1
|
Witt NJ, Woessner AE, Herrmann J, Quinn KP, Sander EA. Mechanical Models of Collagen Networks for Understanding Changes in the Failure Properties of Aging Skin. J Biomech Eng 2024; 146:071002. [PMID: 38183223 PMCID: PMC10983714 DOI: 10.1115/1.4064406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/19/2023] [Accepted: 12/27/2023] [Indexed: 01/07/2024]
Abstract
Skin undergoes mechanical alterations due to changes in the composition and structure of the collagenous dermis with aging. Previous studies have conflicting findings, with both increased and decreased stiffness reported for aging skin. The underlying structure-function relationships that drive age-related changes are complex and difficult to study individually. One potential contributor to these variations is the accumulation of nonenzymatic crosslinks within collagen fibers, which affect dermal collagen remodeling and mechanical properties. Specifically, these crosslinks make individual fibers stiffer in their plastic loading region and lead to increased fragmentation of the collagenous network. To better understand the influence of these changes, we investigated the impact of nonenzymatic crosslink changes on the dermal microstructure using discrete fiber networks representative of the dermal microstructure. Our findings suggest that stiffening the plastic region of collagen's mechanical response has minimal effects on network-level stiffness and failure stresses. Conversely, simulating fragmentation through a loss of connectivity substantially reduces network stiffness and failure stress, while increasing stretch ratios at failure.
Collapse
Affiliation(s)
- Nathan J. Witt
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA 52240
| | - Alan E. Woessner
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701
| | - Jacob Herrmann
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA 52242
| | - Kyle P. Quinn
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701
| | - Edward A. Sander
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, 5629 Seamans Center, Iowa City, IA 52242; Department of Orthopedics and Rehabilitation, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
2
|
Mendiola EA, Neelakantan S, Xiang Q, Xia S, Zhang J, Serpooshan V, Vanderslice P, Avazmohammadi R. An image-driven micromechanical approach to characterize multiscale remodeling in infarcted myocardium. Acta Biomater 2024; 173:109-122. [PMID: 37925122 PMCID: PMC10924194 DOI: 10.1016/j.actbio.2023.10.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 11/06/2023]
Abstract
Myocardial infarction (MI) is accompanied by the formation of a fibrotic scar in the left ventricle (LV) and initiates significant alterations in the architecture and constituents of the LV free wall (LVFW). Previous studies have shown that LV adaptation is highly individual, indicating that the identification of remodeling mechanisms post-MI demands a fully subject-specific approach that can integrate a host of structural alterations at the fiber-level to changes in bulk biomechanical adaptation at the tissue-level. We present an image-driven micromechanical approach to characterize remodeling, assimilating new biaxial mechanical data, histological studies, and digital image correlation data within an in-silico framework to elucidate the fiber-level remodeling mechanisms that drive tissue-level adaptation for each subject. We found that a progressively diffused collagen fiber structure combined with similarly disorganized myofiber architecture in the healthy region leads to the loss of LVFW anisotropy post-MI, offering an important tissue-level hallmark for LV maladaptation. In contrast, our results suggest that reductions in collagen undulation are an adaptive mechanism competing against LVFW thinning. Additionally, we show that the inclusion of subject-specific geometry when modeling myocardial tissue is essential for accurate prediction of tissue kinematics. Our approach serves as an essential step toward identifying fiber-level remodeling indices that govern the transition of MI to systolic heart failure. These indices complement the traditional, organ-level measures of LV anatomy and function that often fall short of early prognostication of heart failure in MI. In addition, our approach offers an integrated methodology to advance the design of personalized interventions, such as hydrogel injection, to reinforce and suppress native adaptive and maladaptive mechanisms, respectively, to prevent the transition of MI to heart failure. STATEMENT OF SIGNIFICANCE: Biomechanical and architectural adaptation of the LVFW remains a central, yet overlooked, remodeling process post-MI. Our study indicates the biomechanical adaptation of the LVFW post-MI is highly individual and driven by altered fiber network architecture and collective changes in collagen fiber content, undulation, and stiffness. Our findings demonstrate the possibility of using cardiac strains to infer such fiber-level remodeling events through in-silico modeling, paving the way for in-vivo characterization of multiscale biomechanical indices in humans. Such indices will complement the traditional, organ-level measures of LV anatomy and function that often fall short of early prognostication of heart failure in MI.
Collapse
Affiliation(s)
- Emilio A Mendiola
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Sunder Neelakantan
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Qian Xiang
- Department of Molecular Cardiology, Texas Heart Institute, Houston, Texas, USA
| | - Shuda Xia
- Oden Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Jianyi Zhang
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Vahid Serpooshan
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, United States; Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States; Children's Healthcare of Atlanta, Atlanta, GA, United States
| | - Peter Vanderslice
- Department of Molecular Cardiology, Texas Heart Institute, Houston, Texas, USA.
| | - Reza Avazmohammadi
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA; J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University, College Station, TX, USA; Department of Cardiovascular Sciences, Houston Methodist Academic Institute, Houston, TX, USA.
| |
Collapse
|
3
|
Mahutga RR, Barocas VH, Alford PW. The non-affine fiber network solver: A multiscale fiber network material model for finite-element analysis. J Mech Behav Biomed Mater 2023; 144:105967. [PMID: 37329673 PMCID: PMC10330778 DOI: 10.1016/j.jmbbm.2023.105967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 06/19/2023]
Abstract
Multiscale mechanical models in biomaterials research have largely relied on simplifying the microstructure in order to make large-scale simulations tractable. The microscale simplifications often rely on approximations of the constituent distributions and assumptions on the deformation of the constituents. Of particular interest in biomechanics are fiber embedded materials, where simplified fiber distributions and assumed affinity in the fiber deformation greatly influence the mechanical behavior. The consequences of these assumptions are problematic when dealing with microscale mechanical phenomena such as cellular mechanotransduction in growth and remodeling, and fiber-level failure events during tissue failure. In this work, we propose a technique for coupling non-affine network models to finite element solvers, allowing for simulation of discrete microstructural phenomena within macroscopically complex geometries. The developed plugin is readily available as an open-source library for use with the bio-focused finite element software FEBio, and the description of the implementation allows for the adaptation to other finite element solvers.
Collapse
Affiliation(s)
- Ryan R Mahutga
- Department of Biomedical Engineering, University of Minnesota - Twin Cities, Minneapolis, MN, USA.
| | - Victor H Barocas
- Department of Biomedical Engineering, University of Minnesota - Twin Cities, Minneapolis, MN, USA
| | - Patrick W Alford
- Department of Biomedical Engineering, University of Minnesota - Twin Cities, Minneapolis, MN, USA
| |
Collapse
|
4
|
Marcos-Garcés V, Rios-Navarro C, Gómez-Torres F, Gavara J, de Dios E, Diaz A, Miñana G, Chorro FJ, Bodi V, Ruiz-Sauri A. Fourier analysis of collagen bundle orientation in myocardial infarction scars. Histochem Cell Biol 2022; 158:471-483. [PMID: 35948735 PMCID: PMC9630212 DOI: 10.1007/s00418-022-02132-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2022] [Indexed: 11/24/2022]
Abstract
Collagen bundle orientation (CBO) in myocardial infarct scars plays a major role in scar mechanics and complications after infarction. We aim to compare four histopathological methods for CBO measurement in myocardial scarring. Myocardial infarction was induced in 21 pigs by balloon coronary occlusion. Scar samples were obtained at 4 weeks, stained with Masson’s trichrome, Picrosirius red, and Hematoxylin–Eosin (H&E), and photographed using light, polarized light microscopy, and confocal microscopy, respectively. Masson’s trichrome images were also optimized to remove non-collagenous structures. Two observers measured CBO by means of a semi-automated, Fourier analysis protocol. Interrater reliability and comparability between techniques were studied by the intraclass correlation coefficient (ICC) and Bland–Altman (B&A) plots and limits of agreement. Fourier analysis showed an almost perfect interrater reliability for each technique (ICC ≥ 0.95, p < 0.001 in all cases). CBO showed more randomly oriented values in Masson’s trichrome and worse comparability with other techniques (ICC vs. Picrosirius red: 0.79 [0.47–0.91], p = 0.001; vs. H&E-confocal: 0.70 [0.26–0.88], p = 0.005). However, optimized Masson’s trichrome showed almost perfect agreement with Picrosirius red (ICC 0.84 [0.6–0.94], p < 0.001) and H&E-confocal (ICC 0.81 [0.54–0.92], p < 0.001), as well as these latter techniques between each other (ICC 0.84 [0.60–0.93], p < 0.001). In summary, a semi-automated, Fourier-based method can provide highly reproducible CBO measurements in four different histopathological techniques. Masson’s trichrome tends to provide more randomly oriented CBO index values, probably due to non-specific visualization of non-collagenous structures. However, optimization of Masson’s trichrome microphotographs to remove non-collagenous components provides an almost perfect comparability between this technique, Picrosirius red and H&E-confocal.
Collapse
Affiliation(s)
- Víctor Marcos-Garcés
- Department of Cardiology, Hospital Clínico Universitario de Valencia, Valencia, Spain.,INCLIVA Health Research Institute, Valencia, Spain
| | | | - Fabián Gómez-Torres
- Universidad Industrial de Santander, Escuela de Medicina, Bucaramanga, Colombia
| | - Jose Gavara
- INCLIVA Health Research Institute, Valencia, Spain
| | - Elena de Dios
- Center for Networked Biomedical Research-Cardiovascular (CIBER-CV), Madrid, Spain
| | - Ana Diaz
- Central Unit for Research in Medicine (UCIM), University of Valencia, Valencia, Spain
| | - Gema Miñana
- Department of Cardiology, Hospital Clínico Universitario de Valencia, Valencia, Spain.,INCLIVA Health Research Institute, Valencia, Spain.,Department of Medicine, University of Valencia, Valencia, Spain
| | - Francisco Javier Chorro
- Department of Cardiology, Hospital Clínico Universitario de Valencia, Valencia, Spain.,INCLIVA Health Research Institute, Valencia, Spain.,Center for Networked Biomedical Research-Cardiovascular (CIBER-CV), Madrid, Spain.,Department of Medicine, University of Valencia, Valencia, Spain
| | - Vicente Bodi
- Department of Cardiology, Hospital Clínico Universitario de Valencia, Valencia, Spain. .,INCLIVA Health Research Institute, Valencia, Spain. .,Center for Networked Biomedical Research-Cardiovascular (CIBER-CV), Madrid, Spain. .,Department of Medicine, University of Valencia, Valencia, Spain. .,Department of Cardiology, Hospital Clínico Universitario de Valencia, Valencia, Spain Instituto de Investigación Sanitaria del Hospital Clínico Universitario de Valencia (INCLIVA), Valencia, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBER-CV), Madrid, Spain. .,Department of Medicine, Faculty of Medicine and Odontology, University of Valencia, Blasco Ibanez 17, 46010, Valencia, Spain.
| | - Amparo Ruiz-Sauri
- INCLIVA Health Research Institute, Valencia, Spain. .,Department of Pathology, University of Valencia, Valencia, Spain. .,Departamento de Patología, Facultad de Medicina y Odontología, Universitat de València, Avda/Blasco Ibáñez nº15, 46010, València, Spain.
| |
Collapse
|
5
|
Potter MJ, Richardson WJ. Fabrication and characterization methods for investigating cell-matrix interactions in environments possessing spatial orientation heterogeneity. Acta Biomater 2021; 136:420-428. [PMID: 34601105 PMCID: PMC8627456 DOI: 10.1016/j.actbio.2021.09.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 11/29/2022]
Abstract
Fibrillar collagen is a ubiquitous structural protein that plays a significant role in determining the mechanical properties of various tissues. The constituent collagen architecture can give direct insight into the respective functional role of the tissue due to the strong structure-function relationship that is exhibited. In such tissues, matrix structure can vary across local subregions contributing to mechanical heterogeneity which can be implicated in tissue function or failure. The post-myocardial infarction scar environment is an example of note where mechanically insufficient collagen can result in impaired cardiac function and possibly tissue rupture due to post-MI cellular response and matrix interactions. In order to further develop the understanding of cell-matrix interactions within heterogeneous environments, we developed a method of heterogeneous collagen gel fabrication which produces a region of randomly oriented fibers directly adjacent to an interconnected region of anisotropic alignment. To fully capture and evaluate the degree of alignment and spatial orientation heterogeneity, several image processing and automated analysis methods were employed. Our analysis revealed the successful fabrication of an interconnected spatially heterogeneous collagen gel possessing distinct regions of random or preferential alignment. Additionally, embedded cell populations were observed to recognize and reorient with their underlying and surrounding architectures through our cell-centric analysis techniques. STATEMENT OF SIGNIFICANCE: Fibrillar collagen is a structural protein that contributes to the architecture-function relationship exhibited by various tissues where mechanically insufficient collagen architecture can lead to tissue failure. One environment where this can occur is the post-myocardial infarction scar environment where too much or too little collagen accumulation coupled with spatial fiber orientation heterogeneity can lead to environments incapable of normal mechanical functionality. While there are methodologies capable of generating aligned constructs, they do so with varying degrees of control and complexity with many producing uniform construct alignment. The presented platform is simple and produces continuous constructs possessing inherent spatial orientation heterogeneity. Coupling this with image processing and automated analysis methods enables the probing of fundamental cell-matrix interactions within heterogeneous environments.
Collapse
Affiliation(s)
- Michael J Potter
- Department of Bioengineering, 301 Rhodes Research Center Clemson University, Clemson, SC, USA.
| | - William J Richardson
- Department of Bioengineering, 301 Rhodes Research Center Clemson University, Clemson, SC, USA; Biomedical Data Science & Informatics Program, Clemson University, Clemson, SC, USA.
| |
Collapse
|
6
|
Richardson WJ, Rogers JD, Spinale FG. Does the Heart Want What It Wants? A Case for Self-Adapting, Mechano-Sensitive Therapies After Infarction. Front Cardiovasc Med 2021; 8:705100. [PMID: 34568449 PMCID: PMC8460777 DOI: 10.3389/fcvm.2021.705100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/16/2021] [Indexed: 12/14/2022] Open
Abstract
There is a critical need for interventions to control the development and remodeling of scar tissue after myocardial infarction. A significant hurdle to fibrosis-related therapy is presented by the complex spatial needs of the infarcted ventricle, namely that collagenous buildup is beneficial in the ischemic zone but detrimental in the border and remote zones. As a new, alternative approach, we present a case to develop self-adapting, mechano-sensitive drug targets in order to leverage local, microenvironmental mechanics to modulate a therapy's pharmacologic effect. Such approaches could provide self-tuning control to either promote fibrosis or reduce fibrosis only when and where it is beneficial to do so.
Collapse
Affiliation(s)
| | - Jesse D Rogers
- Department of Bioengineering, Clemson University, Clemson, SC, United States
| | - Francis G Spinale
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine and Columbia Veterans Affairs Health Care System, Columbia, SC, United States
| |
Collapse
|
7
|
Nikpasand M, Mahutga RR, Bersie-Larson LM, Gacek E, Barocas VH. A Hybrid Microstructural-Continuum Multiscale Approach for Modeling Hyperelastic Fibrous Soft Tissue. JOURNAL OF ELASTICITY 2021; 145:295-319. [PMID: 36380845 PMCID: PMC9648697 DOI: 10.1007/s10659-021-09843-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 05/19/2021] [Indexed: 06/16/2023]
Abstract
The heterogeneous, nonlinear, anisotropic material behavior of biological tissues makes precise definition of an accurate constitutive model difficult. One possible solution to this issue would be to define microstructural elements and perform fully coupled multiscale simulation. However, for complex geometries and loading scenarios, the computational costs of such simulations can be prohibitive. Ideally then, we should seek a method that contains microstructural detail, but leverages the speed of classical continuum-based finite-element (FE) modeling. In this work, we demonstrate the use of the Holzapfel-Gasser-Ogden (HGO) model [1, 2] to fit the behavior of microstructural network models. We show that Delaunay microstructural networks can be fit to the HGO strain energy function by calculating fiber network strain energy and average fiber stretch ratio. We then use the HGO constitutive model in a FE framework to improve the speed of our hybrid model, and demonstrate that this method, combined with a material property update scheme, can match a full multiscale simulation. This method gives us flexibility in defining complex FE simulations that would be impossible, or at least prohibitively time consuming, in multiscale simulation, while still accounting for microstructural heterogeneity.
Collapse
Affiliation(s)
- Maryam Nikpasand
- Department of Mechanical Engineering, University of Minnesota – Twin Cities, Minneapolis, MN, USA
| | - Ryan R. Mahutga
- Department of Biomedical Engineering, University of Minnesota – Twin Cities, Minneapolis, MN, USA
| | - Lauren M. Bersie-Larson
- Department of Biomedical Engineering, University of Minnesota – Twin Cities, Minneapolis, MN, USA
| | - Elizabeth Gacek
- Department of Biomedical Engineering, University of Minnesota – Twin Cities, Minneapolis, MN, USA
| | - Victor H. Barocas
- Department of Biomedical Engineering, University of Minnesota – Twin Cities, Minneapolis, MN, USA
| |
Collapse
|
8
|
Li W. Biomechanics of infarcted left ventricle: a review of modelling. Biomed Eng Lett 2020; 10:387-417. [PMID: 32864174 DOI: 10.1007/s13534-020-00159-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 05/06/2020] [Accepted: 05/26/2020] [Indexed: 11/26/2022] Open
Abstract
Mathematical modelling in biomechanics of infarcted left ventricle (LV) serves as an indispensable tool for remodelling mechanism exploration, LV biomechanical property estimation and therapy assessment after myocardial infarction (MI). However, a review of mathematical modelling after MI has not been seen in the literature so far. In the paper, a systematic review of mathematical models in biomechanics of infarcted LV was established. The models include comprehensive cardiovascular system model, essential LV pressure-volume and stress-stretch models, constitutive laws for passive myocardium and scars, tension models for active myocardium, collagen fibre orientation optimization models, fibroblast and collagen fibre growth/degradation models and integrated growth-electro-mechanical model after MI. The primary idea, unique characteristics and key equations of each model were identified and extracted. Discussions on the models were provided and followed research issues on them were addressed. Considerable improvements in the cardiovascular system model, LV aneurysm model, coupled agent-based models and integrated electro-mechanical-growth LV model are encouraged. Substantial attention should be paid to new constitutive laws with respect to stress-stretch curve and strain energy function for infarcted passive myocardium, collagen fibre orientation optimization in scar, cardiac rupture and tissue damage and viscoelastic effect post-MI in the future.
Collapse
Affiliation(s)
- Wenguang Li
- School of Engineering, University of Glasgow, Glasgow, G12 8QQ UK
| |
Collapse
|
9
|
Korenczuk CE, Dhume RY, Liao KK, Barocas VH. Ex Vivo Mechanical Tests and Multiscale Computational Modeling Highlight the Importance of Intramural Shear Stress in Ascending Thoracic Aortic Aneurysms. J Biomech Eng 2019; 141:121010. [PMID: 31633165 PMCID: PMC7104749 DOI: 10.1115/1.4045270] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 10/17/2019] [Indexed: 11/08/2022]
Abstract
Ascending thoracic aortic aneurysms (ATAAs) are anatomically complex in terms of architecture and geometry, and both complexities contribute to unpredictability of ATAA dissection and rupture in vivo. The goal of this work was to examine the mechanism of ATAA failure using a combination of detailed mechanical tests on human tissue and a multiscale computational model. We used (1) multiple, geometrically diverse, mechanical tests to characterize tissue properties; (2) a multiscale computational model to translate those results into a broadly usable form; and (3) a model-based computer simulation of the response of an ATAA to the stresses generated by the blood pressure. Mechanical tests were performed in uniaxial extension, biaxial extension, shear lap, and peel geometries. ATAA tissue was strongest in circumferential extension and weakest in shear, presumably because of the collagen and elastin in the arterial lamellae. A multiscale, fiber-based model using different fiber properties for collagen, elastin, and interlamellar connections was specified to match all of the experimental data with one parameter set. Finally, this model was used to simulate ATAA inflation using a realistic geometry. The predicted tissue failure occurred in regions of high stress, as expected; initial failure events involved almost entirely interlamellar connections, consistent with arterial dissection-the elastic lamellae remain intact, but the connections between them fail. The failure of the interlamellar connections, paired with the weakness of the tissue under shear loading, is suggestive that shear stress within the tissue may contribute to ATAA dissection.
Collapse
Affiliation(s)
- Christopher E. Korenczuk
- Department of Biomedical Engineering, University of Minnesota,7-105 Nils Hasselmo Hall, 312 Church Street SE, Minneapolis, MN 55455e-mail:
| | - Rohit Y. Dhume
- Department of Mechanical Engineering, University of Minnesota,7-105 Nils Hasselmo Hall, 312 Church Street SE, Minneapolis, MN 55455e-mail:
| | - Kenneth K. Liao
- Department of Surgery, University of Minnesota,420 Delaware Street SE, MMC 207, Minneapolis, MN 55455e-mail:
| | - Victor H. Barocas
- Department of Biomedical Engineering, University of Minnesota,7-105 Nils Hasselmo Hall, 312 Church Street SE, Minneapolis, MN 55455e-mail:
| |
Collapse
|