1
|
Zahed Nasab S, Akbari B, Mostafavi E, Zare I. Chitosan nanoparticles in tumor imaging and therapy. FUNDAMENTALS AND BIOMEDICAL APPLICATIONS OF CHITOSAN NANOPARTICLES 2025:405-445. [DOI: 10.1016/b978-0-443-14088-4.00006-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
2
|
Carvalho SG, Haddad FF, Dos Santos AM, Scarim CB, Ferreira LMB, Meneguin AB, Chorilli M, Gremião MPD. Chitosan surface modification modulates the mucoadhesive, permeation and anti-angiogenic properties of gellan gum/bevacizumab nanoparticles. Int J Biol Macromol 2024; 263:130272. [PMID: 38373560 DOI: 10.1016/j.ijbiomac.2024.130272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/11/2024] [Accepted: 02/15/2024] [Indexed: 02/21/2024]
Abstract
Bevacizumab (BVZ) was the first monoclonal antibody approved by the FDA and has shown an essential advance in the antitumor therapy of colorectal cancer (CRC), however, the systemic action of BVZ administered intravenously can trigger several adverse effects. The working hypothesis of the study was to promote the modulation of the mucoadhesion properties and permeability of the BVZ through the formation of nanoparticles (NPs) with gellan gum (GG) with subsequent surface modification with chitosan (CS). NPs comprising BVZ and GG were synthesized through polyelectrolyte complexation, yielding spherical nanosized particles with an average diameter of 264.0 ± 2.75 nm and 314.0 ± 0.01 nm, polydispersity index of 0.182 ± 0.01 e 0.288 ± 0.01, and encapsulation efficiency of 29.36 ± 0.67 e 60.35 ± 0.27 mV, for NPs without (NP_BVZ) and with surface modification (NP_BVZ + CS). The results showed a good ability of nanoparticles with surface modification to modulate the NPs biological properties.
Collapse
Affiliation(s)
- Suzana Gonçalves Carvalho
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903 Araraquara, SP, Brazil.
| | - Felipe Falcão Haddad
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903 Araraquara, SP, Brazil
| | - Aline Martins Dos Santos
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903 Araraquara, SP, Brazil
| | - Cauê Benito Scarim
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903 Araraquara, SP, Brazil.
| | - Leonardo Miziara Barboza Ferreira
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903 Araraquara, SP, Brazil
| | - Andréia Bagliotti Meneguin
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903 Araraquara, SP, Brazil.
| | - Marlus Chorilli
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903 Araraquara, SP, Brazil.
| | - Maria Palmira Daflon Gremião
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903 Araraquara, SP, Brazil.
| |
Collapse
|
3
|
Friuli M, Pellegrino R, Lamanna L, Nitti P, Madaghiele M, Demitri C. Materials Engineering to Help Pest Control: A Narrative Overview of Biopolymer-Based Entomopathogenic Fungi Formulations. J Fungi (Basel) 2023; 9:918. [PMID: 37755026 PMCID: PMC10532551 DOI: 10.3390/jof9090918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/07/2023] [Accepted: 09/09/2023] [Indexed: 09/28/2023] Open
Abstract
Biopolymer-based formulations show great promise in enhancing the effectiveness of entomopathogenic fungi as bioinsecticides. Chitosan and starch, among other biopolymers, have been utilized to improve spore delivery, persistence, and adherence to target insects. These formulations offer advantages such as target specificity, eco-friendliness, and sustainability. However, challenges related to production costs, stability, and shelf life need to be addressed. Recently, biomimetic lure and kill approaches based on biopolymers offer cost-effective solutions by leveraging natural attractants. Further research is needed to optimize these formulations and overcome challenges. Biopolymer-based formulations have the potential to revolutionize pest control practices, providing environmentally friendly and sustainable solutions for agriculture.
Collapse
Affiliation(s)
- Marco Friuli
- Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy; (R.P.); (L.L.); (P.N.); (M.M.); (C.D.)
| | | | | | | | | | | |
Collapse
|
4
|
Marrella A, Suarato G, Fiocchi S, Chiaramello E, Bonato M, Parazzini M, Ravazzani P. Magnetoelectric nanoparticles shape modulates their electrical output. Front Bioeng Biotechnol 2023; 11:1219777. [PMID: 37691903 PMCID: PMC10485842 DOI: 10.3389/fbioe.2023.1219777] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/14/2023] [Indexed: 09/12/2023] Open
Abstract
Core-shell magnetoelectric nanoparticles (MENPs) have recently gained popularity thanks to their capability in inducing a local electric polarization upon an applied magnetic field and vice versa. This work estimates the magnetoelectrical behavior, in terms of magnetoelectric coupling coefficient (αME), via finite element analysis of MENPs with different shapes under either static (DC bias) and time-variant (AC bias) external magnetic fields. With this approach, the dependence of the magnetoelectrical performance on the MENPs geometrical features can be directly derived. Results show that MENPs with a more elongated morphology exhibits a superior αME if compared with spherical nanoparticles of similar volume, under both stimulation conditions analyzed. This response is due to the presence of a larger surface area at the interface between the magnetostrictive core and piezoelectric shell, and to the MENP geometrical orientation along the direction of the magnetic field. These findings pave a new way for the design of novel high-aspect ratio magnetic nanostructures with an improved magnetoelectric behaviour.
Collapse
Affiliation(s)
| | - G. Suarato
- *Correspondence: A. Marrella, ; G. Suarato,
| | | | | | | | | | | |
Collapse
|
5
|
Wang Q, Atluri K, Tiwari AK, Babu RJ. Exploring the Application of Micellar Drug Delivery Systems in Cancer Nanomedicine. Pharmaceuticals (Basel) 2023; 16:ph16030433. [PMID: 36986532 PMCID: PMC10052155 DOI: 10.3390/ph16030433] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
Various formulations of polymeric micelles, tiny spherical structures made of polymeric materials, are currently being investigated in preclinical and clinical settings for their potential as nanomedicines. They target specific tissues and prolong circulation in the body, making them promising cancer treatment options. This review focuses on the different types of polymeric materials available to synthesize micelles, as well as the different ways that micelles can be tailored to be responsive to different stimuli. The selection of stimuli-sensitive polymers used in micelle preparation is based on the specific conditions found in the tumor microenvironment. Additionally, clinical trends in using micelles to treat cancer are presented, including what happens to micelles after they are administered. Finally, various cancer drug delivery applications involving micelles are discussed along with their regulatory aspects and future outlooks. As part of this discussion, we will examine current research and development in this field. The challenges and barriers they may have to overcome before they can be widely adopted in clinics will also be discussed.
Collapse
Affiliation(s)
- Qi Wang
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36849, USA
| | - Keerthi Atluri
- Product Development Department, Alcami Corporation, Morrisville, NC 27560, USA
| | - Amit K. Tiwari
- Department of Pharmacology and Experimental Therapeutics, University of Toledo, Toledo, OH 43614, USA
- Department of Cell and Cancer Biology, University of Toledo, Toledo, OH 43614, USA
| | - R. Jayachandra Babu
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36849, USA
- Correspondence:
| |
Collapse
|
6
|
Zhang H, Zhou Y, Xu C, Qin X, Guo Z, Wei H, Yu CY. Mediation of synergistic chemotherapy and gene therapy via nanoparticles based on chitosan and ionic polysaccharides. Int J Biol Macromol 2022; 223:290-306. [PMID: 36347370 DOI: 10.1016/j.ijbiomac.2022.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022]
Abstract
Nanoparticles (NPs)-based on various ionic polysaccharides, including chitosan, hyaluronic acid, and alginate have been frequently summarized for controlled release applications, however, most of the published reviews, to our knowledge, focused on the delivery of a single therapeutic agent. A comprehensive summarization of the co-delivery of multiple therapeutic agents by the ionic polysaccharides-based NPs, especially on the optimization of the polysaccharide structure for overcoming various extracellular and intracellular barriers toward maximized synergistic effects, to our knowledge, has been rarely explored so far. For this purpose, the strategies used for overcoming various extracellular and intracellular barriers in vivo were introduced first to provide guidance for the rational design of ionic polysaccharides-based NPs with desired features, including long-term circulation, enhanced cellular internalization, controllable drug/gene release, endosomal escape and improved nucleus localization. Next, four preparation strategies were summarized including three physical methods of polyelectrolyte complexation, ionic crosslinking, and self-assembly and a chemical conjugation approach. The challenges and future trends of this rapidly developing field were finally discussed in the concluding remarks. The important guidelines on the rational design of ionic polysaccharides-based NPs for maximized synergistic efficiency drawn in this review will promote the future generation and clinical translation of polysaccharides-based NPs for cancer therapy.
Collapse
Affiliation(s)
- Haitao Zhang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Yangchun Zhou
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Chenghui Xu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Xuping Qin
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Zifen Guo
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China.
| |
Collapse
|
7
|
Recent Advances of Chitosan Formulations in Biomedical Applications. Int J Mol Sci 2022; 23:ijms231810975. [PMID: 36142887 PMCID: PMC9504745 DOI: 10.3390/ijms231810975] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 02/07/2023] Open
Abstract
Chitosan, a naturally abundant cationic polymer, is chemically composed of cellulose-based biopolymers derived by deacetylating chitin. It offers several attractive characteristics such as renewability, hydrophilicity, biodegradability, biocompatibility, non-toxicity, and a broad spectrum of antimicrobial activity towards gram-positive and gram-negative bacteria as well as fungi, etc., because of which it is receiving immense attention as a biopolymer for a plethora of applications including drug delivery, protective coating materials, food packaging films, wastewater treatment, and so on. Additionally, its structure carries reactive functional groups that enable several reactions and electrochemical interactions at the biomolecular level and improves the chitosan’s physicochemical properties and functionality. This review article highlights the extensive research about the properties, extraction techniques, and recent developments of chitosan-based composites for drug, gene, protein, and vaccine delivery applications. Its versatile applications in tissue engineering and wound healing are also discussed. Finally, the challenges and future perspectives for chitosan in biomedical applications are elucidated.
Collapse
|
8
|
Li S, Zhang H, Chen K, Jin M, Vu SH, Jung S, He N, Zheng Z, Lee MS. Application of chitosan/alginate nanoparticle in oral drug delivery systems: prospects and challenges. Drug Deliv 2022; 29:1142-1149. [PMID: 35384787 PMCID: PMC9004504 DOI: 10.1080/10717544.2022.2058646] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Oral drug delivery systems (ODDSs) have various advantages of simple operation and few side effects. ODDSs are highly desirable for colon-targeted therapy (e.g. ulcerative colitis and colorectal cancer), as they improve therapeutic efficiency and reduce systemic toxicity. Chitosan/alginate nanoparticles (CANPs) show strong electrostatic interaction between the carboxyl group of alginates and the amino group of chitosan which leads to shrinkage and gel formation at low pH, thereby protecting the drugs from the gastrointestinal tract (GIT) and aggressive gastric environment. Meanwhile, CANPs as biocompatible polymer, show intestinal mucosal adhesion, which could extend the retention time of drugs on inflammatory sites. Recently, CANPs have attracted increasing interest as colon-targeted oral drug delivery system for intestinal diseases. The purpose of this review is to summarize the application and treatment of CANPs in intestinal diseases and insulin delivery. And then provide a future perspective of the potential and development direction of CANPs as colon-targeted ODDSs.
Collapse
Affiliation(s)
- Shangyong Li
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China.,Molecular Cancer Biology Laboratory, Cellular Heterogeneity Research Center, Department of Biosystem, Sookmyung Women's University, Seoul, Korea
| | - Hui Zhang
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Kaiwei Chen
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Mengfei Jin
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Son Hai Vu
- Molecular Cancer Biology Laboratory, Cellular Heterogeneity Research Center, Department of Biosystem, Sookmyung Women's University, Seoul, Korea.,Institute of Applied Sciences, Ho Chi Minh City University of Technology HUTECH, Ho Chi Minh City, Viet Nam
| | - Samil Jung
- Molecular Cancer Biology Laboratory, Cellular Heterogeneity Research Center, Department of Biosystem, Sookmyung Women's University, Seoul, Korea
| | - Ningning He
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Zhou Zheng
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resource, Qingdao, China
| | - Myeong-Sok Lee
- Molecular Cancer Biology Laboratory, Cellular Heterogeneity Research Center, Department of Biosystem, Sookmyung Women's University, Seoul, Korea
| |
Collapse
|
9
|
Dos Santos AM, Carvalho SG, Meneguin AB, Sábio RM, Gremião MPD, Chorilli M. Oral delivery of micro/nanoparticulate systems based on natural polysaccharides for intestinal diseases therapy: Challenges, advances and future perspectives. J Control Release 2021; 334:353-366. [PMID: 33901582 DOI: 10.1016/j.jconrel.2021.04.026] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 12/21/2022]
Abstract
Colon-targeted oral delivery of drugs remains as an appealing and promising approach for the treatment of prevalent intestinal diseases (ID), such as inflammatory bowel disease (IBD) and colorectal cancer (CRC). Notwithstanding, there are numerous challenges to effective drug delivery to the colon, which requires the design of advanced strategies. Micro- and nanoparticles have received great attention as colon-targeted delivery platforms due to their reduced size and structural composition that favors the accumulation and/or residence time of drugs at the site of action and/or absorption, contributing to localized therapy. The choice by natural polysaccharides imparts key properties and advantages to the nano-in-microparticulate systems to effective colon-specific oral delivery. This review proposes to discuss the physiological barriers imposed by the gastrointestinal tract (GIT) against oral administration of drugs, as well as pathological factors and challenges of the ID for oral delivery of colon-targeted systems. We then provide an updated progress about polysaccharides-based colon-targeted drug delivery systems, including microparticulate, nanoparticulate and nano-in-microparticulate systems, highlighting their key properties, advantages and limitations to achieving targeted delivery and efficacious therapy within the colon. Lastly, we provide future perspectives, towards advances in the field and clinical translation of colon-targeted oral delivery systems for ID therapy.
Collapse
Affiliation(s)
- Aline Martins Dos Santos
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP 14800-903, Brazil.
| | - Suzana Gonçalves Carvalho
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP 14800-903, Brazil
| | | | - Rafael Miguel Sábio
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP 14800-903, Brazil
| | | | - Marlus Chorilli
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP 14800-903, Brazil.
| |
Collapse
|
10
|
Maleki Dana P, Hallajzadeh J, Asemi Z, Mansournia MA, Yousefi B. Chitosan applications in studying and managing osteosarcoma. Int J Biol Macromol 2020; 169:321-329. [PMID: 33310094 DOI: 10.1016/j.ijbiomac.2020.12.058] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/22/2020] [Accepted: 12/07/2020] [Indexed: 02/07/2023]
Abstract
Osteosarcoma has a high prevalence among children and adolescents. Common treatments of this disease are not promising enough. Molecular processes involved in the pathogenesis of osteosarcoma are not fully understood. Besides, the remnants of tumor cells after surgery can cause bone destruction and recurrence of the disease. Thus, there is a need to develop novel drugs or enhancing the currently-used drugs as well as identifying bone-repairing methods. Chitosan is a natural compound produced by the deacetylation of chitin. Research has shown that chitosan can be used in various fields due to its beneficial effects, such as biodegradability and biocompatibility. Regarding cancer, chitosan exerts several anti-tumor activities. Moreover, it can be used in diagnostic techniques, drug delivery systems, and cell culture methods. Herein, we aim to discuss the potential roles of chitosan in studying and treating osteosarcoma. We review the literature on chitosan's applications as a drug delivery system and how it can be combined with other substances to improve its ability of local drug delivery. We take a look into the studies concerning the possible benefits of chitosan in the field of bone tissue engineering and 3D culturing. Furthermore, anti-cancer activities of different compounds of chitosan are reviewed.
Collapse
Affiliation(s)
- Parisa Maleki Dana
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Jamal Hallajzadeh
- Department of Biochemistry and Nutrition, Research Center for Evidence-Based Health Management, Maragheh University of Medical Sciences, Maragheh, Iran.
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Ali Mansournia
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
11
|
Li W, Suarato G, Cathcart JM, Sargunas PR, Meng Y. Design, characterization, and intracellular trafficking of biofunctionalized chitosan nanomicelles. Biointerphases 2020; 15:061003. [PMID: 33187397 PMCID: PMC7666618 DOI: 10.1116/6.0000380] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 10/20/2020] [Accepted: 10/27/2020] [Indexed: 12/31/2022] Open
Abstract
The hydrophobically modified glycol chitosan (HGC) nanomicelle has received increasing attention as a promising platform for the delivery of chemotherapeutic drugs. To improve the tumor selectivity of HGC, here an avidin and biotin functionalization strategy was applied. The hydrodynamic diameter of the biotin-avidin-functionalized HGC (cy5.5-HGC-B4F) was observed to be 104.7 nm, and the surface charge was +3.1 mV. Confocal and structured illumination microscopy showed that at 0.1 mg/ml, cy5.5-HGC-B4F nanomicelles were distributed throughout the cytoplasm of MDA-MB-231 breast cancer cells after 2 h of exposure without significant cytotoxicity. To better understand the intracellular fate of the nanomicelles, entrapment studies were performed and demonstrated that some cy5.5-HGC-B4F nanomicelles were capable of escaping endocytic vesicles, likely via the proton sponge effect. Quantitative analysis of the movements of endosomes in living cells revealed that the addition of HGC greatly enhanced the motility of endosomal compartments, and the nanomicelles were transported by early and late endosomes from cell periphery to the perinuclear region. Our results validate the importance of using live-cell imaging to quantitatively assess the dynamics and mechanisms underlying the complex endocytic pathways of nanosized drug carriers.
Collapse
Affiliation(s)
- Weiyi Li
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794
| | - Giulia Suarato
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794
| | - Jillian M. Cathcart
- Department of Molecular and Cellular Pharmacology, Stony Brook University, Stony Brook, New York 11794
| | - Paul R. Sargunas
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794
| | - Yizhi Meng
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794
| |
Collapse
|
12
|
Jin X, Fu Q, Gu Z, Zhang Z, Lv H. Injectable corilagin/low molecular weight chitosan/PLGA-PEG-PLGA thermosensitive hydrogels for localized cancer therapy and promoting drug infiltration by modulation of tumor microenvironment. Int J Pharm 2020; 589:119772. [DOI: 10.1016/j.ijpharm.2020.119772] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/26/2020] [Accepted: 08/11/2020] [Indexed: 02/09/2023]
|
13
|
Perevedentseva E, Lin YC, Cheng CL. A review of recent advances in nanodiamond-mediated drug delivery in cancer. Expert Opin Drug Deliv 2020; 18:369-382. [PMID: 33047984 DOI: 10.1080/17425247.2021.1832988] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Nanodiamond (ND) refers to diamond particles with sizes from few to near 100 nanometers. For its superb physical, chemical and spectroscopic properties, it has been proposed and studied with the aims for bio imaging and drug delivery. Many modalities on conjugating drug molecules on ND to form ND-X for more efficient drug delivery have been demonstrated in the cellular and animal models. AREA COVERED Many novel drug delivery approaches utilizing nanodiamond as a platform have been demonstrated recently. This review summarizes recent developments on the nanodiamond facilitated drug delivery, from the ND-X complexes preparations to tests in the cellular and animal models. The outlook on clinical translation is discussed. EXPERT OPINION Nanodiamond and drug complexes (ND-X) produced from different methods are realized for drug delivery; almost all studies reported ND-X being more efficient compared to pure drug alone. However, ND of particle size less than 10 nm are found more toxic due to size and surface structure, and strongly aggregate. In vivo studies demonstrate ND accumulation in animal organs and no confirmed long-term effect studies on their release from organs are available. Standardized nanodiamond materials and drug delivery approaches are needed to advance the applications to the clinical level.
Collapse
Affiliation(s)
- Elena Perevedentseva
- Department of Physics, National Dong Hwa University, Shoufeng, Taiwan.,Russian Academy of Sciences, P.N. Lebedev Physics Institute, Moskva, Russian Federation
| | - Yu-Chung Lin
- Department of Physics, National Dong Hwa University, Shoufeng, Taiwan
| | - Chia-Liang Cheng
- Department of Physics, National Dong Hwa University, Shoufeng, Taiwan
| |
Collapse
|
14
|
Zheng QC, Jiang S, Wu YZ, Shang D, Zhang Y, Hu SB, Cheng X, Zhang C, Sun P, Gao Y, Song ZF, Li M. Dual-Targeting Nanoparticle-Mediated Gene Therapy Strategy for Hepatocellular Carcinoma by Delivering Small Interfering RNA. Front Bioeng Biotechnol 2020; 8:512. [PMID: 32587849 PMCID: PMC7297947 DOI: 10.3389/fbioe.2020.00512] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/30/2020] [Indexed: 12/18/2022] Open
Abstract
As a gene therapy strategy, RNA interference (RNAi) offers tremendous tumor therapy potential. However, its therapeutic efficacy is restricted by its inferior ability for targeted delivery and cellular uptake of small interfering RNA (siRNA). This study sought to develop a dual-ligand nanoparticle (NP) system loaded with siRNA to promote targeted delivery and therapeutic efficacy. We synthesized a dual receptor-targeted chitosan nanosystem (GCGA), whose target function was controlled by the ligands of galactose of lactobionic acid (LA) and glycyrrhetinic acid (GA). By loading siPAK1, an siRNA targeting P21-activated kinase 1 (PAK1), a molecular-targeted therapeutic dual-ligand NP (GCGA-siPAK1) was established. We investigated the synergistic effect of these two targeting units in hepatocellular carcinoma (HCC). In particular, GCGA-siPAK1 enhanced the NP targeting ability and promoted siPAK1 cell uptake. Subsequently, dramatic decreases in cell proliferation, invasion, and migration, with an apparent increase in cell apoptosis, were observed in treated cells. Furthermore, this dual-ligand NP gene delivery system demonstrated significant anti-tumor effects in tumor-bearing mice. Finally, we illuminated the molecular mechanism, whereby GCGA-siPAK1 promotes endogenous cell apoptosis through the PAK1/MEK/ERK pathway. Thus, the dual-target property effectively promotes the HCC therapeutic effect and provides a promising gene therapy strategy for clinical applications.
Collapse
Affiliation(s)
- Qi Chang Zheng
- Department of Hepatobiliary Surgery, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Shuai Jiang
- Department of Hepatobiliary Surgery, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Zhe Wu
- Department of Hepatobiliary Surgery, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Dan Shang
- Department of Vascular Surgery, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Zhang
- Department of Hepatobiliary Surgery, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Shao Bo Hu
- Department of Hepatobiliary Surgery, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang Cheng
- Department of Hepatobiliary Surgery, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Zhang
- Department of Hepatobiliary Surgery, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Sun
- Department of Hepatobiliary Surgery, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Gao
- Department of Hepatobiliary Surgery, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Zi Fang Song
- Department of Hepatobiliary Surgery, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Min Li
- Department of Hepatobiliary Surgery, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
15
|
Label-free platform on pH-responsive chitosan: Adhesive heterogeneity for cancer stem-like cell isolation from A549 cells via integrin β4. Carbohydr Polym 2020; 239:116168. [PMID: 32414450 DOI: 10.1016/j.carbpol.2020.116168] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 12/25/2022]
Abstract
Great efforts have been paid to develop methodologies for cancer stem-like cell (CSLC) isolation in anti-cancer research. The major obstacle lies in the lack of generic biomarkers for different cancer types and the requirement of complicated immuno-labeling procedures. The purpose of this study is to establish a label-free platform for CSLC isolation using pH-responsive chitosan. Based on the adhesive heterogeneity, 15.7 ± 1.9 % of human non-small cell lung cancer (NSCLC) cell line A549 detached from the chitosan substrate following medium pH elevation from 6.99 to 7.65 within 1 h. As a result, this subpopulation of cells with low adhesiveness exhibited superior CSLC hallmarks, including self-renewal, invasive and metastatic potential, therapeutic-resistance, colony formation in vitro, as well as nude mice xenograft in vivo for tumorigenesis, in comparison with their high-adhesive counterpart. Furthermore, integrin β4 is decisive in controlling CSLC detachment of NSCLC. Conclusively, this pH-dependent isolation provides new insights into biomaterial-based CSLC isolation.
Collapse
|
16
|
Wen A, Mei X, Feng C, Shen C, Wang B, Zhang X. Electrosprayed nanoparticles of poly(p-dioxanone-co-melphalan) macromolecular prodrugs for treatment of xenograft ovarian carcinoma. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 111:110759. [PMID: 32279799 DOI: 10.1016/j.msec.2020.110759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 02/16/2020] [Accepted: 02/16/2020] [Indexed: 01/18/2023]
Abstract
Ovarian cancer is considered to be the most fatal reproductive cancers. Melphalan is used to treat ovarian cancer as an intraperitoneal chemotherapy agent. However, elucidating its pharmacokinetic behavior and preparing it for administration are challenging since it undergoes spontaneous hydrolysis. In this study, melphalan is transformed into a macromolecular prodrug by copolymerizing with p-dioxanone. The hydrophobicity of copolymer chains protects melphalan from hydrolysis. Poly(p-dioxanone-co-melphalan; PDCM) is electrosprayed and converted into nanoparticles (PDCM NPs) with diameters of ~300-350 nm to facilitate its intracellular delivery. UPLC-MS and HPLC are applied to verify and monitor the release of melphalan from PDCM NPs. PDCM NPs could suppress the proliferation of SKOV-3 cells. The IC50 of 4.3% melphalan-containing PDCM-3 NP was 70 mg/L, 72 h post administration. These suppression characteristics not only affected by the degradation and then the extracellular release of melphalan from PDCM NPs, but also the uptake via phagocytosis phenomenon in SKOV-3 cells. As revealed by flow cytometry, phagocytosis is a first-order process. Once phagocytosed, PDCM NPs are digested by lysosomes, causing a rapid release of melphalan into the cytoplasm, which ultimately causes suppression of SKOV-3 cell proliferation. Finally, the in vivo antitumor effects of PDCM NPs are verified in xenograft ovarian carcinoma. After a 20-day treatment, the tumor growth rate of the PDCM-3 NP group was (266 ± 178%) which was lower than those in the free melphalan group (367 ± 150%) and control group (648 ± 149%). Besides, significant tissue necrosis and growth suppression were observed in animals administered injections of PDCM NPs. Furthermore, the in vivo tracing results of Nile red-labeled PDCM NPs demonstrated that PDCM-3 NPs might be phagocytosed by macrophages and then taken to adjacent lymph nodes, which is a way of prevention or early treatment of lymphatic metastasis of tumors.
Collapse
Affiliation(s)
- Aiping Wen
- Department of Gynecology and Obstetrics, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xue Mei
- School of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Chengmin Feng
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong, China
| | - Chengyi Shen
- Sichuan Key Laboratory of Medical Imaging & Institute of Morphological Research, North Sichuan Medical College, Nanchong, China
| | - Bing Wang
- Sichuan Key Laboratory of Medical Imaging & Department of Chemistry, School of Preclinical Medicine, North Sichuan Medical College, Nanchong 637000, China.
| | - Xiaoming Zhang
- Sichuan Key Laboratory of Medical Imaging & Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|
17
|
Gooneh-Farahani S, Naimi-Jamal MR, Naghib SM. Stimuli-responsive graphene-incorporated multifunctional chitosan for drug delivery applications: a review. Expert Opin Drug Deliv 2018; 16:79-99. [PMID: 30514124 DOI: 10.1080/17425247.2019.1556257] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Recently, the use of chitosan (CS) in the drug delivery has reached an acceptable maturity. Graphene-based drug delivery is also increasing rapidly due to its unique physical, mechanical, chemical, and electrical properties. Therefore, the combination of CS and graphene can provide a promising carrier for the loading and controlled release of therapeutic agents. AREAS COVERED In this review, we will outline the advantages of this new drug delivery system (DDS) in association with CS and graphene alone and will list the various forms of these carriers, which have been studied in recent years as DDSs. Finally, we will discuss the application of this hybrid composite in other fields. EXPERT OPINION The introducing the GO amends the mechanical characteristics of CS, which is a major problem in the use of CS-based carriers in drug delivery due to burst release in a CS-based controlled release system through the poor mechanical strength of CS. Many related research on this area are still not fully unstated and occasionally they seem inconsistent in spite of the intent to be complementary. Therefore, a sensitive review may be needed to understand the role of graphene in CS/graphene carriers for future drug delivery applications.
Collapse
Affiliation(s)
- Sahar Gooneh-Farahani
- a Research Laboratory of Green Organic Synthesis and Polymers, Chemistry Department , Iran University of Science and Technology (IUST) , Tehran , Iran
| | - M Reza Naimi-Jamal
- a Research Laboratory of Green Organic Synthesis and Polymers, Chemistry Department , Iran University of Science and Technology (IUST) , Tehran , Iran
| | - Seyed Morteza Naghib
- b Nanotechnology Department, School of New Technologies , Iran University of Science and Technology (IUST) , Tehran , Iran
| |
Collapse
|
18
|
Wang J, De G, Yue Q, Ma H, Cheng J, Zhu G, Du M, Yi H, Zhao Q, Chen Y. pH Responsive Polymer Micelles Enhances Inhibitory Efficacy on Metastasis of Murine Breast Cancer Cells. Front Pharmacol 2018; 9:543. [PMID: 29875669 PMCID: PMC5974204 DOI: 10.3389/fphar.2018.00543] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/04/2018] [Indexed: 11/13/2022] Open
Abstract
A pH sensitive micellar cargo was fabricated for pH triggered delivery of hydrophobic drug paclitaxel with pH controlled drug release profiles. The size, drug loading content, and encapsulation efficiency of PTX loaded micelles were 20-30 nm, 7.5%, 82.5%, respectively. PTX loaded PELA-PBAE micelles could enhance the intracellular uptake of a model drug significantly, with increased cytotoxicity and inhibition of tumor metastasis on 4T1 cells, as confirmed by wound healing assay and tumor cells invasion assay. The expression of metastasis and apoptosis correlated proteins on 4T1 cells decreased remarkably after intervention by PTX loaded polymer micelles, as demonstrated by western blotting and quantitative reverse transcriptional-polymerase chain reaction (qRT-PCR). Our results demonstrated the pH responsive polymer micelles might have the potential to be used in the treatment of metastatic breast tumors.
Collapse
Affiliation(s)
- Jie Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Bejing, China
| | - Gejing De
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Bejing, China
| | - Qiaoxin Yue
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Bejing, China
| | - Hai Ma
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Bejing, China
| | - Jintang Cheng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Bejing, China
| | - Guangwei Zhu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Bejing, China
| | - Maobo Du
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Bejing, China
| | - Hong Yi
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Bejing, China
| | - Qinghe Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Bejing, China
| | - Yanjun Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Bejing, China
| |
Collapse
|
19
|
Martins DB, Nasário FD, Silva-Gonçalves LC, de Oliveira Tiera VA, Arcisio-Miranda M, Tiera MJ, dos Santos Cabrera MP. Chitosan derivatives targeting lipid bilayers: Synthesis, biological activity and interaction with model membranes. Carbohydr Polym 2018; 181:1213-1223. [DOI: 10.1016/j.carbpol.2017.12.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/21/2017] [Accepted: 12/05/2017] [Indexed: 10/18/2022]
|
20
|
Rahman MA, Matsumura Y, Yano S, Ochiai B. pH-Responsive Charge-Conversional and Hemolytic Activities of Magnetic Nanocomposite Particles for Cell-Targeted Hyperthermia. ACS OMEGA 2018; 3:961-972. [PMID: 30023794 PMCID: PMC6045334 DOI: 10.1021/acsomega.7b01918] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 01/16/2018] [Indexed: 05/12/2023]
Abstract
Magnetic nanocomposite particle (MNP)-induced hyperthermia therapy has been restricted by inefficient cellular targeting. pH-responsive charge-conversional MNPs can enhance selective cellular uptake in acidic cells like tumors by sensing extracellular acidity based on their charge alteration. We have synthesized new, pH-induced charge-conversional, superparamagnetic, and single-cored Fe3O4 nanocomposite particles coated by N-itaconylated chitosan (NICS) cross-linked with ethylene glycol diglycidyl ether (EGDE) (Fe3O4-NICS-EGDE) using a simple, one-step chemical coprecipitation-coating process. The surface of the Fe3O4-NICS-EGDE nanocomposite particles was modified with ethanolamine (EA) via aza-Michael addition to enhance their buffering capacity, aqueous stability, and pH sensitivity. The designed Fe3O4-NICS-EGDE-EA nanocomposite particles showed pH-dependent charge-conversional properties, colloidal stability, and excellent hemocompatibility in physiological media. By contrast, the charge-conversional properties enabled microwave-induced hemolysis only under weakly acidic conditions. Therefore, the composite particles are highly feasible for magnetically induced and targeted cellular thermotherapeutic applications.
Collapse
Affiliation(s)
- Md. Abdur Rahman
- Department
of Chemistry and Chemical Engineering, Graduate School
of Science and Engineering and Department of Biochemical Engineering, Graduate
School of Science and Engineering, Yamagata
University, 4-3-16, Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Yoshimasa Matsumura
- Department
of Chemistry and Chemical Engineering, Graduate School
of Science and Engineering and Department of Biochemical Engineering, Graduate
School of Science and Engineering, Yamagata
University, 4-3-16, Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Shigekazu Yano
- Department
of Chemistry and Chemical Engineering, Graduate School
of Science and Engineering and Department of Biochemical Engineering, Graduate
School of Science and Engineering, Yamagata
University, 4-3-16, Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Bungo Ochiai
- Department
of Chemistry and Chemical Engineering, Graduate School
of Science and Engineering and Department of Biochemical Engineering, Graduate
School of Science and Engineering, Yamagata
University, 4-3-16, Jonan, Yonezawa, Yamagata 992-8510, Japan
- E-mail:
| |
Collapse
|
21
|
Maney V, Singh M. An in vitro assessment of novel chitosan/bimetallic PtAu nanocomposites as delivery vehicles for doxorubicin. Nanomedicine (Lond) 2017; 12:2625-2640. [PMID: 28965478 DOI: 10.2217/nnm-2017-0228] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
AIM To synthesize and functionalize platinum (core)-gold (shell) bimetallic nanoparticles (PtAuBNps) with chitosan and doxorubicin to display favorable pharmacokinetics, biodegradability, biological activity and safety in vitro. MATERIALS & METHODS PtAuBNps and their drug nanocomposites were morphologically and physico-chemically characterized. Binding studies determined the efficiency and stability of the platform. In vitro release kinetics were evaluated under simulated environments, cytotoxicity profiles through MTT and Sulforodhamine B assays and apoptosis induction using the dual EtBr/AO staining. RESULTS & DISCUSSION The results obtained indicate that functionalized PtAuBNps displayed favorable physio-chemical attributes, high binding capabilities, pH-triggered drug release through zero-order release kinetics, cell-specific cytotoxicity and good colloidal stability. CONCLUSION The positive attributes of this novel delivery system bodes well for future in vivo studies.
Collapse
Affiliation(s)
- Vareessh Maney
- Non-Viral Gene Delivery Laboratory, Discipline of Biochemistry, School of Life Sciences, University of Kwa-Zulu Natal, Private Bag X54001, Durban, Kwa-Zulu Natal, South Africa
| | - Moganavelli Singh
- Non-Viral Gene Delivery Laboratory, Discipline of Biochemistry, School of Life Sciences, University of Kwa-Zulu Natal, Private Bag X54001, Durban, Kwa-Zulu Natal, South Africa
| |
Collapse
|
22
|
Di Martino A, Pavelkova A, Postnikov PS, Sedlarik V. Enhancement of 5-aminolevulinic acid phototoxicity by encapsulation in polysaccharides based nanocomplexes for photodynamic therapy application. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 175:226-234. [DOI: 10.1016/j.jphotobiol.2017.08.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 08/06/2017] [Indexed: 10/19/2022]
|
23
|
Marasini N, Haque S, Kaminskas LM. Polymer-drug conjugates as inhalable drug delivery systems: A review. Curr Opin Colloid Interface Sci 2017. [DOI: 10.1016/j.cocis.2017.06.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
24
|
Zhang L, Pan J, Dong S, Li Z. The application of polysaccharide-based nanogels in peptides/proteins and anticancer drugs delivery. J Drug Target 2017; 25:673-684. [PMID: 28462610 DOI: 10.1080/1061186x.2017.1326123] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Lin Zhang
- Department of Pharmaceutics, Shandong Academy of Pharmaceutical Sciences, Jinan, PR China
| | - Jifei Pan
- Department of Pharmaceutics, Shandong Academy of Pharmaceutical Sciences, Jinan, PR China
| | - Shibo Dong
- Department of Pharmaceutics, Shandong Academy of Pharmaceutical Sciences, Jinan, PR China
- Shandong Provincial Engineering Research Center for Sustained-release Preparation of Chemical Drugs, Jinan, PR China
| | - Zhaoming Li
- Department of Pharmaceutics, Shandong Academy of Pharmaceutical Sciences, Jinan, PR China
| |
Collapse
|
25
|
Safwat S, Ishak RA, Hathout RM, Mortada ND. Statins anticancer targeted delivery systems: re-purposing an old molecule. ACTA ACUST UNITED AC 2017; 69:613-624. [PMID: 28271498 DOI: 10.1111/jphp.12707] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 01/12/2017] [Indexed: 01/01/2023]
Abstract
OBJECTIVES Exploring the use of statins as anticancer agents and exploiting different drug delivery systems in targeting these molecules to cancerous sites. Literature review was performed to investigate the use of statins in cancer treatment in one hand, and the different pharmaceutical approaches to deliver and target these drugs to their site of action. KEY FINDINGS Statins were used for decades as antihypercholestrolemic drugs but recently have been proven potential for broad anticancer activities. The incorporation of statins in nanoparticulate drug delivery systems not only augmented the cytotoxicity of statins but also overcame the resistance of cancerous cells against the traditional chemotherapeutic agents. Statins-loaded nanoparticles could be easily tampered to target the cancerous cells and consequently minimal drug amount could be utilized. SUMMARY This review reconnoitered the different endeavors to incorporate statins in various nanoparticles and summarized the successful effects in targeting cancerous cells and reducing their proliferation without the side effects of commonly used chemotherapeutic agents.
Collapse
Affiliation(s)
- Sally Safwat
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, Egypt
| | - Rania A Ishak
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, Egypt
| | - Rania M Hathout
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, Egypt
| | - Nahed D Mortada
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, Egypt
| |
Collapse
|
26
|
Spinozzi F, Ceccone G, Moretti P, Campanella G, Ferrero C, Combet S, Ojea-Jimenez I, Ghigna P. Structural and Thermodynamic Properties of Nanoparticle-Protein Complexes: A Combined SAXS and SANS Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:2248-2256. [PMID: 28170272 DOI: 10.1021/acs.langmuir.6b04072] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We propose a novel method for determining the structural and thermodynamic properties of nanoparticle-protein complexes under physiological conditions. The method consists of collecting a full set of small-angle X-ray and neutron-scattering measurements in solutions with different concentrations of nanoparticles and protein. The nanoparticle-protein dissociation process is described in the framework of the Hill cooperative model, based on which the whole set of X-ray and neutron-scattering data is fitted simultaneously. This method is applied to water solutions of gold nanoparticles in the presence of human serum albumin without any previous manipulation and can be, in principle, extended to all systems. We demonstrate that the protein dissociation constant, the Hill coefficient, and the stoichiometry of the nanoparticle-protein complex are obtained with a high degree of confidence.
Collapse
Affiliation(s)
- Francesco Spinozzi
- Department of Life and Environmental Sciences, Polytechnic University of Marche , Ancona I-60131, Italy
| | - Giacomo Ceccone
- Directorate General Joint Research Centre, Directorate F-Health, Consumers and Reference Materials, Consumer Products Safety Unit, European Commission , Ispra I-21027, Italy
| | - Paolo Moretti
- Department of Life and Environmental Sciences, Polytechnic University of Marche , Ancona I-60131, Italy
| | - Gabriele Campanella
- Weill Medical College, Cornell University , New York, New York 10065, United States
| | - Claudio Ferrero
- ESRF-The European Synchrotron Radiation Facility , Grenoble F-38000, France
| | - Sophie Combet
- Laboratoire Léon-Brillouin, UMR 12 CEA-CNRS, CEA-Saclay , Gif sur Yvette F-91191, France
| | - Isaac Ojea-Jimenez
- Directorate General Joint Research Centre, Directorate F-Health, Consumers and Reference Materials, Consumer Products Safety Unit, European Commission , Ispra I-21027, Italy
| | - Paolo Ghigna
- Department of Chemistry, University of Pavia , Pavia I-27100, Italy
| |
Collapse
|
27
|
|
28
|
Li D, Gong L. Preparation of novel pirfenidone microspheres for lung-targeted delivery: in vitro and in vivo study. Drug Des Devel Ther 2016; 10:2815-2821. [PMID: 27660413 PMCID: PMC5019316 DOI: 10.2147/dddt.s113670] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The aim of this study was to develop and characterize pirfenidone (PF)-loaded chitosan microspheres for lung targeting. The microspheres were prepared using the emulsion-solvent evaporation method and characterized by assessing morphology, particle size, and zeta potential. The microspheres had a spherical nature with highly smooth and integrated surfaces. The particle size of microspheres was 4.6±0.3 µm, and the zeta potential was 20.3±1.4 mV. The in vitro release results indicated that the obtained formulation of PF could reach the state of sustained release with a biphasic drug release pattern. It was observed that there was no significant difference in both the percentage of entrapment efficiency and that of drug release before and after the stability study. In vivo, the calculated relative bioavailability indicated greater pulmonary absorption of PF when it was encapsulated in microspheres. According to histopathological studies, no histological change occurred to the rat lung after the administration of PF-loaded chitosan microspheres.
Collapse
Affiliation(s)
- Dianbo Li
- Department of Thoracic Surgery, Linyi Tumor Hospital, Linyi, Shandong, People’s Republic of China
| | - Liping Gong
- Department of Thoracic Surgery, Linyi Tumor Hospital, Linyi, Shandong, People’s Republic of China
| |
Collapse
|