1
|
Robinson MB, Renna M, Otic N, Kierul OS, Muldoon A, Franceschini MA, Carp SA. Pathlength-selective, interferometric diffuse correlation spectroscopy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.06.21.600096. [PMID: 38979367 PMCID: PMC11230245 DOI: 10.1101/2024.06.21.600096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Diffuse correlation spectroscopy (DCS) is an optical method that offers non-invasive assessment of blood flow in tissue through the analysis of intensity fluctuations in diffusely backscattered coherent light. The non-invasive nature of DCS has enabled several clinical application areas for deep tissue blood flow measurements, including neuromonitoring, cancer imaging, and exercise physiology. While promising, in measurement configurations targeting deep tissue hemodynamics, standard DCS implementations suffer from insufficient signal-to-noise ratio (SNR), depth sensitivity, and sampling rate, limiting their utility. In this work, we present an enhanced DCS method called pathlength-selective, interferometric DCS (PaLS-iDCS), which uses pathlength-specific coherent gain to improve both the sensitivity to deep tissue hemodynamics and measurement SNR. Through interferometric detection, PaLS-iDCS can provide time-of-flight (ToF) specific blood flow information without the use of expensive time-tagging electronics and low-jitter detectors. The technique is compared to time-domain DCS (TD-DCS), another enhanced DCS method able to resolve photon ToF in tissue, through Monte Carlo simulation, phantom experiments, and human subject measurements. PaLS-iDCS consistently demonstrates improvements in SNR (>2x) for similar measurement conditions (same photon ToF), and the SNR improvements allow for measurements at extended photon ToFs, which have increased sensitivity to deep tissue hemodynamics (~50% increase). Further, like TD-DCS, PaLS-iDCS allows direct estimation of tissue optical properties from the sampled ToF distribution. This method offers a relatively straightforward way to allow DCS systems to make robust measurements of blood flow with greatly enhanced sensitivity to deep tissue hemodynamics without the need for time-resolved detection, enabling further applications of this non-invasive technology.
Collapse
Affiliation(s)
- Mitchell B Robinson
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Marco Renna
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Nikola Otic
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Neurophotonics Center, Boston University, Boston, Massachusetts, USA
| | - Olivia S Kierul
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ailis Muldoon
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Maria Angela Franceschini
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Stefan A Carp
- Neurophotonics Center, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Eskandari R, Milkovich S, Kamar F, Goldman D, Welsh DG, Ellis CG, Diop M. Non-invasive point-of-care optical technique for continuous in vivo assessment of microcirculatory function: Application to a preclinical model of early sepsis. FASEB J 2024; 38:e70204. [PMID: 39628290 PMCID: PMC11615564 DOI: 10.1096/fj.202401889r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/25/2024] [Accepted: 11/14/2024] [Indexed: 12/08/2024]
Abstract
Increased amplitude of peripheral vasomotion is a potential early marker of sepsis-related microcirculatory impairment; however, previous reports relied on clinically unsuitable invasive techniques. Hyperspectral near-infrared spectroscopy (hsNIRS) and diffuse correlation spectroscopy (DCS) are non-invasive, bedside techniques that can be paired to continuously monitor tissue hemoglobin content (HbT), oxygenation (StO2), and perfusion (rBF) to detect vasomotion as low-frequency microhemodynamic oscillations. While previous studies have primarily focused on the peripheral microcirculation, cerebral injury is also a common occurrence in sepsis and hsNIRS-DCS could be used to assess cerebral microcirculatory function. This work aimed to use a hybrid hsNIRS-DCS system to continuously monitor changes in the peripheral and cerebral microcirculation in a rat model of early sepsis. It was hypothesized that the skeletal muscle would be a more sensitive early indicator of sepsis-related changes in microhemodynamics than the brain. Control animals received saline while the experimental group received fecal slurry to induce sepsis. Subsequently, hsNIRS-DCS measurements were acquired from the skeletal muscle and brain for 6 h. Peripheral rBF rapidly decreased in septic animals, but there were no significant changes in peripheral HbT or StO2, nor cerebral HbT, rBF, or StO2. The power of low-frequency peripheral oscillations in all parameters (i.e., HbT, StO2, and rBF) as well as cerebral HbT oscillations were elevated in septic animals during the final 4 h. These findings suggest that in the early stages of sepsis, while vital organs like the brain are partly protected, changes in peripheral perfusion and vasomotor activity can be detected using hsNIRS-DCS. Future work will apply the technique to ICU patients.
Collapse
Affiliation(s)
- Rasa Eskandari
- Department of Medical BiophysicsWestern UniversityLondonOntarioCanada
- Imaging ProgramLawson Health Research InstituteLondonOntarioCanada
| | | | - Farah Kamar
- Department of Medical BiophysicsWestern UniversityLondonOntarioCanada
- Imaging ProgramLawson Health Research InstituteLondonOntarioCanada
| | - Daniel Goldman
- Department of Medical BiophysicsWestern UniversityLondonOntarioCanada
| | - Donald G. Welsh
- Robarts Research InstituteWestern UniversityLondonOntarioCanada
- Department of Physiology and PharmacologyWestern UniversityLondonOntarioCanada
| | - Christopher G. Ellis
- Department of Medical BiophysicsWestern UniversityLondonOntarioCanada
- Robarts Research InstituteWestern UniversityLondonOntarioCanada
| | - Mamadou Diop
- Department of Medical BiophysicsWestern UniversityLondonOntarioCanada
- Imaging ProgramLawson Health Research InstituteLondonOntarioCanada
| |
Collapse
|
3
|
Dar IA, Khan IR, Johnson TW, Helmy SM, Cardona JI, Escobar S, Selioutski O, Marinescu MA, Zhang CT, Proctor AR, AbdAllah N, Busch DR, Maddox RK, Choe R. Wavelet and time-based cerebral autoregulation analysis using diffuse correlation spectroscopy on adults undergoing extracorporeal membrane oxygenation therapy. PLoS One 2024; 19:e0299752. [PMID: 39471182 PMCID: PMC11521301 DOI: 10.1371/journal.pone.0299752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 09/23/2024] [Indexed: 11/01/2024] Open
Abstract
INTRODUCTION Adult patients who have suffered acute cardiac or pulmonary failure are increasingly being treated using extracorporeal membrane oxygenation (ECMO), a cardiopulmonary bypass technique. While ECMO has improved the long-term outcomes of these patients, neurological injuries can occur from underlying illness or ECMO itself. Cerebral autoregulation (CA) allows the brain to maintain steady perfusion during changes in systemic blood pressure. Dysfunctional CA is a marker of acute brain injury and can worsen neurologic damage. Monitoring CA using invasive modalities can be risky in ECMO patients due to the necessity of anticoagulation therapy. Diffuse correlation spectroscopy (DCS) measures cerebral blood flow continuously, noninvasively, at the bedside, and can monitor CA. In this study, we compare DCS-based markers of CA in veno-arterial ECMO patients with and without acute brain injury. METHODS Adults undergoing ECMO were prospectively enrolled at a single tertiary hospital and underwent DCS and arterial blood pressure monitoring during ECMO. Neurologic injuries were identified using brain computerized tomography (CT) scans obtained in all patients. CA was calculated over a twenty-minute window via wavelet coherence analysis (WCA) over 0.05 Hz to 0.1 Hz and a Pearson correlation (DCSx) between cerebral blood flow measured by DCS and mean arterial pressure. RESULTS Eleven ECMO patients who received CT neuroimaging were recruited. 5 (45%) patients were found to have neurologic injury. CA indices WCOH, the area under the curve of the WCA, were significantly higher for patients with neurological injuries compared to those without neurological injuries (right hemisphere p = 0.041, left hemisphere p = 0.041). %DCSx, percentage of time DCSx was above a threshold 0.4, were not significantly higher (right hemisphere p = 0.268, left hemisphere p = 0.073). CONCLUSION DCS can be used to detect differences in CA for ECMO patients with neurological injuries compared to uninjured patients using WCA.
Collapse
Affiliation(s)
- Irfaan A. Dar
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, United States of America
| | - Imad R. Khan
- Department of Neurology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Thomas W. Johnson
- Department of Neurology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Samantha Marie Helmy
- School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Jeronimo I. Cardona
- School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Samantha Escobar
- Clinical and Translational Sciences Program, University of Rochester, Rochester, New York, United States of America
| | - Olga Selioutski
- Department of Neurology, University of Rochester Medical Center, Rochester, New York, United States of America
- Department of Neurology, University of Mississippi, Jackson, Mississippi, United States of America
| | - Mark A. Marinescu
- Department of Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Chloe T. Zhang
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, United States of America
| | - Ashley R. Proctor
- Department of Neurology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Noura AbdAllah
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| | - David R. Busch
- Departments of Anesthesiology and Pain Management, Neurology and Biomedical Engineering, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Ross K. Maddox
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, United States of America
- Department of Neuroscience, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Regine Choe
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, United States of America
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, New York, United States of America
| |
Collapse
|
4
|
Shoemaker LN, Samaei S, Deller G, Wang DJJ, Milej D, St. Lawrence K. All-optics technique for monitoring absolute cerebral blood flow: validation against magnetic resonance imaging perfusion. NEUROPHOTONICS 2024; 11:045002. [PMID: 39372121 PMCID: PMC11448701 DOI: 10.1117/1.nph.11.4.045002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 10/08/2024]
Abstract
Significance The ability to monitor cerebral blood flow (CBF) at the bedside is essential to managing critical-care patients with neurological emergencies. Diffuse correlation spectroscopy (DCS) is ideal because it is non-invasive, portable, and inexpensive. We investigated a near-infrared spectroscopy (NIRS) approach for converting DCS measurements into physiological units of blood flow. Aim Using magnetic resonance imaging perfusion as a reference, we investigated the accuracy of absolute CBF measurements from a bolus-tracking NIRS method that used transient hypoxia as a flow tracer and hypercapnia-induced increases in CBF measured by DCS. Approach Twelve participants (7 female, 28 ± 6 years) completed a hypercapnia protocol with simultaneous CBF recordings from DCS and arterial spin labeling (ASL). Nine participants completed the transient hypoxia protocol while instrumented with time-resolved NIRS. The estimate of baseline CBF was subsequently used to calibrate hypercapnic DCS data. Results Moderately strong correlations at baseline ( slope = 0.79 andR 2 = 0.59 ) and during hypercapnia ( slope = 0.90 andR 2 = 0.58 ) were found between CBF values from calibrated DCS and ASL (range 34 to 85 mL / 100 g / min ). Conclusions Results demonstrated the feasibility of an all-optics approach that can both quantify CBF and perform continuous perfusion monitoring.
Collapse
Affiliation(s)
- Leena N. Shoemaker
- Western University, Department of Medical Biophysics, London, Ontario, Canada
- Lawson Health Research Institute, Imaging Program, London, Ontario, Canada
- Western University, School of Kinesiology, London, Ontario, Canada
| | - Saeed Samaei
- Western University, Department of Medical Biophysics, London, Ontario, Canada
- Lawson Health Research Institute, Imaging Program, London, Ontario, Canada
| | - Graham Deller
- Western University, Department of Medical Biophysics, London, Ontario, Canada
- Lawson Health Research Institute, Imaging Program, London, Ontario, Canada
| | - Danny J. J. Wang
- University of Southern California, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, Laboratory of fMRI Technology, Los Angeles, California, United States
| | - Daniel Milej
- Western University, Department of Medical Biophysics, London, Ontario, Canada
- Lawson Health Research Institute, Imaging Program, London, Ontario, Canada
| | - Keith St. Lawrence
- Western University, Department of Medical Biophysics, London, Ontario, Canada
- Lawson Health Research Institute, Imaging Program, London, Ontario, Canada
| |
Collapse
|
5
|
Kostoglou K, Bello-Robles F, Brassard P, Chacon M, Claassen JAHR, Czosnyka M, Elting JW, Hu K, Labrecque L, Liu J, Marmarelis VZ, Payne SJ, Shin DC, Simpson D, Smirl J, Panerai RB, Mitsis GD. Time-domain methods for quantifying dynamic cerebral blood flow autoregulation: Review and recommendations. A white paper from the Cerebrovascular Research Network (CARNet). J Cereb Blood Flow Metab 2024; 44:1480-1514. [PMID: 38688529 PMCID: PMC11418733 DOI: 10.1177/0271678x241249276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 03/22/2024] [Accepted: 03/28/2024] [Indexed: 05/02/2024]
Abstract
Cerebral Autoregulation (CA) is an important physiological mechanism stabilizing cerebral blood flow (CBF) in response to changes in cerebral perfusion pressure (CPP). By maintaining an adequate, relatively constant supply of blood flow, CA plays a critical role in brain function. Quantifying CA under different physiological and pathological states is crucial for understanding its implications. This knowledge may serve as a foundation for informed clinical decision-making, particularly in cases where CA may become impaired. The quantification of CA functionality typically involves constructing models that capture the relationship between CPP (or arterial blood pressure) and experimental measures of CBF. Besides describing normal CA function, these models provide a means to detect possible deviations from the latter. In this context, a recent white paper from the Cerebrovascular Research Network focused on Transfer Function Analysis (TFA), which obtains frequency domain estimates of dynamic CA. In the present paper, we consider the use of time-domain techniques as an alternative approach. Due to their increased flexibility, time-domain methods enable the mitigation of measurement/physiological noise and the incorporation of nonlinearities and time variations in CA dynamics. Here, we provide practical recommendations and guidelines to support researchers and clinicians in effectively utilizing these techniques to study CA.
Collapse
Affiliation(s)
- Kyriaki Kostoglou
- Department of Electrical and Computer Engineering, McGill University, Montreal, QC, Canada
- Institute of Neural Engineering, Graz University of Technology, Graz, Austria
| | - Felipe Bello-Robles
- Departamento de Ingeniería Informática, Universidad de Santiago de Chile, Santiago, Chile
| | - Patrice Brassard
- Department of Kinesiology, Faculty of Medicine, Université Laval, Quebec, QC, Canada
- Research Center of the Institut universitaire de cardiologie et de pneumologie de Québec, Quebec, QC, Canada
| | - Max Chacon
- Departamento de Ingeniería Informática, Universidad de Santiago de Chile, Santiago, Chile
| | - Jurgen AHR Claassen
- Department of Geriatrics, Radboud University Medical Center, Research Institute for Medical Innovation and Donders Institute, Nijmegen, The Netherlands
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM), Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Marek Czosnyka
- Department of Clinical Neurosciences, Neurosurgery Department, University of Cambridge, Cambridge, UK
| | - Jan-Willem Elting
- Department of Neurology and Clinical Neurophysiology, University Medical Center Groningen, Groningen, The Netherlands
| | - Kun Hu
- Medical Biodynamics Program, Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Lawrence Labrecque
- Department of Kinesiology, Faculty of Medicine, Université Laval, Quebec, QC, Canada
- Research Center of the Institut universitaire de cardiologie et de pneumologie de Québec, Quebec, QC, Canada
| | - Jia Liu
- Laboratory for Engineering and Scientific Computing, Institute of Advanced Computing and Digital Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Vasilis Z Marmarelis
- Department Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Stephen J Payne
- Institute of Applied Mechanics, National Taiwan University, Taipei, Taiwan
| | - Dae Cheol Shin
- Department Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - David Simpson
- Institute of Sound and Vibration Research, University of Southampton, Southampton, UK
| | - Jonathan Smirl
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Ronney B Panerai
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM), Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, British Heart Foundation, Glenfield Hospital, Leicester, UK
| | - Georgios D Mitsis
- Department of Bioengineering, McGill University, Montreal, QC, Canada
| |
Collapse
|
6
|
Moore CH, Sunar U, Lin W. A Device-on-Chip Solution for Real-Time Diffuse Correlation Spectroscopy Using FPGA. BIOSENSORS 2024; 14:384. [PMID: 39194613 DOI: 10.3390/bios14080384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/03/2024] [Accepted: 08/05/2024] [Indexed: 08/29/2024]
Abstract
Diffuse correlation spectroscopy (DCS) is a non-invasive technology for the evaluation of blood perfusion in deep tissue. However, it requires high computational resources for data analysis, which poses challenges in its implementation for real-time applications. To address the unmet need, we developed a novel device-on-chip solution that fully integrates all the necessary computational components needed for DCS. It takes the output of a photon detector and determines the blood flow index (BFI). It is implemented on a field-programmable gate array (FPGA) chip including a multi-tau correlator for the calculation of the temporal light intensity autocorrelation function and a DCS analyzer to perform the curve fitting operation that derives the BFI at a rate of 6000 BFIs/s. The FPGA DCS system was evaluated against a lab-standard DCS system for both phantom and cuff ischemia studies. The results indicate that the autocorrelation of the light correlation and BFI from both the FPGA DCS and the reference DCS matched well. Furthermore, the FPGA DCS system was able to achieve a measurement rate of 50 Hz and resolve pulsatile blood flow. This can significantly lower the cost and footprint of the computational components of DCS and pave the way for portable, real-time DCS systems.
Collapse
Affiliation(s)
- Christopher H Moore
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Ulas Sunar
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Wei Lin
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
7
|
Liu X, Mohtasebi M, Safavi P, Fathi F, Haratbar SR, Chen L, Chen J, Bada HS, Chen L, Abu Jawdeh EG, Yu G. Wearable fiber-free optical sensor for continuous monitoring of neonatal cerebral blood flow and oxygenation. Pediatr Res 2024; 96:486-493. [PMID: 38503982 PMCID: PMC11998978 DOI: 10.1038/s41390-024-03137-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 02/15/2024] [Accepted: 03/01/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND Unstable cerebral hemodynamics places preterm infants at high risk of brain injury. We adapted an innovative, fiber-free, wearable diffuse speckle contrast flow-oximetry (DSCFO) device for continuous monitoring of both cerebral blood flow (CBF) and oxygenation in neonatal piglets and preterm infants. METHODS DSCFO uses two small laser diodes as focused-point and a tiny CMOS camera as a high-density two-dimensional detector to detect spontaneous spatial fluctuation of diffuse laser speckles for CBF measurement, and light intensity attenuations for cerebral oxygenation measurement. The DSCFO was first validated against the established diffuse correlation spectroscopy (DCS) in neonatal piglets and then utilized for continuous CBF and oxygenation monitoring in preterm infants during intermittent hypoxemia (IH) events. RESULTS Significant correlations between the DSCFO and DCS measurements of CBF variations in neonatal piglets were observed. IH events induced fluctuations in CBF, cerebral oxygenation, and peripheral cardiorespiratory vitals in preterm infants. However, no consistent correlation patterns were observed among peripheral and cerebral monitoring parameters. CONCLUSIONS This pilot study demonstrated the feasibility of DSCFO technology to serve as a low-cost wearable sensor for continuous monitoring of multiple cerebral hemodynamic parameters. The results suggested the importance of multi-parameter measurements for understanding deep insights of peripheral and cerebral regulations. IMPACT The innovative DSCFO technology may serve as a low-cost wearable sensor for continuous bedside monitoring of multiple cerebral hemodynamic parameters in neonatal intensive care units. Concurrent DSCFO and DCS measurements of CBF variations in neonatal piglet models generated consistent results. No consistent correlation patterns were observed among peripheral and cerebral monitoring parameters in preterm neonates, suggesting the importance of multi-parameter measurements for understanding deep insights of peripheral and cerebral regulations during IH events. Integrating and correlating multiple cerebral functional parameters with clinical outcomes may identify biomarkers for prediction and management of IH associated brain injury.
Collapse
Affiliation(s)
- Xuhui Liu
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY, USA
| | - Mehrana Mohtasebi
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY, USA
| | - Pegah Safavi
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY, USA
| | - Faraneh Fathi
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY, USA
| | | | - Li Chen
- Biostatistics and Bioinformatics Shared Resource Facility, Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Jin Chen
- Department of Internal Medicine and Department of Computer Science, Institute for Biomedical Informatics, University of Kentucky, Lexington, KY, USA
| | - Henrietta S Bada
- Division of Neonatology, Department of Pediatrics, University of Kentucky, Lexington, KY, USA
| | - Lei Chen
- Department of Physiology and the Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, USA
| | - Elie G Abu Jawdeh
- Division of Neonatology, Department of Pediatrics, University of Kentucky, Lexington, KY, USA
| | - Guoqiang Yu
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
8
|
Mazumder D, Kholiqov O, Srinivasan VJ. Interferometric near-infrared spectroscopy (iNIRS) reveals that blood flow index depends on wavelength. BIOMEDICAL OPTICS EXPRESS 2024; 15:2152-2174. [PMID: 38633063 PMCID: PMC11019706 DOI: 10.1364/boe.507373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 04/19/2024]
Abstract
Blood flow index (BFI) is an optically accessible parameter, with unit distance-squared-over-time, that is widely used as a proxy for tissue perfusion. BFI is defined as the dynamic scattering probability (i.e. the ratio of dynamic to overall reduced scattering coefficients) times an effective Brownian diffusion coefficient that describes red blood cell (RBC) motion. Here, using a wavelength division multiplexed, time-of-flight- (TOF) - resolved iNIRS system, we obtain TOF-resolved field autocorrelations at 773 nm and 855 nm via the same source and collector. We measure the human forearm, comprising biological tissues with mixed static and dynamic scattering, as well as a purely dynamic scattering phantom. Our primary finding is that forearm BFI increases from 773 nm to 855 nm, though the magnitude of this increase varies across subjects (23% ± 19% for N = 3). However, BFI is wavelength-independent in the purely dynamic scattering phantom. From these data, we infer that the wavelength-dependence of BFI arises from the wavelength-dependence of the dynamic scattering probability. This inference is further supported by RBC scattering literature. Our secondary finding is that the higher-order cumulant terms of the mean squared displacement (MSD) of RBCs are significant, but decrease with wavelength. Thus, laser speckle and related modalities should exercise caution when interpreting field autocorrelations.
Collapse
Affiliation(s)
- Dibbyan Mazumder
- Department of Radiology, New York University Langone Health, New York, NY 10016, USA
- Department of Ophthalmology, New York University Langone Health, New York, NY 10016, USA
| | - Oybek Kholiqov
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, USA
| | - Vivek J. Srinivasan
- Department of Radiology, New York University Langone Health, New York, NY 10016, USA
- Department of Ophthalmology, New York University Langone Health, New York, NY 10016, USA
| |
Collapse
|
9
|
James E, Munro PRT. Diffuse Correlation Spectroscopy: A Review of Recent Advances in Parallelisation and Depth Discrimination Techniques. SENSORS (BASEL, SWITZERLAND) 2023; 23:9338. [PMID: 38067711 PMCID: PMC10708610 DOI: 10.3390/s23239338] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 12/13/2024]
Abstract
Diffuse correlation spectroscopy is a non-invasive optical modality used to measure cerebral blood flow in real time, and it has important potential applications in clinical monitoring and neuroscience. As such, many research groups have recently been investigating methods to improve the signal-to-noise ratio, imaging depth, and spatial resolution of diffuse correlation spectroscopy. Such methods have included multispeckle, long wavelength, interferometric, depth discrimination, time-of-flight resolution, and acousto-optic detection strategies. In this review, we exhaustively appraise this plethora of recent advances, which can be used to assess limitations and guide innovation for future implementations of diffuse correlation spectroscopy that will harness technological improvements in the years to come.
Collapse
Affiliation(s)
- Edward James
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, UK
| | | |
Collapse
|
10
|
Li W, Zhang Z, Li Z, Gui Z, Shang Y. Correlation and asynchronization of electroencephalogram and cerebral blood flow in active and passive stimulations. J Neural Eng 2023; 20:066007. [PMID: 37931297 DOI: 10.1088/1741-2552/ad0a02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 11/06/2023] [Indexed: 11/08/2023]
Abstract
Objective.Real-time brain monitoring is of importance for intraoperative surgeries and intensive care unit, in order to take timely clinical interventions. Electroencephalogram (EEG) is a conventional technique for recording neural excitations (e.g. brain waves) in the cerebral cortex, and near infrared diffuse correlation spectroscopy (DCS) is an emerging technique that can directly measure the cerebral blood flow (CBF) in microvasculature system. Currently, the relationship between the neural activities and cerebral hemodynamics that reflects the vasoconstriction features of cerebral vessels, especially under both active and passive situation, has not been elucidated thus far, which triggers the motivation of this study.Approach.We used the verbal fluency test as an active cognitive stimulus to the brain, and we manipulated blood pressure changes as a passive challenge to the brain. Under both protocols, the CBF and EEG responses were longitudinally monitored throughout the cerebral stimulus. Power spectrum approaches were applied the EEG signals and compared with CBF responses.Main results.The results show that the EEG response was significantly faster and larger in amplitude during the active cognitive task, when compared to the CBF, but with larger individual variability. By contrast, CBF is more sensitive when response to the passive task, and with better signal stability. We also found that there was a correlation (p< 0.01,r= 0.866,R2= 0.751) between CBF and EEG in initial response during the active task, but no significant correlation (p> 0.05) was found during the passive task. The similar relations were also found between regional brain waves and blood flow.Significance.The asynchronization and correlation between the two measurements indicates the necessity of monitoring both variables for comprehensive understanding of cerebral physiology. Deep exploration of their relationships provides promising implications for DCS/EEG integration in the diagnosis of various neurovascular and psychiatric diseases.
Collapse
Affiliation(s)
- Weilong Li
- State Key Laboratory of Dynamic Measurement Technology, North University of China, Taiyuan, People's Republic of China
| | - Zihao Zhang
- School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin, People's Republic of China
| | - Zhiyi Li
- Electronic Information College, Northwestern Polytechnical University, Xian, People's Republic of China
| | - Zhiguo Gui
- State Key Laboratory of Dynamic Measurement Technology, North University of China, Taiyuan, People's Republic of China
| | - Yu Shang
- State Key Laboratory of Dynamic Measurement Technology, North University of China, Taiyuan, People's Republic of China
| |
Collapse
|
11
|
Liu X, Mohtasebi M, Safavi P, Fathi F, Haratbar SR, Chen L, Chen J, Bada HS, Chen L, Abu Jawdeh EG, Yu G. A Wearable Fiber-Free Optical Sensor for Continuous Monitoring of Neonatal Cerebral Blood Flow and Oxygenation. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.09.21.23295914. [PMID: 37790418 PMCID: PMC10543216 DOI: 10.1101/2023.09.21.23295914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Impact The innovative DSCFO technology may serve as a low-cost wearable sensor for continuous bedside monitoring of multiple cerebral hemodynamic parameters in neonatal intensive care units.Concurrent DSCFO and DCS measurements of CBF variations in neonatal piglet models generated consistent results.No consistent correlation patterns were observed among peripheral and cerebral monitoring parameters in preterm neonates, suggesting the importance of multi-parameter measurements for understanding deep insights of peripheral and cerebral regulations during IH events.Integrating and correlating multiple cerebral functional parameters with clinical outcomes may identify biomarkers for prediction and management of IH associated brain injury. Background Unstable cerebral hemodynamics places preterm infants at high risk of brain injury. We adapted an innovative, fiber-free, wearable diffuse speckle contrast flow-oximetry (DSCFO) device for continuous monitoring of both cerebral blood flow (CBF) and oxygenation in neonatal piglets and preterm infants. Methods DSCFO uses two small laser diodes as focused-point and a tiny CMOS camera as a high-density two-dimensional detector to detect spontaneous spatial fluctuation of diffuse laser speckles for CBF measurement, and light intensity attenuations for cerebral oxygenation measurement. The DSCFO was first validated against the established diffuse correlation spectroscopy (DCS) in neonatal piglets and then utilized for continuous CBF and oxygenation monitoring in preterm infants during intermittent hypoxemia (IH) events. Results Consistent results between the DSCFO and DCS measurements of CBF variations in neonatal piglets were observed. IH events induced fluctuations in CBF, cerebral oxygenation, and peripheral cardiorespiratory vitals in preterm infants. However, no consistent correlation patterns were observed among peripheral and cerebral monitoring parameters. Conclusions This pilot study demonstrated the feasibility of DSCFO technology to serve as a low-cost wearable sensor for continuous monitoring of multiple cerebral hemodynamic parameters. The results suggested the importance of multi-parameter measurements for understanding deep insights of peripheral and cerebral regulations.
Collapse
|
12
|
Hassett CE, Uysal SP, Butler R, Moore NZ, Cardim D, Gomes JA. Assessment of Cerebral Autoregulation Using Invasive and Noninvasive Methods of Intracranial Pressure Monitoring. Neurocrit Care 2023; 38:591-599. [PMID: 36050535 DOI: 10.1007/s12028-022-01585-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/05/2022] [Indexed: 10/14/2022]
Abstract
BACKGROUND Pulse amplitude index (PAx), a descriptor of cerebrovascular reactivity, correlates the changes of the pulse amplitude of the intracranial pressure (ICP) waveform (AMP) with changes in mean arterial pressure (MAP). AMP relies on cerebrovascular compliance, which is modulated by the state of the cerebrovascular reactivity. PAx can aid in prognostication after acute brain injuries as a tool for the assessment of cerebral autoregulation and could potentially tailor individual management; however, invasive measurements are required for its calculation. Our aim was to evaluate the relationship between noninvasive PAx (nPAx) derived from a novel noninvasive device for ICP monitoring and PAx derived from gold standard invasive methods. METHODS We retrospectively analyzed invasive ICP (external ventricular drain) and non-invasive ICP (nICP), via mechanical extensometer (Brain4Care Corp.). Invasive and non-invasive ICP waveform morphology data was collected in adult patients with brain injury with arterial blood pressure monitoring. The time series from all signals were first treated to remove movement artifacts. PAx and nPAx were calculated as the moving correlation coefficients of 10-s averages of AMP or non-invasive AMP (nAMP) and MAP. AMP/nAMP was determined by calculating the fundamental frequency amplitude of the ICP/nICP signal over a 10-s window, updated every 10-s. We then evaluated the relationship between invasive PAx and noninvasive nPAx using the methods of repeated-measures analysis to generate an estimate of the correlation coefficient and its 95% confidence interval (CI). The agreement between the two methods was assessed using the Bland-Altman test. RESULTS Twenty-four patients were identified. The median age was 53.5 years (interquartile range 40-70), and intracranial hemorrhage (84%) was the most common etiology. Twenty-one (87.5%) patients underwent mechanical ventilation, and 60% were sedated with a median Glasgow Coma Scale score of 8 (7-15). Mean PAx was 0.0296 ± 0.331, and nPAx was 0.0171 ± 0.332. The correlation between PAx and nPAx was strong (R = 0.70, p < 0.0005, 95% CI 0.687-0.717). Bland-Altman analysis showed excellent agreement, with a bias of - 0.018 (95% CI - 0.026 to - 0.01) and a localized regression trend line that did not deviate from 0. CONCLUSIONS PAx can be calculated by conventional and noninvasive ICP monitoring in a statistically significant evaluation with strong agreement. Further study of the applications of this clinical tool is warranted, with the goal of early therapeutic intervention to improve neurologic outcomes following acute brain injuries.
Collapse
Affiliation(s)
- Catherine E Hassett
- Cerebrovascular Center, Neurologic Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44102, USA.
| | - S Pinar Uysal
- Department of Neurology, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Robert Butler
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - Nina Z Moore
- Cerebrovascular Center, Neurologic Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44102, USA
- Department of Neurosurgery, Cleveland Clinic, Cleveland, OH, USA
| | - Danilo Cardim
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, Dallas, TX, USA
| | - Joao A Gomes
- Cerebrovascular Center, Neurologic Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44102, USA
| |
Collapse
|
13
|
Robinson MB, Renna M, Ozana N, Martin AN, Otic N, Carp SA, Franceschini MA. Portable, high speed blood flow measurements enabled by long wavelength, interferometric diffuse correlation spectroscopy (LW-iDCS). Sci Rep 2023; 13:8803. [PMID: 37258644 PMCID: PMC10232495 DOI: 10.1038/s41598-023-36074-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 05/29/2023] [Indexed: 06/02/2023] Open
Abstract
Diffuse correlation spectroscopy (DCS) is an optical technique that can be used to characterize blood flow in tissue. The measurement of cerebral hemodynamics has arisen as a promising use case for DCS, though traditional implementations of DCS exhibit suboptimal signal-to-noise ratio (SNR) and cerebral sensitivity to make robust measurements of cerebral blood flow in adults. In this work, we present long wavelength, interferometric DCS (LW-iDCS), which combines the use of a longer illumination wavelength (1064 nm), multi-speckle, and interferometric detection, to improve both cerebral sensitivity and SNR. Through direct comparison with long wavelength DCS based on superconducting nanowire single photon detectors, we demonstrate an approximate 5× improvement in SNR over a single channel of LW-DCS in the measured blood flow signals in human subjects. We show equivalence of extracted blood flow between LW-DCS and LW-iDCS, and demonstrate the feasibility of LW-iDCS measured at 100 Hz at a source-detector separation of 3.5 cm. This improvement in performance has the potential to enable robust measurement of cerebral hemodynamics and unlock novel use cases for diffuse correlation spectroscopy.
Collapse
Affiliation(s)
- Mitchell B Robinson
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.
| | - Marco Renna
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Nisan Ozana
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Bar-Ilan University, Tel Aviv District, Ramat Gan, Israel
| | - Alyssa N Martin
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Nikola Otic
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Stefan A Carp
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Maria Angela Franceschini
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
14
|
Favilla CG, Mullen MT, Kahn F, Rasheed IYD, Messe SR, Parthasarathy AB, Yodh AG. Dynamic cerebral autoregulation measured by diffuse correlation spectroscopy. J Cereb Blood Flow Metab 2023:271678X231153728. [PMID: 36703572 PMCID: PMC10369149 DOI: 10.1177/0271678x231153728] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Dynamic cerebral autoregulation (dCA) can be derived from spontaneous oscillations in arterial blood pressure (ABP) and cerebral blood flow (CBF). Transcranial Doppler (TCD) measures CBF-velocity and is commonly used to assess dCA. Diffuse correlation spectroscopy (DCS) is a promising optical technique for non-invasive CBF monitoring, so here we aimed to validate DCS as a tool for quantifying dCA. In 33 healthy adults and 17 acute ischemic stroke patients, resting-state hemodynamic were monitored simultaneously with high-speed (20 Hz) DCS and TCD. dCA parameters were calcaulated by a transfer function analysis using a Fourier decomposition of ABP and CBF (or CBF-velocity). Strong correlation was found between DCS and TCD measured gain (magnitude of regulation) in healthy volunteers (r = 0.73, p < 0.001) and stroke patients (r = 0.76, p = 0.003). DCS-gain retained strong test-retest reliability in both groups (ICC 0.87 and 0.82, respectively). DCS and TCD-derived phase (latency of regulation) did not significantly correlate in healthy volunteers (r = 0.12, p = 0.50) but moderately correlated in stroke patients (r = 0.65, p = 0.006). DCS-derived phase was reproducible in both groups (ICC 0.88 and 0.90, respectively). High-frequency DCS is a promising non-invasive bedside technique that can be leveraged to quantify dCA from resting-state data, but the discrepancy between TCD and DCS-derived phase requires further investigation.
Collapse
Affiliation(s)
| | - Michael T Mullen
- Department of Neurology, 6558Temple University, Philadelphia, USA
| | - Farhan Kahn
- Department of Neurology, 6572University of Pennsylvania, Philadelphia, USA
| | | | - Steven R Messe
- Department of Neurology, 6572University of Pennsylvania, Philadelphia, USA
| | | | - Arjun G Yodh
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
15
|
Yang J, Ruesch A, Kainerstorfer JM. Cerebrovascular impedance estimation with near-infrared and diffuse correlation spectroscopy. NEUROPHOTONICS 2023; 10:015002. [PMID: 36699625 PMCID: PMC9868286 DOI: 10.1117/1.nph.10.1.015002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
SIGNIFICANCE Cerebrovascular impedance (CVI) is related to cerebral autoregulation (CA), which is the mechanism of the brain to maintain near-constant cerebral blood flow (CBF) despite changes in cerebral perfusion pressure (CPP). Changes in blood vessel impedance enable the stabilization of blood flow. Due to the interplay between CVI and CA, assessment of CVI may enable quantification of CA and may serve as a biomarker for cerebral health. AIM We developed a method to quantify CVI based on a combination of diffuse correlation spectroscopy (DCS) and continuous wave (CW) near-infrared spectroscopy (NIRS). Data on healthy human volunteers were used to validate the method. APPROACH A combined high-speed DCS-NIRS system was developed, allowing for simultaneous, noninvasive blood flow, and volume measurements in the same tissue compartment. Blood volume was used as a surrogate measurement for blood pressure and CVI was calculated as the spectral ratio of blood volume and blood flow changes. This technique was validated on six healthy human volunteers undergoing postural changes to elicit CVI changes. RESULTS Averaged across the six subjects, a decrease in CVI was found for a head of bed (HOB) tilting of - 40 deg . These impedance changes were reversed when returning to the horizontal (0 deg) HOB baseline. CONCLUSIONS We developed a combined DCS-NIRS system, which measures CBF and volume changes, which we demonstrate can be used to measure CVI. Using CVI as a metric of CA may be beneficial for assessing cerebral health, especially in patients where CPP is altered.
Collapse
Affiliation(s)
- Jason Yang
- Carnegie Mellon University, Department of Biomedical Engineering, Pittsburgh, Pennsylvania, United States
| | - Alexander Ruesch
- Carnegie Mellon University, Department of Biomedical Engineering, Pittsburgh, Pennsylvania, United States
- Carnegie Mellon University, Neuroscience Institute, Pittsburgh, Pennsylvania, United States
| | - Jana M. Kainerstorfer
- Carnegie Mellon University, Department of Biomedical Engineering, Pittsburgh, Pennsylvania, United States
- Carnegie Mellon University, Neuroscience Institute, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
16
|
Tagliabue S, Lindner C, da Prat IC, Sanchez-Guerrero A, Serra I, Kacprzak M, Maruccia F, Silva OM, Weigel UM, de Nadal M, Poca MA, Durduran T. Comparison of cerebral metabolic rate of oxygen, blood flow, and bispectral index under general anesthesia. NEUROPHOTONICS 2023; 10:015006. [PMID: 36911206 PMCID: PMC9993084 DOI: 10.1117/1.nph.10.1.015006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Significance The optical measurement of cerebral oxygen metabolism was evaluated. Aim Compare optically derived cerebral signals to the electroencephalographic bispectral index (BIS) sensors to monitor propofol-induced anesthesia during surgery. Approach Relative cerebral metabolic rate of oxygen (rCMRO 2 ) and blood flow (rCBF) were measured by time-resolved and diffuse correlation spectroscopies. Changes were tested against the relative BIS (rBIS) ones. The synchronism in the changes was also assessed by the R-Pearson correlation. Results In 23 measurements, optically derived signals showed significant changes in agreement with rBIS: during propofol induction, rBIS decreased by 67% [interquartile ranges (IQR) 62% to 71%],rCMRO 2 by 33% (IQR 18% to 46%), and rCBF by 28% (IQR 10% to 37%). During recovery, a significant increase was observed for rBIS (48%, IQR 38% to 55%),rCMRO 2 (29%, IQR 17% to 39%), and rCBF (30%, IQR 10% to 44%). The significance and direction of the changes subject-by-subject were tested: the coupling between the rBIS,rCMRO 2 , and rCBF was witnessed in the majority of the cases (14/18 and 12/18 for rCBF and 19/21 and 13/18 forrCMRO 2 in the initial and final part, respectively). These changes were also correlated in time ( R > 0.69 to R = 1 , p - values < 0.05 ). Conclusions Optics can reliably monitorrCMRO 2 in such conditions.
Collapse
Affiliation(s)
- Susanna Tagliabue
- ICFO – Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Claus Lindner
- ICFO – Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | | | - Angela Sanchez-Guerrero
- Vall d’Hebron University Hospital Research Institute, Neurotraumatology and Neurosurgery Research Unit, Barcelona, Spain
| | - Isabel Serra
- Centre de Recerca Matemàtica, Bellaterra, Spain
- Barcelona Supercomputing Center—Centre Nacional de Supercomputació, Spain
| | - Michał Kacprzak
- ICFO – Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Nalecz Institute of Biocybernetics and Biomedical Engineering PAS, Warsaw, Poland
| | - Federica Maruccia
- ICFO – Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Vall d’Hebron University Hospital Research Institute, Neurotraumatology and Neurosurgery Research Unit, Barcelona, Spain
| | - Olga Martinez Silva
- Vall d’Hebron University Hospital, Department of Anesthesiology, Barcelona, Spain
| | - Udo M. Weigel
- ICFO – Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
- HemoPhotonics S.L., Mediterranean Technology Park, Barcelona, Spain
| | - Miriam de Nadal
- Vall d’Hebron University Hospital, Department of Anesthesiology, Barcelona, Spain
- Universidad Autònoma de Barcelona, Plaça Cívica, Barcelona, Spain
| | - Maria A. Poca
- Vall d’Hebron University Hospital Research Institute, Neurotraumatology and Neurosurgery Research Unit, Barcelona, Spain
- Universidad Autònoma de Barcelona, Plaça Cívica, Barcelona, Spain
- Vall d’Hebron University Hospital, Department of Neurosurgery, Barcelona, Spain
| | - Turgut Durduran
- ICFO – Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| |
Collapse
|
17
|
Helton M, Rajasekhar S, Zerafa S, Vishwanath K, Mycek MA. Numerical approach to quantify depth-dependent blood flow changes in real-time using the diffusion equation with continuous-wave and time-domain diffuse correlation spectroscopy. BIOMEDICAL OPTICS EXPRESS 2023; 14:367-384. [PMID: 36698680 PMCID: PMC9841990 DOI: 10.1364/boe.469419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 05/11/2023]
Abstract
Diffuse correlation spectroscopy (DCS) is a non-invasive optical technique that can measure brain perfusion by quantifying temporal intensity fluctuations of multiply scattered light. A primary limitation for accurate quantitation of cerebral blood flow (CBF) is the fact that experimental measurements contain information about both extracerebral scalp blood flow (SBF) as well as CBF. Separating CBF from SBF is typically achieved using multiple source-detector channels when using continuous-wave (CW) light sources, or more recently with use of time-domain (TD) techniques. Analysis methods that account for these partial volume effects are often employed to increase CBF contrast. However, a robust, real-time analysis procedure that can separate and quantify SBF and CBF with both traditional CW and TD-DCS measurements is still needed. Here, we validate a data analysis procedure based on the diffusion equation in layered media capable of quantifying both extra- and cerebral blood flow in the CW and TD. We find that the model can quantify SBF and CBF coefficients with less than 5% error compared to Monte Carlo simulations using a 3-layered brain model in both the CW and TD. The model can accurately fit data at a rate of <10 ms for CW data and <250 ms for TD data when using a least-squares optimizer.
Collapse
Affiliation(s)
- Michael Helton
- Applied Physics Program, University of Michigan, Ann Arbor, USA
| | - Suraj Rajasekhar
- Cell, Molecular and Structural Biology Program, Miami University, Oxford, OH, USA
| | - Samantha Zerafa
- Biomedical Engineering Department, University of Michigan, Ann Arbor, USA
| | - Karthik Vishwanath
- Cell, Molecular and Structural Biology Program, Miami University, Oxford, OH, USA
- Department of Physics, Miami University, Oxford, OH, USA
| | - Mary-Ann Mycek
- Applied Physics Program, University of Michigan, Ann Arbor, USA
- Biomedical Engineering Department, University of Michigan, Ann Arbor, USA
| |
Collapse
|
18
|
Biswas A, Parthasarathy AB. Lossless Compressed Sensing of Photon Counts for Fast Diffuse Correlation Spectroscopy. IEEE ACCESS : PRACTICAL INNOVATIONS, OPEN SOLUTIONS 2022; 10:129754-129762. [PMID: 36644002 PMCID: PMC9835098 DOI: 10.1109/access.2022.3228439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Diffuse Correlation Spectroscopy (DCS), a noninvasive optical technique, measures deep tissue blood flow using avalanche photon counting modules and data acquisition devices such as FPGAs or correlator boards. Conventional DCS instruments use in-processor counter modules that consume 32 bits/channel which is inefficient for low-photon budget situations prevalent in diffuse optics. Scaling these photon counters for large-scale imaging applications is difficult due to bandwidth and processing time considerations. Here, we introduce a new, lossless compressed sensing approach for fast and efficient detection of photon counts. The compressed DCS method uses an array of binary-coded-decimal counters to record photon counts from 8 channels simultaneously as a single 32-bit number. We validate the compressed DCS approach by comparisons with conventional DCS in experiments on tissue simulating phantoms and in-vivo arm cuff occlusion. Lossless compressed DCS was implemented with 87.5% compression efficiency. In tissue simulating phantoms, it was able to accurately estimate a tissue blood flow index, with no statistically significant difference compared to conventional DCS. Compressed DCS also recorded blood flow in vivo, in human forearm, with signal-to-noise ratio and dynamic range comparable to conventional DCS. Lossless 87.5% efficient compressed sensing counting of photon counts meets and exceeds benchmarks set by conventional DCS systems, offering a low-cost alternative for fast (~100 Hz) deep tissue blood flow measurement with optics.
Collapse
Affiliation(s)
- Arindam Biswas
- Department of Electrical Engineering, University of South Florida, Tampa, FL 33620, USA
| | | |
Collapse
|
19
|
Ayaz H, Baker WB, Blaney G, Boas DA, Bortfeld H, Brady K, Brake J, Brigadoi S, Buckley EM, Carp SA, Cooper RJ, Cowdrick KR, Culver JP, Dan I, Dehghani H, Devor A, Durduran T, Eggebrecht AT, Emberson LL, Fang Q, Fantini S, Franceschini MA, Fischer JB, Gervain J, Hirsch J, Hong KS, Horstmeyer R, Kainerstorfer JM, Ko TS, Licht DJ, Liebert A, Luke R, Lynch JM, Mesquida J, Mesquita RC, Naseer N, Novi SL, Orihuela-Espina F, O’Sullivan TD, Peterka DS, Pifferi A, Pollonini L, Sassaroli A, Sato JR, Scholkmann F, Spinelli L, Srinivasan VJ, St. Lawrence K, Tachtsidis I, Tong Y, Torricelli A, Urner T, Wabnitz H, Wolf M, Wolf U, Xu S, Yang C, Yodh AG, Yücel MA, Zhou W. Optical imaging and spectroscopy for the study of the human brain: status report. NEUROPHOTONICS 2022; 9:S24001. [PMID: 36052058 PMCID: PMC9424749 DOI: 10.1117/1.nph.9.s2.s24001] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
This report is the second part of a comprehensive two-part series aimed at reviewing an extensive and diverse toolkit of novel methods to explore brain health and function. While the first report focused on neurophotonic tools mostly applicable to animal studies, here, we highlight optical spectroscopy and imaging methods relevant to noninvasive human brain studies. We outline current state-of-the-art technologies and software advances, explore the most recent impact of these technologies on neuroscience and clinical applications, identify the areas where innovation is needed, and provide an outlook for the future directions.
Collapse
Affiliation(s)
- Hasan Ayaz
- Drexel University, School of Biomedical Engineering, Science, and Health Systems, Philadelphia, Pennsylvania, United States
- Drexel University, College of Arts and Sciences, Department of Psychological and Brain Sciences, Philadelphia, Pennsylvania, United States
| | - Wesley B. Baker
- Children’s Hospital of Philadelphia, Division of Neurology, Philadelphia, Pennsylvania, United States
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Giles Blaney
- Tufts University, Department of Biomedical Engineering, Medford, Massachusetts, United States
| | - David A. Boas
- Boston University Neurophotonics Center, Boston, Massachusetts, United States
- Boston University, College of Engineering, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Heather Bortfeld
- University of California, Merced, Departments of Psychological Sciences and Cognitive and Information Sciences, Merced, California, United States
| | - Kenneth Brady
- Lurie Children’s Hospital, Northwestern University Feinberg School of Medicine, Department of Anesthesiology, Chicago, Illinois, United States
| | - Joshua Brake
- Harvey Mudd College, Department of Engineering, Claremont, California, United States
| | - Sabrina Brigadoi
- University of Padua, Department of Developmental and Social Psychology, Padua, Italy
| | - Erin M. Buckley
- Georgia Institute of Technology, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
- Emory University School of Medicine, Department of Pediatrics, Atlanta, Georgia, United States
| | - Stefan A. Carp
- Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, United States
| | - Robert J. Cooper
- University College London, Department of Medical Physics and Bioengineering, DOT-HUB, London, United Kingdom
| | - Kyle R. Cowdrick
- Georgia Institute of Technology, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
| | - Joseph P. Culver
- Washington University School of Medicine, Department of Radiology, St. Louis, Missouri, United States
| | - Ippeita Dan
- Chuo University, Faculty of Science and Engineering, Tokyo, Japan
| | - Hamid Dehghani
- University of Birmingham, School of Computer Science, Birmingham, United Kingdom
| | - Anna Devor
- Boston University, College of Engineering, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Turgut Durduran
- ICFO – The Institute of Photonic Sciences, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
- Institució Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, Spain
| | - Adam T. Eggebrecht
- Washington University in St. Louis, Mallinckrodt Institute of Radiology, St. Louis, Missouri, United States
| | - Lauren L. Emberson
- University of British Columbia, Department of Psychology, Vancouver, British Columbia, Canada
| | - Qianqian Fang
- Northeastern University, Department of Bioengineering, Boston, Massachusetts, United States
| | - Sergio Fantini
- Tufts University, Department of Biomedical Engineering, Medford, Massachusetts, United States
| | - Maria Angela Franceschini
- Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, United States
| | - Jonas B. Fischer
- ICFO – The Institute of Photonic Sciences, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain
| | - Judit Gervain
- University of Padua, Department of Developmental and Social Psychology, Padua, Italy
- Université Paris Cité, CNRS, Integrative Neuroscience and Cognition Center, Paris, France
| | - Joy Hirsch
- Yale School of Medicine, Department of Psychiatry, Neuroscience, and Comparative Medicine, New Haven, Connecticut, United States
- University College London, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
| | - Keum-Shik Hong
- Pusan National University, School of Mechanical Engineering, Busan, Republic of Korea
- Qingdao University, School of Automation, Institute for Future, Qingdao, China
| | - Roarke Horstmeyer
- Duke University, Department of Biomedical Engineering, Durham, North Carolina, United States
- Duke University, Department of Electrical and Computer Engineering, Durham, North Carolina, United States
- Duke University, Department of Physics, Durham, North Carolina, United States
| | - Jana M. Kainerstorfer
- Carnegie Mellon University, Department of Biomedical Engineering, Pittsburgh, Pennsylvania, United States
- Carnegie Mellon University, Neuroscience Institute, Pittsburgh, Pennsylvania, United States
| | - Tiffany S. Ko
- Children’s Hospital of Philadelphia, Division of Cardiothoracic Anesthesiology, Philadelphia, Pennsylvania, United States
| | - Daniel J. Licht
- Children’s Hospital of Philadelphia, Division of Neurology, Philadelphia, Pennsylvania, United States
| | - Adam Liebert
- Polish Academy of Sciences, Nalecz Institute of Biocybernetics and Biomedical Engineering, Warsaw, Poland
| | - Robert Luke
- Macquarie University, Department of Linguistics, Sydney, New South Wales, Australia
- Macquarie University Hearing, Australia Hearing Hub, Sydney, New South Wales, Australia
| | - Jennifer M. Lynch
- Children’s Hospital of Philadelphia, Division of Cardiothoracic Anesthesiology, Philadelphia, Pennsylvania, United States
| | - Jaume Mesquida
- Parc Taulí Hospital Universitari, Critical Care Department, Sabadell, Spain
| | - Rickson C. Mesquita
- University of Campinas, Institute of Physics, Campinas, São Paulo, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology, Campinas, São Paulo, Brazil
| | - Noman Naseer
- Air University, Department of Mechatronics and Biomedical Engineering, Islamabad, Pakistan
| | - Sergio L. Novi
- University of Campinas, Institute of Physics, Campinas, São Paulo, Brazil
- Western University, Department of Physiology and Pharmacology, London, Ontario, Canada
| | | | - Thomas D. O’Sullivan
- University of Notre Dame, Department of Electrical Engineering, Notre Dame, Indiana, United States
| | - Darcy S. Peterka
- Columbia University, Zuckerman Mind Brain Behaviour Institute, New York, United States
| | | | - Luca Pollonini
- University of Houston, Department of Engineering Technology, Houston, Texas, United States
| | - Angelo Sassaroli
- Tufts University, Department of Biomedical Engineering, Medford, Massachusetts, United States
| | - João Ricardo Sato
- Federal University of ABC, Center of Mathematics, Computing and Cognition, São Bernardo do Campo, São Paulo, Brazil
| | - Felix Scholkmann
- University of Bern, Institute of Complementary and Integrative Medicine, Bern, Switzerland
- University of Zurich, University Hospital Zurich, Department of Neonatology, Biomedical Optics Research Laboratory, Zürich, Switzerland
| | - Lorenzo Spinelli
- National Research Council (CNR), IFN – Institute for Photonics and Nanotechnologies, Milan, Italy
| | - Vivek J. Srinivasan
- University of California Davis, Department of Biomedical Engineering, Davis, California, United States
- NYU Langone Health, Department of Ophthalmology, New York, New York, United States
- NYU Langone Health, Department of Radiology, New York, New York, United States
| | - Keith St. Lawrence
- Lawson Health Research Institute, Imaging Program, London, Ontario, Canada
- Western University, Department of Medical Biophysics, London, Ontario, Canada
| | - Ilias Tachtsidis
- University College London, Department of Medical Physics and Biomedical Engineering, London, United Kingdom
| | - Yunjie Tong
- Purdue University, Weldon School of Biomedical Engineering, West Lafayette, Indiana, United States
| | - Alessandro Torricelli
- Politecnico di Milano, Dipartimento di Fisica, Milan, Italy
- National Research Council (CNR), IFN – Institute for Photonics and Nanotechnologies, Milan, Italy
| | - Tara Urner
- Georgia Institute of Technology, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
| | - Heidrun Wabnitz
- Physikalisch-Technische Bundesanstalt (PTB), Berlin, Germany
| | - Martin Wolf
- University of Zurich, University Hospital Zurich, Department of Neonatology, Biomedical Optics Research Laboratory, Zürich, Switzerland
| | - Ursula Wolf
- University of Bern, Institute of Complementary and Integrative Medicine, Bern, Switzerland
| | - Shiqi Xu
- Duke University, Department of Biomedical Engineering, Durham, North Carolina, United States
| | - Changhuei Yang
- California Institute of Technology, Department of Electrical Engineering, Pasadena, California, United States
| | - Arjun G. Yodh
- University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, Pennsylvania, United States
| | - Meryem A. Yücel
- Boston University Neurophotonics Center, Boston, Massachusetts, United States
- Boston University, College of Engineering, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Wenjun Zhou
- University of California Davis, Department of Biomedical Engineering, Davis, California, United States
- China Jiliang University, College of Optical and Electronic Technology, Hangzhou, Zhejiang, China
| |
Collapse
|
20
|
Seong M, Oh Y, Lee K, Kim JG. Blood flow estimation via numerical integration of temporal autocorrelation function in diffuse correlation spectroscopy. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 222:106933. [PMID: 35728393 DOI: 10.1016/j.cmpb.2022.106933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/27/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND OBJECTIVE Diffuse correlation spectroscopy (DCS) is an optical technique widely used to monitor blood flow. Recently, efforts have been made to derive new signal processing methods to minimize the systems used and shorten the signal processing time. Herein, we propose alternative approaches to obtain blood flow information via DCS by numerically integrating the temporal autocorrelation curves. METHODS We use the following methods: the inverse of K2 (IK2)-based on the framework of diffuse speckle contrast analysis-and the inverse of the numerical integration of squared g1 (INISg1) which, based on the normalized electric field autocorrelation curve, is more simplified than IK2. In addition, g1 thresholding is introduced to further reduce computational time and make the suggested methods comparable to the conventional nonlinear fitting approach. To validate the feasibility of the suggested methods, studies using simulation, liquid phantom, and in vivo settings were performed. In the meantime, the suggested methods were implemented and tested on three types of Arduino (Arduino Due, Arduino Nano 33 BLE Sense, and Portenta H7) to demonstrate the possibility of miniaturizing the DCS systems using microcotrollers for signal processing. RESULTS The simulation and experimental results confirm that both IK2 and INISg1 are sufficiently relevant to capture the changes in blood flow information. More interestingly, when g1 thresholding was applied, our results showed that INISg1 outperformed IK2. It was further confirmed that INISg1 with g1 thresholding implemented on a PC and Portenta H7, an advanced Arduino board, performed faster than did the deep learning-based, state-of-the-art processing method. CONCLUSION Our findings strongly indicate that INISg1 with g1 thresholding could be an alternative approach to derive relative blood flow information via DCS, which may contribute to the simplification of DCS methodologies.
Collapse
Affiliation(s)
- Myeongsu Seong
- School of Information Science and Technology, Nantong University, Nantong, Jiangsu, China; Research Center for Intelligent Information Technology, Nantong University, Nantong, Jiangsu, China; Nantong Research Institute for Advanced Communication Technologies, Nantong, Jiangsu, China
| | - Yoonho Oh
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Kijoon Lee
- Department of Electrical Engineering and Computer Science, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea.
| | - Jae G Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea.
| |
Collapse
|
21
|
Lafontant A, Mahanna Gabrielli E, Bergonzi K, Forti RM, Ko TS, Shah RM, Arkles JS, Licht DJ, Yodh AG, Kofke WA, White BR, Baker WB. Comparison of optical measurements of critical closing pressure acquired before and during induced ventricular arrhythmia in adults. NEUROPHOTONICS 2022; 9:035004. [PMID: 36039170 PMCID: PMC9407009 DOI: 10.1117/1.nph.9.3.035004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Significance: The critical closing pressure (CrCP) of cerebral circulation, as measured by diffuse correlation spectroscopy (DCS), is a promising biomarker of intracranial hypertension. However, CrCP techniques using DCS have not been assessed in gold standard experiments. Aim: CrCP is typically calculated by examining the variation of cerebral blood flow (CBF) during the cardiac cycle (with normal sinus rhythm). We compare this typical CrCP measurement with a gold standard obtained during the drops in arterial blood pressure (ABP) caused by rapid ventricular pacing (RVP) in patients undergoing invasive electrophysiologic procedures. Approach: Adults receiving electrophysiology procedures with planned ablation were enrolled for DCS CBF monitoring. CrCP was calculated from CBF and ABP data by three methods: (1) linear extrapolation of data during RVP ( CrCP RVP ; the gold standard); (2) linear extrapolation of data during regular heartbeats ( CrCP Linear ); and (3) fundamental harmonic Fourier filtering of data during regular heartbeats ( CrCP Fourier ). Results: CBF monitoring was performed prior to and during 55 episodes of RVP in five adults. CrCP RVP and CrCP Fourier demonstrated agreement ( R = 0.66 , slope = 1.05 (95%CI, 0.72 to 1.38). Agreement between CrCP RVP and CrCP Linear was worse; CrCP Linear was 8.2 ± 5.9 mmHg higher than CrCP RVP (mean ± SD; p < 0.001 ). Conclusions: Our results suggest that DCS-measured CrCP can be accurately acquired during normal sinus rhythm.
Collapse
Affiliation(s)
- Alec Lafontant
- Children’s Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Department of Pediatrics, Division of Neurology, Philadelphia, Pennsylvania, United States
| | - Elizabeth Mahanna Gabrielli
- University of Miami Miller School of Medicine, Department of Anesthesiology, Perioperative Medicine and Pain Management, Miami, Florida, United States
| | - Karla Bergonzi
- University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, Pennsylvania, United States
| | - Rodrigo M. Forti
- Children’s Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Department of Pediatrics, Division of Neurology, Philadelphia, Pennsylvania, United States
| | - Tiffany S. Ko
- Children’s Hospital of Philadelphia, Department of Anesthesiology and Critical Care Medicine, Philadelphia, Pennsylvania, United States
| | - Ronak M. Shah
- Perelman School of Medicine at the University of Pennsylvania, Department of Anesthesiology and Critical Care, Philadelphia, Pennsylvania, United States
| | - Jeffrey S. Arkles
- Perelman School of Medicine at the University of Pennsylvania, Department of Medicine, Division of Cardiovascular Medicine, Philadelphia, Pennsylvania, United States
| | - Daniel J. Licht
- Children’s Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Department of Pediatrics, Division of Neurology, Philadelphia, Pennsylvania, United States
| | - Arjun G. Yodh
- University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, Pennsylvania, United States
| | - W. Andrew Kofke
- Perelman School of Medicine at the University of Pennsylvania, Department of Anesthesiology and Critical Care, Philadelphia, Pennsylvania, United States
| | - Brian R. White
- Children’s Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Department of Pediatrics, Division of Pediatric Cardiology, Philadelphia, Pennsylvania, United States
| | - Wesley B. Baker
- Children’s Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Department of Pediatrics, Division of Neurology, Philadelphia, Pennsylvania, United States
| |
Collapse
|
22
|
James E, Powell S, Munro P. Performance optimisation of a holographic Fourier domain diffuse correlation spectroscopy instrument. BIOMEDICAL OPTICS EXPRESS 2022; 13:3836-3853. [PMID: 35991914 PMCID: PMC9352302 DOI: 10.1364/boe.454346] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/05/2022] [Accepted: 04/22/2022] [Indexed: 06/02/2023]
Abstract
We have previously demonstrated a novel interferometric multispeckle Fourier domain diffuse correlation spectroscopy system that makes use of holographic camera-based detection, and which is capable of making in vivo pulsatile flow measurements. In this work, we report on a systematic characterisation of the signal-to-noise ratio performance of our system. This includes demonstration and elimination of laser mode hopping, and correction for the instrument's modulation transfer function to ensure faithful reconstruction of measured intensity profiles. We also demonstrate a singular value decomposition approach to ensure that spatiotemporally correlated experimental noise sources do not limit optimal signal-to-noise ratio performance. Finally, we present a novel multispeckle denoising algorithm that allows our instrument to achieve a signal-to-noise ratio gain that is equal to the square root of the number of detected speckles, whilst detecting up to ∼1290 speckles in parallel. The signal-to-noise ratio gain of 36 that we report is a significant step toward mitigating the trade-off that exists between signal-to-noise ratio and imaging depth in diffuse correlation spectroscopy.
Collapse
Affiliation(s)
- Edward James
- Department of Medical Physics & Biomedical Engineering, University College London, London, WC1E 6BT, UK
| | - Samuel Powell
- Department of Medical Physics & Biomedical Engineering, University College London, London, WC1E 6BT, UK
- Faculty of Engineering, The University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Peter Munro
- Department of Medical Physics & Biomedical Engineering, University College London, London, WC1E 6BT, UK
| |
Collapse
|
23
|
Advances in Neuroimaging and Monitoring to Defend Cerebral Perfusion in Noncardiac Surgery. Anesthesiology 2022; 136:1015-1038. [PMID: 35482943 DOI: 10.1097/aln.0000000000004205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Noncardiac surgery conveys a substantial risk of secondary organ dysfunction and injury. Neurocognitive dysfunction and covert stroke are emerging as major forms of perioperative organ dysfunction, but a better understanding of perioperative neurobiology is required to identify effective treatment strategies. The likelihood and severity of perioperative brain injury may be increased by intraoperative hemodynamic dysfunction, tissue hypoperfusion, and a failure to recognize complications early in their development. Advances in neuroimaging and monitoring techniques, including optical, sonographic, and magnetic resonance, have progressed beyond structural imaging and now enable noninvasive assessment of cerebral perfusion, vascular reserve, metabolism, and neurologic function at the bedside. Translation of these imaging methods into the perioperative setting has highlighted several potential avenues to optimize tissue perfusion and deliver neuroprotection. This review introduces the methods, metrics, and evidence underlying emerging optical and magnetic resonance neuroimaging methods and discusses their potential experimental and clinical utility in the setting of noncardiac surgery.
Collapse
|
24
|
Johnson TW, Dar IA, Donohue KL, Xu YY, Santiago E, Selioutski O, Marinescu MA, Maddox RK, Wu TT, Schifitto G, Gosev I, Choe R, Khan IR. Cerebral Blood Flow Hemispheric Asymmetry in Comatose Adults Receiving Extracorporeal Membrane Oxygenation. Front Neurosci 2022; 16:858404. [PMID: 35478849 PMCID: PMC9036108 DOI: 10.3389/fnins.2022.858404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/09/2022] [Indexed: 12/03/2022] Open
Abstract
Peripheral veno-arterial extracorporeal membrane oxygenation (ECMO) artificially oxygenates and circulates blood retrograde from the femoral artery, potentially exposing the brain to asymmetric perfusion. Though ECMO patients frequently experience brain injury, neurologic exams and imaging are difficult to obtain. Diffuse correlation spectroscopy (DCS) non-invasively measures relative cerebral blood flow (rBF) at the bedside using an optical probe on each side of the forehead. In this study we observed interhemispheric rBF differences in response to mean arterial pressure (MAP) changes in adult ECMO recipients. We recruited 13 subjects aged 21–78 years (7 with cardiac arrest, 4 with acute heart failure, and 2 with acute respiratory distress syndrome). They were dichotomized via Glasgow Coma Scale Motor score (GCS-M) into comatose (GCS-M ≤ 4; n = 4) and non-comatose (GCS-M > 4; n = 9) groups. Comatose patients had greater interhemispheric rBF asymmetry (ASYMrBF) vs. non-comatose patients over a range of MAP values (29 vs. 11%, p = 0.009). ASYMrBF in comatose patients resolved near a MAP range of 70–80 mmHg, while rBF remained symmetric through a wider MAP range in non-comatose patients. Correlations between post-oxygenator pCO2 or pH vs. ASYMrBF were significantly different between comatose and non-comatose groups. Our findings indicate that comatose patients are more likely to have asymmetric cerebral perfusion.
Collapse
Affiliation(s)
- Thomas W. Johnson
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, United States
| | - Irfaan A. Dar
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
| | - Kelly L. Donohue
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Yama Y. Xu
- School of Arts and Sciences, University of Rochester, Rochester, NY, United States
| | - Esmeralda Santiago
- School of Arts and Sciences, University of Rochester, Rochester, NY, United States
| | - Olga Selioutski
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, United States
| | - Mark A. Marinescu
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Ross K. Maddox
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, United States
| | - Tong Tong Wu
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY, United States
| | - Giovanni Schifitto
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, United States
| | - Igor Gosev
- Division of Cardiac Surgery, Department of Surgery, University of Rochester Medical Center, Rochester, NY, United States
| | - Regine Choe
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY, United States
| | - Imad R. Khan
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, United States
- *Correspondence: Imad R. Khan,
| |
Collapse
|
25
|
Wu MM, Perdue K, Chan ST, Stephens KA, Deng B, Franceschini MA, Carp SA. Complete head cerebral sensitivity mapping for diffuse correlation spectroscopy using subject-specific magnetic resonance imaging models. BIOMEDICAL OPTICS EXPRESS 2022; 13:1131-1151. [PMID: 35414976 PMCID: PMC8973189 DOI: 10.1364/boe.449046] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 05/11/2023]
Abstract
We characterize cerebral sensitivity across the entire adult human head for diffuse correlation spectroscopy, an optical technique increasingly used for bedside cerebral perfusion monitoring. Sixteen subject-specific magnetic resonance imaging-derived head models were used to identify high sensitivity regions by running Monte Carlo light propagation simulations at over eight hundred uniformly distributed locations on the head. Significant spatial variations in cerebral sensitivity, consistent across subjects, were found. We also identified correlates of such differences suitable for real-time assessment. These variations can be largely attributed to changes in extracerebral thickness and should be taken into account to optimize probe placement in experimental settings.
Collapse
Affiliation(s)
- Melissa M. Wu
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, USA
| | | | - Suk-Tak Chan
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, USA
| | - Kimberly A. Stephens
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, USA
| | - Bin Deng
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, USA
| | | | - Stefan A. Carp
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, USA
| |
Collapse
|
26
|
Poon CS, Langri DS, Rinehart B, Rambo TM, Miller AJ, Foreman B, Sunar U. First-in-clinical application of a time-gated diffuse correlation spectroscopy system at 1064 nm using superconducting nanowire single photon detectors in a neuro intensive care unit. BIOMEDICAL OPTICS EXPRESS 2022; 13:1344-1356. [PMID: 35414986 PMCID: PMC8973196 DOI: 10.1364/boe.448135] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 06/02/2023]
Abstract
Recently proposed time-gated diffuse correlation spectroscopy (TG-DCS) has significant advantages compared to conventional continuous wave (CW)-DCS, but it is still in an early stage and clinical capability has yet to be established. The main challenge for TG-DCS is the lower signal-to-noise ratio (SNR) when gating for the deeper traveling late photons. Longer wavelengths, such as 1064 nm have a smaller effective attenuation coefficient and a higher power threshold in humans, which significantly increases the SNR. Here, we demonstrate the clinical utility of TG-DCS at 1064 nm in a case study on a patient with severe traumatic brain injury admitted to the neuro-intensive care unit (neuroICU). We showed a significant correlation between TG-DCS early (ρ = 0.67) and late (ρ = 0.76) gated against invasive thermal diffusion flowmetry. We also analyzed TG-DCS at high temporal resolution (50 Hz) to elucidate pulsatile flow data. Overall, this study demonstrates the first clinical translation capability of the TG-DCS system at 1064 nm using a superconducting nanowire single-photon detector.
Collapse
Affiliation(s)
- Chien-Sing Poon
- Department of Biomedical, Industrial and Human Factors Engineering, Wright State University, Dayton, OH 45435, USA
| | - Dharminder S. Langri
- Department of Biomedical, Industrial and Human Factors Engineering, Wright State University, Dayton, OH 45435, USA
| | - Benjamin Rinehart
- Department of Biomedical, Industrial and Human Factors Engineering, Wright State University, Dayton, OH 45435, USA
| | | | | | - Brandon Foreman
- Dept of Neurology & Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH 45219, USA
| | - Ulas Sunar
- Department of Biomedical, Industrial and Human Factors Engineering, Wright State University, Dayton, OH 45435, USA
| |
Collapse
|
27
|
Effects of circulatory arrest and cardiopulmonary bypass on cerebral autoregulation in neonatal swine. Pediatr Res 2022; 91:1374-1382. [PMID: 33947997 PMCID: PMC8566324 DOI: 10.1038/s41390-021-01525-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/02/2021] [Accepted: 03/18/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND Cerebral autoregulation mechanisms help maintain adequate cerebral blood flow (CBF) despite changes in cerebral perfusion pressure. Impairment of cerebral autoregulation, during and after cardiopulmonary bypass (CPB), may increase risk of neurologic injury in neonates undergoing surgery. In this study, alterations of cerebral autoregulation were assessed in a neonatal swine model probing four perfusion strategies. METHODS Neonatal swine (n = 25) were randomized to continuous deep hypothermic cardiopulmonary bypass (DH-CPB, n = 7), deep hypothermic circulatory arrest (DHCA, n = 7), selective cerebral perfusion (SCP, n = 7) at deep hypothermia, or normothermic cardiopulmonary bypass (control, n = 4). The correlation coefficient (LDx) between laser Doppler measurements of CBF and mean arterial blood pressure was computed at initiation and conclusion of CPB. Alterations in cerebral autoregulation were assessed by the change between initial and final LDx measurements. RESULTS Cerebral autoregulation became more impaired (LDx increased) in piglets that underwent DH-CPB (initial LDx: median 0.15, IQR [0.03, 0.26]; final: 0.45, [0.27, 0.74]; p = 0.02). LDx was not altered in those undergoing DHCA (p > 0.99) or SCP (p = 0.13). These differences were not explained by other risk factors. CONCLUSIONS In a validated swine model of cardiac surgery, DH-CPB had a significant effect on cerebral autoregulation, whereas DHCA and SCP did not. IMPACT Approximately half of the patients who survive neonatal heart surgery with cardiopulmonary bypass (CPB) experience neurodevelopmental delays. This preclinical investigation takes steps to elucidate and isolate potential perioperative risk factors of neurologic injury, such as impairment of cerebral autoregulation, associated with cardiac surgical procedures involving CPB. We demonstrate a method to characterize cerebral autoregulation during CPB pump flow changes in a neonatal swine model of cardiac surgery. Cerebral autoregulation was not altered in piglets that underwent deep hypothermic circulatory arrest (DHCA) or selective cerebral perfusion (SCP), but it was altered in piglets that underwent deep hypothermic CBP.
Collapse
|
28
|
Pham T, Fernandez C, Blaney G, Tgavalekos K, Sassaroli A, Cai X, Bibu S, Kornbluth J, Fantini S. Noninvasive Optical Measurements of Dynamic Cerebral Autoregulation by Inducing Oscillatory Cerebral Hemodynamics. Front Neurol 2021; 12:745987. [PMID: 34867729 PMCID: PMC8637213 DOI: 10.3389/fneur.2021.745987] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/13/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: Cerebral autoregulation limits the variability of cerebral blood flow (CBF) in the presence of systemic arterial blood pressure (ABP) changes. Monitoring cerebral autoregulation is important in the Neurocritical Care Unit (NCCU) to assess cerebral health. Here, our goal is to identify optimal frequency-domain near-infrared spectroscopy (FD-NIRS) parameters and apply a hemodynamic model of coherent hemodynamics spectroscopy (CHS) to assess cerebral autoregulation in healthy adult subjects and NCCU patients. Methods: In five healthy subjects and three NCCU patients, ABP oscillations at a frequency around 0.065 Hz were induced by cyclic inflation-deflation of pneumatic thigh cuffs. Transfer function analysis based on wavelet transform was performed to measure dynamic relationships between ABP and oscillations in oxy- (O), deoxy- (D), and total- (T) hemoglobin concentrations measured with different FD-NIRS methods. In healthy subjects, we also obtained the dynamic CBF-ABP relationship by using FD-NIRS measurements and the CHS model. In healthy subjects, an interval of hypercapnia was performed to induce cerebral autoregulation impairment. In NCCU patients, the optical measurements of autoregulation were linked to individual clinical diagnoses. Results: In healthy subjects, hypercapnia leads to a more negative phase difference of both O and D oscillations vs. ABP oscillations, which are consistent across different FD-NIRS methods and are highly correlated with a more negative phase difference CBF vs. ABP. In the NCCU, a less negative phase difference of D vs. ABP was observed in one patient as compared to two others, indicating a better autoregulation in that patient. Conclusions: Non-invasive optical measurements of induced phase difference between D and ABP show the strongest sensitivity to cerebral autoregulation. The results from healthy subjects also show that the CHS model, in combination with FD-NIRS, can be applied to measure the CBF-ABP dynamics for a better direct measurement of cerebral autoregulation.
Collapse
Affiliation(s)
- Thao Pham
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Cristianne Fernandez
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Giles Blaney
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Kristen Tgavalekos
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Angelo Sassaroli
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Xuemei Cai
- Department of Neurology, Tufts University School of Medicine, Boston, MA, United States
| | - Steve Bibu
- Department of Neurology, Tufts University School of Medicine, Boston, MA, United States
| | - Joshua Kornbluth
- Department of Neurology, Tufts University School of Medicine, Boston, MA, United States
| | - Sergio Fantini
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| |
Collapse
|
29
|
Poon CS, Rinehart B, Langri DS, Rambo TM, Miller AJ, Foreman B, Sunar U. Noninvasive Optical Monitoring of Cerebral Blood Flow and EEG Spectral Responses after Severe Traumatic Brain Injury: A Case Report. Brain Sci 2021; 11:1093. [PMID: 34439712 PMCID: PMC8394546 DOI: 10.3390/brainsci11081093] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/13/2021] [Accepted: 08/14/2021] [Indexed: 11/16/2022] Open
Abstract
Survivors of severe brain injury may require care in a neurointensive care unit (neuro-ICU), where the brain is vulnerable to secondary brain injury. Thus, there is a need for noninvasive, bedside, continuous cerebral blood flow monitoring approaches in the neuro-ICU. Our goal is to address this need through combined measurements of EEG and functional optical spectroscopy (EEG-Optical) instrumentation and analysis to provide a complementary fusion of data about brain activity and function. We utilized the diffuse correlation spectroscopy method for assessing cerebral blood flow at the neuro-ICU in a patient with traumatic brain injury. The present case demonstrates the feasibility of continuous recording of noninvasive cerebral blood flow transients that correlated well with the gold-standard invasive measurements and with the frequency content changes in the EEG data.
Collapse
Affiliation(s)
- Chien-Sing Poon
- Department of Biomedical Engineering, Wright State University, Dayton, OH 45435, USA; (C.-S.P.); (B.R.); (D.S.L.)
| | - Benjamin Rinehart
- Department of Biomedical Engineering, Wright State University, Dayton, OH 45435, USA; (C.-S.P.); (B.R.); (D.S.L.)
| | - Dharminder S. Langri
- Department of Biomedical Engineering, Wright State University, Dayton, OH 45435, USA; (C.-S.P.); (B.R.); (D.S.L.)
| | | | | | - Brandon Foreman
- Department of Neurology & Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH 45267, USA;
| | - Ulas Sunar
- Department of Biomedical Engineering, Wright State University, Dayton, OH 45435, USA; (C.-S.P.); (B.R.); (D.S.L.)
| |
Collapse
|
30
|
Mazumder D, Wu MM, Ozana N, Tamborini D, Franceschini MA, Carp SA. Optimization of time domain diffuse correlation spectroscopy parameters for measuring brain blood flow. NEUROPHOTONICS 2021; 8:035005. [PMID: 34395719 PMCID: PMC8358828 DOI: 10.1117/1.nph.8.3.035005] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 07/15/2021] [Indexed: 05/05/2023]
Abstract
Significance: Time domain diffuse correlation spectroscopy (TD-DCS) can offer increased sensitivity to cerebral hemodynamics and reduced contamination from extracerebral layers by differentiating photons based on their travel time in tissue. We have developed rigorous simulation and evaluation procedures to determine the optimal time gate parameters for monitoring cerebral perfusion considering instrumentation characteristics and realistic measurement noise. Aim: We simulate TD-DCS cerebral perfusion monitoring performance for different instrument response functions (IRFs) in the presence of realistic experimental noise and evaluate metrics of sensitivity to brain blood flow, signal-to-noise ratio (SNR), and ability to reject the influence of extracerebral blood flow across a variety of time gates to determine optimal operating parameters. Approach: Light propagation was modeled on an MRI-derived human head geometry using Monte Carlo simulations for 765- and 1064-nm excitation wavelengths. We use a virtual probe with a source-detector separation of 1 cm placed in the pre-frontal region. Performance metrics described above were evaluated to determine optimal time gate(s) for different IRFs. Validation of simulation noise estimates was done with experiments conducted on an intralipid-based liquid phantom. Results: We find that TD-DCS performance strongly depends on the system IRF. Among Gaussian pulse shapes, ∼ 300 ps pulse length appears to offer the best performance, at wide gates (500 ps and larger) with start times 400 and 600 ps after the peak of the TPSF at 765 and 1064 nm, respectively, for a 1-s integration time at photon detection rates seen experimentally (600 kcps at 765 nm and 4 Mcps at 1064 nm). Conclusions: Our work shows that optimal time gates satisfy competing requirements for sufficient sensitivity and sufficient SNR. The achievable performance is further impacted by system IRF with ∼ 300 ps quasi-Gaussian pulse obtained using electro-optic laser shaping providing the best results.
Collapse
Affiliation(s)
- Dibbyan Mazumder
- Harvard Medical School, Massachusetts General Hospital, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
- Address all correspondence to Dibbyan Mazumder,
| | - Melissa M. Wu
- Harvard Medical School, Massachusetts General Hospital, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - Nisan Ozana
- Harvard Medical School, Massachusetts General Hospital, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - Davide Tamborini
- Harvard Medical School, Massachusetts General Hospital, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - Maria Angela Franceschini
- Harvard Medical School, Massachusetts General Hospital, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - Stefan A. Carp
- Harvard Medical School, Massachusetts General Hospital, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| |
Collapse
|
31
|
Spera V, Sitnikova T, Ward MJ, Farzam P, Hughes J, Gazecki S, Bui E, Maiello M, De Taboada L, Hamblin MR, Franceschini MA, Cassano P. Pilot Study on Dose-Dependent Effects of Transcranial Photobiomodulation on Brain Electrical Oscillations: A Potential Therapeutic Target in Alzheimer's Disease. J Alzheimers Dis 2021; 83:1481-1498. [PMID: 34092636 DOI: 10.3233/jad-210058] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Transcranial photobiomodulation (tPBM) has recently emerged as a potential cognitive enhancement technique and clinical treatment for various neuropsychiatric and neurodegenerative disorders by delivering invisible near-infrared light to the scalp and increasing energy metabolism in the brain. OBJECTIVE We assessed whether transcranial photobiomodulation with near-infrared light modulates cerebral electrical activity through electroencephalogram (EEG) and cerebral blood flow (CBF). METHODS We conducted a single-blind, sham-controlled pilot study to test the effect of continuous (c-tPBM), pulse (p-tPBM), and sham (s-tPBM) transcranial photobiomodulation on EEG oscillations and CBF using diffuse correlation spectroscopy (DCS) in a sample of ten healthy subjects [6F/4 M; mean age 28.6±12.9 years]. c-tPBM near-infrared radiation (NIR) (830 nm; 54.8 mW/cm2; 65.8 J/cm2; 2.3 kJ) and p-tPBM (830 nm; 10 Hz; 54.8 mW/cm2; 33%; 21.7 J/cm2; 0.8 kJ) were delivered concurrently to the frontal areas by four LED clusters. EEG and DCS recordings were performed weekly before, during, and after each tPBM session. RESULTS c-tPBM significantly boosted gamma (t = 3.02, df = 7, p < 0.02) and beta (t = 2.91, df = 7, p < 0.03) EEG spectral powers in eyes-open recordings and gamma power (t = 3.61, df = 6, p < 0.015) in eyes-closed recordings, with a widespread increase over frontal-central scalp regions. There was no significant effect of tPBM on CBF compared to sham. CONCLUSION Our data suggest a dose-dependent effect of tPBM with NIR on cerebral gamma and beta neuronal activity. Altogether, our findings support the neuromodulatory effect of transcranial NIR.
Collapse
Affiliation(s)
- Vincenza Spera
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA.,Department of Clinical Experimental Medicine, Psychiatric Unit, University of Pisa, Pisa, Italy
| | - Tatiana Sitnikova
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA.,HMS/MGH Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | | | - Parya Farzam
- HMS/MGH Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA.,Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Jeremy Hughes
- HMS/MGH Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA.,Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Samuel Gazecki
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Eric Bui
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Marco Maiello
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA.,Department of Clinical Experimental Medicine, Psychiatric Unit, University of Pisa, Pisa, Italy
| | | | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa.,Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Maria Angela Franceschini
- HMS/MGH Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA.,Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Paolo Cassano
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
32
|
Zavriyev AI, Kaya K, Farzam P, Farzam PY, Sunwoo J, Jassar AS, Sundt TM, Carp SA, Franceschini MA, Qu JZ. The role of diffuse correlation spectroscopy and frequency-domain near-infrared spectroscopy in monitoring cerebral hemodynamics during hypothermic circulatory arrests. JTCVS Tech 2021; 7:161-177. [PMID: 34318236 PMCID: PMC8311503 DOI: 10.1016/j.xjtc.2021.01.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVES Real-time noninvasive monitoring of cerebral blood flow (CBF) during surgery is key to reducing mortality rates associated with adult cardiac surgeries requiring hypothermic circulatory arrest (HCA). We explored a method to monitor cerebral blood flow during different brain protection techniques using diffuse correlation spectroscopy (DCS), a noninvasive optical technique which, combined with frequency-domain near-infrared spectroscopy (FDNIRS), also provides a measure of oxygen metabolism. METHODS We used DCS in combination with FDNIRS to simultaneously measure hemoglobin oxygen saturation (SO2), an index of cerebral blood flow (CBFi), and an index of cerebral metabolic rate of oxygen (CMRO2i) in 12 patients undergoing cardiac surgery with HCA. RESULTS Our measurements revealed that a negligible amount of blood is delivered to the cerebral cortex during HCA with retrograde cerebral perfusion, indistinguishable from HCA-only cases (median CBFi drops of 93% and 95%, respectively) with consequent similar decreases in SO2 (mean decrease of 0.6 ± 0.1% and 0.9 ± 0.2% per minute, respectively); CBFi and SO2 are mostly maintained with antegrade cerebral perfusion; the relationship of CMRO2i to temperature is given by CMRO2i = 0.052e0.079T. CONCLUSIONS FDNIRS-DCS is able to detect changes in CBFi, SO2, and CMRO2i with intervention and can become a valuable tool for optimizing cerebral protection during HCA.
Collapse
Key Words
- ACP, antegrade cerebral perfusion
- CBFi, cerebral blood flow (index)
- CMRO2i, cerebral metabolic rate of oxygen (index)
- CPB, cardiopulmonary bypass
- DCS, diffuse correlation spectroscopy
- EEG, electroencephalography
- FDNIRS, frequency-domain near-infrared spectroscopy
- HCA, hypothermic circulatory arrest
- NIRS, near-infrared spectroscopy
- RCP, retrograde cerebral perfusion
- SO2, hemoglobin oxygen saturation
- TCD, transcranial Doppler ultrasound
- antegrade cerebral perfusion
- brain imaging
- cerebral blood flow
- diffuse correlation spectroscopy
- hypothermic circulatory arrest
- near-infrared spectroscopy
- rSO2, regional oxygen saturation
- retrograde cerebral perfusion
Collapse
Affiliation(s)
- Alexander I. Zavriyev
- Department of Radiology, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | - Kutlu Kaya
- Department of Radiology, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | - Parisa Farzam
- Department of Radiology, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | - Parya Y. Farzam
- Department of Radiology, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | - John Sunwoo
- Department of Radiology, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | - Arminder S. Jassar
- Division of Cardiac Surgery, Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | - Thoralf M. Sundt
- Division of Cardiac Surgery, Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | - Stefan A. Carp
- Department of Radiology, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | - Maria Angela Franceschini
- Department of Radiology, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | - Jason Z. Qu
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| |
Collapse
|
33
|
Abstract
Aneurysmal subarachnoid hemorrhage is a neurologic emergency that requires immediate patient stabilization and prompt diagnosis and treatment. Early measures should focus on principles of advanced cardiovascular life support. The aneurysm should be evaluated and treated in a comprehensive stroke center by a multidisciplinary team capable of endovascular and, operative approaches. Once the aneurysm is secured, the patient is best managed by a dedicated neurocritical care service to prevent and manage complications, including a syndrome of delayed neurologic decline. The goal of such specialized care is to prevent secondary injury, reduce length of stay, and improve outcomes for survivors of the disease.
Collapse
Affiliation(s)
- David Y Chung
- Division of Neurocritical Care, Department of Neurology, Boston Medical Center, Boston, MA, USA; Division of Neurocritical Care, Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA; Neurovascular Research Unit, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA.
| | - Mohamad Abdalkader
- Department of Neurology, Boston University School of Medicine, Boston Medical Center, Boston, MA, USA; Department of Neurosurgery, Boston University School of Medicine, Boston Medical Center, Boston, MA, USA; Department of Radiology, Boston University School of Medicine, Boston Medical Center, Boston, MA, USA
| | - Thanh N Nguyen
- Department of Neurology, Boston University School of Medicine, Boston Medical Center, Boston, MA, USA; Department of Neurosurgery, Boston University School of Medicine, Boston Medical Center, Boston, MA, USA; Department of Radiology, Boston University School of Medicine, Boston Medical Center, Boston, MA, USA
| |
Collapse
|
34
|
Zhou W, Kholiqov O, Zhu J, Zhao M, Zimmermann LL, Martin RM, Lyeth BG, Srinivasan VJ. Functional interferometric diffusing wave spectroscopy of the human brain. SCIENCE ADVANCES 2021; 7:eabe0150. [PMID: 33980479 PMCID: PMC8115931 DOI: 10.1126/sciadv.abe0150] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 03/23/2021] [Indexed: 05/18/2023]
Abstract
Cerebral blood flow (CBF) is essential for brain function, and CBF-related signals can inform us about brain activity. Yet currently, high-end medical instrumentation is needed to perform a CBF measurement in adult humans. Here, we describe functional interferometric diffusing wave spectroscopy (fiDWS), which introduces and collects near-infrared light via the scalp, using inexpensive detector arrays to rapidly monitor coherent light fluctuations that encode brain blood flow index (BFI), a surrogate for CBF. Compared to other functional optical approaches, fiDWS measures BFI faster and deeper while also providing continuous wave absorption signals. Achieving clear pulsatile BFI waveforms at source-collector separations of 3.5 cm, we confirm that optical BFI, not absorption, shows a graded hypercapnic response consistent with human cerebrovascular physiology, and that BFI has a better contrast-to-noise ratio than absorption during brain activation. By providing high-throughput measurements of optical BFI at low cost, fiDWS will expand access to CBF.
Collapse
Affiliation(s)
- Wenjun Zhou
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA
| | - Oybek Kholiqov
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA
| | - Jun Zhu
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA
| | - Mingjun Zhao
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA
| | - Lara L Zimmermann
- Department of Neurological Surgery, University of California, Davis, Sacramento, CA, USA
| | - Ryan M Martin
- Department of Neurological Surgery, University of California, Davis, Sacramento, CA, USA
| | - Bruce G Lyeth
- Department of Neurological Surgery, University of California, Davis, Sacramento, CA, USA
| | - Vivek J Srinivasan
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA.
- Department of Ophthalmology and Vision Science, University of California, Davis, Sacramento, CA, USA
- Department of Ophthalmology, NYU Langone Health, New York, NY, USA
- Department of Radiology, NYU Langone Health, New York, NY, USA
- Tech4Health Institute, NYU Langone Health, New York, NY, USA
| |
Collapse
|
35
|
Takahashi CE, Virmani D, Chung DY, Ong C, Cervantes-Arslanian AM. Blunt and Penetrating Severe Traumatic Brain Injury. Neurol Clin 2021; 39:443-469. [PMID: 33896528 DOI: 10.1016/j.ncl.2021.02.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Severe traumatic brain injury is a common problem. Current practices focus on the importance of early resuscitation, transfer to high-volume centers, and provider expertise across multiple specialties. In the emergency department, patients should receive urgent intracranial imaging and consideration for tranexamic acid. Close observation in the intensive care unit environment helps identify problems, such as seizure, intracranial pressure crisis, and injury progression. In addition to traditional neurologic examination, patients benefit from use of intracranial monitors. Monitors gather physiologic data on intracranial and cerebral perfusion pressures to help guide therapy. Brain tissue oxygenation monitoring and cerebromicrodialysis show promise in studies.
Collapse
Affiliation(s)
- Courtney E Takahashi
- Department of Neurology, Boston Medical Center, 72 East Concord Street, Collamore, C-3, Boston, MA 02118, USA.
| | - Deepti Virmani
- Department of Neurology, Boston University School of Medicine and Boston Medical Center, 72 East Concord Street, Collamore, C-3, Boston, MA 02118, USA
| | - David Y Chung
- Department of Neurology, Boston University School of Medicine and Boston Medical Center, 72 East Concord Street, Collamore, C-3, Boston, MA 02118, USA; Division of Neurocritical Care, Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA; Neurovascular Research Unit, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Charlene Ong
- Department of Neurology, Boston University School of Medicine and Boston Medical Center, 72 East Concord Street, Collamore, C-3, Boston, MA 02118, USA
| | - Anna M Cervantes-Arslanian
- Boston University School of Medicine and Boston Medical Center, 72 East Concord Street, Collamore, C-3, Boston, MA 02118, USA
| |
Collapse
|
36
|
The Role of Near-infrared Spectroscopy in Cerebral Autoregulation Monitoring. J Neurosurg Anesthesiol 2020; 31:269-270. [PMID: 31058675 DOI: 10.1097/ana.0000000000000607] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
37
|
Dar IA, Khan IR, Maddox RK, Selioutski O, Donohue KL, Marinescu MA, Prasad SM, Quazi NH, Donlon JS, Loose EA, Ramirez GA, Ren J, Majeski JB, Abramson K, Durduran T, Busch DR, Choe R. Towards detection of brain injury using multimodal non-invasive neuromonitoring in adults undergoing extracorporeal membrane oxygenation. BIOMEDICAL OPTICS EXPRESS 2020; 11:6551-6569. [PMID: 33282508 PMCID: PMC7687959 DOI: 10.1364/boe.401641] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/16/2020] [Accepted: 10/02/2020] [Indexed: 05/27/2023]
Abstract
Extracorporeal membrane oxygenation (ECMO) is a form of cardiopulmonary bypass that provides life-saving support to critically ill patients whose illness is progressing despite maximal conventional support. Use in adults is expanding, however neurological injuries are common. Currently, the existing brain imaging tools are a snapshot in time and require high-risk patient transport. Here we assess the feasibility of measuring diffuse correlation spectroscopy, transcranial Doppler ultrasound, electroencephalography, and auditory brainstem responses at the bedside, and developing a cerebral autoregulation metric. We report preliminary results from two patients, demonstrating feasibility and laying the foundation for future studies monitoring neurological health during ECMO.
Collapse
Affiliation(s)
- Irfaan A. Dar
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14620, USA
| | - Imad R. Khan
- Department of Neurology, Division of Neurocritical Care, University of Rochester Medical Center, Rochester, New York 14642, USA
| | - Ross K. Maddox
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14620, USA
- Department of Neuroscience, University of Rochester, Rochester, New York 14620, USA
| | - Olga Selioutski
- Department of Neurology, Division of Epilepsy, University of Rochester Medical Center, Rochester, New York 14642, USA
| | - Kelly L. Donohue
- Department of Neurology, Division of Neurocritical Care, University of Rochester Medical Center, Rochester, New York 14642, USA
| | - Mark A. Marinescu
- Department of Medicine, Division of Cardiology, University of Rochester Medical Center, Rochester, New York 14642, USA
| | - Sunil M. Prasad
- Department of Surgery, Division of Cardiac Surgery, University of Rochester Medical Center, Rochester, New York 14642, USA
| | - Nadim H. Quazi
- Department of Biology, University of Rochester, Rochester, New York 14620, USA
| | - Jack S. Donlon
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14620, USA
| | - Emily A. Loose
- Department of Biology, University of Rochester, Rochester, New York 14620, USA
| | - Gabriel A. Ramirez
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14620, USA
| | - Jingxuan Ren
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14620, USA
| | - Joseph B. Majeski
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14620, USA
| | - Kenneth Abramson
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Turgut Durduran
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), 08860, Spain
- Instituciò Catalana de Recerca i Estudis Avançats (ICREA), Castelldefels (Barcelona), 08015, Spain
| | - David R. Busch
- Department of Anesthesiology and Pain Management, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Regine Choe
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14620, USA
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, New York 14620, USA
| |
Collapse
|
38
|
Robinson M, Boas D, Sakadžic S, Franceschini MA, Carp S. Interferometric diffuse correlation spectroscopy improves measurements at long source-detector separation and low photon count rate. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:JBO-200232R. [PMID: 33000571 PMCID: PMC7525153 DOI: 10.1117/1.jbo.25.9.097004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/11/2020] [Indexed: 05/04/2023]
Abstract
SIGNIFICANCE The use of diffuse correlation spectroscopy (DCS) has shown efficacy in research studies as a technique capable of noninvasively monitoring blood flow in tissue with applications in neuromonitoring, exercise science, and breast cancer management. The ability of DCS to resolve blood flow in these tissues is related to the optical sensitivity and signal-to-noise ratio (SNR) of the measurements, which in some cases, particularly adult cerebral blood flow measurements, is inadequate in a significant portion of the population. Improvements to DCS sensitivity and SNR could allow for greater clinical translation of this technique. AIM Interferometric diffuse correlation spectroscopy (iDCS) was characterized and compared to traditional homodyne DCS to determine possible benefits of utilizing heterodyne detection. APPROACH An iDCS system was constructed by modifying a homodyne DCS system with fused fiber couplers to create a Mach-Zehnder interferometer. Comparisons between homodyne and heterodyne detection were performed using an intralipid phantom characterized at two extended source-detector separations (2.4, 3.6 cm), different photon count rates, and a range of reference arm power levels. Characterization of the iDCS signal mixing was compared to theory. Precision of the estimation of the diffusion coefficient and SNR of the autocorrelation curve were compared between different measurement conditions that mimicked what would be seen in vivo. RESULTS The mixture of signals present in the heterodyne autocorrelation function was found to agree with the derived theory and resulted in accurate measurement of the diffusion coefficient of the phantom. Improvement of the SNR of the autocorrelation curve up to ∼2 × and up to 80% reduction in the variability of the diffusion coefficient fit were observed for all measurement cases as a function of increased reference arm power. CONCLUSIONS iDCS has the potential to improve characterization of blood flow in tissue at extended source-detector separations, enhancing depth sensitivity and SNR.
Collapse
Affiliation(s)
- Mitchell Robinson
- Athinoula A. Martinos Ctr. for Biomedical Imaging, Massachusetts General Hospital, United States
- Harvard-MIT Health Sciences and Technology, United States
- Harvard Medical School, United States
| | - David Boas
- Neurophotonics Ctr., Boston Univ., United States
| | - Sava Sakadžic
- Athinoula A. Martinos Ctr. for Biomedical Imaging, Massachusetts General Hospital, United States
- Harvard Medical School, United States
| | - Maria Angela Franceschini
- Athinoula A. Martinos Ctr. for Biomedical Imaging, Massachusetts General Hospital, United States
- Harvard Medical School, United States
| | - Stefan Carp
- Athinoula A. Martinos Ctr. for Biomedical Imaging, Massachusetts General Hospital, United States
- Harvard Medical School, United States
| |
Collapse
|
39
|
Sathialingam E, Williams EK, Lee SY, McCracken CE, Lam WA, Buckley EM. Hematocrit significantly confounds diffuse correlation spectroscopy measurements of blood flow. BIOMEDICAL OPTICS EXPRESS 2020; 11:4786-4799. [PMID: 32923078 PMCID: PMC7449719 DOI: 10.1364/boe.397613] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 05/11/2023]
Abstract
Diffuse correlation spectroscopy (DCS) is an optical modality used to measure an index of blood flow in biological tissue. This blood flow index depends on both the red blood cell flow rate and density (i.e., hematocrit), although the functional form of hematocrit dependence is not well delineated. Herein, we develop and validate a novel tissue-simulating phantom containing hundreds of microchannels to investigate the influence of hematocrit on blood flow index. For a fixed flow rate, we demonstrate a significant inverse relationship between hematocrit and blood flow index that must be accounted for to accurately estimate blood flow under anemic conditions.
Collapse
Affiliation(s)
- Eashani Sathialingam
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 1760 Haygood Dr, NE, Atlanta, GA 30322, USA
| | - Evelyn Kendall Williams
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 1760 Haygood Dr, NE, Atlanta, GA 30322, USA
| | - Seung Yup Lee
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 1760 Haygood Dr, NE, Atlanta, GA 30322, USA
| | - Courtney E. McCracken
- Department of Pediatrics, School of Medicine, Emory University, 2015 Uppergate Dr., Atlanta, GA 30322, USA
| | - Wilbur A. Lam
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 1760 Haygood Dr, NE, Atlanta, GA 30322, USA
- Department of Pediatrics, School of Medicine, Emory University, 2015 Uppergate Dr., Atlanta, GA 30322, USA
| | - Erin M. Buckley
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 1760 Haygood Dr, NE, Atlanta, GA 30322, USA
- Department of Pediatrics, School of Medicine, Emory University, 2015 Uppergate Dr., Atlanta, GA 30322, USA
| |
Collapse
|
40
|
Forti RM, Katsurayama M, Menko J, Valler L, Quiroga A, Falcão ALE, Li LM, Mesquita RC. Real-Time Non-invasive Assessment of Cerebral Hemodynamics With Diffuse Optical Spectroscopies in a Neuro Intensive Care Unit: An Observational Case Study. Front Med (Lausanne) 2020; 7:147. [PMID: 32411712 PMCID: PMC7198738 DOI: 10.3389/fmed.2020.00147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 04/06/2020] [Indexed: 12/30/2022] Open
Abstract
Prevention of secondary damage is an important goal in the treatment of severe neurological conditions, such as major head trauma or stroke. However, there is currently a lack of non-invasive methods for monitoring cerebral physiology. Diffuse optical methods have been proposed as an inexpensive, non-invasive bedside monitor capable of providing neurophysiology information in neurocritical patients. However, the reliability of the technique to provide accurate longitudinal measurement during the clinical evolution of a patient remains largely unaddressed. Here, we report on the translation of a hybrid diffuse optical system combining frequency domain diffuse optical spectroscopy (FD-DOS) and diffuse correlation spectroscopy (DCS) for real-time monitoring of cerebral physiology in a neuro intensive care unit (neuro-ICU). More specifically, we present a case study of a patient admitted with a high-grade aneurysmal subarachnoid hemorrhage, who was monitored throughout hospitalization. We show that the neurophysiological parameters measured by diffuse optics at the bedside are consistent with the clinical evolution of the patient at all the different stages following its brain lesion. These data provide support for clinical translation of DOS/DCS as a useful biomarker of neurophysiology in the neuro-ICU, particularly in locations where other clinical resources are limited.
Collapse
Affiliation(s)
- Rodrigo M Forti
- Institute of Physics, University of Campinas, Campinas, Brazil.,Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| | - Marilise Katsurayama
- Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil.,Clinical Hospital, University of Campinas, Campinas, Brazil
| | - Julien Menko
- Department of Emergency Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Lenise Valler
- Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil.,Clinical Hospital, University of Campinas, Campinas, Brazil
| | - Andres Quiroga
- Institute of Physics, University of Campinas, Campinas, Brazil.,Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| | | | - Li M Li
- Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil.,School of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Rickson C Mesquita
- Institute of Physics, University of Campinas, Campinas, Brazil.,Brazilian Institute of Neuroscience and Neurotechnology, Campinas, Brazil
| |
Collapse
|
41
|
Baker WB, Balu R, He L, Kavuri VC, Busch DR, Amendolia O, Quattrone F, Frangos S, Maloney-Wilensky E, Abramson K, Mahanna Gabrielli E, Yodh AG, Andrew Kofke W. Continuous non-invasive optical monitoring of cerebral blood flow and oxidative metabolism after acute brain injury. J Cereb Blood Flow Metab 2019; 39:1469-1485. [PMID: 31088234 PMCID: PMC6681541 DOI: 10.1177/0271678x19846657] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Rapid detection of ischemic conditions at the bedside can improve treatment of acute brain injury. In this observational study of 11 critically ill brain-injured adults, we employed a monitoring approach that interleaves time-resolved near-infrared spectroscopy (TR-NIRS) measurements of cerebral oxygen saturation and oxygen extraction fraction (OEF) with diffuse correlation spectroscopy (DCS) measurement of cerebral blood flow (CBF). Using this approach, we demonstrate the clinical promise of non-invasive, continuous optical monitoring of changes in CBF and cerebral metabolic rate of oxygen (CMRO2). In addition, the optical CBF and CMRO2 measures were compared to invasive brain tissue oxygen tension (PbtO2), thermal diffusion flowmetry CBF, and cerebral microdialysis measures obtained concurrently. The optical CBF and CMRO2 information successfully distinguished between ischemic, hypermetabolic, and hyperemic conditions that arose spontaneously during patient care. Moreover, CBF monitoring during pressor-induced changes of mean arterial blood pressure enabled assessment of cerebral autoregulation. In total, the findings suggest that this hybrid non-invasive neurometabolic optical monitor (NNOM) can facilitate clinical detection of adverse physiological changes in brain injured patients that are otherwise difficult to measure with conventional bedside monitoring techniques.
Collapse
Affiliation(s)
- Wesley B Baker
- 1 Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA.,2 Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ramani Balu
- 3 Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Lian He
- 4 Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA
| | - Venkaiah C Kavuri
- 4 Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA
| | - David R Busch
- 4 Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA.,5 Department of Anesthesiology & Pain Management and Neurology & Neurotherapeutics, University of Texas Southwestern, Dallas, TX, USA
| | - Olivia Amendolia
- 6 Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Francis Quattrone
- 6 Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Suzanne Frangos
- 6 Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Kenneth Abramson
- 4 Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Arjun G Yodh
- 4 Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA
| | - W Andrew Kofke
- 1 Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
42
|
Wang D, Baker WB, He H, Gao P, Zhu L, Peng Q, Li Z, Li F, Chen T, Feng H. Influence of probe pressure on the pulsatile diffuse correlation spectroscopy blood flow signal on the forearm and forehead regions. NEUROPHOTONICS 2019; 6:035013. [PMID: 31548976 PMCID: PMC6755374 DOI: 10.1117/1.nph.6.3.035013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 09/04/2019] [Indexed: 05/24/2023]
Abstract
In a pilot study of 11 healthy adults (24 to 39 years, all male), we characterize the influence of external probe pressure on optical diffuse correlation spectroscopy (DCS) measurements of pulsatile blood flow obtained on the forearm and forehead. For external probe pressure control, a hand inflatable air balloon is inserted between the tissue and an elastic strap. The air balloon is sequentially inflated to achieve a wide range of external probe pressures between 20 and 250 mmHg on the forearm and forehead, which are measured with a flexible pressure sensor underneath the probe. At each probe pressure, the pulsatility index (PI) of arteriole blood flow on the forehead and forearm is measured with DCS (2.1-cm source-detector separation). We observe a strong correlation between probe pressure and PI on the forearm ( R = 0.66 , p < 0.001 ), but not on the forehead ( R = - 0.11 , p = 0.4 ). The forearm measurements demonstrate the sensitivity of the DCS PI to skeletal muscle tissue pressure, whereas the forehead measurements indicate that DCS PI measurements are not sensitive to scalp tissue pressure. Note, in contrast to pulsatility, the time-averaged DCS blood flow index on the forehead was significantly correlated with probe pressure ( R = - 0.55 , p < 0.001 ). This pilot data appears to support the initiation of more comprehensive clinical studies on DCS to detect trends in internal pressure in brain and skeletal muscle.
Collapse
Affiliation(s)
- Detian Wang
- Army Medical University, Southwest Hospital, Department of Neurosurgery, Chong Qing, China
- China Academy of Engineering Physics, Institute of Fluid Physics, Mianyang, China
| | - Wesley B. Baker
- Children’s Hospital of Philadelphia, Division of Neurology, Philadelphia, Philadelphia, United States
| | - Hui He
- China Academy of Engineering Physics, Institute of Fluid Physics, Mianyang, China
| | - Peng Gao
- China Academy of Engineering Physics, Institute of Fluid Physics, Mianyang, China
| | - Liguo Zhu
- China Academy of Engineering Physics, Institute of Fluid Physics, Mianyang, China
| | - Qixian Peng
- China Academy of Engineering Physics, Institute of Fluid Physics, Mianyang, China
| | - Zeren Li
- China Academy of Engineering Physics, Institute of Fluid Physics, Mianyang, China
| | - Fei Li
- Army Medical University, Southwest Hospital, Department of Neurosurgery, Chong Qing, China
| | - Tunan Chen
- Army Medical University, Southwest Hospital, Department of Neurosurgery, Chong Qing, China
| | - Hua Feng
- Army Medical University, Southwest Hospital, Department of Neurosurgery, Chong Qing, China
| |
Collapse
|
43
|
Giovannella M, Spinelli L, Pagliazzi M, Contini D, Greisen G, Weigel UM, Torricelli A, Durduran T. Accuracy and precision of tissue optical properties and hemodynamic parameters estimated by the BabyLux device: a hybrid time-resolved near-infrared and diffuse correlation spectroscopy neuro-monitor. BIOMEDICAL OPTICS EXPRESS 2019; 10:2556-2579. [PMID: 31149383 PMCID: PMC6524603 DOI: 10.1364/boe.10.002556] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/29/2019] [Accepted: 04/17/2019] [Indexed: 05/20/2023]
Abstract
We have investigated the accuracy and precision of "the BabyLux device", a hybrid time-resolved near-infrared (TRS) and diffuse correlation spectroscopy (DCS) neuro-monitor for the pre-term infant. Numerical data with realistic noise were simulated and analyzed using the BabyLux device as a reference system and different experimental and analysis parameters. The results describe the limits for the precision and the accuracy to be expected. The dependence of these limits on different experimental conditions and choices of the analysis method is also described. Experiments demonstrate comparable values for precision with respect to the simulation results.
Collapse
Affiliation(s)
- Martina Giovannella
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona),
Spain
| | - Lorenzo Spinelli
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Milan,
Italy
| | - Marco Pagliazzi
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona),
Spain
| | - Davide Contini
- Politecnico di Milano-Dipartimento di Fisica, Milan,
Italy
| | - Gorm Greisen
- Department of Neonatology, Rigshopitalet, Copenhagen,
Denmark
| | - Udo M. Weigel
- HemoPhotonics S.L., Castelldefels (Barcelona),
Spain
| | - Alessandro Torricelli
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Milan,
Italy
- Politecnico di Milano-Dipartimento di Fisica, Milan,
Italy
| | - Turgut Durduran
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona),
Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona,
Spain
| |
Collapse
|