, on the whole demonstrating that hypohydration impairs endurance performance, likely via detrimental effects on a number of physiological functions. However, an important consideration, that has received little attention, is the methods that have traditionally been used to investigate how hypohydration affects exercise outcomes, as those used may confound the results of many studies. There are two main methodological limitations in much of the published literature that perhaps make the results of studies investigating performance outcomes difficult to interpret. First, subjects involved in studies are generally not blinded to the intervention taking place (i.e. they know what their hydration status is), which may introduce expectancy effects. Second, most of the methods used to induce hypohydration are both uncomfortable and unfamiliar to the subjects, meaning that alterations in performance may be caused by this discomfort, rather than hypohydration per se. This review discusses these methodological considerations and provides an overview of the small body of recent work that has attempted to correct some of these methodological issues. On balance, these recent blinded hydration studies suggest hypohydration equivalent to 2–3% body mass decreases endurance cycling performance in the heat, at least when no/little fluid is ingested.
Collapse
Affiliation(s)
- Lewis J James
- School of Sport, Exercise and Health Sciences, National Centre for Sport and Exercise Medicine, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK.
| | - Mark P Funnell
- School of Sport, Exercise and Health Sciences, National Centre for Sport and Exercise Medicine, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK
| | - Ruth M James
- Sport, Health and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Stephen A Mears
- School of Sport, Exercise and Health Sciences, National Centre for Sport and Exercise Medicine, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK
| |
Collapse
|
25
|
Watanabe K, Stöhr EJ, Akiyama K, Watanabe S, González‐Alonso J. Dehydration reduces stroke volume and cardiac output during exercise because of impaired cardiac filling and venous return, not left ventricular function. Physiol Rep 2020; 8:e14433. [PMID: 32538549 PMCID: PMC7294577 DOI: 10.14814/phy2.14433] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 04/12/2020] [Indexed: 12/17/2022] Open
Abstract
Dehydration accrued during intense prolonged whole-body exercise in the heat compromises peripheral blood flow and cardiac output ( Q ˙ ). A markedly reduced stroke volume (SV) is a key feature of the dehydration-induced cardiovascular strain, but whether the lower output of the heart is mediated by peripheral or cardiac factors remains unknown. Therefore, we repeatedly quantified left ventricular (LV) volumes, LV mechanics (LV twist, a marker of systolic muscle function, and LV untwisting rate, an independent marker of LV muscle relaxation), left intra-ventricular pressure gradients, blood volume and peripheral blood flow during 2 hr of cycling in the heat with and without dehydration (DEH: 4.0 ± 0.2% body mass loss and EUH: euhydration control, respectively) in eight participants (three females and five males). While brachial and carotid blood flow, blood volume, SV, LV end-diastolic volume (LVEDV), cardiac filling time, systemic vascular conductance and Q ˙ were reduced in DEH compared to EUH after 2 hr, LV twist and untwisting rate tended to be higher (p = .09 and .06, respectively) and intra-ventricular pressure gradients were not different between the two conditions (p = .22). Furthermore, LVEDV in DEH correlated strongly with blood volume (r = .995, p < .01), head and forearms beat volume (r = .98, p < .05), and diastolic LV filling time (r = .98, p < .05). These findings suggest that the decline in SV underpinning the blunted Q ˙ with exercise-induced dehydration is caused by compromised LV filling and venous return, but not intrinsic systolic or diastolic LV function.
Collapse
Affiliation(s)
- Kazuhito Watanabe
- Centre for Human Performance, Exercise and RehabilitationBrunel University LondonUxbridgeUK
- Faculty of Education and Human StudiesAkita UniversityAkitaJapan
| | - Eric J. Stöhr
- Cardiff School of Sport and Health SciencesCardiff Metropolitan UniversityCardiffUK
- Department of MedicineDivision of CardiologyColumbia University Irving Medical CenterNew York CityNYUSA
| | - Koichi Akiyama
- Department of AnesthesiologyYodogawa Christian HospitalOsakaJapan
| | - Sumie Watanabe
- Centre for Human Performance, Exercise and RehabilitationBrunel University LondonUxbridgeUK
| | - José González‐Alonso
- Centre for Human Performance, Exercise and RehabilitationBrunel University LondonUxbridgeUK
- Division of Sport, Health and Exercise SciencesDepartment of Life SciencesBrunel University LondonUxbridgeUK
| |
Collapse
|
26
|
Abstract
People undertaking prolonged vigorous exercise experience substantial bodily fluid losses due to thermoregulatory sweating. If these fluid losses are not replaced, endurance capacity may be impaired in association with a myriad of alterations in physiological function, including hyperthermia, hyperventilation, cardiovascular strain with reductions in brain, skeletal muscle and skin blood perfusion, greater reliance on muscle glycogen and cellular metabolism, alterations in neural activity and, in some conditions, compromised muscle metabolism and aerobic capacity. The physiological strain accompanying progressive exercise-induced dehydration to a level of ~ 4% of body mass loss can be attenuated or even prevented by: (1) ingesting fluids during exercise, (2) exercising in cold environments, and/or (3) working at intensities that require a small fraction of the overall body functional capacity. The impact of dehydration upon physiological function therefore depends on the functional demand evoked by exercise and environmental stress, as cardiac output, limb blood perfusion and muscle metabolism are stable or increase during small muscle mass exercise or resting conditions, but are impaired during whole-body moderate to intense exercise. Progressive dehydration is also associated with an accelerated drop in perfusion and oxygen supply to the human brain during submaximal and maximal endurance exercise. Yet their consequences on aerobic metabolism are greater in the exercising muscles because of the much smaller functional oxygen extraction reserve. This review describes how dehydration differentially impacts physiological function during exercise requiring low compared to high functional demand, with an emphasis on the responses of the human brain, heart and skeletal muscles.
Collapse
|
27
|
Bain AR, Hoiland RL, Donnelly J, Nowak-Flück D, Sekhon M, Tymko MM, Greiner JJ, DeSouza CA, Ainslie PN. Cerebral metabolism, oxidation and inflammation in severe passive hyperthermia with and without respiratory alkalosis. J Physiol 2020; 598:943-954. [PMID: 31900940 DOI: 10.1113/jp278889] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/20/2019] [Indexed: 12/20/2022] Open
Abstract
KEY POINTS It was unknown whether respiratory alkalosis impacts the global cerebral metabolic response as well as the cerebral pro-oxidation and inflammatory response in passive hyperthermia. This study demonstrated that the cerebral metabolic rate was increased by ∼20% with passive hyperthermia of up to +2°C oesophageal temperature, and this response was unaffected by respiratory alkalosis. Additionally, the increase in cerebral metabolism did not significantly impact the net cerebral release of oxidative and inflammatory markers. These data indicate that passive heating of up to +2°C core temperature in healthy young men is not enough to confer a major oxidative and inflammatory burden on the brain, but it does markedly increase the cerebral metabolic rate, independently of P aC O 2 . ABSTRACT There is limited information concerning the impact of arterial P C O 2 /pH on heat-induced alteration in cerebral metabolism, as well as on the cerebral oxidative/inflammatory burden of hyperthermia. Accordingly, we sought to address two hypotheses: (1) passive hyperthermia will increase the cerebral metabolic rate of oxygen (CMRO2 ) consistent with a combined influence of Q10 and respiratory alkalosis; and (2) the net cerebral release of pro-oxidative and pro-inflammatory markers will be elevated in hyperthermia, particularly in poikilocapnic hyperthermia. Healthy young men (n = 6) underwent passive heating until an oesophageal temperature of 2°C above resting was reached. At 0.5°C increments in core temperature, CMRO2 was calculated from the product of cerebral blood flow (ultrasound) and the radial artery-jugular venous oxygen content difference (cannulation). Net cerebral glucose/lactate exchange, and biomarkers of oxidative and inflammatory stress were also measured. At +2.0°C oesophageal temperature, arterial P C O 2 was restored to normothermic values using end-tidal forcing. The primary findings were: (1) while CMRO2 was increased (P < 0.05) by ∼20% with hyperthermia of +1.5-2.0°C, this was not influenced by respiratory alkalosis, and (2) although biomarkers of pro-oxidation and pro-inflammation were systemically elevated in hyperthermia (P < 0.05), there were no differences in the trans-cerebral exchange kinetics. These novel data indicate that passive heating of up to +2°C core temperature in healthy young men is not enough to confer a major oxidative and inflammatory burden on the brain, despite it markedly increasing CMRO2 , irrespective of arterial pH.
Collapse
Affiliation(s)
- Anthony R Bain
- Faculty of Human Kinetics, University of Windsor, Windsor, Ontario, Canada
| | - Ryan L Hoiland
- Faculty of Health and Social Development, Center for Heart Lung and Vascular Health University of British Columbia, Kelowna, British Columbia, Canada
| | - Joseph Donnelly
- Brain Physics Laboratory, Division of Academic Neurosurgery, Department of Clinical Neurosciences, Addenbrookes Hospital, University of Cambridge, Cambridge, UK
| | - Daniela Nowak-Flück
- Faculty of Health and Social Development, Center for Heart Lung and Vascular Health University of British Columbia, Kelowna, British Columbia, Canada
| | - Mypinder Sekhon
- Faculty of Health and Social Development, Center for Heart Lung and Vascular Health University of British Columbia, Kelowna, British Columbia, Canada.,Division of Critical Care Medicine and Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Michael M Tymko
- Faculty of Health and Social Development, Center for Heart Lung and Vascular Health University of British Columbia, Kelowna, British Columbia, Canada
| | - Jared J Greiner
- Department of Integrative Physiology, Integrative Vascular Biology Laboratory, University of Colorado, Boulder, CO, USA
| | - Christopher A DeSouza
- Department of Integrative Physiology, Integrative Vascular Biology Laboratory, University of Colorado, Boulder, CO, USA
| | - Philip N Ainslie
- Faculty of Health and Social Development, Center for Heart Lung and Vascular Health University of British Columbia, Kelowna, British Columbia, Canada
| |
Collapse
|
28
|
Douzi W, Dupuy O, Theurot D, Smolander J, Dugué B. Per-Cooling (Using Cooling Systems during Physical Exercise) Enhances Physical and Cognitive Performances in Hot Environments. A Narrative Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E1031. [PMID: 32041228 PMCID: PMC7036802 DOI: 10.3390/ijerph17031031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/25/2020] [Accepted: 01/29/2020] [Indexed: 12/19/2022]
Abstract
There are many important sport events that are organized in environments with a very hot ambient temperature (Summer Olympics, FIFA World Cup, Tour de France, etc.) and in hot locations (e.g., Qatar). Additionally, in the context of global warming and heat wave periods, athletes are often subjected to hot ambient temperatures. It is known that exercising in the heat induces disturbances that may provoke premature fatigue and negatively affects overall performance in both endurance and high intensity exercises. Deterioration in several cognitive functions may also occur, and individuals may be at risk for heat illnesses. To train, perform, work and recover and in a safe and effective way, cooling strategies have been proposed and have been routinely applied before, during and after exercise. However, there is a limited understanding of the influences of per-cooling on performance, and it is the subject of the present review. This work examines the influences of per-cooling of different areas of the body on performance in terms of intense short-term exercises ("anaerobic" exercises), endurance exercises ("aerobic" exercises), and cognitive functioning and provides detailed strategies that can be applied when individuals train and/or perform in high ambient temperatures.
Collapse
Affiliation(s)
| | | | | | | | - Benoit Dugué
- University of Poitiers, Laboratoire Mobilité Vieillissement Exercice (MOVE)-EA6314, Faculty of Sport Sciences, 8 Allée Jean Monnet, 86000 Poitiers, France; (W.D.); (O.D.); (D.T.); (J.S.)
| |
Collapse
|
29
|
Gibbons TD, Tymko MM, Thomas KN, Wilson LC, Stembridge M, Caldwell HG, Howe CA, Hoiland RL, Akerman AP, Dawkins TG, Patrician A, Coombs GB, Gasho C, Stacey BS, Ainslie PN, Cotter JD. Global REACH 2018: The influence of acute and chronic hypoxia on cerebral haemodynamics and related functional outcomes during cold and heat stress. J Physiol 2020; 598:265-284. [PMID: 31696936 DOI: 10.1113/jp278917] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 10/28/2019] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Thermal and hypoxic stress commonly coexist in environmental, occupational and clinical settings, yet how the brain tolerates these multi-stressor environments is unknown Core cooling by 1.0°C reduced cerebral blood flow (CBF) by 20-30% and cerebral oxygen delivery (CDO2 ) by 12-19% at sea level and high altitude, whereas core heating by 1.5°C did not reliably reduce CBF or CDO2 Oxygen content in arterial blood was fully restored with acclimatisation to 4330 m, but concurrent cold stress reduced CBF and CDO2 Gross indices of cognition were not impaired by any combination of thermal and hypoxic stress despite large reductions in CDO2 Chronic hypoxia renders the brain susceptible to large reductions in oxygen delivery with concurrent cold stress, which might make monitoring core temperature more important in this context ABSTRACT: Real-world settings are composed of multiple environmental stressors, yet the majority of research in environmental physiology investigates these stressors in isolation. The brain is central in both behavioural and physiological responses to threatening stimuli and, given its tight metabolic and haemodynamic requirements, is particularly susceptible to environmental stress. We measured cerebral blood flow (CBF, duplex ultrasound), cerebral oxygen delivery (CDO2 ), oesophageal temperature, and arterial blood gases during exposure to three commonly experienced environmental stressors - heat, cold and hypoxia - in isolation, and in combination. Twelve healthy male subjects (27 ± 11 years) underwent core cooling by 1.0°C and core heating by 1.5°C in randomised order at sea level; acute hypoxia ( P ET , O 2 = 50 mm Hg) was imposed at baseline and at each thermal extreme. Core cooling and heating protocols were repeated after 16 ± 4 days residing at 4330 m to investigate any interactions with high altitude acclimatisation. Cold stress decreased CBF by 20-30% and CDO2 by 12-19% (both P < 0.01) irrespective of altitude, whereas heating did not reliably change either CBF or CDO2 (both P > 0.08). The increases in CBF with acute hypoxia during thermal stress were appropriate to maintain CDO2 at normothermic, normoxic values. Reaction time was faster and slower by 6-9% with heating and cooling, respectively (both P < 0.01), but central (brain) processes were not impaired by any combination of environmental stressors. These findings highlight the powerful influence of core cooling in reducing CDO2 . Despite these large reductions in CDO2 with cold stress, gross indices of cognition remained stable.
Collapse
Affiliation(s)
- T D Gibbons
- School of Physical Education, Sport & Exercise Science, University of Otago, 55/47 Union St W, Dunedin, 9016, New Zealand
| | - M M Tymko
- Centre for Heart, Lung and Vascular Health, University of British Columbia-Okanagan Campus, School of Health and Exercise Sciences, 3333 University Way, Kelowna, British Columbia, Canada, V1V 1V7
| | - K N Thomas
- Department of Surgical Sciences, University of Otago, 201 Great King St, Dunedin, 9016, New Zealand
| | - L C Wilson
- Department of Medicine, University of Otago, 201 Great King St, Dunedin, 9016, New Zealand
| | - M Stembridge
- Cardiff Centre for Exercise and Health, Cardiff Metropolitan University, Cyncoed Road, Cardiff, CF23 6XD, UK
| | - H G Caldwell
- Centre for Heart, Lung and Vascular Health, University of British Columbia-Okanagan Campus, School of Health and Exercise Sciences, 3333 University Way, Kelowna, British Columbia, Canada, V1V 1V7
| | - C A Howe
- Centre for Heart, Lung and Vascular Health, University of British Columbia-Okanagan Campus, School of Health and Exercise Sciences, 3333 University Way, Kelowna, British Columbia, Canada, V1V 1V7
| | - R L Hoiland
- Centre for Heart, Lung and Vascular Health, University of British Columbia-Okanagan Campus, School of Health and Exercise Sciences, 3333 University Way, Kelowna, British Columbia, Canada, V1V 1V7
| | - A P Akerman
- Faculty of Health Sciences, University of Ottawa, 125 University St, Ottawa, Ontario, Canada, K1N 6N5
| | - T G Dawkins
- Cardiff Centre for Exercise and Health, Cardiff Metropolitan University, Cyncoed Road, Cardiff, CF23 6XD, UK
| | - A Patrician
- Centre for Heart, Lung and Vascular Health, University of British Columbia-Okanagan Campus, School of Health and Exercise Sciences, 3333 University Way, Kelowna, British Columbia, Canada, V1V 1V7
| | - G B Coombs
- Centre for Heart, Lung and Vascular Health, University of British Columbia-Okanagan Campus, School of Health and Exercise Sciences, 3333 University Way, Kelowna, British Columbia, Canada, V1V 1V7
| | - C Gasho
- Division of Pulmonary, Critical Care, Hyperbaric and Sleep Medicine, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - B S Stacey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, UK
| | - P N Ainslie
- Centre for Heart, Lung and Vascular Health, University of British Columbia-Okanagan Campus, School of Health and Exercise Sciences, 3333 University Way, Kelowna, British Columbia, Canada, V1V 1V7
| | - J D Cotter
- School of Physical Education, Sport & Exercise Science, University of Otago, 55/47 Union St W, Dunedin, 9016, New Zealand
| |
Collapse
|
30
|
Rizzoto G, Kastelic JP. A new paradigm regarding testicular thermoregulation in ruminants? Theriogenology 2019; 147:166-175. [PMID: 31785861 DOI: 10.1016/j.theriogenology.2019.11.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 11/16/2019] [Accepted: 11/17/2019] [Indexed: 02/05/2023]
Abstract
Increased testicular temperature reduces percentages of morphologically normal and motile sperm and fertility. Specific sperm defects appear at consistent intervals after testicular hyperthermia, with degree and duration of changes related to intensity and duration of the thermal insult. Regarding pathogenesis of testicular hyperthermia on sperm quality and fertility, there is a long-standing paradigm that: 1) testes operate near hypoxia; 2) blood flow to the testes does not increase in response to increased testicular temperature; and 3) an ensuing hypoxia is the underlying cause of heat-induced changes in sperm morphology and function. There are very limited experimental data to support this paradigm, but we have data that refute it. In 2 × 3 factorial studies, mice and rams were exposed to two testicular temperatures (normal and increased) and three concentrations of O2 in inspired air (hyperoxia, normoxia and hypoxia). As expected, increased testicular temperature had deleterious effects on sperm motility and morphology; however, hyperoxia did not prevent these changes nor did hypoxia replicate them. In two follow-up experiments, anesthetized rams were sequentially exposed to: 1) three O2 concentrations (100, 21 and 13% O2); or 2) three testicular temperatures (33, 37 and 40 °C). As O2, decreased, testis maintained O2 delivery and uptake by increasing testicular blood flow and O2 extraction, with no indication of anaerobic metabolism. Furthermore, as testicular temperature increased, testicular metabolic rate nearly doubled, but increased blood flow and O2 extraction prevented testicular hypoxia and anaerobic metabolism. In conclusion, our data, in combination with other reports, challenged the paradigm that testicular hyperthermia fails to increase testicular blood flow and the ensuing hypoxia disrupts spermatogenesis.
Collapse
Affiliation(s)
- G Rizzoto
- Faculty of Veterinary Medicine, Department of Production Animal Health, University of Calgary, 3280 Hospital Drive, Calgary, AB, Canada, T2N 4Z6
| | - J P Kastelic
- Faculty of Veterinary Medicine, Department of Production Animal Health, University of Calgary, 3280 Hospital Drive, Calgary, AB, Canada, T2N 4Z6.
| |
Collapse
|
31
|
Hydration Status and Cardiovascular Function. Nutrients 2019; 11:nu11081866. [PMID: 31405195 PMCID: PMC6723555 DOI: 10.3390/nu11081866] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 07/30/2019] [Accepted: 08/08/2019] [Indexed: 02/07/2023] Open
Abstract
Hypohydration, defined as a state of low body water, increases thirst sensations, arginine vasopressin release, and elicits renin–angiotensin–aldosterone system activation to replenish intra- and extra-cellular fluid stores. Hypohydration impairs mental and physical performance, but new evidence suggests hypohydration may also have deleterious effects on cardiovascular health. This is alarming because cardiovascular disease is the leading cause of death in the United States. Observational studies have linked habitual low water intake with increased future risk for adverse cardiovascular events. While it is currently unclear how chronic reductions in water intake may predispose individuals to greater future risk for adverse cardiovascular events, there is evidence that acute hypohydration impairs vascular function and blood pressure (BP) regulation. Specifically, acute hypohydration may reduce endothelial function, increase sympathetic nervous system activity, and worsen orthostatic tolerance. Therefore, the purpose of this review is to present the currently available evidence linking acute hypohydration with altered vascular function and BP regulation.
Collapse
|
32
|
Smith KJ, Hoiland RL, Grove R, McKirdy H, Naylor L, Ainslie PN, Green DJ. Matched increases in cerebral artery shear stress, irrespective of stimulus, induce similar changes in extra-cranial arterial diameter in humans. J Cereb Blood Flow Metab 2019; 39:849-858. [PMID: 29125372 PMCID: PMC6501503 DOI: 10.1177/0271678x17739220] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The mechanistic role of arterial shear stress in the regulation of cerebrovascular responses to physiological stimuli (exercise and hypercapnia) is poorly understood. We hypothesised that, if shear stress is a key regulator of arterial dilation, then matched increases in shear, induced by distinct physiological stimuli, would trigger similar dilation of the large extra-cranial arteries. Participants ( n = 10) participated in three 30-min experimental interventions, each separated by ≥48 h: (1) mild-hypercapnia (FICO2:∼0.045); (2) submaximal cycling (EX; 60%HRreserve); or (3) resting (time-matched control, CTRL). Blood flow, diameter, and shear rate were assessed (via Duplex ultrasound) in the internal carotid and vertebral arteries (ICA, VA) at baseline, during and following the interventions. Hypercapnia and EX produced similar elevations in blood flow and shear rate through the ICA and VA ( p < 0.001), which were both greater than CTRL. Vasodilation of ICA and VA diameter in response to hypercapnia (5.3 ± 0.8 and 4.4 ± 2.0%) and EX (4.7 ± 0.7 and 4.7 ± 2.2%) were similar, and greater than CTRL ( p < 0.001). Our findings indicate that matched levels of shear, irrespective of their driving stimulus, induce similar extra-cranial artery dilation. We demonstrate, for the first time in humans, an important mechanistic role for the endothelium in regulating cerebrovascular response to common physiological stimuli in vivo.
Collapse
Affiliation(s)
- Kurt J Smith
- 1 Cardiovascular Research Group, School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Perth, Australia
| | - Ryan L Hoiland
- 2 Centre for Hearth Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Ryan Grove
- 1 Cardiovascular Research Group, School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Perth, Australia
| | - Hamish McKirdy
- 1 Cardiovascular Research Group, School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Perth, Australia
| | - Louise Naylor
- 1 Cardiovascular Research Group, School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Perth, Australia
| | - Philip N Ainslie
- 2 Centre for Hearth Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Daniel J Green
- 1 Cardiovascular Research Group, School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Perth, Australia.,3 Research Institute for Sport and Exercise Sciences, John Moores Liverpool University, UK
| |
Collapse
|
33
|
Saldaris JM, Landers GJ, Lay BS, Zimmermann MR. Internal precooling decreases forehead and core temperature but does not alter choice reaction time during steady state exercise in hot, humid conditions. J Therm Biol 2019; 81:66-72. [PMID: 30975425 DOI: 10.1016/j.jtherbio.2019.02.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 02/12/2019] [Accepted: 02/19/2019] [Indexed: 01/03/2023]
Abstract
This study aimed to determine if precooling via crushed ice ingestion reduces forehead skin temperature (Thead) and core temperature (Tcore) during exercise in the heat and whether it has an effect on choice reaction time (CRT). Ten males commenced a 30 min precooling period, ingesting either 7 g kg-1 of crushed ice (ICE) or room temperature water (CON) prior to cycling 60 min at 55% V̇O2peak in hot, humid conditions (35.0 ± 0.3 °C, 50.2 ± 2.1% Relative Humidity). The CRT task was completed upon arrival and after the precooling period in the lab, then at 15 min intervals during exercise in the heat. Precooling reduced Thead and Tcore to a greater degree in ICE (Thead: -0.8 ± 0.31 °C; Tcore: -0.9 ± 0.3 °C) compared with CON (Thead: -0.2 ± 0.3 °C; Tcore: -0.2 ± 0.2 °C) (p ≤ 0.001). Choice reaction time performance improved throughout the cycle for both conditions (p ≤ 0.05). Ice ingestion lowered thermal sensation (p = 0.003) and skin temperature (d = 0.88; Tskin), while heart rate, ratings of perceived exertion and thirst were similar between conditions (p > 0.05). Precooling effectively reduced Thead and Tcore but did not provide additional improvement in CRT during moderate exercise in the heat. Further investigation is required to determine whether the lower central and peripheral temperature after ice ingestion is beneficial for tasks of greater cognitive effort.
Collapse
Affiliation(s)
- Jacinta M Saldaris
- The University of Western Australia, School of Human Sciences (Exercise and Sport Science), Western Australia, Australia.
| | - Grant J Landers
- The University of Western Australia, School of Human Sciences (Exercise and Sport Science), Western Australia, Australia
| | - Brendan S Lay
- The University of Western Australia, School of Human Sciences (Exercise and Sport Science), Western Australia, Australia
| | - Matthew R Zimmermann
- The University of Western Australia, School of Human Sciences (Exercise and Sport Science), Western Australia, Australia
| |
Collapse
|
34
|
Gibson OR, Taylor L, Watt PW, Maxwell NS. Cross-Adaptation: Heat and Cold Adaptation to Improve Physiological and Cellular Responses to Hypoxia. Sports Med 2018; 47:1751-1768. [PMID: 28389828 PMCID: PMC5554481 DOI: 10.1007/s40279-017-0717-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
To prepare for extremes of heat, cold or low partial pressures of oxygen (O2), humans can undertake a period of acclimation or acclimatization to induce environment-specific adaptations, e.g. heat acclimation (HA), cold acclimation (CA), or altitude training. While these strategies are effective, they are not always feasible due to logistical impracticalities. Cross-adaptation is a term used to describe the phenomenon whereby alternative environmental interventions, e.g. HA or CA, may be a beneficial alternative to altitude interventions, providing physiological stress and inducing adaptations observable at altitude. HA can attenuate physiological strain at rest and during moderate-intensity exercise at altitude via adaptations allied to improved O2 delivery to metabolically active tissue, likely following increases in plasma volume and reductions in body temperature. CA appears to improve physiological responses to altitude by attenuating the autonomic response to altitude. While no cross-acclimation-derived exercise performance/capacity data have been measured following CA, post-HA improvements in performance underpinned by aerobic metabolism, and therefore dependent on O2 delivery at altitude, are likely. At a cellular level, heat shock protein responses to altitude are attenuated by prior HA, suggesting that an attenuation of the cellular stress response and therefore a reduced disruption to homeostasis at altitude has occurred. This process is known as cross-tolerance. The effects of CA on markers of cross-tolerance is an area requiring further investigation. Because much of the evidence relating to cross-adaptation to altitude has examined the benefits at moderate to high altitudes, future research examining responses at lower altitudes should be conducted, given that these environments are more frequently visited by athletes and workers. Mechanistic work to identify the specific physiological and cellular pathways responsible for cross-adaptation between heat and altitude, and between cold and altitude, is warranted, as is exploration of benefits across different populations and physical activity profiles.
Collapse
Affiliation(s)
- Oliver R Gibson
- Centre for Human Performance, Exercise and Rehabilitation (CHPER), Brunel University London, Uxbridge, UK. .,Welkin Human Performance Laboratories, Centre for Sport and Exercise Science and Medicine (SESAME), University of Brighton, Denton Road, Eastbourne, UK.
| | - Lee Taylor
- Athlete Health and Performance Research Centre, ASPETAR, Qatar Orthopaedic and Sports Medicine Hospital, Doha, Qatar.,School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Peter W Watt
- Welkin Human Performance Laboratories, Centre for Sport and Exercise Science and Medicine (SESAME), University of Brighton, Denton Road, Eastbourne, UK
| | - Neil S Maxwell
- Welkin Human Performance Laboratories, Centre for Sport and Exercise Science and Medicine (SESAME), University of Brighton, Denton Road, Eastbourne, UK
| |
Collapse
|
35
|
The influence of thermal inputs on brain regulation of exercise: An evolutionary perspective. PROGRESS IN BRAIN RESEARCH 2018. [PMID: 30390835 DOI: 10.1016/bs.pbr.2018.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
The relationship between performance, heat load and the ability to withstand serious thermal insult is a key factor in understanding how endurance is regulated. The capacity to withstand high thermal loads is not unique to humans and is typical to all mammals. Thermoregulation is an evolutionary adaptation which is species specific and should be regarded as a survival strategy rather than purely a physiological response. The fact that mammals have selected ~37°C as a set point could be a key factor in understanding our endurance capabilities and strategy. Endurance presents a significant challenge to bodily homeostasis while our thermoregulatory strategy is able to cope exquisitely under the most unfavorable conditions. The ability of the CNS to regulate this strategy is key in athletic performance since the thermoregulatory center is located within the brain and receives input from multiple systems and deploys effector responses as needed. This chapter will discuss the evolution of thermoregulation in humans and propose that the brain is more than sufficiently capable of maintaining thermal-homeostasis because of its evolutionary path. As such, this is connected to our ability to modulate efferent drive during heat strain and in so doing provides us with the capability to pace during endurance events in the heat.
Collapse
|
36
|
Piil JF, Lundbye-Jensen J, Christiansen L, Ioannou L, Tsoutsoubi L, Dallas CN, Mantzios K, Flouris AD, Nybo L. High prevalence of hypohydration in occupations with heat stress-Perspectives for performance in combined cognitive and motor tasks. PLoS One 2018; 13:e0205321. [PMID: 30356308 PMCID: PMC6200230 DOI: 10.1371/journal.pone.0205321] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 09/24/2018] [Indexed: 12/20/2022] Open
Abstract
Purpose To evaluate the prevalence of dehydration in occupational settings and contextualize findings to effects on performance in cognitively dominated tasks, simple and complex motor tasks during moderate and high heat stress. Methods The study included an occupational part with hydration assessed in five industries across Europe with urine samples collected from 139 workers and analyzed for urine specific gravity. In addition, laboratory experiments included eight male participants completing mild-intensity exercise once with full fluid replacement to maintain euhydration, and once with restricted water intake until the dehydration level corresponded to 2% bodyweight deficit. Following familiarization, euhydration and dehydration sessions were completed on separate days in random order (cross-over design) with assessment of simple motor (target pinch), complex motor (visuo-motor tracking), cognitive (math addition) and combined motor-cognitive (math and pinch) performance at baseline, at 1°C (MOD) and 2°C (HYPER) delta increase in body core temperature. Results The field studies revealed that 70% of all workers had urine specific gravity values ≥1.020 corresponding to the urine specific gravity (1.020±0.001) at the end of the laboratory dehydration session. At this hydration level, HYPER was associated with reductions in simple motor task performance by 4±1%, math task by 4±1%, math and pinch by 9±3% and visuo-motor tracking by 16±4% (all P<0.05 compared to baseline), whereas no significant changes were observed when the heat stress was MOD (P>0.05). In the euhydration session, HYPER reduced complex (tracking) motor performance by 10±3% and simple pinch by 3±1% (both P<0.05, compared to baseline), while performance in the two cognitively dominated tasks were unaffected when dehydration was prevented (P>0.05). Conclusion Dehydration at levels commonly observed across a range of occupational settings with environmental heat stress aggravates the impact of hyperthermia on performance in tasks relying on combinations of cognitive function and motor response accuracy.
Collapse
Affiliation(s)
- Jacob F. Piil
- Department of Nutrition, Exercise and Sports, Section for Integrative Physiology, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| | - Jesper Lundbye-Jensen
- Department of Nutrition, Exercise and Sports, Section for Integrative Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Lasse Christiansen
- Department of Nutrition, Exercise and Sports, Section for Integrative Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Leonidas Ioannou
- FAME Laboratory, Department of Exercise Science, University of Thessaly, Karies, Trikala, Greece
| | - Lydia Tsoutsoubi
- FAME Laboratory, Department of Exercise Science, University of Thessaly, Karies, Trikala, Greece
| | - Constantinos N. Dallas
- FAME Laboratory, Department of Exercise Science, University of Thessaly, Karies, Trikala, Greece
| | - Konstantinos Mantzios
- FAME Laboratory, Department of Exercise Science, University of Thessaly, Karies, Trikala, Greece
| | - Andreas D. Flouris
- FAME Laboratory, Department of Exercise Science, University of Thessaly, Karies, Trikala, Greece
| | - Lars Nybo
- Department of Nutrition, Exercise and Sports, Section for Integrative Physiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
37
|
|
38
|
Evaluating the methods used for measuring cerebral blood flow at rest and during exercise in humans. Eur J Appl Physiol 2018; 118:1527-1538. [DOI: 10.1007/s00421-018-3887-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 05/09/2018] [Indexed: 10/16/2022]
|
39
|
James LJ, Moss J, Henry J, Papadopoulou C, Mears SA. Hypohydration impairs endurance performance: a blinded study. Physiol Rep 2018. [PMID: 28637708 PMCID: PMC5492205 DOI: 10.14814/phy2.13315] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The general scientific consensus is that starting exercise with hypohydration >2% body mass impairs endurance performance/capacity, but most previous studies might be confounded by a lack of subject blinding. This study examined the effect of hypohydration in a single blind manner using combined oral and intragastric rehydration to manipulate hydration status. After familiarization, seven active males (mean ± SD: age 25 ± 2 years, height 1.79 ± 0.07, body mass 78.6 ± 6.2, VO2peak 48 ± 7 mL·kg·min-1) completed two randomized trials at 34°C. Trials involved an intermittent exercise preload (8 × 15 min exercise/5 min rest), followed by a 15-min all-out performance test on a cycle ergometer. During the preload, water was ingested orally every 10 min (0.2 mL·kg body mass-1). Additional water was infused into the stomach via a gastric feeding tube to replace sweat loss (EU) or induce hypohydration of ~2.5% body mass (HYP). Blood samples were drawn and thirst sensation rated before, during, and after exercise. Body mass loss during the preload was greater (2.4 ± 0.2% vs. 0.1 ± 0.1%; P < 0.001), while work completed during the performance test was lower (152 ± 24 kJ vs. 165 ± 22 kJ; P < 0.05) during HYP At the end of the preload, heart rate, RPE, serum osmolality, and thirst were greater and plasma volume lower during HYP (P < 0.05). These results provide novel data demonstrating that exercise performance in the heat is impaired by hypohydration, even when subjects are blinded to the intervention.
Collapse
Affiliation(s)
- Lewis J James
- School of Sport, Exercise and Health Sciences, Loughborough University, Leicestershire, LE11 3TU, United Kingdom
| | - Jodie Moss
- School of Sport, Exercise and Health Sciences, Loughborough University, Leicestershire, LE11 3TU, United Kingdom
| | - Joshua Henry
- School of Sport, Exercise and Health Sciences, Loughborough University, Leicestershire, LE11 3TU, United Kingdom
| | - Charikleia Papadopoulou
- School of Sport, Exercise and Health Sciences, Loughborough University, Leicestershire, LE11 3TU, United Kingdom
| | - Stephen A Mears
- School of Sport, Exercise and Health Sciences, Loughborough University, Leicestershire, LE11 3TU, United Kingdom
| |
Collapse
|
40
|
Pomella N, Wilhelm EN, Kolyva C, González-Alonso J, Rakobowchuk M, Khir AW. Noninvasive assessment of the common carotid artery hemodynamics with increasing exercise work rate using wave intensity analysis. Am J Physiol Heart Circ Physiol 2018; 315:H233-H241. [PMID: 29569959 PMCID: PMC6139620 DOI: 10.1152/ajpheart.00667.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Noninvasively determined local wave speed (c) and wave intensity (WI) parameters provide insights into arterial stiffness and cardiac-vascular interactions in response to physiological perturbations. However, the effects of incremental exercise and subsequent recovery on c and WI have not been fully established. We examined the changes in c and WI parameters in the common carotid artery (CCA) during exercise and recovery in eight young, healthy male athletes. Ultrasound measurements of CCA diameter and blood flow velocity were acquired at rest, during five stages of incremental exercise (up to 70% maximum work rate), and throughout 1 h of recovery, and noninvasive WI analysis [diameter-velocity (DU) approach] was performed. During exercise, c increased (+136%), showing increased stiffness with work rate. All peak and area of forward compression, backward compression, and forward expansion waves increased during exercise (+452%, +700%, and +900%, respectively). However, WI reflection indexes and CCA resistance did not significantly change from rest to exercise. Furthermore, wave speed and the magnitude of all waves returned to baseline within 5 min of recovery, suggesting that the effects of exercise in the investigated parameters of young, healthy individuals were transient. In conclusion, incremental exercise was associated with an increase in local CCA stiffness and increases in all wave parameters, indicative of enhanced ventricular contractility and improved late-systolic blood flow deceleration. NEW & NOTEWORTHY We examined hemodynamics of the common carotid artery using noninvasive application of wave intensity analysis during exercise and recovery. The hemodynamic adjustments to exercise were associated with increases in local common carotid artery stiffness and all waves’ parameters, with the latter indicating enhanced ventricular contractility and improved late systolic blood flow deceleration.
Collapse
Affiliation(s)
- N Pomella
- Institute of Environment, Health and Societies, Biomedical Engineering Research Theme, Brunel University London , Middlesex , United Kingdom
| | - E N Wilhelm
- Centre for Human Performance, Exercise and Rehabilitation, College of Health and Life Sciences, Brunel University London , Middlesex , United Kingdom
| | - C Kolyva
- Institute of Environment, Health and Societies, Biomedical Engineering Research Theme, Brunel University London , Middlesex , United Kingdom
| | - J González-Alonso
- Centre for Human Performance, Exercise and Rehabilitation, College of Health and Life Sciences, Brunel University London , Middlesex , United Kingdom
| | - M Rakobowchuk
- Centre for Human Performance, Exercise and Rehabilitation, College of Health and Life Sciences, Brunel University London , Middlesex , United Kingdom
| | - A W Khir
- Institute of Environment, Health and Societies, Biomedical Engineering Research Theme, Brunel University London , Middlesex , United Kingdom
| |
Collapse
|
41
|
Tsuji B, Filingeri D, Honda Y, Eguchi T, Fujii N, Kondo N, Nishiyasu T. Effect of hypocapnia on the sensitivity of hyperthermic hyperventilation and the cerebrovascular response in resting heated humans. J Appl Physiol (1985) 2018; 124:225-233. [DOI: 10.1152/japplphysiol.00232.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Elevating core temperature at rest causes increases in minute ventilation (V̇e), which lead to reductions in both arterial CO2 partial pressure (hypocapnia) and cerebral blood flow. We tested the hypothesis that in resting heated humans this hypocapnia diminishes the ventilatory sensitivity to rising core temperature but does not explain a large portion of the decrease in cerebral blood flow. Fourteen healthy men were passively heated using hot-water immersion (41°C) combined with a water-perfused suit, which caused esophageal temperature (Tes) to reach 39°C. During heating in two separate trials, end-tidal CO2 partial pressure decreased from the level before heating (39.4 ± 2.0 mmHg) to the end of heating (30.5 ± 6.3 mmHg) ( P = 0.005) in the Control trial. This decrease was prevented by breathing CO2-enriched air throughout the heating such that end-tidal CO2 partial pressure did not differ between the beginning (39.8 ± 1.5 mmHg) and end (40.9 ± 2.7 mmHg) of heating ( P = 1.00). The sensitivity to rising Tes (i.e., slope of the Tes − V̇E relation) did not differ between the Control and CO2-breathing trials (37.1 ± 43.1 vs. 16.5 ± 11.1 l·min−1·°C−1, P = 0.31). In both trials, middle cerebral artery blood velocity (MCAV) decreased early during heating (all P < 0.01), despite the absence of hyperventilation-induced hypocapnia. CO2 breathing increased MCAV relative to Control at the end of heating ( P = 0.005) and explained 36.6% of the heat-induced reduction in MCAV. These results indicate that during passive heating at rest ventilatory sensitivity to rising core temperature is not suppressed by hypocapnia and that most of the decrease in cerebral blood flow occurs independently of hypocapnia. NEW & NOTEWORTHY Hyperthermia causes hyperventilation and concomitant hypocapnia and cerebral hypoperfusion. The last may underlie central fatigue. We are the first to demonstrate that hyperthermia-induced hyperventilation is not suppressed by the resultant hypocapnia and that hypocapnia explains only 36% of cerebral hypoperfusion elicited by hyperthermia. These new findings advance our understanding of the mechanisms controlling ventilation and cerebral blood flow during heat stress, which may be useful for developing interventions aimed at preventing central fatigue during hyperthermia.
Collapse
Affiliation(s)
- Bun Tsuji
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba City, Ibaraki, Japan
- Department of Health Sciences, Prefectural University of Hiroshima, Hiroshima, Japan
| | - Davide Filingeri
- Environmental Ergonomics Research Centre, Loughborough Design School, Loughborough University, Loughborough, United Kingdom
| | - Yasushi Honda
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba City, Ibaraki, Japan
| | - Tsubasa Eguchi
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba City, Ibaraki, Japan
| | - Naoto Fujii
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba City, Ibaraki, Japan
| | - Narihiko Kondo
- Faculty of Human Development, Kobe University, Kobe, Japan
| | - Takeshi Nishiyasu
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba City, Ibaraki, Japan
| |
Collapse
|
42
|
Périard JD, De Pauw K, Zanow F, Racinais S. Cerebrocortical activity during self-paced exercise in temperate, hot and hypoxic conditions. Acta Physiol (Oxf) 2018; 222. [PMID: 28686002 DOI: 10.1111/apha.12916] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 06/02/2017] [Accepted: 07/03/2017] [Indexed: 12/14/2022]
Abstract
AIM Heat stress and hypoxia independently influence cerebrocortical activity and impair prolonged exercise performance. This study examined the relationship between electroencephalography (EEG) activity and self-paced exercise performance in control (CON, 18 °C, 40% RH), hot (HOT, 35 °C, 60% RH) and hypoxic (HYP, 18 °C, 40% RH FiO2 : 0.145) conditions. METHODS Eleven well-trained cyclists completed a 750 kJ cycling time trial in each condition on separate days in a counterbalanced order. EEG activity was recorded with α- and β-activity evaluated in the frontal (F3 and F4) and central (C3 and C4) areas. Standardized low-resolution brain electromagnetic tomography (sLORETA) was also utilized to localize changes in cerebrocortical activity. RESULTS Both α- and β-activity decreased in the frontal and central areas during exercise in HOT relative to CON (P < 0.05). α-activity was also lower in HYP compared with CON (P < 0.05), whereas β-activity remained similar. β-activity was higher in HYP than in HOT (P < 0.05). sLORETA revealed that α- and β-activity increased at the onset of exercise in the primary somatosensory and motor cortices in CON and HYP, while only β-activity increased in HOT. A decrease in α- and β-activity occurred thereafter in all conditions, with α-activity being lower in the somatosensory and somatosensory association cortices in HOT relative to CON. CONCLUSION High-intensity prolonged self-paced exercise induces cerebrocortical activity alterations in areas of the brain associated with the ability to inhibit conflicting attentional processing under hot and hypoxic conditions, along with the capacity to sustain mental readiness and arousal under heat stress.
Collapse
Affiliation(s)
- J. D. Périard
- Research Institute for Sport and Exercise; University of Canberra; Canberra ACT Australia
- Athlete Health and Performance Research Centre; Aspetar Orthopaedic and Sports Medicine Hospital; Doha Qatar
| | - K. De Pauw
- Research Group Human Physiology; Faculty of Physical Education and Physiotherapy; Vrije Universiteit Brussel; Brussels Belgium
| | - F. Zanow
- ANT Neuro bv; Enschede the Netherlands
| | - S. Racinais
- Athlete Health and Performance Research Centre; Aspetar Orthopaedic and Sports Medicine Hospital; Doha Qatar
| |
Collapse
|
43
|
Trangmar SJ, Chiesa ST, Kalsi KK, Secher NH, González-Alonso J. Whole body hyperthermia, but not skin hyperthermia, accelerates brain and locomotor limb circulatory strain and impairs exercise capacity in humans. Physiol Rep 2017; 5:5/2/e13108. [PMID: 28108645 PMCID: PMC5269410 DOI: 10.14814/phy2.13108] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 12/08/2016] [Accepted: 12/09/2016] [Indexed: 12/26/2022] Open
Abstract
Cardiovascular strain and hyperthermia are thought to be important factors limiting exercise capacity in heat‐stressed humans, however, the contribution of elevations in skin (Tsk) versus whole body temperatures on exercise capacity has not been characterized. To ascertain their relationships with exercise capacity, blood temperature (TB), oxygen uptake (V̇O2), brain perfusion (MCA Vmean), locomotor limb hemodynamics, and hematological parameters were assessed during incremental cycling exercise with elevated skin (mild hyperthermia; HYPmild), combined core and skin temperatures (moderate hyperthermia; HYPmod), and under control conditions. Both hyperthermic conditions increased Tsk versus control (6.2 ± 0.2°C; P < 0.001), however, only HYPmod increased resting TB, leg blood flow and cardiac output (Q̇), but not MCA Vmean. Throughout exercise, Tsk remained elevated in both hyperthermic conditions, whereas only TB was greater in HYPmod. At exhaustion, oxygen uptake and exercise capacity were reduced in HYPmod in association with lower leg blood flow, MCA Vmean and mean arterial pressure (MAP), but similar maximal heart rate and TB. The attenuated brain and leg perfusion with hyperthermia was associated with a plateau in MCA and two‐legged vascular conductance (VC). Mechanistically, the falling MCA VC was coupled to reductions in PaCO2, whereas the plateau in leg vascular conductance was related to markedly elevated plasma [NA] and a plateau in plasma ATP. These findings reveal that whole‐body hyperthermia, but not skin hyperthermia, compromises exercise capacity in heat‐stressed humans through the early attenuation of brain and active muscle blood flow.
Collapse
Affiliation(s)
- Steven J Trangmar
- Centre for Human Performance, Exercise and Rehabilitation, Brunel University London, Uxbridge, United Kingdom
| | - Scott T Chiesa
- Centre for Human Performance, Exercise and Rehabilitation, Brunel University London, Uxbridge, United Kingdom
| | - Kameljit K Kalsi
- Centre for Human Performance, Exercise and Rehabilitation, Brunel University London, Uxbridge, United Kingdom
| | - Niels H Secher
- Centre for Human Performance, Exercise and Rehabilitation, Brunel University London, Uxbridge, United Kingdom.,The Copenhagen Muscle Research Centre, Department of Anaesthesia, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - José González-Alonso
- Centre for Human Performance, Exercise and Rehabilitation, Brunel University London, Uxbridge, United Kingdom
| |
Collapse
|
44
|
Tan XR, Low ICC, Stephenson MC, Soong TW, Lee JKW. Neural basis of exertional fatigue in the heat: A review of magnetic resonance imaging methods. Scand J Med Sci Sports 2017; 28:807-818. [PMID: 29136305 DOI: 10.1111/sms.13015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2017] [Indexed: 12/19/2022]
Abstract
The central nervous system, specifically the brain, is implicated in the development of exertional fatigue under a hot environment. Diverse neuroimaging techniques have been used to visualize the brain activity during or after exercise. Notably, the use of magnetic resonance imaging (MRI) has become prevalent due to its excellent spatial resolution and versatility. This review evaluates the significance and limitations of various brain MRI techniques in exercise studies-brain volumetric analysis, functional MRI, functional connectivity MRI, and arterial spin labeling. The review aims to provide a summary on the neural basis of exertional fatigue and proposes future directions for brain MRI studies. A systematic literature search was performed where a total of thirty-seven brain MRI studies associated with exercise, fatigue, or related physiological factors were reviewed. The findings suggest that with moderate dehydration, there is a decrease in total brain volume accompanied with expansion of ventricular volume. With exercise fatigue, there is increased activation of sensorimotor and cognitive brain areas, increased thalamo-insular activation and decreased interhemispheric connectivity in motor cortex. Under passive hyperthermia, there are regional changes in cerebral perfusion, a reduction in local connectivity in functional brain networks and an impairment to executive function. Current literature suggests that the brain structure and function are influenced by exercise, fatigue, and related physiological perturbations. However, there is still a dearth of knowledge and it is hoped that through understanding of MRI advantages and limitations, future studies will shed light on the central origin of exertional fatigue in the heat.
Collapse
Affiliation(s)
- X R Tan
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
| | - I C C Low
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - M C Stephenson
- Clinical Imaging Research Centre, Agency for Science, Technology and Research - National University of Singapore (A*STAR-NUS), Singapore, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - T W Soong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
| | - J K W Lee
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Defence Medical & Environmental Research Institute, DSO National Laboratories, Singapore, Singapore
| |
Collapse
|
45
|
Trangmar SJ, González-Alonso J. New Insights Into the Impact of Dehydration on Blood Flow and Metabolism During Exercise. Exerc Sport Sci Rev 2017; 45:146-153. [PMID: 28419001 DOI: 10.1249/jes.0000000000000109] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Exercise-induced dehydration can lead to impaired perfusion to multiple regional tissues and organs. We propose that the impact of dehydration on regional blood flow and metabolism is dependent on the extent of the cardiovascular demand imposed by exercise, with the greatest physiological strain seen when approaching cardiovascular and aerobic capacities.
Collapse
Affiliation(s)
- Steven J Trangmar
- 1Department of Life Sciences, University of Roehampton, London; and 2Centre for Human Performance, Exercise and Rehabilitation, Brunel University London, Uxbridge, United Kingdom
| | | |
Collapse
|
46
|
Smith KJ, Ainslie PN. Regulation of cerebral blood flow and metabolism during exercise. Exp Physiol 2017; 102:1356-1371. [PMID: 28786150 DOI: 10.1113/ep086249] [Citation(s) in RCA: 203] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 07/31/2017] [Indexed: 12/18/2022]
Abstract
NEW FINDINGS What is the topic of this review? The manuscript collectively combines the experimental observations from >100 publications focusing on the regulation of cerebral blood flow and metabolism during exercise from 1945 to the present day. What advances does it highlight? This article highlights the importance of traditional and historical assessments of cerebral blood flow and metabolism during exercise, as well as traditional and new insights into the complex factors involved in the integrative regulation of brain blood flow and metabolism during exercise. The overarching theme is the importance of quantifying cerebral blood flow and metabolism during exercise using techniques that consider multiple volumetric cerebral haemodynamics (i.e. velocity, diameter, shear and flow). Cerebral function in humans is crucially dependent upon continuous oxygen delivery, metabolic nutrients and active regulation of cerebral blood flow (CBF). As a consequence, cerebrovascular function is precisely titrated by multiple physiological mechanisms, characterized by complex integration, synergism and protective redundancy. At rest, adequate CBF is regulated through reflexive responses in the following order of regulatory importance: fluctuating arterial blood gases (in particularly, partial pressure of carbon dioxide), cerebral metabolism, arterial blood pressure, neurogenic activity and cardiac output. Unfortunately, the magnitude that these integrative and synergistic relationships contribute to governing the CBF during exercise remains unclear. Despite some evidence indicating that CBF regulation during exercise is dependent on the changes of blood pressure, neurogenic activity and cardiac output, their role as a primary governor of the CBF response to exercise remains controversial. In contrast, the balance between the partial pressure of carbon dioxide and cerebral metabolism continues to gain empirical support as the primary contributor to the intensity-dependent changes in CBF observed during submaximal, moderate and maximal exercise. The goal of this review is to summarize the fundamental physiology and mechanisms involved in regulation of CBF and metabolism during exercise. The clinical implications of a better understanding of CBF during exercise and new research directions are also outlined.
Collapse
Affiliation(s)
- Kurt J Smith
- Cardiovascular Research Group, School of Sports Science, Exercise and Health, University of Western Australia, Crawley, WA, Australia.,Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, Canada
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, Canada
| |
Collapse
|
47
|
Racinais S, Cocking S, Périard JD. Sports and environmental temperature: From warming-up to heating-up. Temperature (Austin) 2017; 4:227-257. [PMID: 28944269 DOI: 10.1080/23328940.2017.1356427] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/09/2017] [Accepted: 07/09/2017] [Indexed: 01/22/2023] Open
Abstract
Most professional and recreational athletes perform pre-conditioning exercises, often collectively termed a 'warm-up' to prepare for a competitive task. The main objective of warming-up is to induce both temperature and non-temperature related responses to optimize performance. These responses include increasing muscle temperature, initiating metabolic and circulatory adjustments, and preparing psychologically for the upcoming task. However, warming-up in hot and/or humid ambient conditions increases thermal and circulatory strain. As a result, this may precipitate neuromuscular and cardiovascular impairments limiting endurance capacity. Preparations for competing in the heat should include an acclimatization regimen. Athletes should also consider cooling interventions to curtail heat gain during the warm-up and minimize dehydration. Indeed, although it forms an important part of the pre-competition preparation in all environmental conditions, the rise in whole-body temperature should be limited in hot environments. This review provides recommendations on how to build an effective warm-up following a 3 stage RAMP model (Raise, Activate and Mobilize, Potentiate), including general and context specific exercises, along with dynamic flexibility work. In addition, this review provides suggestion to manipulate the warm-up to suit the demands of competition in hot environments, along with other strategies to avoid heating-up.
Collapse
Affiliation(s)
- Sébastien Racinais
- Aspetar Orthopaedic and Sports Medicine Hospital, Athlete Health and Performance Research Centre, Doha, Qatar.,French Institute of Sport (INSEP), Laboratory Sport, Expertise and Performance (EA 7370), Paris, France
| | - Scott Cocking
- Aspetar Orthopaedic and Sports Medicine Hospital, Athlete Health and Performance Research Centre, Doha, Qatar.,Research Institute for Sport and Exercise Science, Liverpool John Moores University, United Kingdom
| | - Julien D Périard
- Aspetar Orthopaedic and Sports Medicine Hospital, Athlete Health and Performance Research Centre, Doha, Qatar.,University of Canberra, Research Institute for Sport and Exercise, Canberra, Australia
| |
Collapse
|
48
|
Ellis LA, Ainslie PN, Armstrong VA, Morris LE, Simair RG, Sletten NR, Tallon CM, McManus AM. Anterior cerebral blood velocity and end-tidal CO 2 responses to exercise differ in children and adults. Am J Physiol Heart Circ Physiol 2017; 312:H1195-H1202. [PMID: 28389601 DOI: 10.1152/ajpheart.00034.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/24/2017] [Accepted: 03/28/2017] [Indexed: 11/22/2022]
Abstract
Little is known about the response of the cerebrovasculature to acute exercise in children and how these responses might differ with adults. Therefore, we compared changes in middle cerebral artery blood velocity (MCAVmean), end-tidal Pco2 ([Formula: see text]), blood pressure, and minute ventilation (V̇e) in response to incremental exercise between children and adults. Thirteen children [age: 9 ± 1 (SD) yr] and thirteen sex-matched adults (age: 25 ± 4 yr) completed a maximal exercise test, during which MCAVmean, [Formula: see text], and V̇e were measured continuously. These variables were measured at rest, at exercise intensities specific to individual ventilatory thresholds, and at maximum. Although MCAVmean was higher at rest in children compared with adults, there were smaller increases in children (1-12%) compared with adults (12-25%) at all exercise intensities. There were alterations in [Formula: see text] with exercise intensity in an age-dependent manner [F(2.5,54.5) = 7.983, P < 0.001; η2 = 0.266], remaining stable in children with increasing exercise intensity (37-39 mmHg; P > 0.05) until hyperventilation-induced reductions following the respiratory compensation point. In adults, [Formula: see text] increased with exercise intensity (36-45 mmHg, P < 0.05) until the ventilatory threshold. From the ventilatory threshold to maximum, adults showed a greater hyperventilation-induced hypocapnia than children. These findings show that the relative increase in MCAVmean during exercise was attenuated in children compared with adults. There was also a weaker relationship between MCAVmean and [Formula: see text] during exercise in children, suggesting that cerebral perfusion may be regulated by different mechanisms during exercise in the child.NEW & NOTEWORTHY These findings provide the first direct evidence that exercise increases cerebral blood flow in children to a lesser extent than in adults. Changes in end-tidal CO2 parallel changes in cerebral perfusion in adults but not in children, suggesting age-dependent regulatory mechanisms of cerebral blood flow during exercise.
Collapse
Affiliation(s)
- Lindsay A Ellis
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Victoria A Armstrong
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Laura E Morris
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Ryan G Simair
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Nathan R Sletten
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Christine M Tallon
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Ali M McManus
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| |
Collapse
|
49
|
Robertson CV, Marino FE. Cerebral responses to exercise and the influence of heat stress in human fatigue. J Therm Biol 2017; 63:10-15. [PMID: 28010806 DOI: 10.1016/j.jtherbio.2016.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 10/06/2016] [Accepted: 10/06/2016] [Indexed: 10/20/2022]
|
50
|
Sawka MN, Cheuvront SN, Kenefick RW. Hypohydration and Human Performance: Impact of Environment and Physiological Mechanisms. Sports Med 2016; 45 Suppl 1:S51-60. [PMID: 26553489 PMCID: PMC4672008 DOI: 10.1007/s40279-015-0395-7] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Body water losses of >2 % of body mass are defined as hypohydration and can occur from sweat loss and/or diuresis from both cold and altitude exposure. Hypohydration elicits intracellular and extracellular water loss proportionate to water and solute deficits. Iso-osmotic hypovolemia (from cold and high-altitude exposure) results in greater plasma loss for a given water deficit than hypertonic hypovolemia from sweat loss. Hypohydration does not impair submaximal intensity aerobic performance in cold–cool environments, sometimes impairs aerobic performance in temperate environments, and usually impairs aerobic performance in warm–hot environments. Hypohydration begins to impair aerobic performance when skin temperatures exceed 27 °C, and with each additional 1 °C elevation in skin temperature there is a further 1.5 % impairment. Hypohydration has an additive effect on impairing aerobic performance in warm–hot high-altitude environments. A commonality of absolute hypovolemia (from plasma volume loss) combined with relative hypovolemia (from tissue vasodilation) is present when aerobic performance is impaired. The decrement in aerobic exercise performance due to hypohydration is likely due to multiple physiological mechanisms, including cardiovascular strain acting as the ‘lynchpin’, elevated tissue temperatures, and metabolic changes which are all integrated through the CNS to reduce motor drive to skeletal muscles.
Collapse
Affiliation(s)
- Michael N Sawka
- School of Applied Physiology, Georgia Institute of Technology, 555 14th Street, Atlanta, GA, 30332, USA.
| | - Samuel N Cheuvront
- Thermal and Mountain Medicine Division, US Army Research Institute of Environmental Medicine, Natick, MA, USA
| | - Robert W Kenefick
- Thermal and Mountain Medicine Division, US Army Research Institute of Environmental Medicine, Natick, MA, USA
| |
Collapse
|