1
|
Yang Z, Teaney NA, Buttermore ED, Sahin M, Afshar-Saber W. Harnessing the potential of human induced pluripotent stem cells, functional assays and machine learning for neurodevelopmental disorders. Front Neurosci 2025; 18:1524577. [PMID: 39844857 PMCID: PMC11750789 DOI: 10.3389/fnins.2024.1524577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 12/19/2024] [Indexed: 01/24/2025] Open
Abstract
Neurodevelopmental disorders (NDDs) affect 4.7% of the global population and are associated with delays in brain development and a spectrum of impairments that can lead to lifelong disability and even mortality. Identification of biomarkers for accurate diagnosis and medications for effective treatment are lacking, in part due to the historical use of preclinical model systems that do not translate well to the clinic for neurological disorders, such as rodents and heterologous cell lines. Human-induced pluripotent stem cells (hiPSCs) are a promising in vitro system for modeling NDDs, providing opportunities to understand mechanisms driving NDDs in human neurons. Functional assays, including patch clamping, multielectrode array, and imaging-based assays, are popular tools employed with hiPSC disease models for disease investigation. Recent progress in machine learning (ML) algorithms also presents unprecedented opportunities to advance the NDD research process. In this review, we compare two-dimensional and three-dimensional hiPSC formats for disease modeling, discuss the applications of functional assays, and offer insights on incorporating ML into hiPSC-based NDD research and drug screening.
Collapse
Affiliation(s)
- Ziqin Yang
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
- FM Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Nicole A. Teaney
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
- FM Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Elizabeth D. Buttermore
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
- FM Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
- Human Neuron Core, Boston Children’s Hospital, Boston, MA, United States
| | - Mustafa Sahin
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
- FM Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
- Human Neuron Core, Boston Children’s Hospital, Boston, MA, United States
| | - Wardiya Afshar-Saber
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
- FM Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
2
|
Yoon D, Nam Y. A 3D neuronal network read-out interface with high recording performance using a neuronal cluster patterning on a microelectrode array. Biosens Bioelectron 2024; 261:116507. [PMID: 38905857 DOI: 10.1016/j.bios.2024.116507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/27/2024] [Accepted: 06/15/2024] [Indexed: 06/23/2024]
Abstract
In recent years, in vitro three-dimensional (3D) neuronal network models utilizing extracellular matrices have been advancing. To understand the network activity from these models, attempts have been made to measure activity in multiple regions simultaneously using a microelectrode array (MEA). Although there hve been many attempts to measure the activity of 3D networks using 2-dimensional (2D) MEAs, the physical coupling between the 3D network and the microelectrodes was not stable and needed to be improved. In this study, we proposed a neuronal cluster interface that improves the active channel ratio of commercial 2D MEAs, enabling reliable measurement of 3D network activity. To achieve this, neuronal clusters, which consist of a small number of neurons, were patterned on microelectrodes and used as mediators to transmit the signal between the 3D network and the microelectrodes. We confirmed that the patterned neuronal clusters enhanced the active channel ratio and SNR(signal-to-noise-ratio) about 3D network recording and stimulation for a month. Our interface was able to functionally connect with 3D networks and measure the 3D network activity without significant alternation of activity characteristics. Finally, we demonstrated that our interface can be used to analyze the differences in the dynamics of 3D and 2D networks and to construct the 3D clustered network. This method is expected to be useful for studying the functional activity of various 3D neuronal network models, offering broad applications for the use of these models.
Collapse
Affiliation(s)
- Dongjo Yoon
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Yoonkey Nam
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.
| |
Collapse
|
3
|
Afshar-Saber W, Teaney NA, Winden KD, Jumo H, Shi X, McGinty G, Hubbs J, Chen C, Tokatly Latzer I, Gasparoli F, Ebrahimi-Fakhari D, Buttermore ED, Roullet JB, Pearl PL, Sahin M. ALDH5A1-deficient iPSC-derived excitatory and inhibitory neurons display cell type specific alterations. Neurobiol Dis 2024; 190:106386. [PMID: 38110041 PMCID: PMC10843729 DOI: 10.1016/j.nbd.2023.106386] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/20/2023] Open
Abstract
Succinic semialdehyde dehydrogenase deficiency (SSADHD) is a neurometabolic disorder caused by ALDH5A1 mutations presenting with autism and epilepsy. SSADHD leads to impaired GABA metabolism and results in accumulation of GABA and γ-hydroxybutyrate (GHB), which alter neurotransmission and are thought to lead to neurobehavioral symptoms. However, why increased inhibitory neurotransmitters lead to seizures remains unclear. We used induced pluripotent stem cells from SSADHD patients (one female and two male) and differentiated them into GABAergic and glutamatergic neurons. SSADHD iGABA neurons show altered GABA metabolism and concomitant changes in expression of genes associated with inhibitory neurotransmission. In contrast, glutamatergic neurons display increased spontaneous activity and upregulation of mitochondrial genes. CRISPR correction of the pathogenic variants or SSADHD mRNA expression rescue various metabolic and functional abnormalities in human neurons. Our findings uncover a previously unknown role for SSADHD in excitatory human neurons and provide unique insights into the cellular and molecular basis of SSADHD and potential therapeutic interventions.
Collapse
Affiliation(s)
- Wardiya Afshar-Saber
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; FM Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nicole A Teaney
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; FM Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kellen D Winden
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; FM Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hellen Jumo
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; FM Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xutong Shi
- Washington State University, Department of Pharmacotherapy, Spokane, WA, USA
| | - Gabrielle McGinty
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; FM Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jed Hubbs
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; FM Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Cidi Chen
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; FM Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Human Neuron Core, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, MA, USA
| | - Itay Tokatly Latzer
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | | | - Darius Ebrahimi-Fakhari
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; FM Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Elizabeth D Buttermore
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; FM Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Human Neuron Core, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, MA, USA
| | | | - Phillip L Pearl
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mustafa Sahin
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; FM Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Lee J, Hwang S, Hong N, Kwak J, Jang JE, Chung S, Kang H. High temporal resolution transparent thermoelectric temperature sensors for photothermal effect sensing. MATERIALS HORIZONS 2023; 10:160-170. [PMID: 36321545 DOI: 10.1039/d2mh00813k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
We propose inkjet-printed high-speed and transparent temperature sensors based on the thermoelectric effect for direct monitoring of the photothermal effect. They consist of highly transparent organic thermoelectric materials that allow excellent biocompatibility and sub-ms temporal resolution, simultaneously. Our transparent thermoelectric temperature sensors can be used to advance various photothermal biomedical applications.
Collapse
Affiliation(s)
- Junhee Lee
- Department of Electrical Engineering and Computer Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea.
| | - Seongkwon Hwang
- Soft Hybrid Materials Research Center, Korea Institute of Science and Technology, Seoul 02792, Korea.
- Department of Electrical and Computer Engineering, Inter-University Semiconductor Research Center (ISRC), and Soft Foundry Institute, Seoul National University, Seoul 08826, Korea
| | - Nari Hong
- Department of Electrical Engineering and Computer Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea.
| | - Jeonghun Kwak
- Department of Electrical and Computer Engineering, Inter-University Semiconductor Research Center (ISRC), and Soft Foundry Institute, Seoul National University, Seoul 08826, Korea
| | - Jae Eun Jang
- Department of Electrical Engineering and Computer Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea.
| | - Seungjun Chung
- Soft Hybrid Materials Research Center, Korea Institute of Science and Technology, Seoul 02792, Korea.
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, 02447, Korea
| | - Hongki Kang
- Department of Electrical Engineering and Computer Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea.
| |
Collapse
|
5
|
Alsaqati M, Davis BA, Wood J, Jones MM, Jones L, Westwood A, Petter O, Isles AR, Linden D, Van den Bree M, Owen M, Hall J, Harwood AJ. NRSF/REST lies at the intersection between epigenetic regulation, miRNA-mediated gene control and neurodevelopmental pathways associated with Intellectual disability (ID) and Schizophrenia. Transl Psychiatry 2022; 12:438. [PMID: 36216811 PMCID: PMC9551101 DOI: 10.1038/s41398-022-02199-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/15/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Genetic evidence indicates disrupted epigenetic regulation as a major risk factor for psychiatric disorders, but the molecular mechanisms that drive this association remain to be determined. EHMT1 is an epigenetic repressor that is causal for Kleefstra Syndrome (KS), a genetic disorder linked with neurodevelopmental disorders and associated with schizophrenia. Here, we show that reduced EHMT1 activity decreases NRSF/REST protein leading to abnormal neuronal gene expression and progression of neurodevelopment in human iPSC. We further show that EHMT1 regulates NRSF/REST indirectly via repression of miRNA and leads to aberrant neuronal gene regulation and neurodevelopment timing. Expression of a NRSF/REST mRNA that lacks the miRNA-binding sites restores neuronal gene regulation to EHMT1 deficient cells. Significantly, the EHMT1-regulated miRNA gene set not only controls NRSF/REST but is enriched for association for Intellectual Disability (ID) and schizophrenia. This reveals a broad molecular interaction between H3K9 demethylation, NSRF/REST regulation and risk for ID and Schizophrenia.
Collapse
Affiliation(s)
- Mouhamed Alsaqati
- Neuroscience and Mental Health Research Institute, Hadyn Ellis Building, Cathays, Cardiff, CF24 4HQ, UK.,MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences (DPMCN), School of Medicine, Cardiff University, Cardiff, UK.,School of Pharmacy, KGVI Building, Newcastle University, Newcastle Upon Tyne, NE1 4LF, UK
| | - Brittany A Davis
- Neuroscience and Mental Health Research Institute, Hadyn Ellis Building, Cathays, Cardiff, CF24 4HQ, UK.,Lieber Institute for Brain Development, Johns Hopkins Medical Campus & Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jamie Wood
- Neuroscience and Mental Health Research Institute, Hadyn Ellis Building, Cathays, Cardiff, CF24 4HQ, UK.,School of Bioscience, The Sir Martin Evans Building, Museum Ave, Cardiff, CF10 3AX, UK
| | - Megan M Jones
- School of Bioscience, The Sir Martin Evans Building, Museum Ave, Cardiff, CF10 3AX, UK
| | - Lora Jones
- School of Bioscience, The Sir Martin Evans Building, Museum Ave, Cardiff, CF10 3AX, UK
| | - Aishah Westwood
- School of Bioscience, The Sir Martin Evans Building, Museum Ave, Cardiff, CF10 3AX, UK
| | - Olena Petter
- Neuroscience and Mental Health Research Institute, Hadyn Ellis Building, Cathays, Cardiff, CF24 4HQ, UK
| | - Anthony R Isles
- Neuroscience and Mental Health Research Institute, Hadyn Ellis Building, Cathays, Cardiff, CF24 4HQ, UK.,MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences (DPMCN), School of Medicine, Cardiff University, Cardiff, UK
| | - David Linden
- School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| | - Marianne Van den Bree
- Neuroscience and Mental Health Research Institute, Hadyn Ellis Building, Cathays, Cardiff, CF24 4HQ, UK.,MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences (DPMCN), School of Medicine, Cardiff University, Cardiff, UK
| | - Michael Owen
- Neuroscience and Mental Health Research Institute, Hadyn Ellis Building, Cathays, Cardiff, CF24 4HQ, UK.,MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences (DPMCN), School of Medicine, Cardiff University, Cardiff, UK
| | - Jeremy Hall
- Neuroscience and Mental Health Research Institute, Hadyn Ellis Building, Cathays, Cardiff, CF24 4HQ, UK.,MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences (DPMCN), School of Medicine, Cardiff University, Cardiff, UK
| | - Adrian J Harwood
- Neuroscience and Mental Health Research Institute, Hadyn Ellis Building, Cathays, Cardiff, CF24 4HQ, UK. .,School of Bioscience, The Sir Martin Evans Building, Museum Ave, Cardiff, CF10 3AX, UK.
| |
Collapse
|
6
|
Sperandeo A, Tamburini C, Noakes Z, de la Fuente DC, Keefe F, Petter O, Plumbly W, Clifton N, Li M, Peall K. Cortical neuronal hyperexcitability and synaptic changes in SGCE mutation-positive myoclonus dystonia. Brain 2022; 146:1523-1541. [PMID: 36204995 PMCID: PMC10115238 DOI: 10.1093/brain/awac365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 07/17/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Abstract
Myoclonus Dystonia is a childhood-onset hyperkinetic movement disorder with a combined motor and psychiatric phenotype. It represents one of the few autosomal dominant inherited dystonic disorders and is caused by mutations in the ε-sarcoglycan (SGCE) gene. Work to date suggests that dystonia is caused by disruption of neuronal networks, principally basal ganglia-cerebello-thalamo-cortical circuits. Investigation of cortical involvement has primarily focused on disruption to interneuron inhibitory activity, rather than the excitatory activity of cortical pyramidal neurons. Here, we have sought to examine excitatory cortical glutamatergic activity using two approaches; the CRISPR/Cas9 editing of a human embryonic cell line, generating an SGCE compound heterozygous mutation, and three patient-derived induced pluripotent stem cell lines (iPSC) each gene edited to generate matched wild-type SGCE control lines. Differentiation towards a cortical neuronal phenotype demonstrated no significant differences in neither early- (PAX6, FOXG1) nor late-stage (CTIP2, TBR1) neurodevelopmental markers. However, functional characterisation using Ca2+ imaging and MEA approaches identified an increase in network activity, while single-cell patch clamp studies found a greater propensity towards action potential generation with larger amplitudes and shorter half-widths associated with SGCE-mutations. Bulk-RNA-seq analysis identified gene ontological enrichment for neuron projection development, synaptic signalling, and synaptic transmission. Examination of dendritic morphology found SGCE-mutations to be associated with a significantly higher number of branches and longer branch lengths, together with longer ion-channel dense axon initial segments, particularly towards the latter stages of differentiation (D80 and D100). Gene expression and protein quantification of key synaptic proteins (synaptophysin, synapsin and PSD95), AMPA and NMDA receptor subunits found no significant differences between the SGCE-mutation and matched wild-type lines. By contrast, significant changes to synaptic adhesion molecule expression were identified, namely higher pre-synaptic neurexin-1 and lower post-synaptic neuroligin-4 levels in the SGCE mutation carrying lines. Our study demonstrates an increased intrinsic excitability of cortical glutamatergic neuronal cells in the context of SGCE mutations, coupled with a more complex neurite morphology and disruption to synaptic adhesion molecules. These changes potentially represent key components to the development of the hyperkinetic clinical phenotype observed in Myoclonus Dystonia, as well a central feature to the wider spectrum of dystonic disorders, potentially providing targets for future therapeutic development.
Collapse
Affiliation(s)
- Alessandra Sperandeo
- Neuroscience and Mental Health Research Institute, Division of Psychological Medicine and Clinical Neuroscience, Cardiff University, Hadyn Ellis Building, Cardiff, CF24 4HQ
| | - Claudia Tamburini
- Neuroscience and Mental Health Research Institute, Division of Psychological Medicine and Clinical Neuroscience, Cardiff University, Hadyn Ellis Building, Cardiff, CF24 4HQ
| | - Zoe Noakes
- Neuroscience and Mental Health Research Institute, Division of Psychological Medicine and Clinical Neuroscience, Cardiff University, Hadyn Ellis Building, Cardiff, CF24 4HQ
| | - Daniel Cabezas de la Fuente
- Neuroscience and Mental Health Research Institute, Division of Psychological Medicine and Clinical Neuroscience, Cardiff University, Hadyn Ellis Building, Cardiff, CF24 4HQ
| | - Francesca Keefe
- Neuroscience and Mental Health Research Institute, Division of Psychological Medicine and Clinical Neuroscience, Cardiff University, Hadyn Ellis Building, Cardiff, CF24 4HQ
| | - Olena Petter
- Neuroscience and Mental Health Research Institute, Division of Psychological Medicine and Clinical Neuroscience, Cardiff University, Hadyn Ellis Building, Cardiff, CF24 4HQ
| | - William Plumbly
- Neuroscience and Mental Health Research Institute, Division of Psychological Medicine and Clinical Neuroscience, Cardiff University, Hadyn Ellis Building, Cardiff, CF24 4HQ
| | - Nicholas Clifton
- Neuroscience and Mental Health Research Institute, Division of Psychological Medicine and Clinical Neuroscience, Cardiff University, Hadyn Ellis Building, Cardiff, CF24 4HQ
| | - Meng Li
- Neuroscience and Mental Health Research Institute, Division of Psychological Medicine and Clinical Neuroscience, Cardiff University, Hadyn Ellis Building, Cardiff, CF24 4HQ
| | - Kathryn Peall
- Neuroscience and Mental Health Research Institute, Division of Psychological Medicine and Clinical Neuroscience, Cardiff University, Hadyn Ellis Building, Cardiff, CF24 4HQ
| |
Collapse
|
7
|
Jung H, Nam Y. Optical recording of neural responses to gold-nanorod mediated photothermal neural inhibition. J Neurosci Methods 2022; 373:109564. [DOI: 10.1016/j.jneumeth.2022.109564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 11/29/2022]
|
8
|
Matamoros-Angles A, Hervera A, Soriano J, Martí E, Carulla P, Llorens F, Nuvolone M, Aguzzi A, Ferrer I, Gruart A, Delgado-García JM, Del Río JA. Analysis of co-isogenic prion protein deficient mice reveals behavioral deficits, learning impairment, and enhanced hippocampal excitability. BMC Biol 2022; 20:17. [PMID: 35027047 PMCID: PMC8759182 DOI: 10.1186/s12915-021-01203-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 12/02/2021] [Indexed: 12/22/2022] Open
Abstract
Background Cellular prion protein (PrPC) is a cell surface GPI-anchored protein, usually known for its role in the pathogenesis of human and animal prionopathies. However, increasing knowledge about the participation of PrPC in prion pathogenesis contrasts with puzzling data regarding its natural physiological role. PrPC is expressed in a number of tissues, including at high levels in the nervous system, especially in neurons and glial cells, and while previous studies have established a neuroprotective role, conflicting evidence for a synaptic function has revealed both reduced and enhanced long-term potentiation, and variable observations on memory, learning, and behavior. Such evidence has been confounded by the absence of an appropriate knock-out mouse model to dissect the biological relevance of PrPC, with some functions recently shown to be misattributed to PrPC due to the presence of genetic artifacts in mouse models. Here we elucidate the role of PrPC in the hippocampal circuitry and its related functions, such as learning and memory, using a recently available strictly co-isogenic Prnp0/0 mouse model (PrnpZH3/ZH3). Results We performed behavioral and operant conditioning tests to evaluate memory and learning capabilities, with results showing decreased motility, impaired operant conditioning learning, and anxiety-related behavior in PrnpZH3/ZH3 animals. We also carried in vivo electrophysiological recordings on CA3-CA1 synapses in living behaving mice and monitored spontaneous neuronal firing and network formation in primary neuronal cultures of PrnpZH3/ZH3 vs wildtype mice. PrPC absence enhanced susceptibility to high-intensity stimulations and kainate-induced seizures. However, long-term potentiation (LTP) was not enhanced in the PrnpZH3/ZH3 hippocampus. In addition, we observed a delay in neuronal maturation and network formation in PrnpZH3/ZH3 cultures. Conclusion Our results demonstrate that PrPC promotes neuronal network formation and connectivity. PrPC mediates synaptic function and protects the synapse from excitotoxic insults. Its deletion may underlie an epileptogenic-susceptible brain that fails to perform highly cognitive-demanding tasks such as associative learning and anxiety-like behaviors. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01203-0.
Collapse
Affiliation(s)
- A Matamoros-Angles
- Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Barcelona, Spain.,Department of Cell Biology, Physiology, and Immunology, University of Barcelona, Barcelona, Spain.,CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, Barcelona, Spain.,Institute of Neuroscience, University of Barcelona, Barcelona, Spain.,Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - A Hervera
- Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Barcelona, Spain.,Department of Cell Biology, Physiology, and Immunology, University of Barcelona, Barcelona, Spain.,CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, Barcelona, Spain.,Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - J Soriano
- Departament de Física de la Materia Condensada, University of Barcelona, Barcelona, Spain.,Institute of Complex Systems (UBICS), University of Barcelona, Barcelona, Spain
| | - E Martí
- Department of Biomedicine, University of Barcelona, Barcelona, Spain.,Bioinformatics and Genomics, Center for Genomic Regulation, Barcelona, Spain
| | - P Carulla
- Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Barcelona, Spain.,Department of Cell Biology, Physiology, and Immunology, University of Barcelona, Barcelona, Spain.,CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, Barcelona, Spain
| | - F Llorens
- CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, Barcelona, Spain.,Department of Neurology, University Medical School, Göttingen, Germany.,Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Catalonia, Spain
| | - M Nuvolone
- Institute of Neuropathology, University Hospital of Zürich, Zürich, Switzerland.,Amyloidosis Center, Foundation IRCCS Policlinico San Matteo, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - A Aguzzi
- Institute of Neuropathology, University Hospital of Zürich, Zürich, Switzerland
| | - I Ferrer
- CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, Barcelona, Spain.,Institute of Neuroscience, University of Barcelona, Barcelona, Spain.,Senior Consultant, Bellvitge University Hospital, IDIBELL (Bellvitge Biomedical Research Centre), L'Hospitalet de Llobregat, Spain.,Department of Pathology and Experimental Therapeutics, University of Barcelona, Barcelona, Spain
| | - A Gruart
- Division of Neurosciences, Pablo de Olavide University, 41013, Seville, Spain
| | - J M Delgado-García
- Division of Neurosciences, Pablo de Olavide University, 41013, Seville, Spain.
| | - J A Del Río
- Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Barcelona, Spain. .,Department of Cell Biology, Physiology, and Immunology, University of Barcelona, Barcelona, Spain. .,CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, Barcelona, Spain. .,Institute of Neuroscience, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
9
|
Bar-Zion A, Nourmahnad A, Mittelstein DR, Shivaei S, Yoo S, Buss MT, Hurt RC, Malounda D, Abedi MH, Lee-Gosselin A, Swift MB, Maresca D, Shapiro MG. Acoustically triggered mechanotherapy using genetically encoded gas vesicles. NATURE NANOTECHNOLOGY 2021; 16:1403-1412. [PMID: 34580468 DOI: 10.1038/s41565-021-00971-8] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 08/03/2021] [Indexed: 05/07/2023]
Abstract
Recent advances in molecular engineering and synthetic biology provide biomolecular and cell-based therapies with a high degree of molecular specificity, but limited spatiotemporal control. Here we show that biomolecules and cells can be engineered to deliver potent mechanical effects at specific locations inside the body through ultrasound-induced inertial cavitation. This capability is enabled by gas vesicles, a unique class of genetically encodable air-filled protein nanostructures. We show that low-frequency ultrasound can convert these biomolecules into micrometre-scale cavitating bubbles, unleashing strong local mechanical effects. This enables engineered gas vesicles to serve as remotely actuated cell-killing and tissue-disrupting agents, and allows genetically engineered cells to lyse, release molecular payloads and produce local mechanical damage on command. We demonstrate the capabilities of biomolecular inertial cavitation in vitro, in cellulo and in vivo, including in a mouse model of tumour-homing probiotic therapy.
Collapse
Affiliation(s)
- Avinoam Bar-Zion
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Atousa Nourmahnad
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - David R Mittelstein
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - Shirin Shivaei
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Sangjin Yoo
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Marjorie T Buss
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Robert C Hurt
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Dina Malounda
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Mohamad H Abedi
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Audrey Lee-Gosselin
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Margaret B Swift
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - David Maresca
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Mikhail G Shapiro
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
10
|
Yoon D, Son J, Park JK, Nam Y. Development of the micro-patterned 3D neuronal-hydrogel model using soft-lithography for study a 3D neural network on a microelectrode array . ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:1234-1237. [PMID: 34891510 DOI: 10.1109/embc46164.2021.9629822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In vitro patterned neuronal models have been studied as one of the strategies to investigate the relationship between structural connectivity and functional activity of neural network. Despite the importance of three-dimensional (3D) cell models, most of these studies have been performed on two-dimensional models. In this study, we present a technique to construct the micro-pattern to 3D neuronal-hydrogel model using a micromolding in capillaries (MIMIC) technique on microelectrode array (MEA). Our technique was suitable to prevent the deformation of micro-patterned collagen model against the neuronal contracted tension during the network formation. The relationship between the growth directions of glial cells and micro-pattern direction was investigated. Lastly, we confirmed that our 3D model had synchronized activity among neurons in 3D. This model is expected to be used as a tool to study the relationship between structural connectivity and functional activity in the 3D environment.
Collapse
|
11
|
Psaras Y, Margara F, Cicconet M, Sparrow AJ, Repetti GG, Schmid M, Steeples V, Wilcox JA, Bueno-Orovio A, Redwood CS, Watkins HC, Robinson P, Rodriguez B, Seidman JG, Seidman CE, Toepfer CN. CalTrack: High-Throughput Automated Calcium Transient Analysis in Cardiomyocytes. Circ Res 2021; 129:326-341. [PMID: 34018815 PMCID: PMC8260473 DOI: 10.1161/circresaha.121.318868] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/06/2021] [Accepted: 05/20/2021] [Indexed: 11/21/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Yiangos Psaras
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine (Y.P., F.M., A.J.S., M.S., V.S., C.S.R., H.C.W., P.R., C.N.T.), University of Oxford, United Kingdom
| | - Francesca Margara
- Computer Science (F.M., A.B.-O., B.R.), University of Oxford, United Kingdom
| | - Marcelo Cicconet
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine (Y.P., F.M., A.J.S., M.S., V.S., C.S.R., H.C.W., P.R., C.N.T.), University of Oxford, United Kingdom
- Computer Science (F.M., A.B.-O., B.R.), University of Oxford, United Kingdom
- Wellcome Centre for Human Genetics (H.C.W., C.N.T.), University of Oxford, United Kingdom
- Image and Data Analysis Core (M.C.), Harvard Medical School, Boston, MA
- Genetics (G.G.R., J.A.L.W., J.G.S., C.E.S., C.N.T.), Harvard Medical School, Boston, MA
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Boston, MA (C.E.S.)
- Howard Hughes Medical Institute, Chevy Chase, MD (C.E.S.)
| | - Alexander J. Sparrow
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine (Y.P., F.M., A.J.S., M.S., V.S., C.S.R., H.C.W., P.R., C.N.T.), University of Oxford, United Kingdom
- Computer Science (F.M., A.B.-O., B.R.), University of Oxford, United Kingdom
- Wellcome Centre for Human Genetics (H.C.W., C.N.T.), University of Oxford, United Kingdom
- Image and Data Analysis Core (M.C.), Harvard Medical School, Boston, MA
- Genetics (G.G.R., J.A.L.W., J.G.S., C.E.S., C.N.T.), Harvard Medical School, Boston, MA
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Boston, MA (C.E.S.)
- Howard Hughes Medical Institute, Chevy Chase, MD (C.E.S.)
| | - Giuliana G. Repetti
- Genetics (G.G.R., J.A.L.W., J.G.S., C.E.S., C.N.T.), Harvard Medical School, Boston, MA
| | - Manuel Schmid
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine (Y.P., F.M., A.J.S., M.S., V.S., C.S.R., H.C.W., P.R., C.N.T.), University of Oxford, United Kingdom
- Computer Science (F.M., A.B.-O., B.R.), University of Oxford, United Kingdom
- Wellcome Centre for Human Genetics (H.C.W., C.N.T.), University of Oxford, United Kingdom
- Image and Data Analysis Core (M.C.), Harvard Medical School, Boston, MA
- Genetics (G.G.R., J.A.L.W., J.G.S., C.E.S., C.N.T.), Harvard Medical School, Boston, MA
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Boston, MA (C.E.S.)
- Howard Hughes Medical Institute, Chevy Chase, MD (C.E.S.)
| | - Violetta Steeples
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine (Y.P., F.M., A.J.S., M.S., V.S., C.S.R., H.C.W., P.R., C.N.T.), University of Oxford, United Kingdom
- Computer Science (F.M., A.B.-O., B.R.), University of Oxford, United Kingdom
- Wellcome Centre for Human Genetics (H.C.W., C.N.T.), University of Oxford, United Kingdom
- Image and Data Analysis Core (M.C.), Harvard Medical School, Boston, MA
- Genetics (G.G.R., J.A.L.W., J.G.S., C.E.S., C.N.T.), Harvard Medical School, Boston, MA
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Boston, MA (C.E.S.)
- Howard Hughes Medical Institute, Chevy Chase, MD (C.E.S.)
| | - Jonathan A.L. Wilcox
- Genetics (G.G.R., J.A.L.W., J.G.S., C.E.S., C.N.T.), Harvard Medical School, Boston, MA
| | | | - Charles S. Redwood
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine (Y.P., F.M., A.J.S., M.S., V.S., C.S.R., H.C.W., P.R., C.N.T.), University of Oxford, United Kingdom
- Computer Science (F.M., A.B.-O., B.R.), University of Oxford, United Kingdom
- Wellcome Centre for Human Genetics (H.C.W., C.N.T.), University of Oxford, United Kingdom
- Image and Data Analysis Core (M.C.), Harvard Medical School, Boston, MA
- Genetics (G.G.R., J.A.L.W., J.G.S., C.E.S., C.N.T.), Harvard Medical School, Boston, MA
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Boston, MA (C.E.S.)
- Howard Hughes Medical Institute, Chevy Chase, MD (C.E.S.)
| | - Hugh C. Watkins
- Wellcome Centre for Human Genetics (H.C.W., C.N.T.), University of Oxford, United Kingdom
| | - Paul Robinson
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine (Y.P., F.M., A.J.S., M.S., V.S., C.S.R., H.C.W., P.R., C.N.T.), University of Oxford, United Kingdom
| | - Blanca Rodriguez
- Computer Science (F.M., A.B.-O., B.R.), University of Oxford, United Kingdom
| | - Jonathan G. Seidman
- Genetics (G.G.R., J.A.L.W., J.G.S., C.E.S., C.N.T.), Harvard Medical School, Boston, MA
| | - Christine E. Seidman
- Genetics (G.G.R., J.A.L.W., J.G.S., C.E.S., C.N.T.), Harvard Medical School, Boston, MA
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Boston, MA (C.E.S.)
- Howard Hughes Medical Institute, Chevy Chase, MD (C.E.S.)
| | - Christopher N. Toepfer
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine (Y.P., F.M., A.J.S., M.S., V.S., C.S.R., H.C.W., P.R., C.N.T.), University of Oxford, United Kingdom
- Wellcome Centre for Human Genetics (H.C.W., C.N.T.), University of Oxford, United Kingdom
- Genetics (G.G.R., J.A.L.W., J.G.S., C.E.S., C.N.T.), Harvard Medical School, Boston, MA
| |
Collapse
|
12
|
Bayat FK, Polat Budak B, Yiğit EN, Öztürk G, Gülçür HÖ, Güveniş A. Adult mouse dorsal root ganglia neurons form aberrant glutamatergic connections in dissociated cultures. PLoS One 2021; 16:e0246924. [PMID: 33657119 PMCID: PMC7928449 DOI: 10.1371/journal.pone.0246924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 01/29/2021] [Indexed: 11/18/2022] Open
Abstract
Cultured sensory neurons can exhibit complex activity patterns following stimulation in terms of increased excitability and interconnected responses of multiple neurons. Although these complex activity patterns suggest a network-like configuration, research so far had little interest in synaptic network formation ability of the sensory neurons. To identify interaction profiles of Dorsal Root Ganglia (DRG) neurons and explore their putative connectivity, we developed an in vitro experimental approach. A double transgenic mouse model, expressing genetically encoded calcium indicator (GECI) in their glutamatergic neurons, was produced. Dissociated DRG cultures from adult mice were prepared with a serum-free protocol and no additional growth factors or cytokines were utilized for neuronal sensitization. DRG neurons were grown on microelectrode arrays (MEA) to induce stimulus-evoked activity with a modality-free stimulation strategy. With an almost single-cell level electrical stimulation, spontaneous and evoked activity of GCaMP6s expressing neurons were detected under confocal microscope. Typical responses were analyzed, and correlated calcium events were detected across individual DRG neurons. Next, correlated responses were successfully blocked by glutamatergic receptor antagonists, which indicated functional synaptic coupling. Immunostaining confirmed the presence of synapses mainly in the axonal terminals, axon-soma junctions and axon-axon intersection sites. Concisely, the results presented here illustrate a new type of neuron-to-neuron interaction in cultured DRG neurons conducted through synapses. The developed assay can be a valuable tool to analyze individual and collective responses of the cultured sensory neurons.
Collapse
Affiliation(s)
- F. Kemal Bayat
- Institute of Biomedical Engineering, Bogazici University, İstanbul, Turkey
- Department of Electrical and Electronics Engineering, Faculty of Engineering, Marmara University, İstanbul, Turkey
| | - Betul Polat Budak
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, İstanbul, Turkey
- Faculty of Engineering and Natural Sciences, Biruni University, İstanbul, Turkey
| | - Esra Nur Yiğit
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, İstanbul, Turkey
- Institute of Biotechnology, Gebze Technical University, İzmit, Turkey
| | - Gürkan Öztürk
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, İstanbul, Turkey
| | - Halil Özcan Gülçür
- Institute of Biomedical Engineering, Bogazici University, İstanbul, Turkey
- Faculty of Engineering and Natural Sciences, Biruni University, İstanbul, Turkey
- * E-mail:
| | - Albert Güveniş
- Institute of Biomedical Engineering, Bogazici University, İstanbul, Turkey
| |
Collapse
|
13
|
Sun Z, Südhof TC. A simple Ca 2+-imaging approach to neural network analyses in cultured neurons. J Neurosci Methods 2020; 349:109041. [PMID: 33340555 DOI: 10.1016/j.jneumeth.2020.109041] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 12/08/2020] [Accepted: 12/11/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Ca2+-imaging is a powerful tool to measure neuronal dynamics and network activity. To monitor network-level changes in cultured neurons, neuronal activity is often evoked by electrical or optogenetic stimulation and assessed using multi-electrode arrays or sophisticated imaging. Although such approaches allow detailed network analyses, multi-electrode arrays lack single-cell precision, whereas optical physiology generally requires advanced instrumentation that may not be universally available. NEW METHOD Here we developed a simple, stimulation-free protocol with associated Matlab algorithms that enables scalable analyses of spontaneous network activity in cultured human and mouse neurons. The approach allows analysis of the overall network activity and of single-neuron dynamics, and is amenable to screening purposes. RESULTS We validated the new protocol by assessing human neurons with a heterozygous conditional deletion of Munc18-1, and mouse neurons with a homozygous conditional deletion of neurexins. The approach described enabled identification of differential changes in these mutant neurons, allowing quantifications of the synchronous firing rate at the network level and of the amplitude and frequency of Ca2+-spikes at the single-neuron level. These results demonstrate the utility of the approach. COMPARISION WITH EXISTING METHODS Compared with current imaging platforms, our method is simple, scalable, accessible, and easy to implement. It enables quantification of more detailed parameters than multi-electrode arrays, but does not have the resolution and depth of more sophisticated yet labour-intensive methods, such as patch-clamp electrophysiology. CONCLUSION The method reported here is scalable for a rapid direct assessment of neuronal function in culture, and can be applied to both human and mouse neurons. Thus, the method can serve as a basis for phenotypical analysis of mutations and for drug discovery efforts.
Collapse
Affiliation(s)
- Zijun Sun
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Thomas C Südhof
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
14
|
Merlini M, Rafalski VA, Ma K, Kim KY, Bushong EA, Rios Coronado PE, Yan Z, Mendiola AS, Sozmen EG, Ryu JK, Haberl MG, Madany M, Sampson DN, Petersen MA, Bardehle S, Tognatta R, Dean T, Acevedo RM, Cabriga B, Thomas R, Coughlin SR, Ellisman MH, Palop JJ, Akassoglou K. Microglial G i-dependent dynamics regulate brain network hyperexcitability. Nat Neurosci 2020; 24:19-23. [PMID: 33318667 PMCID: PMC8118167 DOI: 10.1038/s41593-020-00756-7] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/11/2020] [Indexed: 12/19/2022]
Abstract
Microglial surveillance is a key feature of brain physiology and disease. We found that Gi-dependent microglial dynamics prevent neuronal network hyperexcitability. By generating MgPTX mice to genetically inhibit Gi in microglia, we showed that sustained reduction of microglia brain surveillance and directed process motility induced spontaneous seizures and increased hypersynchrony upon physiologically evoked neuronal activity in awake adult mice. Thus, Gi-dependent microglia dynamics may prevent hyperexcitability in neurological diseases.
Collapse
Affiliation(s)
| | | | - Keran Ma
- Gladstone Institutes, San Francisco, CA, USA
| | - Keun-Young Kim
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA.,National Center for Microscopy and Imaging Research, University of California, San Diego, La Jolla, CA, USA
| | - Eric A Bushong
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA.,National Center for Microscopy and Imaging Research, University of California, San Diego, La Jolla, CA, USA
| | | | - Zhaoqi Yan
- Gladstone Institutes, San Francisco, CA, USA
| | | | - Elif G Sozmen
- Gladstone Institutes, San Francisco, CA, USA.,Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Jae Kyu Ryu
- Gladstone Institutes, San Francisco, CA, USA.,Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Matthias G Haberl
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA.,National Center for Microscopy and Imaging Research, University of California, San Diego, La Jolla, CA, USA
| | - Matthew Madany
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA.,National Center for Microscopy and Imaging Research, University of California, San Diego, La Jolla, CA, USA
| | - Daniel Naranjo Sampson
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA.,National Center for Microscopy and Imaging Research, University of California, San Diego, La Jolla, CA, USA
| | - Mark A Petersen
- Gladstone Institutes, San Francisco, CA, USA.,Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | | | | | - Terry Dean
- Gladstone Institutes, San Francisco, CA, USA.,Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | | | | | | | - Shaun R Coughlin
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Mark H Ellisman
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA.,National Center for Microscopy and Imaging Research, University of California, San Diego, La Jolla, CA, USA
| | - Jorge J Palop
- Gladstone Institutes, San Francisco, CA, USA.,Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Katerina Akassoglou
- Gladstone Institutes, San Francisco, CA, USA. .,Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
15
|
Lee JH, Shaker MR, Lee E, Lee B, Sun W. NeuroCore formation during differentiation of neurospheres of mouse embryonic neural stem cells. Stem Cell Res 2020; 43:101691. [PMID: 32018208 DOI: 10.1016/j.scr.2019.101691] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 12/12/2019] [Accepted: 12/16/2019] [Indexed: 11/18/2022] Open
Abstract
Neural stem cells (NSCs) in the embryonic neocortex have the potential to generate a well-organized laminar architecture of the cerebral cortex through precise regulation of the proliferation, differentiation, and migration of neural cells. NSCs can be isolated in vitro and expanded as cell clusters, called neurospheres, which are primarily related to the proliferation ability of NSCs. Conversely, the tissue-organizing properties of NSCs via regulated differentiation and migration of the cells are not well understood. In this study, we established a three-dimensional (3D) differentiation model of neurospheres, which produce unique neuronal clusters, termed NeuroCore (NC). NC formation was initiated by the aggregation of young neurons. Upon maturation of the neurons and the establishment of radial glia-like structures, the initial organization of the NCs transformed into a glomeruli-like arrangement of cortical neurons. These neurons expressed multiple markers of upper and deep cortical neurons. Taken together, we propose that NSCs in vitro maintain some aspects of their original in vivo tissue-organizing properties, providing an alternative opportunity to explore the fundamental components of brain histogenesis in vitro.
Collapse
Affiliation(s)
- Ju-Hyun Lee
- Department of Anatomy and Division of Brain Korea 21 Plus Program for Biomedical Science, Korea University College of Medicine, 73, Inchon-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Mohammed R Shaker
- Department of Anatomy and Division of Brain Korea 21 Plus Program for Biomedical Science, Korea University College of Medicine, 73, Inchon-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Eunsoo Lee
- Department of Anatomy and Division of Brain Korea 21 Plus Program for Biomedical Science, Korea University College of Medicine, 73, Inchon-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Boram Lee
- Department of Anatomy and Division of Brain Korea 21 Plus Program for Biomedical Science, Korea University College of Medicine, 73, Inchon-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Woong Sun
- Department of Anatomy and Division of Brain Korea 21 Plus Program for Biomedical Science, Korea University College of Medicine, 73, Inchon-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
| |
Collapse
|
16
|
Tengölics ÁJ, Szarka G, Ganczer A, Szabó-Meleg E, Nyitrai M, Kovács-Öller T, Völgyi B. Response Latency Tuning by Retinal Circuits Modulates Signal Efficiency. Sci Rep 2019; 9:15110. [PMID: 31641196 PMCID: PMC6806000 DOI: 10.1038/s41598-019-51756-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 10/07/2019] [Indexed: 12/31/2022] Open
Abstract
In the visual system, retinal ganglion cells (RGCs) of various subtypes encode preprocessed photoreceptor signals into a spike output which is then transmitted towards the brain through parallel feature pathways. Spike timing determines how each feature signal contributes to the output of downstream neurons in visual brain centers, thereby influencing efficiency in visual perception. In this study, we demonstrate a marked population-wide variability in RGC response latency that is independent of trial-to-trial variability and recording approach. RGC response latencies to simple visual stimuli vary considerably in a heterogenous cell population but remain reliable when RGCs of a single subtype are compared. This subtype specificity, however, vanishes when the retinal circuitry is bypassed via direct RGC electrical stimulation. This suggests that latency is primarily determined by the signaling speed through retinal pathways that provide subtype specific inputs to RGCs. In addition, response latency is significantly altered when GABA inhibition or gap junction signaling is disturbed, which further supports the key role of retinal microcircuits in latency tuning. Finally, modulation of stimulus parameters affects individual RGC response delays considerably. Based on these findings, we hypothesize that retinal microcircuits fine-tune RGC response latency, which in turn determines the context-dependent weighing of each signal and its contribution to visual perception.
Collapse
Affiliation(s)
- Ádám Jonatán Tengölics
- MTA-PTE NAP-2 Retinal Electrical Synapses Research Group, Pécs, H-7624, Hungary.,János Szentágothai Research Centre, Pécs, H-7624, Hungary.,Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, H-7624, Hungary
| | - Gergely Szarka
- MTA-PTE NAP-2 Retinal Electrical Synapses Research Group, Pécs, H-7624, Hungary.,János Szentágothai Research Centre, Pécs, H-7624, Hungary.,Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, H-7624, Hungary
| | - Alma Ganczer
- MTA-PTE NAP-2 Retinal Electrical Synapses Research Group, Pécs, H-7624, Hungary.,János Szentágothai Research Centre, Pécs, H-7624, Hungary.,Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, H-7624, Hungary
| | - Edina Szabó-Meleg
- János Szentágothai Research Centre, Pécs, H-7624, Hungary.,Department of Biophysics, University of Pécs Medical School, Pécs, H-7624, Hungary.,Nuclear-Mitochondrial Interactions Research Group, Hungarian Academy of Sciences (MTA-PTE), Pécs, H-7624, Hungary
| | - Miklós Nyitrai
- János Szentágothai Research Centre, Pécs, H-7624, Hungary.,Department of Biophysics, University of Pécs Medical School, Pécs, H-7624, Hungary.,Nuclear-Mitochondrial Interactions Research Group, Hungarian Academy of Sciences (MTA-PTE), Pécs, H-7624, Hungary
| | - Tamás Kovács-Öller
- MTA-PTE NAP-2 Retinal Electrical Synapses Research Group, Pécs, H-7624, Hungary.,János Szentágothai Research Centre, Pécs, H-7624, Hungary.,Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, H-7624, Hungary
| | - Béla Völgyi
- MTA-PTE NAP-2 Retinal Electrical Synapses Research Group, Pécs, H-7624, Hungary. .,János Szentágothai Research Centre, Pécs, H-7624, Hungary. .,Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, H-7624, Hungary.
| |
Collapse
|
17
|
Radstake FDW, Raaijmakers EAL, Luttge R, Zinger S, Frimat JP. CALIMA: The semi-automated open-source calcium imaging analyzer. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2019; 179:104991. [PMID: 31443860 PMCID: PMC6718774 DOI: 10.1016/j.cmpb.2019.104991] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 07/09/2019] [Accepted: 07/19/2019] [Indexed: 05/05/2023]
Abstract
BACKGROUND AND OBJECTIVE Ever since its discovery, calcium imaging has proven its worth in discovering new insights into the mechanisms of cellular communication. Yet, the analysis of the data generated by calcium imaging experiments demands a large amount of time from researchers. Tools enabling automated and semi-automated analysis are available, but often they allow automating only a part of the data analysis process. Therefore, we developed CALIMA (https://aethelraed.nl/calima), a free and open-source standalone software tool that provides an opportunity to quickly detect cells, to obtain the calcium spikes, and to determine the underlying network structure of neuronal cell cultures. METHODS Owing to the difference of Gaussians algorithm applied for the cell detection, CALIMA is able to detect regions of interest (ROIs) quickly. The z-scoring algorithm provides a means to set the requirements for spike detection, and the neuronal connections can be reconstructed by analyzing the cross-correlation between the cellular activity. We evaluated CALIMA's reliability, speed, and functionality with a special focus on neuronal cell detection and network reconstruction. The evaluation was performed by using real-life data such as a known example dataset (cultured primary rat cortical neurons, University of Pennsylvania) and by analyzing video graphic footage of in vitro brain cell samples (SH-SY5Y neuroblastoma cultures, one sample with synchronous neuron firing). The obtained results were compared to the corresponding outcomes observed on same datasets for other similar software solutions. Moreover, we compared the results of segmentation and peak detection analysis, the ones obtained using CALIMA and those acquired manually. RESULTS CALIMA was able to detect the cells in the cultures within seconds. The average sensitivity was 82% across the datasets checked, comparing favorably with the alternative software solutions. Using the correct parameters, CALIMA's Ca-spikes detection sensitivity reached 96%. Lastly, neuronal networks were reconstructed by combining the data on the ROI's activity and the cell's positions, finding the most likely inter-cell connections. CONCLUSIONS We found that CALIMA proved to be a robust and fast tool to analyze the data of experiments for the digital reconstruction of the neuronal cellular network while being able to process the analysis steps with minimal user input required and in a time efficient manner.
Collapse
Affiliation(s)
- F D W Radstake
- Department of Electrical Engineering, Signal Processing Systems Group, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - E A L Raaijmakers
- Department of Electrical Engineering, Electromagnetics Group, Eindhoven University of Technology, Eindhoven, the Netherlands.
| | - R Luttge
- Department of Mechanical Engineering, Neuro-Nanoscale Engineering Group, Microsystems Section & ICMS Institute for Complex Molecular Systems, Eindhoven University of Technology, the Netherlands
| | - S Zinger
- Department of Electrical Engineering, Signal Processing Systems Group, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - J P Frimat
- Department of Mechanical Engineering, Neuro-Nanoscale Engineering Group, Microsystems Section & ICMS Institute for Complex Molecular Systems, Eindhoven University of Technology, the Netherlands
| |
Collapse
|
18
|
SICT: automated detection and supervised inspection of fast Ca 2+ transients. Sci Rep 2018; 8:15523. [PMID: 30341397 PMCID: PMC6195629 DOI: 10.1038/s41598-018-33847-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 10/05/2018] [Indexed: 02/06/2023] Open
Abstract
Recent advances in live Ca2+ imaging with increasing spatial and temporal resolution offer unprecedented opportunities, but also generate an unmet need for data processing. Here we developed SICT, a MATLAB program that automatically identifies rapid Ca2+ rises in time-lapse movies with low signal-to-noise ratios, using fluorescent indicators. A graphical user interface allows visual inspection of automatically detected events, reducing manual labour to less than 10% while maintaining quality control. The detection performance was tested using synthetic data with various signal-to-noise ratios. The event inspection phase was evaluated by four human observers. Reliability of the method was demonstrated in a direct comparison between manual and SICT-aided analysis. As a test case in cultured neurons, SICT detected an increase in frequency and duration of spontaneous Ca2+ transients in the presence of caffeine. This new method speeds up the analysis of elementary Ca2+ transients.
Collapse
|
19
|
Afshar Saber W, Gasparoli FM, Dirks MG, Gunn-Moore FJ, Antkowiak M. All-Optical Assay to Study Biological Neural Networks. Front Neurosci 2018; 12:451. [PMID: 30026684 PMCID: PMC6041400 DOI: 10.3389/fnins.2018.00451] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 06/12/2018] [Indexed: 11/13/2022] Open
Abstract
We introduce a novel all-optical assay for functional studies of biological neural networks in vitro. We created a novel optogenetic construct named OptoCaMP which is a combination of a channelrhodopsin variant (CheRiff) and a red genetically encoded calcium indicator (GECI) (jRCaMP1b). It enables simultaneous optical stimulation and recording from large population of neurons with single-cell readout. Additionally, we have developed a spatio-temporal all-optical assay to simultaneously stimulate a sub-section of a neural network and record evoked calcium activity, in both stimulated and non-stimulated neurons, thus allowing the investigation of the spread of excitation through an interconnected network. Finally, we demonstrate the sensitivity of this assay to the change of neural network connectivity.
Collapse
Affiliation(s)
| | | | - Marjet G. Dirks
- School of Medicine, University of St. Andrews, St. Andrews, United Kingdom
| | | | - Maciej Antkowiak
- School of Medicine, University of St. Andrews, St. Andrews, United Kingdom
| |
Collapse
|
20
|
Artimovich E, Jackson RK, Kilander MBC, Lin YC, Nestor MW. PeakCaller: an automated graphical interface for the quantification of intracellular calcium obtained by high-content screening. BMC Neurosci 2017; 18:72. [PMID: 29037171 PMCID: PMC5644055 DOI: 10.1186/s12868-017-0391-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 10/10/2017] [Indexed: 02/06/2023] Open
Abstract
Background Intracellular calcium is an important ion involved in the regulation and modulation of many neuronal functions. From regulating cell cycle and proliferation to initiating signaling cascades and regulating presynaptic neurotransmitter release, the concentration and timing of calcium activity governs the function and fate of neurons. Changes in calcium transients can be used in high-throughput screening applications as a basic measure of neuronal maturity, especially in developing or immature neuronal cultures derived from stem cells. Results Using human induced pluripotent stem cell derived neurons and dissociated mouse cortical neurons combined with the calcium indicator Fluo-4, we demonstrate that PeakCaller reduces type I and type II error in automated peak calling when compared to the oft-used PeakFinder algorithm under both basal and pharmacologically induced conditions. Conclusion Here we describe PeakCaller, a novel MATLAB script and graphical user interface for the quantification of intracellular calcium transients in neuronal cultures. PeakCaller allows the user to set peak parameters and smoothing algorithms to best fit their data set. This new analysis script will allow for automation of calcium measurements and is a powerful software tool for researchers interested in high-throughput measurements of intracellular calcium.
Collapse
Affiliation(s)
| | | | | | - Yu-Chih Lin
- The Hussman Institute for Autism, Baltimore, MD, USA
| | | |
Collapse
|
21
|
Cao Z, Xu J, Hulsizer S, Cui Y, Dong Y, Pessah IN. Influence of tetramethylenedisulfotetramine on synchronous calcium oscillations at distinct developmental stages of hippocampal neuronal cultures. Neurotoxicology 2016; 58:11-22. [PMID: 27984050 DOI: 10.1016/j.neuro.2016.10.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 10/18/2016] [Accepted: 10/18/2016] [Indexed: 12/20/2022]
Abstract
The spatial and temporal patterns of spontaneous synchronous Ca2+ oscillations (SCOs) regulate physiological pathways that influence neuronal development, excitability, and health. Hippocampal neuronal cultures (HN) and neuron/glia co-cultures (HNG) produced from neonatal mice were loaded with Fluo-4/AM and SCOs recorded in real-time using a Fluorescence Imaging Plate Reader at different developmental stages in vitro. HNG showed an earlier onset of SCOs, with low amplitude and low frequency SCOs at 4days in vitro (DIV), whereas HN were quiescent at this point. SCO amplitude peaked at 9 DIV for both cultures. SCO network frequency peaked at 12 DIV in HN, whereas in HNG the frequency peaked at 6 DIV. SCO patterns were associated with the temporal development of neuronal networks and their ratio of glutamatergic to GABAergic markers of excitatory/inhibitory balance. HN and HNG exhibited differential responses to the convulsant tetramethylenedisulfotetramine (TETS) and were highly dependent on DIV. In HN, TETS triggered an acute rise of intracellular Ca2+ (Phase I response) only in 14 DIV and a sustained decrease of SCO frequency with increased amplitude (Phase II response) at all developmental stages. In HNG, TETS decreased the SCO frequency and increased the amplitude at 6 and 14 but not 9 DIV. There was no acute Ca2+ rise (Phase I response) in any age of HNG tested with TETS. These data demonstrated the importance of glia and developmental stage in modulating neuronal responses to TETS. Our results illustrate the applicability of the model for investigating how caged convulsants elicit abnormal network activity during the development of HN and HNG cultures in vitro.
Collapse
Affiliation(s)
- Zhengyu Cao
- State Key Laboratory of Natural Medicines & Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, China Pharmaceutical University, Nanjing, 211198, PR China; Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, 95616, United States.
| | - Jian Xu
- State Key Laboratory of Natural Medicines & Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Susan Hulsizer
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, 95616, United States
| | - Yanjun Cui
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, 95616, United States
| | - Yao Dong
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, 95616, United States
| | - Isaac N Pessah
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, 95616, United States.
| |
Collapse
|
22
|
Quan T, Lv X, Liu X, Zeng S. Reconstruction of burst activity from calcium imaging of neuronal population via Lq minimization and interval screening. BIOMEDICAL OPTICS EXPRESS 2016; 7:2103-2117. [PMID: 27375930 PMCID: PMC4918568 DOI: 10.1364/boe.7.002103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 05/03/2016] [Accepted: 05/03/2016] [Indexed: 06/06/2023]
Abstract
Calcium imaging is becoming an increasingly popular technology to indirectly measure activity patterns in local neuronal networks. Based on the dependence of calcium fluorescence on neuronal spiking, two-photon calcium imaging affords single-cell resolution of neuronal population activity. However, it is still difficult to reconstruct neuronal activity from complex calcium fluorescence traces, particularly for traces contaminated by noise. Here, we describe a robust and efficient neuronal-activity reconstruction method that utilizes Lq minimization and interval screening (IS), which we refer to as LqIS. The simulation results show that LqIS performs satisfactorily in terms of both accuracy and speed of reconstruction. Reconstruction of simulation and experimental data also shows that LqIS has advantages in terms of the recall rate, precision rate, and timing error. Finally, LqIS is demonstrated to effectively reconstruct neuronal burst activity from calcium fluorescence traces recorded from large-size neuronal population.
Collapse
Affiliation(s)
- Tingwei Quan
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Huazhong University of Science and Technology, Wuhan 430074, China
- MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- College of Mathematics and Economics, Hubei University of Education, Wuhan 430205, China
| | - Xiaohua Lv
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Huazhong University of Science and Technology, Wuhan 430074, China
- MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiuli Liu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Huazhong University of Science and Technology, Wuhan 430074, China
- MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shaoqun Zeng
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Huazhong University of Science and Technology, Wuhan 430074, China
- MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|