1
|
Waight JL, Arias N, Jiménez-García AM, Martini M. From functional neuroimaging to neurostimulation: fNIRS devices as cognitive enhancers. Behav Res Methods 2024; 56:2227-2242. [PMID: 37507648 PMCID: PMC10990990 DOI: 10.3758/s13428-023-02144-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2023] [Indexed: 07/30/2023]
Abstract
Functional near-infrared spectroscopy (fNIRS) relies on near-infrared (NIR) light for changes in tissue oxygenation. For decades, this technique has been used in neuroscience to measure cortical activity. However, recent research suggests that NIR light directed to neural populations can modulate their activity through "photobiomodulation" (PBM). Yet, fNIRS is being used exclusively as a measurement tool. By adopting cognitive tests sensitive to prefrontal functioning, we show that a 'classical' fNIRS device, placed in correspondence of the prefrontal cortices of healthy participants, induces faster RTs and better accuracy in some of the indexes considered. A well-matched control group, wearing the same but inactive device, did not show any improvement. Hence, our findings indicate that the 'standard' use of fNIRS devices generates PBM impacting cognition. The neuromodulatory power intrinsic in that technique has been so far completely overlooked, and future studies will need to take this into account.
Collapse
Affiliation(s)
- Jason Lee Waight
- School of Psychology, University of East London, E15 4LZ, London, UK
| | - Natalia Arias
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Denmark Hill, London, SE5 8AF, UK.
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33005, Oviedo, Spain.
- Health Research Institute of the Principality of Asturias (ISPA), 33011, Oviedo, Spain.
- BRABE Group, Department of Psychology, Faculty of Life and Natural Sciences, University of Nebrija, C/del Hostal, 28248, Madrid, Spain.
| | - Ana M Jiménez-García
- BRABE Group, Department of Psychology, Faculty of Life and Natural Sciences, University of Nebrija, C/del Hostal, 28248, Madrid, Spain
| | - Matteo Martini
- School of Psychology, University of East London, E15 4LZ, London, UK.
- Department of Humanities, Letters, Cultural Heritage and Educational Studies, via Arpi, 71121, Foggia, Italy.
| |
Collapse
|
2
|
Superpulsed 904 nm laser photobiomodulation combined with coenzyme Q10 synergistically augment burn wound healing. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2021. [DOI: 10.1016/j.jpap.2021.100053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
3
|
Souza C, Jayme CC, Rezende N, Tedesco AC. Synergistic effect of photobiomodulation and phthalocyanine photosensitizer on fibroblast signaling responses in an in vitro three-dimensional microenvironment. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 222:112256. [PMID: 34330080 DOI: 10.1016/j.jphotobiol.2021.112256] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 05/12/2021] [Accepted: 07/04/2021] [Indexed: 12/22/2022]
Abstract
Photobiomodulation (PBM) is a promising medical treatment modality in the area of photodynamic therapy (PDT). In this study, we investigated the effect of combined therapy in a 3D microenvironment using aluminum chloride phthalocyanines (AlClPc) as the photosensitizing agent. Normal human fibroblast-containing collagen biomatrix was prepared and treated with an oil-in-water (o/a) AlClPc-loaded nanoemulsion (from 0.5 to 3.0 μM) and irradiated at a range of fluences (from 0.1 to 3.0 J/cm2) using a continuous-wave light-emitting diode (LED) irradiation system (660 nm). PBM at 1.2 J/cm2 and AlClPc/NE at 0.5 μM modified the fibroblast signaling response under 3D conditions, promoting collagen synthesis, ROS production, MMP-9 secretion, proliferation of the actin network, and facile myofibroblastic differentiation. PBM alone (at 1.2 J/cm2 and 0.3 J/cm2) had no significant effect on any of these parameters. The combined therapy affected myofibroblastic differentiation, inflammatory response, and extracellular matrix pliability, and should thus be examined further in subsequent studies considering that no side effects of PBM have been reported. Even though significant progress has been made in the field of phototherapy in recent years, it is necessary to further elucidate the detailed mechanisms underlying its effects already shown in 2D conditions to increase the acceptance of this beneficial and non-invasive therapeutic approach.
Collapse
Affiliation(s)
- Carla Souza
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering -Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto-FFCLRP, University of São Paulo, Ribeirão Preto, São Paulo 14040-901, Brazil
| | - Cristiano Ceron Jayme
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering -Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto-FFCLRP, University of São Paulo, Ribeirão Preto, São Paulo 14040-901, Brazil
| | - Nayara Rezende
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering -Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto-FFCLRP, University of São Paulo, Ribeirão Preto, São Paulo 14040-901, Brazil
| | - Antonio Claudio Tedesco
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering -Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto-FFCLRP, University of São Paulo, Ribeirão Preto, São Paulo 14040-901, Brazil.
| |
Collapse
|
4
|
Abstract
Numerous individuals suffer from impaired wound healing, such as chronic ulcers, severe burns and immune disorders, resulting in both public health and economic burdens. Skin is the first line of defense and the largest organ of the human body, however, an incomplete understanding of underlying cellular and molecular mechanisms of dermal repair leads to a lack of effective therapy for healing impaired wounds. There are strong clinical and social needs for improved therapeutic approaches to enhance endogenous tissue repair and regenerative capacity. The purpose of this review is to illuminate the cellular and molecular aspects of the healing process and highlight potential therapeutic strategies to accelerate translational research and the development of clinical therapies in dermal wounds.
Collapse
Affiliation(s)
- Fan Yang
- Department of Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Xiangjun Bai
- Department of Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Xiaojing Dai
- MD Anderson Cancer Center, The Advanced Technology Genomics Core, Houston, TX 77030, USA
| | - Yong Li
- Department of Orthopedic Surgery & Biomedical Engineering, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI 49008, USA
| |
Collapse
|
5
|
Markoulli M, Chandramohan N, Papas EB. Photobiomodulation (low-level light therapy) and dry eye disease. Clin Exp Optom 2021; 104:561-566. [PMID: 33689636 DOI: 10.1080/08164622.2021.1878866] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Dry eye disease is one of the most common, chief-complaints presenting in clinical practice, with a prevalence of up to 50%. Evaporative dry eye, as a result of meibomian gland dysfunction, is thought to be the biggest component factor. Treatments for meibomian gland dysfunction aim to restore tear film homoeostasis and include warm compress therapy, eyelid hygiene, in-office meibomian gland expression and lipid-containing, artificial tears. A recent introduction to the in-office treatments available for meibomian gland dysfunction has been low-level light therapy, also known as photobiomodulation. The technique involves applying red, or near infra-red, radiation using low-power light sources and is suggested to promote tissue repair, decrease inflammation, and relieve pain. This work aims to review the available literature on the efficacy and safety of photobiomodulation in meibomian gland dysfunction and dry eye disease, as well as what is currently known about its mechanism of action.
Collapse
Affiliation(s)
- Maria Markoulli
- School of Optometry & Vision Science, University of New South Wales, Sydney, Australia
| | - Nivaasheni Chandramohan
- School of Optometry & Vision Science, University of New South Wales, Sydney, Australia.,Macular Degeneration Foundation Australia, Sydney, Australia
| | - Eric B Papas
- School of Optometry & Vision Science, University of New South Wales, Sydney, Australia
| |
Collapse
|
6
|
In Vitro Wound Healing Potential of Photobiomodulation Is Possibly Mediated by Its Stimulatory Effect on AKT Expression in Adipose-Derived Stem Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6664627. [PMID: 33505585 PMCID: PMC7811432 DOI: 10.1155/2021/6664627] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/02/2020] [Accepted: 12/19/2020] [Indexed: 02/07/2023]
Abstract
Increasing evidence suggests that adipose-derived stem cells (ADSCs) serve as a therapeutic approach for wound healing. The aim of this study was to determine the effect of photobiomodulation (PBM) on antioxidant enzymes in ADSCs. Four ADSC cell models, namely, normal, wounded, diabetic, and diabetic wounded, were irradiated with 660 nm (fluence of 5 J/cm2 and power density of 11.2 mW/cm2) or 830 nm (fluence of 5 J/cm2 and power density of 10.3 mW/cm2). Nonirradiated cells served as controls. Cell morphology and wound migration were determined using light microscopy. Cell viability was determined by the trypan blue exclusion assay. The enzyme-linked immunosorbent assay (ELISA) was used to measure the levels of antioxidants (superoxide dismutase (SOD), catalase (CAT), and heme oxygenase (HMOX1)). AKT activation and FOXO1 levels were determined by immunofluorescence and western blotting. The gaps (wound) in PBM-treated wounded and diabetic wounded cell models closed faster than the controls. PBM treatment significantly increased antioxidant levels in all cell models. This reflects that oxidative stress is reduced on the counterpart of increased antioxidant levels. This might be due to the activation of the AKT signaling pathway as evidenced by the increased AKT signals via western blotting and immunofluorescence. This data suggests that PBM promotes wound healing by increasing antioxidant levels by activating AKT signaling.
Collapse
|
7
|
Abstract
Next to cancer, Alzheimer's disease (AD) and dementia is probably the most worrying health problem facing the Western world today. A large number of clinical trials have failed to show any benefit of the tested drugs in stabilizing or reversing the steady decline in cognitive function that is suffered by dementia patients. Although the pathological features of AD consisting of beta-amyloid plaques and tau tangles are well established, considerable debate exists concerning the genetic or lifestyle factors that predispose individuals to developing dementia. Photobiomodulation (PBM) describes the therapeutic use of red or near-infrared light to stimulate healing, relieve pain and inflammation, and prevent tissue from dying. In recent years PBM has been applied for a diverse range of brain disorders, frequently applied in a non-invasive manner by shining light on the head (transcranial PBM). The present review discusses the mechanisms of action of tPBM in the brain, and summarizes studies that have used tPBM to treat animal models of AD. The results of a limited number of clinical trials that have used tPBM to treat patients with AD and dementia are discussed.
Collapse
Affiliation(s)
- Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| |
Collapse
|
8
|
Photobiomodulation (660 nm) therapy reduces oxidative stress and induces BDNF expression in the hippocampus. Sci Rep 2019; 9:10114. [PMID: 31300736 PMCID: PMC6625994 DOI: 10.1038/s41598-019-46490-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 06/25/2019] [Indexed: 12/22/2022] Open
Abstract
Photobiomodulation therapy (PBMT) effects an important role in neural regeneration and function enhancement, such as expression of nerve growth factor and nerve regeneration, in neuronal tissues, and inhibition of cell death by amyloid beta in neurons is inhibited by PBMT. However, there no studies evaluated the effects of PBMT on oxidative stress in the hippocampus. The aim of this study is to evaluate the effects of PBMT on oxidative stress in the hippocampus. This study assessed the anti-oxidative effect, the expression of BDNF and antioxidant enzymes, as well as the activation of cAMP response element binding (CREB) and extracellular signal-regulated kinase (ERK) signal transduction pathways assess using a hippocampal cell line (HT-22) and mouse organotypic hippocampal tissues by PBMT (LED, 660 nm, 20 mW/cm2). PBMT inhibited HT-22 cell death by oxidative stress and increased BDNF expression via ERK and CREB signaling pathway activation. In addition, PBMT increased BDNF expression in hippocampal organotypic slices and the levels of phosphorylated ERK and CREB, which were reduced by oxidative stress, as well as the expression of the antioxidant enzyme superoxide dismutase. These data demonstrate that PBMT inhibits hippocampal damage induced by oxidative stress and increases the expression of BDNF, which can be used as an alternative to treat a variety of related disorders that lead to nerve damage. Activation and redox homeostasis in neuronal cells may be a notable mechanism of the 660-nm PBMT-mediated photobioreactivity.
Collapse
|
9
|
Yadav A, Verma S, Keshri GK, Gupta A. Combination of medicinal honey and 904 nm superpulsed laser-mediated photobiomodulation promotes healing and impedes inflammation, pain in full-thickness burn. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 186:152-159. [DOI: 10.1016/j.jphotobiol.2018.07.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/05/2018] [Accepted: 07/07/2018] [Indexed: 01/09/2023]
|
10
|
Lee HI, Lee SW, Kim NG, Park KJ, Choi BT, Shin YI, Shin HK. Low-level light emitting diode therapy promotes long-term functional recovery after experimental stroke in mice. JOURNAL OF BIOPHOTONICS 2017; 10:1761-1771. [PMID: 28464523 DOI: 10.1002/jbio.201700038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 03/06/2017] [Accepted: 03/10/2017] [Indexed: 06/07/2023]
Abstract
We aimed to investigate the effects of low-level light emitting diode therapy (LED-T) on the long-term functional outcomes after cerebral ischemia, and the optimal timing of LED-T initiation for achieving suitable functional recovery. Focal cerebral ischemia was induced in mice via photothrombosis. These mice were assigned to a sham-operated (control), ischemic (vehicle), or LED-T group [initiation immediately (acute), 4 days (subacute) or 10 days (delayed) after ischemia, followed by once-daily treatment for 7 days]. Behavioral outcomes were assessed 21 and 28 days post-ischemia, and histopathological analysis was performed 28 days post-ischemia. The acute and subacute LED-T groups showed a significant improvement in motor function up to 28 days post-ischemia, although no brain atrophy recovery was noted. We observed proliferating cells (BrdU+ ) in the ischemic brain, and significant increases in BrdU+ /GFAP+ , BrdU+ /DCX+ , BrdU+ /NeuN+ , and CD31+ cells in the subacute LED-T group. However, the BrdU+ /Iba-1+ cell count was reduced in the subacute LED-T group. Furthermore, the brain-derived neurotrophic factor (BDNF) was significantly upregulated in the subacute LED-T group. We concluded that LED-T administered during the subacute stage had a positive impact on the long-term functional outcome, probably via neuron and astrocyte proliferation, blood vessel reconstruction, and increased BDNF expression. Picture: The rotarod test for motor coordination showed that acute and subacute LED-T improves long-term functional recovery after cerebral ischemia.
Collapse
Affiliation(s)
- Hae In Lee
- Department of Rehabilitation Medicine, School of Medicine, Pusan National University, Yangsan, Gyeongnam, 50612, Republic of Korea
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Gyeongnam, 50612, Republic of Korea
| | - Sae-Won Lee
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam, 50612, Republic of Korea
- Graduate Training Program of Korean Medicine for Healthy-Aging, Pusan National University, Yangsan, Gyeongnam, 50612, Republic of Korea
- Korean Medical Science Research Center for Healthy-Aging, Pusan National University, Yangsan, Gyeongnam, 50612, Republic of Korea
| | - Nam Gyun Kim
- Medical Research Center of Color Seven, Seoul, 06719, Republic of Korea
| | - Kyoung-Jun Park
- Medical Research Center of Color Seven, Seoul, 06719, Republic of Korea
| | - Byung Tae Choi
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam, 50612, Republic of Korea
- Graduate Training Program of Korean Medicine for Healthy-Aging, Pusan National University, Yangsan, Gyeongnam, 50612, Republic of Korea
- Korean Medical Science Research Center for Healthy-Aging, Pusan National University, Yangsan, Gyeongnam, 50612, Republic of Korea
| | - Yong-Il Shin
- Department of Rehabilitation Medicine, School of Medicine, Pusan National University, Yangsan, Gyeongnam, 50612, Republic of Korea
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Gyeongnam, 50612, Republic of Korea
| | - Hwa Kyoung Shin
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam, 50612, Republic of Korea
- Graduate Training Program of Korean Medicine for Healthy-Aging, Pusan National University, Yangsan, Gyeongnam, 50612, Republic of Korea
- Korean Medical Science Research Center for Healthy-Aging, Pusan National University, Yangsan, Gyeongnam, 50612, Republic of Korea
| |
Collapse
|
11
|
de Melo NB, dos Santos LFM, de Castro MS, Souza RLM, Marques MJ, Castro AP, de Castro AT, de Carli ML, Hanemann JAC, Silva MS, Moraes GDOI, Beijo LA, Brigagão MRPL, Sperandio FF. Photodynamic therapy for Schistosoma mansoni : Promising outcomes. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 176:157-164. [DOI: 10.1016/j.jphotobiol.2017.09.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 08/08/2017] [Accepted: 09/18/2017] [Indexed: 11/26/2022]
|
12
|
Salvi M, Rimini D, Molinari F, Bestente G, Bruno A. Effect of low-level light therapy on diabetic foot ulcers: a near-infrared spectroscopy study. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:38001. [PMID: 28265648 DOI: 10.1117/1.jbo.22.3.038001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 02/22/2017] [Indexed: 06/06/2023]
Abstract
Diabetic foot ulcer (DFU) is a diabetic complication due to peripheral vasculopathy and neuropathy. A promising technology for wound healing in DFU is low-level light therapy (LLLT). Despite several studies showing positive effects of LLLT on DFU, LLLT’s physiological effects have not yet been studied. The objective of this study was to investigate vascular and nervous systems modification in DFU after LLLT. Two samples of 45 DFU patients and 11 healthy controls (HCs) were recruited. The total hemoglobin (totHb) concentration change was monitored before and after LLLT by near-infrared spectroscopy and analyzed in time and frequency domains. The spectral power of the totHb changes in the very-low frequency (VLF, 20 to 60 mHz) and low frequency (LF, 60 to 140 mHz) bandwidths was calculated. Data analysis revealed a mean increase of totHb concentration after LLLT in DFU patients, but not in HC. VLF/LF ratio decreased significantly after the LLLT period in DFU patients (indicating an increased activity of the autonomic nervous system), but not in HC. Eventually, different treatment intensities in LLLT therapy showed a different response in DFU. Overall, our results demonstrate that LLLT improves blood flow and autonomic nervous system regulation in DFU and the importance of light intensity in therapeutic protocols.
Collapse
Affiliation(s)
- Massimo Salvi
- Politecnico di Torino, Biolab, Department of Electronics and Telecommunications, Turin, Italy
| | - Daniele Rimini
- Politecnico di Torino, Biolab, Department of Electronics and Telecommunications, Turin, Italy
| | - Filippo Molinari
- Politecnico di Torino, Biolab, Department of Electronics and Telecommunications, Turin, Italy
| | | | - Alberto Bruno
- AOU Città della Salute e della Scienza di Torino-San Giovanni Antica Sede, Diabetology Department, Turin, Italy
| |
Collapse
|