1
|
Sargent M, Wark AW, Day S, Buis A. An ex vivo animal model to study the effect of transverse mechanical loading on skeletal muscle. Commun Biol 2024; 7:302. [PMID: 38461200 PMCID: PMC10925026 DOI: 10.1038/s42003-024-05994-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 02/29/2024] [Indexed: 03/11/2024] Open
Abstract
In many populations like wheelchair and prosthetic users, the soft tissue is subject to excessive or repetitive loading, making it prone to Deep Tissue Injury (DTI). To study the skeletal muscle response to physical stress, numerous in vitro and in vivo models exist. Yet, accuracy, variability, and ethical considerations pose significant trade-offs. Here, we present an ex vivo approach to address these limitations and offer additional quantitative information on cellular damage. In this study, skeletal muscle tissue from Sprague Dawley rats was isolated and transversely loaded. Histological analysis and fluorescence staining demonstrated that the setup was suitable to keep the tissue alive throughout the experimental procedure. Mechanically induced cell damage was readily distinguishable through morphological changes and uptake of a membrane impermeable dye. Our comparably simple experimental setup can be adapted to different loading conditions and tissues to assess the cell response to mechanical loading in future studies.
Collapse
Affiliation(s)
- Marisa Sargent
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, United Kingdom
| | - Alastair W Wark
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow, United Kingdom
| | - Sarah Day
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, United Kingdom
| | - Arjan Buis
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, United Kingdom.
| |
Collapse
|
2
|
Adjustable Thermo-Responsive, Cell-Adhesive Tissue Engineering Scaffolds for Cell Stimulation through Periodic Changes in Culture Temperature. Int J Mol Sci 2022; 24:ijms24010572. [PMID: 36614014 PMCID: PMC9820143 DOI: 10.3390/ijms24010572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/21/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
A three-dimensional (3D) scaffold ideally provides hierarchical complexity and imitates the chemistry and mechanical properties of the natural cell environment. Here, we report on a stimuli-responsive photo-cross-linkable resin formulation for the fabrication of scaffolds by continuous digital light processing (cDLP), which allows for the mechano-stimulation of adherent cells. The resin comprises a network-forming trifunctional acrylate ester monomer (trimethylolpropane triacrylate, or TMPTA), N-isopropyl acrylamide (NiPAAm), cationic dimethylaminoethyl acrylate (DMAEA) for enhanced cell interaction, and 4-acryloyl morpholine (AMO) to adjust the phase transition temperature (Ttrans) of the equilibrium swollen cross-polymerized scaffold. With glycofurol as a biocompatible solvent, controlled three-dimensional structures were fabricated and the transition temperatures were adjusted by resin composition. The effects of the thermally induced mechano-stimulation were investigated with mouse fibroblasts (L929) and myoblasts (C2C12) on printed constructs. Periodic changes in the culture temperature stimulated the myoblast proliferation.
Collapse
|
3
|
Jia J, Chong S, Yu L, Yao Y. Cell membrane tensile strain under cyclic compression: A viscoelastic myoblast finite element model. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2022. [DOI: 10.1016/j.medntd.2022.100155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
4
|
Abstract
During organismal development, organs and systems are built following a genetic blueprint that produces structures capable of performing specific physiological functions. Interestingly, we have learned that the physiological activities of developing tissues also contribute to their own morphogenesis. Specifically, physiological activities such as fluid secretion and cell contractility generate hydrostatic pressure that can act as a morphogenetic force. Here, we first review the role of hydrostatic pressure in tube formation during animal development and discuss mathematical models of lumen formation. We then illustrate specific roles of the notochord as a hydrostatic scaffold in anterior-posterior axis development in chordates. Finally, we cover some examples of how fluid flows influence morphogenetic processes in other developmental contexts. Understanding how fluid forces act during development will be key for uncovering the self-organizing principles that control morphogenesis.
Collapse
Affiliation(s)
- Michel Bagnat
- Department of Cell Biology, Duke University, Durham, North Carolina, USA;
| | - Bijoy Daga
- Department of Cell Biology, Duke University, Durham, North Carolina, USA;
| | - Stefano Di Talia
- Department of Cell Biology, Duke University, Durham, North Carolina, USA;
- Department of Orthopaedic Surgery, Duke University, Durham, North Carolina, USA
| |
Collapse
|
5
|
Constitutive Equations for Analyzing Stress Relaxation and Creep of Viscoelastic Materials Based on Standard Linear Solid Model Derived with Finite Loading Rate. Polymers (Basel) 2022; 14:polym14102124. [PMID: 35632006 PMCID: PMC9143375 DOI: 10.3390/polym14102124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 02/06/2023] Open
Abstract
The viscoelastic properties of materials such as polymers can be quantitatively evaluated by measuring and analyzing the viscoelastic behaviors such as stress relaxation and creep. The standard linear solid model is a classical and commonly used mathematical model for analyzing stress relaxation and creep behaviors. Traditionally, the constitutive equations for analyzing stress relaxation and creep behaviors based on the standard linear solid model are derived using the assumption that the loading is a step function, implying that the loading rate used in the loading process of stress relaxation and creep tests is infinite. Using such constitutive equations may cause significant errors in analyses since the loading rate must be finite (no matter how fast it is) in a real stress relaxation or creep experiment. The purpose of this paper is to introduce the constitutive equations for analyzing stress relaxation and creep behaviors based on the standard linear solid model derived with a finite loading rate. The finite element computational simulation results demonstrate that the constitutive equations derived with a finite loading rate can produce accurate results in the evaluation of all viscoelastic parameters regardless of the loading rate in most cases. It is recommended that the constitutive equations derived with a finite loading rate should replace the traditional ones derived with an infinite loading rate to analyze stress relaxation and creep behaviors for quantitatively evaluating the viscoelastic properties of materials.
Collapse
|
6
|
Villone MM, Nunes JK, Li Y, Stone HA, Maffettone PL. Design of a microfluidic device for the measurement of the elastic modulus of deformable particles. SOFT MATTER 2019; 15:880-889. [PMID: 30601566 DOI: 10.1039/c8sm02272k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
A microfluidic technique recently proposed in the literature to measure the interfacial tension between a liquid droplet and an immiscible suspending liquid [Hudson et al., Appl. Phys. Lett., 2005, 87, 081905], [Cabral and Hudson, Lab Chip, 2006, 6, 427] is suitably adapted to the characterization of the elastic modulus of soft particles in a continuous-flow process. A microfluidic device consisting of a cylindrical pipe with a reduction in cross-section is designed, and the deformation and velocity of incompressible elastic particles suspended in a Newtonian liquid are tracked as they move along the centerline through the constriction. Kinematic and shape information is exploited to calculate the particle's elastic modulus by means of the theory of elastic particle deformation in extensional flow. The approach is validated for different orders of magnitude of the elastic capillary number through experiments and numerical simulations.
Collapse
Affiliation(s)
- Massimiliano M Villone
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università di Napoli Federico II, P. le Tecchio 80, 80125 Napoli, Italy.
| | | | | | | | | |
Collapse
|
7
|
Smith GD, Takayama S. Cryopreservation and microfluidics: a focus on the oocyte. Reprod Fertil Dev 2019; 31:93-104. [DOI: 10.1071/rd18326] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Cryopreservation of gametes and embryos has played a critical role in successful assisted reproductive technologies in rodents, domestic farm species, endangered species and humans. With improved success, and changing needs, the utility of gamete or embryo cryopreservation has escalated. In this review we address some of the foundational history of mammalian cryobiology, species-specific utilities, fundamental understandings of cryoprotectant agents and their use in slow-rate freezing and vitrification, and expand on the recent success and uses of oocyte vitrification and warming. In the area of female gamete cryopreservation, emphasis will be placed on not just cell survival, but also perceived and measured affects of cryopreservation on intracellular structures and functions that affect subsequent completion of meiosis with chromatin segregation fidelity, normal fertilisation and embryonic developmental competence. We compare and contrast data from cow, mouse and humans with a focus on using species-comparative developmental biology to guide future studies for improving methodologies for all species. The application of the relatively new technology microfluidics is discussed in relation to moving gradually (i.e. changing the solution over cells in an automated fashion) compared with the stepwise manual movement of cells through changing solution currently used. This use of microfluidics to change the way cells are exposed to cryoprotectant agents can provide new insights into the effects of osmotic stress and cellular strain rates previously unappreciated, precise methods of computational and biological data acquisition and appreciation of morphometric changes to cellular structure in response to different osmotic stresses and strain rates achieved with varying cryoprotectant exposures. Collectively, these devices and methodologies provide a means of achieving incremental improvement of oocyte and zygote cryopreservation with normalised and improved developmental competence. Finally, we look to the past and the future to acknowledge the accomplishment of leaders in the field of mammalian gamete and embryo cryobiology, their inspirational works, their tireless dissemination of information and the potential of new technologies in bioengineering to improve the efficiency and safety of gamete and embryo cryopreservation.
Collapse
|
8
|
Xing X, Pan Y, Yobas L. A Low-Backpressure Single-Cell Point Constriction for Cytosolic Delivery Based on Rapid Membrane Deformations. Anal Chem 2018; 90:1836-1844. [PMID: 29308899 DOI: 10.1021/acs.analchem.7b03864] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mechanically deforming biological cells through microfluidic constrictions is a recently introduced technique for the intracellular delivery of macromolecules possibly through transient membrane pores induced in the process. The technique is attractive for research and clinical applications mainly because it is simple, fast, and effective while being free of adverse effects often associated with well-known techniques that rely on field- or vector-based delivery. In this nascent approach, an utmost and crucial role is played by the constriction, often in rectangular profile, and it squeezes cells only in one dimension. The results achieved suggest that the longer the constriction is the higher the delivery performance. Contrary to this view, we demonstrate here a unique constriction profile that is highly localized (point) and yet returns comparably effective delivery. Point constrictions are of a semiround geometry, forcing cells in both dimensions while introducing very little backpressure to the system, which is a silicon-glass platform wherein constrictions are arranged in series along an array of channels. The influence of the constriction size and count as well as treatment pressure on delivery performance is presented on the basis of the flow-cytometric analyses of HCT116 cells treated using dextran as model molecules. Delivery performance is also presented for common mammalian cell lines including NIH 3T3, HEK293, and MDCK. Moreover, the versatility of the platform is demonstrated in gene knockdown experiments using synthetic siRNA as well as on the delivery of proteins. Target proteins in some cells exhibit nondiffusive distribution profile raising the plausibility of mechanisms other than transient membrane pores.
Collapse
Affiliation(s)
- Xiaoxing Xing
- College of Information Science and Technology, Beijing University of Chemical Technology , Beijing 100029, China
| | | | | |
Collapse
|
9
|
Ultrasound induced strain cytoskeleton rearrangement: An experimental and simulation study. J Biomech 2017; 60:39-47. [DOI: 10.1016/j.jbiomech.2017.06.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 06/05/2017] [Accepted: 06/06/2017] [Indexed: 11/24/2022]
|
10
|
Alihemmati Z, Vahidi B, Haghighipour N, Salehi M. Computational simulation of static/cyclic cell stimulations to investigate mechanical modulation of an individual mesenchymal stem cell using confocal microscopy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 70:494-504. [PMID: 27770921 DOI: 10.1016/j.msec.2016.09.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/09/2016] [Accepted: 09/08/2016] [Indexed: 01/27/2023]
Abstract
It has been found that cells react to mechanical stimuli, while the type and magnitude of these cells are different in various physiological and pathological conditions. These stimuli may affect cell behaviors via mechanotransduction mechanisms. The aim of this study is to evaluate mechanical responses of a mesenchymal stem cell (MSC) to a pressure loading using finite elements method (FEM) to clarify procedures of MSC mechanotransduction. The model is constructed based on an experimental set up in which statics and cyclic compressive loads are implemented on a model constructed from a confocal microscopy 3D image of a stem cell. Both of the applied compressive loads are considered in the physiological loading regimes. Moreover, a viscohyperelastic material model was assumed for the cell through which the finite elements simulation anticipates cell behavior based on strain and stress distributions in its components. As a result, high strain and stress values were captured from the viscohyperelastic model because of fluidic behavior of cytosol when compared with the obtained results through the hyperelastic models. It can be concluded that the generated strain produced by cyclic pressure is almost 8% higher than that caused by the static load and the von Mises stress distribution is significantly increased to about 150kPa through the cyclic loading. In total, the results does not only trace the efficacy of an individual 3D model of MSC using biomechanical experiments of cell modulation, but these results provide knowledge in interpretations from cell geometry. The current study was performed to determine a realistic aspect of cell behavior.
Collapse
Affiliation(s)
- Zakieh Alihemmati
- Division of Biomedical Engineering, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Bahman Vahidi
- Division of Biomedical Engineering, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran.
| | | | - Mohammad Salehi
- Department of Mechanical Engineering, University of Tehran, Tehran, Iran
| |
Collapse
|
11
|
Quantifying the effect of electric current on cell adhesion studied by single-cell force spectroscopy. Biointerphases 2016; 11:011004. [PMID: 26790407 DOI: 10.1116/1.4940214] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This study presents the effect of external electric current on the cell adhesive and mechanical properties of the C2C12 mouse myoblast cell line. Changes in cell morphology, viability, cytoskeleton, and focal adhesion structure were studied by standard staining protocols, while single-cell force spectroscopy based on the fluidic force microscopy technology provided a rapid, serial quantification and detailed analysis of cell adhesion and its dynamics. The setup allowed measurements of adhesion forces up to the μN range, and total detachment distances over 40 μm. Force-distance curves have been fitted with a simple elastic model including a cell detachment protocol in order to estimate the Young's modulus of the cells, as well as to reveal changes in the dynamic properties as functions of the applied current dose. While the cell spreading area decreased monotonously with increasing current doses, small current doses resulted only in differences related to cell elasticity. Current doses above 11 As/m(2), however, initiated more drastic changes in cell morphology, viability, cellular structure, as well as in properties related to cell adhesion. The observed differences, eventually leading to cell death toward higher doses, might originate from both the decrease in pH and the generation of reactive oxygen species.
Collapse
|
12
|
Effects of oxidative stress-induced changes in the actin cytoskeletal structure on myoblast damage under compressive stress: confocal-based cell-specific finite element analysis. Biomech Model Mechanobiol 2016; 15:1495-1508. [DOI: 10.1007/s10237-016-0779-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 03/03/2016] [Indexed: 01/07/2023]
|
13
|
Single cell active force generation under dynamic loading - Part I: AFM experiments. Acta Biomater 2015; 27:236-250. [PMID: 26360596 DOI: 10.1016/j.actbio.2015.09.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/14/2015] [Accepted: 09/06/2015] [Indexed: 12/27/2022]
Abstract
A novel series of experiments are performed on single cells using a bespoke AFM system where the response of cells to dynamic loading at physiologically relevant frequencies is uncovered. Measured forces for the untreated cells are dramatically different to cytochalasin-D (cyto-D) treated cells, indicating that the contractile actin cytoskeleton plays a critical role in the response of cells to dynamic loading. Following a change in applied strain magnitude, while maintaining a constant applied strain rate, the compression force for contractile cells recovers to 88.9±7.8% of the steady state force. In contrast, cyto-D cell compression forces recover to only 38.0±6.7% of the steady state force. Additionally, untreated cells exhibit strongly negative (pulling) forces during unloading half-cycles when the probe is retracted. In comparison, negligible pulling forces are measured for cyto-D cells during probe retraction. The current study demonstrates that active contractile forces, generated by actin-myosin cross-bridge cycling, dominate the response of single cells to dynamic loading. Such active force generation is shown to be independent of applied strain magnitude. Passive forces generated by the applied deformation are shown to be of secondary importance, exhibiting a high dependence on applied strain magnitude, in contrast to the active forces in untreated cells. STATEMENT OF SIGNIFICANCE A novel series of experiments are performed on single cells using a bespoke AFM system where the response of cells to dynamic loading at physiologically relevant frequencies is uncovered. Contractile cells, which contain the active force generation machinery of the actin cytoskeleton, are shown to be insensitive to applied strain magnitude, exhibiting high resistance to dynamic compression and stretching. Such trends are not observed for cells in which the actin cytoskeleton has been chemically disrupted. These biomechanical insights have not been previously reported. This detailed characterisation of single cell active and passive stress during dynamic loading has important implications for tissue engineering strategies, where applied deformation has been reported to significantly affect cell mechanotransduction and matrix synthesis.
Collapse
|
14
|
Lai D, Takayama S, Smith GD. Recent microfluidic devices for studying gamete and embryo biomechanics. J Biomech 2015; 48:1671-8. [DOI: 10.1016/j.jbiomech.2015.02.039] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 02/17/2015] [Indexed: 11/26/2022]
|
15
|
Biswas A, Manivannan M, Srinivasan MA. Multiscale layered biomechanical model of the pacinian corpuscle. IEEE TRANSACTIONS ON HAPTICS 2015; 8:31-42. [PMID: 25398182 DOI: 10.1109/toh.2014.2369416] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
This paper describes a multiscale analytical model of the lamellar structure and the biomechanical response of the Pacinian Corpuscle (PC). In order to analyze the contribution of the PC lamellar structure for detecting high-frequency vibrotactile (VT) stimuli covering 10 Hz to a few kHz, the model response is studied against trapezoidal and sinusoidal stimuli. The model identifies a few generalizable features of the lamellar structure which makes it scalable for different sizes of PC with different number of lamellae. The model describes the mechanical signal conditioning of the lamellar structure in terms of a recursive transfer-function, termed as the Compression-Transmittance-Transfer-Function (CTTF). The analytical results show that with the increase of the PC layer index above 15, the PC inner core (IC) relaxes within 1 ms against step compression of the outermost layer. This model also considers the mass of each PC layer to investigate its effect on the biomechanical response of the lamellar structure. The interlamellar spacing and its biomechanical properties along with the model response are validated with experimental data in the literature. The proposed model can be used for simulating a network of PCs considering their diversity for analyzing the high-frequency VT sensitivity of the human skin.
Collapse
|
16
|
Lai D, Ding J, Smith GW, Smith GD, Takayama S. Slow and steady cell shrinkage reduces osmotic stress in bovine and murine oocyte and zygote vitrification. Hum Reprod 2014; 30:37-45. [PMID: 25355589 DOI: 10.1093/humrep/deu284] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
STUDY QUESTION Does the use of a new cryoprotectant agent (CPA) exchange protocol designed to minimize osmotic stress improve oocyte or zygote vitrification by reducing sublethal cryodamage? SUMMARY ANSWER The use of a new CPA exchange protocol made possible by automated microfluidics improved oocyte and zygote vitrification with superior morphology as indicated by a smoother cell surface, higher sphericity, higher cytoplasmic lipid retention, less cytoplasmic leakage and higher developmental competence compared with conventional methods. WHAT IS KNOWN ALREADY The use of more 'steps' of CPA exposure during the vitrification protocol increases cryosurvival and development in the bovine model. However, such an attempt to eliminate osmotic stress is limited by the practicality of performing numerous precise pipetting steps in a short amount of time. STUDY DESIGN, SIZE, DURATION Murine meiotically competent germinal vesicle intact oocytes and zygotes were harvested from the antral follicles in ovaries and ampulla, respectively. Bovine ovaries were obtained from a local abattoir at random stages of the estrous cycle. A total of 110 murine oocytes, 802 murine zygotes and 52 bovine oocytes were used in this study. PARTICIPANTS/MATERIALS, SETTING, METHODS Microfluidic devices were fabricated using conventional photo- and soft-lithography. CPAs used were 7.5% ethylene glycol (EG) and 7.5% dimethyl sulfoxide (DMSO) for equilibration solution and 15% EG, 15% DMSO and 0.5 M sucrose for vitrification solution. End-point analyses include mathematical modeling using Kedem-Katchalsky equations, morphometrics assessed by conventional and confocal microscopy, cytoplasmic lipid quantification by nile red staining, cytoplasmic leakage quantification by fluorescent dextran intercalation and developmental competence analysis by 96 h embryo culture and blastomere quantification. MAIN RESULTS AND THE ROLE OF CHANCE The automated microfluidics protocol decreased the shrinkage rate of the oocyte and zygote by 13.8 times over its manual pipetting alternative. Oocytes and zygotes with a lower shrinkage rate during CPA exposure experienced less osmotic stress resulting in better morphology, higher cell quality and improved developmental competence. This microfluidic procedure resulted in murine zygotes with a significantly smoother cell surface (P < 0.001), more spherical cellular morphology (P < 0.001), increased cytoplasmic lipid retention in vitrified and warmed bovine oocytes (P < 0.01), decreased membrane perforations and cytoplasmic leakage in CPA-exposed murine zygotes (P < 0.05) and improved developmental competence of vitrified and warmed murine zygotes (P < 0.05) than CPA exposure using the current clinically used manual pipetting method. LIMITATIONS, REASONS FOR CAUTION It is necessary to design the microfluidic device to be more user-friendly for widespread use. WIDER IMPLICATIONS OF THE FINDINGS The theory and approach of eliminating osmotic stress by decreasing shrinkage rate is complementary to the prevalent osmotic stress theory in cryobiology which focuses on a minimum cell volume at which the cells shrink. The auto-microfluidic protocol described here has immediate applications for improving animal and human oocyte, zygote and embryo cryopreservation. On a fundamental level, the clear demonstration that at the same minimum cell volume, cell shrinkage rate affects sublethal damage should be broadly useful for cryobiology. STUDY FUNDING/COMPETING INTERESTS This project was funded by the National Institutes of Health and the University of Michigan Reproductive Sciences Program. The authors declare no conflicts of interest.
Collapse
Affiliation(s)
- D Lai
- Department of Biomedical Engineering, University of Michigan, 2800 Plymouth, Ann Arbor, MI 48109, USA
| | - J Ding
- Department of Obstetrics and Gynecology, University of Michigan, 1301 E. Catherine St, Ann Arbor, MI 48109, USA
| | - G W Smith
- Department of Animal Science and Physiology, Michigan State University, 1230D Anthony Hall, East Lansing, MI 48824, USA
| | - G D Smith
- Department of Obstetrics and Gynecology, University of Michigan, 1301 E. Catherine St, Ann Arbor, MI 48109, USA
| | - S Takayama
- Department of Biomedical Engineering, University of Michigan, 2800 Plymouth, Ann Arbor, MI 48109, USA
| |
Collapse
|
17
|
On the role of the actin cytoskeleton and nucleus in the biomechanical response of spread cells. Biomaterials 2014; 35:4015-25. [PMID: 24529900 DOI: 10.1016/j.biomaterials.2014.01.056] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 01/23/2014] [Indexed: 01/09/2023]
Abstract
Micropipette aspiration (MA) has been used extensively in biomechanical investigations of un-adhered cells suspended in media. In the current study, a custom MA system is developed to aspirate substrate adhered spread cells. Additionally, the system facilitates immuno-fluorescent staining of aspirated cells to investigate stress fibre redistribution and nucleus deformation during MA. In response to an applied pressure, significantly lower aspiration length is observed for untreated contractile cells compared to cells in which actin polymerisation is chemically inhibited, demonstrating the important contribution of stress fibres in the biomechanical behaviour of spread cells. Additional experiments are performed in which untreated contractile cells are subjected to a range of applied pressures. Computational finite element simulations reveal that a viscoelastic material model for the cell cytoplasm is incapable of accurately predicting the observed aspiration length over the range of applied pressures. It is demonstrated that an active computational framework that incorporates stress fibre remodelling and contractility must be used in order to accurately simulate MA of untreated spread cells. Additionally, the stress fibre distribution observed in immuno-fluorescent experimental images of aspirated cells is accurately predicted using the active stress fibre modelling framework. Finally, a detailed experimental-computational investigation of the nucleus mechanical behaviour demonstrates that the nucleus is highly deformable in cyto, reaching strain levels in excess of 100% during MA. The characterisation of stress fibres and nucleus biomechanics in spread cells presented in the current study can potentially be used to guide tissue engineering strategies to control cell behaviour and gene expression.
Collapse
|
18
|
Barreto S, Perrault CM, Lacroix D. Structural finite element analysis to explain cell mechanics variability. J Mech Behav Biomed Mater 2013; 38:219-31. [PMID: 24389336 DOI: 10.1016/j.jmbbm.2013.11.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 11/22/2013] [Accepted: 11/26/2013] [Indexed: 11/16/2022]
Abstract
The ability to model the mechanical responses of different cell types presents many opportunities to tissue engineering research to further identify changes from physiological conditions to disease. Using a previously validated finite element cell model we aim to show how variation of the material properties of the intracellular components affects cell response after compression and shearing. A parametric study was performed to understand the key mechanical features from different cell types, focussing on specific cytoskeleton components and prestress. Results show that actin cortex does not have a mechanical role in resisting shearing loading conditions. The sensitivity analysis predicted that cell force to compression and shearing is highly affected by changes in cortex thickness, cortex Young's modulus and rigidity of the remaining cytoplasm. Variation of prestress affects mainly the response of cells under shear loads and the model defines a relationship between cell force and prestress depending on the specific loading conditions, which is in good agreement with in vitro experiments. The results are used to make predictions that can relate mechanical properties with cell phenotype to be used as guidelines for individual cytoskeletal structures for future modelling efforts of the structure-function relationships of living cells.
Collapse
Affiliation(s)
- Sara Barreto
- INSIGNEO Institute for In Silico Medicine, Department of Mechanical Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, United Kingdom
| | - Cecile M Perrault
- INSIGNEO Institute for In Silico Medicine, Department of Mechanical Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, United Kingdom
| | - Damien Lacroix
- INSIGNEO Institute for In Silico Medicine, Department of Mechanical Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, United Kingdom.
| |
Collapse
|
19
|
Weafer PP, Ronan W, Jarvis SP, McGarry JP. Experimental and computational investigation of the role of stress fiber contractility in the resistance of osteoblasts to compression. Bull Math Biol 2013; 75:1284-303. [PMID: 23354930 DOI: 10.1007/s11538-013-9812-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 01/08/2013] [Indexed: 10/27/2022]
Abstract
The mechanical behavior of the actin cytoskeleton has previously been investigated using both experimental and computational techniques. However, these investigations have not elucidated the role the cytoskeleton plays in the compression resistance of cells. The present study combines experimental compression techniques with active modeling of the cell's actin cytoskeleton. A modified atomic force microscope is used to perform whole cell compression of osteoblasts. Compression tests are also performed on cells following the inhibition of the cell actin cytoskeleton using cytochalasin-D. An active bio-chemo-mechanical model is employed to predict the active remodeling of the actin cytoskeleton. The model incorporates the myosin driven contractility of stress fibers via a muscle-like constitutive law. The passive mechanical properties, in parallel with active stress fiber contractility parameters, are determined for osteoblasts. Simulations reveal that the computational framework is capable of predicting changes in cell morphology and increased resistance to cell compression due to the contractility of the actin cytoskeleton. It is demonstrated that osteoblasts are highly contractile and that significant changes to the cell and nucleus geometries occur when stress fiber contractility is removed.
Collapse
Affiliation(s)
- P P Weafer
- Department of Mechanical and Biomedical Engineering, National University of Ireland, Galway, Ireland
| | | | | | | |
Collapse
|
20
|
Ronan W, Deshpande VS, McMeeking RM, McGarry JP. Numerical investigation of the active role of the actin cytoskeleton in the compression resistance of cells. J Mech Behav Biomed Mater 2012; 14:143-57. [DOI: 10.1016/j.jmbbm.2012.05.016] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 05/22/2012] [Accepted: 05/24/2012] [Indexed: 12/01/2022]
|
21
|
Jérusalem A, Dao M. Continuum modeling of a neuronal cell under blast loading. Acta Biomater 2012; 8:3360-71. [PMID: 22562014 DOI: 10.1016/j.actbio.2012.04.039] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 04/02/2012] [Accepted: 04/25/2012] [Indexed: 01/07/2023]
Abstract
Traumatic brain injuries have recently been put under the spotlight as one of the most important causes of accidental brain dysfunctions. Significant experimental and modeling efforts are thus underway to study the associated biological, mechanical and physical mechanisms. In the field of cell mechanics, progress is also being made at the experimental and modeling levels to better characterize many of the cell functions, including differentiation, growth, migration and death. The work presented here aims to bridge both efforts by proposing a continuum model of a neuronal cell submitted to blast loading. In this approach, the cytoplasm, nucleus and membrane (plus cortex) are differentiated in a representative cell geometry, and different suitable material constitutive models are chosen for each one. The material parameters are calibrated against published experimental work on cell nanoindentation at multiple rates. The final cell model is ultimately subjected to blast loading within a complete computational framework of fluid-structure interaction. The results are compared to the nanoindentation simulation, and the specific effects of the blast wave on the pressure and shear levels at the interfaces are identified. As a conclusion, the presented model successfully captures some of the intrinsic intracellular phenomena occurring during the cellular deformation under blast loading that potentially lead to cell damage. It suggests, more particularly, that the localization of damage at the nucleus membrane is similar to what has already been observed at the overall cell membrane. This degree of damage is additionally predicted to be worsened by a longer blast positive phase duration. In conclusion, the proposed model ultimately provides a new three-dimensional computational tool to evaluate intracellular damage during blast loading.
Collapse
|
22
|
Solis LR, Liggins AB, Seres P, Uwiera RRE, Poppe NR, Pehowich E, Thompson RB, Mushahwar VK. Distribution of Internal Strains Around Bony Prominences in Pigs. Ann Biomed Eng 2012; 40:1721-39. [DOI: 10.1007/s10439-012-0539-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 02/28/2012] [Indexed: 10/28/2022]
|
23
|
Slomka N, Oomens CW, Gefen A. Evaluating the effective shear modulus of the cytoplasm in cultured myoblasts subjected to compression using an inverse finite element method. J Mech Behav Biomed Mater 2011; 4:1559-66. [DOI: 10.1016/j.jmbbm.2011.04.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Revised: 04/05/2011] [Accepted: 04/07/2011] [Indexed: 10/18/2022]
|
24
|
Cell types can be distinguished by measuring their viscoelastic recovery times using a micro-fluidic device. Biomed Microdevices 2011; 13:29-40. [PMID: 20838903 PMCID: PMC3028074 DOI: 10.1007/s10544-010-9468-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We introduce a simple micro-fluidic device containing an actuated flexible membrane, which allows the viscoelastic characterization of cells in small volumes of suspension by loading them in compression and observing the cell deformation in time. From this experiment, we can determine the characteristic time constant of recovery of the cell. To validate the device, two cell types known to have different cytoskeletal structures, 3T3 fibroblasts and HL60 cells, are tested. They show a substantially different response in the device and can be clearly distinguished on the basis of the measured characteristic recovery time constant. Also, the effect of breaking down the actin network, a main mechanical component of the cytoskeleton, by a treatment with Cytochalasin D, results in a substantial increase of the measured characteristic recovery time constant. Experimental variations in loading force, loading time, and surface treatment of the device also influence the measured characteristic recovery time constant significantly. The device can therefore be used to distinguish between cells with different mechanical structure in a quantitative way, and makes it possible to study changes in the mechanical response due to cell treatments, changes in the cell’s micro-environment, and mechanical loading conditions.
Collapse
|
25
|
Gyawali S, Solis L, Chong SL, Curtis C, Seres P, Kornelsen I, Thompson R, Mushahwar VK. Intermittent electrical stimulation redistributes pressure and promotes tissue oxygenation in loaded muscles of individuals with spinal cord injury. J Appl Physiol (1985) 2010; 110:246-55. [PMID: 20884840 DOI: 10.1152/japplphysiol.00661.2010] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Deep tissue injury (DTI) is a severe form of pressure ulcer that originates at the bone-muscle interface. It results from mechanical damage and ischemic injury due to unrelieved pressure. Currently, there are no established clinical methods to detect the formation of DTI. Moreover, despite the many recommended methods for preventing pressure ulcers, none so far has significantly reduced the incidence of DTI. The goal of this study was to assess the effectiveness of a new electrical stimulation-based intervention, termed intermittent electrical stimulation (IES), in ameliorating the factors leading to DTI in individuals with compromised mobility and sensation. Specifically, we sought to determine whether IES-induced contractions in the gluteal muscles can 1) reduce pressure in tissue surrounding bony prominences susceptible to the development of DTI and 2) increase oxygenation in deep tissue. Experiments were conducted in individuals with spinal cord injury, and two paradigms of IES were utilized to induce contractions in the gluteus maximus muscles of the seated participants. Changes in surface pressure around the ischial tuberosities were assessed using a pressure-sensing mattress, and changes in deep tissue oxygenation were indirectly assessed using T₂*-weighted magnetic resonance imaging (MRI) techniques. Both IES paradigms significantly reduced pressure around the bony prominences in the buttocks by an average of 10-26% (P < 0.05). Furthermore, both IES paradigms induced significant increases in T₂* signal intensity (SI), indicating significant increases in tissue oxygenation, which were sustained for the duration of each 10-min trial (P < 0.05). Maximal increases in SI ranged from 2-3.3% (arbitrary units). Direct measurements of oxygenation in adult rats revealed that IES produces up to a 100% increase in tissue oxygenation. The results suggest that IES directly targets factors contributing to the development of DTI in people with reduced mobility and sensation and may therefore be an effective method for the prevention of deep pressure ulcers.
Collapse
Affiliation(s)
- Selina Gyawali
- Centre for Neuroscience, Faculty of Medicine and Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Slomka N, Gefen A. Confocal microscopy-based three-dimensional cell-specific modeling for large deformation analyses in cellular mechanics. J Biomech 2010; 43:1806-16. [DOI: 10.1016/j.jbiomech.2010.02.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 11/12/2009] [Accepted: 02/09/2010] [Indexed: 02/06/2023]
|
27
|
McGarry JP. Characterization of cell mechanical properties by computational modeling of parallel plate compression. Ann Biomed Eng 2009; 37:2317-25. [PMID: 19680813 DOI: 10.1007/s10439-009-9772-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Accepted: 07/28/2009] [Indexed: 12/25/2022]
Abstract
A substantial body of work has been reported in which the mechanical properties of adherent cells were characterized using compression testing in tandem with computational modeling. However, a number of important issues remain to be addressed. In the current study, using computational analyses, the effect of cell compressibility on the force required to deform spread cells is investigated and the possibility that stiffening of the cell cytoplasm occurs during spreading is examined based on published experimental compression test data. The effect of viscoelasticity on cell compression is considered and difficulties in performing a complete characterization of the viscoelastic properties of a cell nucleus and cytoplasm by this method are highlighted. Finally, a non-linear force-deformation response is simulated using differing linear viscoelastic properties for the cell nucleus and the cell cytoplasm.
Collapse
Affiliation(s)
- J P McGarry
- Department of Mechanical and Biomedical Engineering, National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Ireland.
| |
Collapse
|
28
|
Lulevich V, Shih YP, Lo SH, Liu GY. Cell tracing dyes significantly change single cell mechanics. J Phys Chem B 2009; 113:6511-9. [PMID: 19366241 DOI: 10.1021/jp8103358] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cell tracing dyes are very frequently utilized in cellular biology research because they provide highly sensitive fluorescent tags that do not compromise cellular functions such as growth and proliferation. In many investigations concerning cellular adhesion and mechanics, fluorescent dyes have been employed with the assumption of little impact on the results. Using the single cell compression technique developed by our team, the single cell mechanics of MDA-MB-468 and MLC-SV40 cells were investigated as a function of dye uptake. Cell tracing dyes increase living cell stiffness 3-6 times and cell-to-probe adhesion up to 7 times. These results suggest a more significant effect than toxins, such as thrombin. A simple analytical model was derived to enable the extraction of the Young's moduli of the cell membrane and cytoskeleton from the force-deformation profiles measured for individual cells. The increase in Young's modulus of the membrane is 3-7 times, which is more significant than that of the cytoskeleton (1.1-3.4 times). We propose that changes in cell mechanics upon the addition of fluorescent tracing dye are primarily due to the incorporation of amphiphilic dye molecules into the cellular plasma membrane, which increases the lateral interaction among phospholipid chains and thus enhances their rigidity and adhesion.
Collapse
Affiliation(s)
- Valentin Lulevich
- Department of Chemistry, University of California, Davis, California 95616, USA
| | | | | | | |
Collapse
|
29
|
Bader DL, Knight MM. Biomechanical analysis of structural deformation in living cells. Med Biol Eng Comput 2008; 46:951-63. [PMID: 18726630 DOI: 10.1007/s11517-008-0381-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Accepted: 07/21/2008] [Indexed: 10/24/2022]
Abstract
Most tissues are subject to some form of physiological mechanical loading which results in deformation of the cells triggering intracellular mechanotransduction pathways. This response to loading is generally essential for the health of the tissue, although more pronounced deformation may result in cell and tissue damage. In order to determine the biological response of cells to loading it is necessary to understand how cells and intracellular structures deform. This paper reviews the various loading systems that have been adopted for studying cell deformation both in situ within tissue explants and in isolated cell culture systems. In particular it describes loading systems which facilitate visualisation and subsequent quantification of cell deformation. The review also describes the associated microscopy and image analysis techniques. The review focuses on deformation of chondrocytes with additional information on a variety of other cell types including neurons, red blood cells, epithelial cells and skin and muscle cells.
Collapse
Affiliation(s)
- D L Bader
- School of Engineering and Materials Science, Queen Mary, University of London, Mile End Road, London, UK
| | | |
Collapse
|
30
|
Lee SA, Vasquez DJ, Bergsneider M, Judy JW. Magnetic microactuators for MEMS-enabled ventricular catheters for hydrocephalus. CONFERENCE PROCEEDINGS : ... ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL CONFERENCE 2008; 2006:2494-7. [PMID: 17946960 DOI: 10.1109/iembs.2006.259879] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The most common treatment for patients with hydrocephalus is the surgical implantation of a cerebrospinal fluid (CSF) shunt. Unfortunately, this device, which is critical for lowering intracranial pressure, has a substantial failure rate (40% in the first year). A leading cause of failure is the obstruction of the ventricular catheter. The goal of this project is to design a ventricular catheter that will resist occlusion through the use of micromachining and micro electro-mechanical systems (MEMS) technologies. We designed, fabricated, and tested magnetic microactuators. The theoretical results show that the fabricated microactuators can produce the force necessary to remove an adherent cellular layer grown over the actuator surface. By integrating the microactuators into the catheters, we hope to produce an improved catheter with the ability to actively combat the health-threatening occlusion process.
Collapse
Affiliation(s)
- Selene A Lee
- NeuroEng. Training Program, School of Medicine, Electrical Engineering Department, Univ. of CA, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
31
|
Abstract
Forces are increasingly recognized as major regulators of cell structure and function, and the mechanical properties of cells are essential to the mechanisms by which cells sense forces, transmit them to the cell interior or to other cells, and transduce them into chemical signals that impact a spectrum of cellular responses. Comparison of the mechanical properties of intact cells with those of the purified cytoskeletal biopolymers that are thought to dominate their elasticity reveal the extent to which the studies of purified systems can account for the mechanical properties of the much more heterogeneous and complex cell. This review summarizes selected aspects of current work on cell mechanics with an emphasis on the structures that are activated in cell-cell contacts, that regulate ion flow across the plasma membrane, and that may sense fluid flow that produces low levels of shear stress.
Collapse
Affiliation(s)
- Paul A Janmey
- Department of Physiology, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | |
Collapse
|
32
|
Tada S, Dong C, Tarbell JM. Effect of the stress phase angle on the strain energy density of the endothelial plasma membrane. Biophys J 2007; 93:3026-33. [PMID: 17660317 PMCID: PMC2025663 DOI: 10.1529/biophysj.106.100685] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Endothelial cells are simultaneously exposed to the mechanical forces of fluid wall shear stress (WSS) imposed by blood flow and solid circumferential stress (CS) induced by the blood vessel's elastic response to the pressure pulse. Experiments have demonstrated that these combined forces induce unique endothelial biomolecular responses that are not characteristic of either driving force alone and that the temporal phase angle between WSS and CS, referred to as the stress phase angle, modulates endothelial responses. In this article, we provide the first theoretical model to examine the combined forces of WSS and CS on a model of the endothelial cell plasma membrane. We focus on the strain energy density of the membrane that modulates the opening of ion channels that can mediate signal transduction. The model shows a significant influence of the stress phase angle on the strain energy density at the upstream and downstream ends of the cell where mechanotransduction is most likely to occur.
Collapse
Affiliation(s)
- Shigeru Tada
- Department of Applied Physics, National Defense Academy, Yokosuka City, Japan
| | | | | |
Collapse
|
33
|
Cense AW, Peeters EAG, Gottenbos B, Baaijens FPT, Nuijs AM, van Dongen MEH. Mechanical properties and failure of Streptococcus mutans biofilms, studied using a microindentation device. J Microbiol Methods 2006; 67:463-72. [PMID: 16820233 DOI: 10.1016/j.mimet.2006.04.023] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2005] [Revised: 03/28/2006] [Accepted: 04/25/2006] [Indexed: 11/23/2022]
Abstract
Knowledge of mechanical properties and failure mechanisms of biofilms is needed to determine how biofilms react on mechanical stress. Methods currently available cannot be used to determine mechanical properties of biofilms on a small scale with high accuracy. A novel microindentation apparatus in combination with a confocal microscope was used to determine the viscoelastic properties of Streptococcus mutans biofilms. The apparatus comprises a small glass indenter and a highly sensitive force transducer. It was shown that the present biofilm, grown under still conditions, behaves as a viscoelastic solid with a storage modulus of 1-8 kPa and a loss modulus of 5-10 kPa at a strain of 10%. Biofilm failure was investigated visually through a confocal microscope by dragging the indenter through the biofilm. It was shown that the tensile strength of the biofilm is predominantly determined by the tensile strength of the extracellular polysaccharide matrix. The combination of microindentation and confocal microscopy is a promising technique to determine and characterize the mechanical properties of soft materials in various fields of microbiology.
Collapse
Affiliation(s)
- A W Cense
- University of Technology Eindhoven, Den Dolech 2, 5600 MB Eindhoven, The Netherlands
| | | | | | | | | | | |
Collapse
|