1
|
Sarkar S, Roy D, Chatterjee B, Ghosh R. Clinical advances in analytical profiling of signature lipids: implications for severe non-communicable and neurodegenerative diseases. Metabolomics 2024; 20:37. [PMID: 38459207 DOI: 10.1007/s11306-024-02100-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/06/2024] [Indexed: 03/10/2024]
Abstract
BACKGROUND Lipids play key roles in numerous biological processes, including energy storage, cell membrane structure, signaling, immune responses, and homeostasis, making lipidomics a vital branch of metabolomics that analyzes and characterizes a wide range of lipid classes. Addressing the complex etiology, age-related risk, progression, inflammation, and research overlap in conditions like Alzheimer's Disease, Parkinson's Disease, Cardiovascular Diseases, and Cancer poses significant challenges in the quest for effective therapeutic targets, improved diagnostic markers, and advanced treatments. Mass spectrometry is an indispensable tool in clinical lipidomics, delivering quantitative and structural lipid data, and its integration with technologies like Liquid Chromatography (LC), Magnetic Resonance Imaging (MRI), and few emerging Matrix-Assisted Laser Desorption Ionization- Imaging Mass Spectrometry (MALDI-IMS) along with its incorporation into Tissue Microarray (TMA) represents current advances. These innovations enhance lipidomics assessment, bolster accuracy, and offer insights into lipid subcellular localization, dynamics, and functional roles in disease contexts. AIM OF THE REVIEW The review article summarizes recent advancements in lipidomic methodologies from 2019 to 2023 for diagnosing major neurodegenerative diseases, Alzheimer's and Parkinson's, serious non-communicable cardiovascular diseases and cancer, emphasizing the role of lipid level variations, and highlighting the potential of lipidomics data integration with genomics and proteomics to improve disease understanding and innovative prognostic, diagnostic and therapeutic strategies. KEY SCIENTIFIC CONCEPTS OF REVIEW Clinical lipidomic studies are a promising approach to track and analyze lipid profiles, revealing their crucial roles in various diseases. This lipid-focused research provides insights into disease mechanisms, biomarker identification, and potential therapeutic targets, advancing our understanding and management of conditions such as Alzheimer's Disease, Parkinson's Disease, Cardiovascular Diseases, and specific cancers.
Collapse
Affiliation(s)
- Sutanu Sarkar
- Amity Institute of Biotechnology (AIBNK), Amity University, Rajarhat, Newtown Action Area 2, Kolkata, 700135, West Bengal, India
| | - Deotima Roy
- Amity Institute of Biotechnology (AIBNK), Amity University, Rajarhat, Newtown Action Area 2, Kolkata, 700135, West Bengal, India
| | - Bhaskar Chatterjee
- Amity Institute of Biotechnology (AIBNK), Amity University, Rajarhat, Newtown Action Area 2, Kolkata, 700135, West Bengal, India
| | - Rajgourab Ghosh
- Amity Institute of Biotechnology (AIBNK), Amity University, Rajarhat, Newtown Action Area 2, Kolkata, 700135, West Bengal, India.
| |
Collapse
|
2
|
Faigle W, Piccirelli M, Hortobágyi T, Frontzek K, Cannon AE, Zürrer WE, Granberg T, Kulcsar Z, Ludersdorfer T, Frauenknecht KBM, Reimann R, Ineichen BV. The Brainbox -a tool to facilitate correlation of brain magnetic resonance imaging features to histopathology. Brain Commun 2023; 5:fcad307. [PMID: 38025281 PMCID: PMC10664401 DOI: 10.1093/braincomms/fcad307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/20/2023] [Accepted: 11/07/2023] [Indexed: 12/01/2023] Open
Abstract
Magnetic resonance imaging (MRI) has limitations in identifying underlying tissue pathology, which is relevant for neurological diseases such as multiple sclerosis, stroke or brain tumours. However, there are no standardized methods for correlating MRI features with histopathology. Thus, here we aimed to develop and validate a tool that can facilitate the correlation of brain MRI features to corresponding histopathology. For this, we designed the Brainbox, a waterproof and MRI-compatible 3D printed container with an integrated 3D coordinate system. We used the Brainbox to acquire post-mortem ex vivo MRI of eight human brains, fresh and formalin-fixed, and correlated focal imaging features to histopathology using the built-in 3D coordinate system. With its built-in 3D coordinate system, the Brainbox allowed correlation of MRI features to corresponding tissue substrates. The Brainbox was used to correlate different MR image features of interest to the respective tissue substrate, including normal anatomical structures such as the hippocampus or perivascular spaces, as well as a lacunar stroke. Brain volume decreased upon fixation by 7% (P = 0.01). The Brainbox enabled degassing of specimens before scanning, reducing susceptibility artefacts and minimizing bulk motion during scanning. In conclusion, our proof-of-principle experiments demonstrate the usability of the Brainbox, which can contribute to improving the specificity of MRI and the standardization of the correlation between post-mortem ex vivo human brain MRI and histopathology. Brainboxes are available upon request from our institution.
Collapse
Affiliation(s)
- Wolfgang Faigle
- Neuroimmunology and MS Research Section, Neurology Clinic, University Zurich, University Hospital Zurich, CH-8091 Zurich, Switzerland
| | - Marco Piccirelli
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, CH-8091 Zurich, Switzerland
| | - Tibor Hortobágyi
- Institute of Neuropathology, University of Zurich, CH-8091 Zurich, Switzerland
| | - Karl Frontzek
- Institute of Neuropathology, University of Zurich, CH-8091 Zurich, Switzerland
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, WC1N 1PJ London, United Kingdom
| | - Amelia Elaine Cannon
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, CH-8091 Zurich, Switzerland
| | - Wolfgang Emanuel Zürrer
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, CH-8091 Zurich, Switzerland
| | - Tobias Granberg
- Department of Neuroradiology, Karolinska University Hospital, S-141 86 Stockholm, Sweden
| | - Zsolt Kulcsar
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, CH-8091 Zurich, Switzerland
| | - Thomas Ludersdorfer
- Neuroimmunology and MS Research Section, Neurology Clinic, University Zurich, University Hospital Zurich, CH-8091 Zurich, Switzerland
| | - Katrin B M Frauenknecht
- Institute of Neuropathology, University of Zurich, CH-8091 Zurich, Switzerland
- Luxembourg Center of Neuropathology (LCNP), Laboratoire National de Santé, 3555 Dudelange, Luxembourg
- National Center of Pathology (NCP), Laboratoire National de Santé, 3555 Dudelange, Luxembourg
| | - Regina Reimann
- Institute of Neuropathology, University of Zurich, CH-8091 Zurich, Switzerland
| | - Benjamin Victor Ineichen
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, CH-8091 Zurich, Switzerland
- Center for Reproducible Science, University of Zurich, CH-8001 Zurich, Switzerland
| |
Collapse
|
3
|
Pérez-Santos I, García-Cabezas MÁ, Cavada C. Mapping the primate thalamus: systematic approach to analyze the distribution of subcortical neuromodulatory afferents. Brain Struct Funct 2023:10.1007/s00429-023-02619-w. [PMID: 36890350 DOI: 10.1007/s00429-023-02619-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 02/09/2023] [Indexed: 03/10/2023]
Abstract
Neuromodulatory afferents to thalamic nuclei are key for information transmission and thus play critical roles in sensory, motor, and limbic processes. Over the course of the last decades, diverse attempts have been made to map and describe subcortical neuromodulatory afferents to the primate thalamus, including axons using acetylcholine, serotonin, dopamine, noradrenaline, adrenaline, and histamine. Our group has been actively involved in this endeavor. The published descriptions on neuromodulatory afferents to the primate thalamus have been made in different laboratories and are not fully comparable due to methodological divergences (for example, fixation procedures, planes of cutting, techniques used to detect the afferents, different criteria for identification of thalamic nuclei…). Such variation affects the results obtained. Therefore, systematic methodological and analytical approaches are much needed. The present article proposes reproducible methodological and terminological frameworks for primate thalamic mapping. We suggest the use of standard stereotaxic planes to produce and present maps of the primate thalamus, as well as the use of the Anglo-American school terminology (vs. the German school terminology) for identification of thalamic nuclei. Finally, a public repository of the data collected under agreed-on frameworks would be a useful tool for looking up and comparing data on the structure and connections of primate thalamic nuclei. Important and agreed-on efforts are required to create, manage, and fund a unified and homogeneous resource of data on the primate thalamus. Likewise, a firm commitment of the institutions to preserve experimental brain material is much needed because neuroscience work with non-human primates is becoming increasingly rare, making earlier material still more valuable.
Collapse
Affiliation(s)
- Isabel Pérez-Santos
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Facultad de Medicina, Universidad Autónoma de Madrid, Calle Arzobispo Morcillo 4, 28029, Madrid, Spain.,PhD Program in Neuroscience, Universidad Autónoma de Madrid-Cajal, Madrid, Spain
| | - Miguel Ángel García-Cabezas
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Facultad de Medicina, Universidad Autónoma de Madrid, Calle Arzobispo Morcillo 4, 28029, Madrid, Spain.,PhD Program in Neuroscience, Universidad Autónoma de Madrid-Cajal, Madrid, Spain.,Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, MA, USA
| | - Carmen Cavada
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Facultad de Medicina, Universidad Autónoma de Madrid, Calle Arzobispo Morcillo 4, 28029, Madrid, Spain. .,PhD Program in Neuroscience, Universidad Autónoma de Madrid-Cajal, Madrid, Spain.
| |
Collapse
|
4
|
Bauer DR, Chafin DR. Assessing Tissue Fixation Time and Quality with Label-free Mid Infrared Spectroscopy and Machine Learning. Biopreserv Biobank 2022; 21:208-216. [PMID: 36516138 PMCID: PMC10125394 DOI: 10.1089/bio.2022.0108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Objectives: This work investigates whether changes in a biospecimen's molecular composition from formaldehyde fixation drive changes in the mid infrared (MID-IR) spectrum. Our ultimate goal was to develop an analytical metrology that could be used to accurately determine the fixation time of a tissue sample as a surrogate to overall tissue quality. Methods: Multiple unstained formalin-fixed paraffin-embedded tissue samples were scanned with an MID-IR microscope to identify a molecular fingerprint of formaldehyde fixation. The fixation specific patterns were then mined to develop a predictive model. A multiple tissue experiment using greater than 100 samples was designed to train the algorithm and validate the accuracy of predicting fixation status. Results: We present data that formaldehyde crosslinking results in alterations to multiple bands of the MID-IR spectra. The impact was most dramatic in the Amide I band, which is sensitive to the conformational state of proteins. The spectroscopic fixation signature was used to train a machine-learning model that could predict fixation time of unknown tissues with an average accuracy of 1.4 hours. Results were validated by histological stain quality for bcl-2, FOXP3, and ki-67. Further, two-dimensional imaging was used to visualize the spatial dependence of fixation, as demonstrated by multiple features in the tissue's vibrational spectra. Conclusions: This work demonstrates that it is possible to predict the fixation status of tissues for which the preanalytics are unknown. This novel capability could help standardize clinical tissue diagnostics and ensure every patient gets the absolutely best treatment based on the highest quality tissue sample.
Collapse
Affiliation(s)
- Daniel R Bauer
- Roche Diagnostics Solutions, Pathology Research and Early Development (Ventana Medical Systems, Inc.), Tucson, Arizona, USA
| | - David R Chafin
- Roche Diagnostics Solutions, Pathology Research and Early Development (Ventana Medical Systems, Inc.), Tucson, Arizona, USA
| |
Collapse
|
5
|
Beger AW, Hauther KA, Dudzik B, Woltjer RL, Wood PL. Human Brain Lipidomics: Investigation of Formalin Fixed Brains. Front Mol Neurosci 2022; 15:835628. [PMID: 35782380 PMCID: PMC9245516 DOI: 10.3389/fnmol.2022.835628] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Human brain lipidomics have elucidated structural lipids and lipid signal transduction pathways in neurologic diseases. Such studies have traditionally sourced tissue exclusively from brain bank biorepositories, however, limited inventories signal that these facilities may not be able to keep pace with this growing research domain. Formalin fixed, whole body donors willed to academic institutions offer a potential supplemental tissue source, the lipid profiles of which have yet to be described. To determine the potential of these subjects in lipid analysis, the lipid levels of fresh and fixed frontal cortical gray matter of human donors were compared using high resolution electrospray ionization mass spectrometry. Results revealed commensurate levels of specific triacylglycerols, diacylglycerols, hexosyl ceramides, and hydroxy hexosyl ceramides. Baseline levels of these lipid families in human fixed tissue were identified via a broader survey study covering six brain regions: cerebellar gray matter, superior cerebellar peduncle, gray and subcortical white matter of the precentral gyrus, periventricular white matter, and internal capsule. Whole body donors may therefore serve as supplemental tissue sources for lipid analysis in a variety of clinical contexts, including Parkinson's disease, Alzheimer's disease, Lewy body dementia, multiple sclerosis, and Gaucher's disease.
Collapse
Affiliation(s)
- Aaron W. Beger
- Department of Anatomy, DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Harrogate, TN, United States
| | - Kathleen A. Hauther
- Metabolomics Unit, College of Veterinary Medicine, Lincoln Memorial University, Harrogate, TN, United States
| | - Beatrix Dudzik
- Department of Anatomy, DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Harrogate, TN, United States
| | - Randall L. Woltjer
- Department of Neurology, Oregon Health Science University, Portland, OR, United States
- Portland VA Medical Center, Portland, OR, United States
| | - Paul L. Wood
- Metabolomics Unit, College of Veterinary Medicine, Lincoln Memorial University, Harrogate, TN, United States
| |
Collapse
|
6
|
Li M, Lu S, Huang P, Xia T, Yu Z, Jiang W, Mao Y, Yang C, Yu S, Wu W, Zhang Y. High-quality, large-scale, semi-thin, & ultra-thin sections of the optic nerve in large animals: An optimized procedure. Exp Eye Res 2022; 219:108956. [PMID: 35367250 DOI: 10.1016/j.exer.2022.108956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/10/2022] [Accepted: 01/17/2022] [Indexed: 11/25/2022]
Abstract
Large animal model of optic nerve (ON) injury is an essential tool for translational medicine. Perfusion fixation with paraformaldehyde is mainly used for preparing the semi-thin (1-2 μm thick) and ultra-thin (<0.5 μm thick) sections of the ON tissues. However, this conventional fixation technique in large animals needs a large volume of fixatives, which increases the risk of toxic exposure and is environmentally unfriendly. Additionally, fixed residual ON cannot be used for other tests that require fresh tissue samples. Although conventional immersion fixation is feasible for preparing a semi-thin section of the ON in small animals (0.2-0.6 mm in diameter), it faces technical challenges when fixing the ON of large animals (3 mm in diameters), as increased diameter limits the permeability of the fixatives into deeper tissue. Therefore, we optimized the immersion-fixation method to obtain high-quality, large-scale, semi-thin, and ultra-thin sections for the ON of goat and rhesus macaques. Using this optimized technique, the ON microstructure was well preserved throughout the entire area of 1.5*1.5 square millimeters, allowing confident quantification of axon density/diameter on semi-thin section and identification of specific organelles and glial cells on ultra-thin sections. Furthermore, the optimized technique is a quick, simple, and environmentally friendly fixation method. Notably, the ON regions of large animals with or without an intact neurovascular system can be prepared for light and electron microscopy. In contrast, the residual unfixed ON from the same animal can be further utilized for experiments such as tissue culture and biomolecular tests.
Collapse
Affiliation(s)
- Mengyun Li
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, 325027, China
| | - Shenjian Lu
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, 325027, China
| | - PingPing Huang
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, 325027, China
| | - Tian Xia
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, 325027, China
| | - Zhonghao Yu
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, 325027, China
| | - Wenhao Jiang
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yiyang Mao
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, 325027, China
| | - Chen Yang
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, 325027, China
| | - Shuaishuai Yu
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325027, China
| | - Wencan Wu
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, 325027, China.
| | - Yikui Zhang
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
7
|
Making a science out of preanalytics: An analytical method to determine optimal tissue fixation in real-time. PLoS One 2021; 16:e0258495. [PMID: 34648597 PMCID: PMC8516200 DOI: 10.1371/journal.pone.0258495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 09/28/2021] [Indexed: 11/19/2022] Open
Abstract
Modern histopathology is built on the cornerstone principle of tissue fixation, however there are currently no analytical methods of detecting fixation and as a result, in clinical practice fixation is highly variable and a persistent source of error. We have previously shown that immersion in cold formalin followed by heated formalin is beneficial for preservation of histomorphology and have combined two-temperature fixation with ultra-sensitive acoustic monitoring technology that can actively detect formalin diffusing into a tissue. Here we expand on our previous work by developing a predictive statistical model to determine when a tissue is properly diffused based on the real-time acoustic signal. We trained the model based on the morphology and characteristic diffusion curves of 30 tonsil cores. To test our model, a set of 87 different tonsil samples were fixed with four different protocols: dynamic fixation according to our predictive algorithm (C/H:Dynamic, N = 18), gold-standard 24 hour room temperature (RT:24hr, N = 24), 6 hours in cold formalin followed by 1 hour in heated formalin (C/H:6+1, N = 21), and 2 hours in cold formalin followed by 1 hour in heated formalin (C/H:2+1, N = 24). Digital pathology analysis revealed that the C/H:Dynamic samples had FOXP3 staining that was spatially uniform and statistically equivalent to RT:24hr and C/H:6+1 fixation protocols. For comparison, the intentionally underfixed C/H:2+1 samples had significantly suppressed FOXP3 staining (p<0.002). Furthermore, our dynamic fixation protocol produced bcl-2 staining concordant with standard fixation techniques. The dynamically fixed samples were on average only submerged in cold formalin for 4.2 hours, representing a significant workflow improvement. We have successfully demonstrated a first-of-its-kind analytical method to assess the quality of fixation in real-time and have confirmed its performance with quantitative analysis of downstream staining. This innovative technology could be used to ensure high-quality and standardized staining as part of an expedited and fully documented preanalytical workflow.
Collapse
|
8
|
McFadden WC, Walsh H, Richter F, Soudant C, Bryce CH, Hof PR, Fowkes M, Crary JF, McKenzie AT. Perfusion fixation in brain banking: a systematic review. Acta Neuropathol Commun 2019; 7:146. [PMID: 31488214 PMCID: PMC6728946 DOI: 10.1186/s40478-019-0799-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 08/26/2019] [Indexed: 01/12/2023] Open
Abstract
Background Perfusing fixatives through the cerebrovascular system is the gold standard approach in animals to prepare brain tissue for spatial biomolecular profiling, circuit tracing, and ultrastructural studies such as connectomics. Translating these discoveries to humans requires examination of postmortem autopsy brain tissue. Yet banked brain tissue is routinely prepared using immersion fixation, which is a significant barrier to optimal preservation of tissue architecture. The challenges involved in adopting perfusion fixation in brain banks and the extent to which it improves histology quality are not well defined. Methodology We searched four databases to identify studies that have performed perfusion fixation in human brain tissue and screened the references of the eligible studies to identify further studies. From the included studies, we extracted data about the methods that they used, as well as any data comparing perfusion fixation to immersion fixation. The protocol was preregistered at the Open Science Framework: https://osf.io/cv3ys/. Results We screened 4489 abstracts, 214 full-text publications, and identified 35 studies that met our inclusion criteria, which collectively reported on the perfusion fixation of 558 human brains. We identified a wide variety of approaches to perfusion fixation, including perfusion fixation of the brain in situ and ex situ, perfusion fixation through different sets of blood vessels, and perfusion fixation with different washout solutions, fixatives, perfusion pressures, and postfixation tissue processing methods. Through a qualitative synthesis of data comparing the outcomes of perfusion and immersion fixation, we found moderate confidence evidence showing that perfusion fixation results in equal or greater subjective histology quality compared to immersion fixation of relatively large volumes of brain tissue, in an equal or shorter amount of time. Conclusions This manuscript serves as a resource for investigators interested in building upon the methods and results of previous research in designing their own perfusion fixation studies in human brains or other large animal brains. We also suggest several future research directions, such as comparing the in situ and ex situ approaches to perfusion fixation, studying the efficacy of different washout solutions, and elucidating the types of brain donors in which perfusion fixation is likely to result in higher fixation quality than immersion fixation. Electronic supplementary material The online version of this article (10.1186/s40478-019-0799-y) contains supplementary material, which is available to authorized users.
Collapse
|
9
|
Lerch ML, Bauer DR, Theiss A, Chafin D, Otter M, Baird GS. Monitoring Dehydration and Clearing in Tissue Processing for High-Quality Clinical Pathology. Biopreserv Biobank 2019; 17:303-311. [PMID: 31107113 PMCID: PMC6703239 DOI: 10.1089/bio.2018.0122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The development of precision testing for disease diagnosis has advanced medicine by specifically matching patients with drugs to treat specific diseases. High-quality diagnostics start with high-quality tissue specimens. The development and optimization of tissue handling and processing have lagged behind bioassay development. Ultrasound time-of-flight (TOF) technology has been successfully used to monitor the critical processing step of tissue fixation with formalin. In this study, we expand the use of this technology to monitor tissue dehydration and clearing by analyzing TOF signals from 270 different specimens, representing 13 different tissue types obtained through surgical resections. We determined the time constant τ90 for each tissue type for the following tissue processing solvents: 70% ethanol, 90% ethanol, 100% ethanol, and xylene. The TOF signals were correlated with tissue morphology to ensure that high-quality tissue was produced. Tissues can be grouped into those exhibiting fast and slow reagent diffusion. We monitored incomplete dehydration of tissue by skipping a key processing step, dehydration in absolute ethanol, and then correlated the τ90 with poor histomorphology, demonstrating that the technique can detect significant processing errors. Ultrasound TOF technology can therefore be used to monitor all phases of tissue processing cycle and yields an important preanalytical quality metric.
Collapse
Affiliation(s)
- Melissa L Lerch
- 1Department of Laboratory Medicine, University of Washington Medical Center, Seattle, Washington
| | | | | | | | | | - Geoffrey S Baird
- 1Department of Laboratory Medicine, University of Washington Medical Center, Seattle, Washington
| |
Collapse
|
10
|
Chua J, Bozue JA, Klimko CP, Shoe JL, Ruiz SI, Jensen CL, Tobery SA, Crumpler JM, Chabot DJ, Quirk AV, Hunter M, Harbourt DE, Friedlander AM, Cote CK. Formaldehyde and Glutaraldehyde Inactivation of Bacterial Tier 1 Select Agents in Tissues. Emerg Infect Dis 2019; 25:919-926. [PMID: 30681072 PMCID: PMC6478217 DOI: 10.3201/eid2505.180928] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
For safety, designated Select Agents in tissues must be inactivated and viability tested before the tissue undergoes further processing and analysis. In response to the shipping of samples of “inactivated” Bacillus anthracis that inadvertently contained live spores to nonregulated entities and partners worldwide, the Federal Register now mandates in-house validation of inactivation procedures and standardization of viability testing to detect live organisms in samples containing Select Agents that have undergone an inactivation process. We tested and validated formaldehyde and glutaraldehyde inactivation procedures for animal tissues infected with virulent B. anthracis, Burkholderia pseudomallei, Francisella tularensis, and Yersinia pestis. We confirmed that our fixation procedures for tissues containing these Tier 1 Select Agents resulted in complete inactivation and that our validated viability testing methods do not interfere with detection of live organisms. Institutions may use this work as a guide to develop and conduct their own testing to comply with the policy.
Collapse
|
11
|
Lim SD, Huang Q, Seibel EJ. Evaluation of Formalin Fixation for Tissue Biopsies Using Shear Wave Laser Speckle Imaging System. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE-JTEHM 2019; 7:1500110. [PMID: 31065465 PMCID: PMC6500782 DOI: 10.1109/jtehm.2019.2909914] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 03/03/2019] [Accepted: 04/02/2019] [Indexed: 11/10/2022]
Abstract
Chemical fixation is the slowest and often the most uncontrolled step in the multi-step process of preparing tissue for histopathology. In order to reduce the time from taking a core needle biopsy to making a diagnosis, a new approach is proposed that optically monitors the common formalin fixation process. A low-cost and highly-sensitive laser speckle imaging technique is developed to measure shear wave velocity in a biospecimen as small as 0.5 mm in thickness submerged in millifluidic channels. Shear wave velocity, which is the indicator of tissue mechanical property and induced by piezoelectric-actuation, was monitored using gelatin phantom and chicken breast during fixation, as well as post-fixed liver and colon tissues from human. Fixation levels in terms of shear wave velocity increased by approximately 271.0% and 130.8% in gelatin phantom and chicken breast, respectively, before reaching the plateaus at 10.91 m/s and 7.88 m/s. Within these small specimens, the plateaus levels and times varied with location of measurement, and between gelatin and chicken breast. This optical-based approach demonstrates the feasibility of fine-tuning preanalytical variables, such as fixation time, for a rapid and accurate histopathological evaluation; provides a quality metric during the tissue preparation protocol performed in most pathology labs; and introduces the millifluidic chamber that can be engineered to be a future disposable device that automates biopsy processing and imaging.
Collapse
Affiliation(s)
- Saniel D Lim
- Mechanical Engineering DepartmentUniversity of WashingtonSeattleWA98195USA.,Human Photonics LabUniversity of WashingtonSeattleWA98195USA.,University of WashingtonSeattleWA98195USA
| | - Qixuan Huang
- Human Photonics LabUniversity of WashingtonSeattleWA98195USA.,Computer Science DepartmentGeorgia Institute of TechnologyAtlantaGA30332USA
| | - Eric J Seibel
- Mechanical Engineering DepartmentUniversity of WashingtonSeattleWA98195USA.,Human Photonics LabUniversity of WashingtonSeattleWA98195USA.,University of WashingtonSeattleWA98195USA
| |
Collapse
|
12
|
A New Paradigm for Tissue Diagnostics: Tools and Techniques to Standardize Tissue Collection, Transport, and Fixation. CURRENT PATHOBIOLOGY REPORTS 2018; 6:135-143. [PMID: 29780664 PMCID: PMC5956061 DOI: 10.1007/s40139-018-0170-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Purpose of Review Studying and developing preanalytical tools and technologies for the purpose of obtaining high-quality samples for histological assays is a growing field. Currently, there does not exist a standard practice for collecting, fixing, and monitoring these precious samples. There has been some advancement in standardizing collection for the highest profile tumor types, such as breast, where HER2 testing drives therapeutic decisions. This review examines the area of tissue collection, transport, and monitoring of formalin diffusion and details a prototype system that could be used to help standardize tissue collection efforts. Recent Findings We have surveyed recent primary literature sources and conducted several site visits to understand the most error-prone processes in histology laboratories. This effort identified errors that resulted from sample collection techniques and subsequent transport delays from the operating room (OR) to the histology laboratories. We have therefore devised a prototype sample collection and transport concept. The system consists of a custom data logger and cold transport box and takes advantage of a novel cold + warm (named 2 + 2) fixation method. Summary This review highlights the beneficial aspects of standardizing tissue collection, fixation, and monitoring. In addition, a prototype system is introduced that could help standardize these processes and is compatible with use directly in the OR and from remote sites.
Collapse
|
13
|
Precision Medicine Starts With Preanalytics: Real-Time Assessment of Tissue Fixation Quality by Ultrasound Time-of-Flight Analysis. Appl Immunohistochem Mol Morphol 2017; 25:160-167. [PMID: 28027117 PMCID: PMC5359782 DOI: 10.1097/pai.0000000000000489] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Supplemental Digital Content is available in the text. Personalized medicine promises diagnosis and treatment of disease at the individual level and relies heavily on clinical specimen integrity and diagnostic assay quality. Preanalytics, the collection and handling steps of a clinical specimen before immunohistochemistry or other clinical assay, are critically important to enable the correct diagnosis of disease. However, the effects of preanalytics are often overlooked due to a lack of standardization and limited assessment tools to quantify their variation. Here, we report a novel real-time ultrasound time-of-flight instrument that is capable of monitoring and imaging the critical step in formalin fixation, diffusion of the fixative into tissue, which provides a quantifiable quality metric for tissue fixation in the clinical laboratory ensuring consistent downstream molecular assay results. We analyzed hundreds of tissue specimens from 34 distinct human tissue types and 12 clinically relevant diseased tissues for diffusion and fixation metrics. Our measurements can be converted into tissue diffusivity constants that correlate with the apparent diffusion constant calculated using magnetic resonance imaging (R2=0.83), despite the differences in the approaches, indicating that our approach is biophysically plausible. Using data collected from time-of-flight analysis of many tissues, we have therefore developed a novel rapid fixation program that could ensure high-quality downstream assay results for a broad range of human tissue types.
Collapse
|
14
|
Simmons AJ, Scurrah CR, McKinley ET, Herring CA, Irish JM, Washington MK, Coffey RJ, Lau KS. Impaired coordination between signaling pathways is revealed in human colorectal cancer using single-cell mass cytometry of archival tissue blocks. Sci Signal 2016; 9:rs11. [PMID: 27729552 DOI: 10.1126/scisignal.aah4413] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cellular heterogeneity poses a substantial challenge to understanding tissue-level phenotypes and confounds conventional bulk analyses. To analyze signaling at the single-cell level in human tissues, we applied mass cytometry using cytometry time of flight to formalin-fixed, paraffin-embedded (FFPE) normal and diseased intestinal specimens. This technique, called FFPE-DISSECT (disaggregation for intracellular signaling in single epithelial cells from tissue), is a single-cell approach to characterizing signaling states in embedded tissue samples. We applied FFPE-DISSECT coupled to mass cytometry and found differential signaling by tumor necrosis factor-α in intestinal enterocytes, goblet cells, and enteroendocrine cells, implicating the downstream RAS-RAF-MEK pathway in determining goblet cell identity. Application of this technique and computational analyses to human colon specimens confirmed the reduced differentiation in colorectal cancer (CRC) compared to normal colon and revealed increased intratissue and intertissue heterogeneity in CRC with quantitative changes in the regulation of signaling pathways. Specifically, coregulation of the kinases p38 and ERK, the translation regulator 4EBP1, and the transcription factor CREB in proliferating normal colon cells was lost in CRC. Our data suggest that this single-cell approach, applied in conjunction with genomic annotation, enables the rapid and detailed characterization of cellular heterogeneity from clinical repositories of embedded human tissues. This technique can be used to derive cellular landscapes from archived patient samples (beyond CRC) and as a high-resolution tool for disease characterization and subtyping.
Collapse
Affiliation(s)
- Alan J Simmons
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA. Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Cherié R Scurrah
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA. Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Eliot T McKinley
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA. Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Charles A Herring
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA. Chemical and Physical Biology Program, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jonathan M Irish
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA. Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - M Kay Washington
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Robert J Coffey
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA. Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA. Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA. Veterans Affairs Medical Center, Tennessee Valley Healthcare System, Nashville, TN 37232, USA
| | - Ken S Lau
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA. Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA. Chemical and Physical Biology Program, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|