1
|
Zubair M, Uddin I, Dickinson R, Diederich CJ. Delivering Volumetric Hyperthermia to Head and Neck Cancer Patient-Specific Models Using an Ultrasound Spherical Random Phased Array Transducer. Bioengineering (Basel) 2024; 12:14. [PMID: 39851288 PMCID: PMC11760898 DOI: 10.3390/bioengineering12010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/10/2024] [Accepted: 12/23/2024] [Indexed: 01/26/2025] Open
Abstract
In exploring adjuvant therapies for head and neck cancer, hyperthermia (40-45 °C) has shown efficacy in enhancing chemotherapy and radiation, as well as the delivery of liposomal drugs. Current hyperthermia treatments, however, struggle to reach large deep tumors uniformly and non-invasively. This study investigates the feasibility of delivering targeted uniform hyperthermia deep into the tissue using a non-invasive ultrasound spherical random phased array transducer. Simulations in 3D patient-specific models for thyroid and oropharyngeal cancers assessed the transducer's proficiency. The transducer consisting of 256 elements randomly positioned on a spherical shell, operated at a frequency of 1 MHz with various phasing schemes and power modulations to analyze 40, 41, and 43 °C isothermal volumes and the penetration depth of the heating volume, along with temperature uniformity within the target area using T10, T50, and T90 temperatures, across different tumor models. Intensity distributions and volumetric temperature contours were calculated to define moderate hyperthermia boundaries. The results indicated the array's ability to produce controlled heating volumes from 1 to 48 cm3 at 40 °C, 0.35 to 27 cm3 at 41 °C, and 0.1 to 8 cm3 at 43 °C. The heating depths ranged from 7 to 39 mm minimum and 52 to 59 mm maximum, measured from the skin's inner surface. The transducer, with optimal phasing and water-cooled bolus, confined the heating to the targeted regions effectively. Multifocal sonications also improved the heating homogeneity, reducing the length-to-diameter ratio by 38% when using eight foci versus a single one. This approach shows potential for treating a range of tumors, notably deep-seated and challenging oropharyngeal cancers.
Collapse
Affiliation(s)
- Muhammad Zubair
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA 94115, USA
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Imad Uddin
- Department of Cardiology, Hayat Abad Medical Complex, Peshawar 23301, Pakistan
| | - Robert Dickinson
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - Chris J. Diederich
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA 94115, USA
| |
Collapse
|
2
|
Hwang J, Shin H, Jung M, Kang HW. Investigations of Laser-Assisted Renal Denervation for Treatment of Resistant Hypertension. Lasers Surg Med 2024; 56:664-672. [PMID: 38965757 DOI: 10.1002/lsm.23823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/29/2024] [Accepted: 06/20/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND AND OBJECTIVES Renal denervation (RDN) is an emerging surgical treatment for resistant hypertension. However, the current RDN using radiofrequency can cause undesirable thermal damage to the medial and luminal layers due to direct contact between the arterial lumen and energy source. The aim of this study is to evaluate the feasibility of the new laser-assisted RDN by exploring the potential treatment conditions. METHODS For ex vivo testing, six different treatment conditions (10 and 20 W applied for delivery of 300, 450, and 600 J) were tested on the porcine liver and renal artery (RA) by using a continuous wave 1064 nm laser wavelength. The ablated area in the liver tissue was measured to estimate the extent of the coagulated area. Histological evaluation was performed on the treated RA tissues to confirm the extent of thermal nerve damage. RESULTS The ablated depth, length, and area in the liver tissue increased with laser power and total energy. According to the histological results, 20 W groups yielded more significant damage to the RA nerves than 10 W groups at the total energy of 300 J (0.0 ± 0.0 mm for 10 W vs. 2.9 ± 1.0 mm for 20 W), 450 J (1.9 ± 0.6 mm for 10 W vs. 6.8 ± 1.5 mm for 20 W), and 600 J (2.9 ± 0.4 mm for 10 W vs. 7.3 ± 0.8 mm for 20 W). The treated RA exhibited insignificant medial injury in depth (medial thinning ≤ 25%), and no difference in the medial thinning was found among the six groups (p = 0.4). CONCLUSION The current study demonstrated that the 1064 nm laser at 20 W with delivery of 450 J could effectively damage the RA nerves with no or minimal injury to the surrounding tissue. The proposed laser-assisted RDN may enhance physiological effects with insignificant complications in in vivo situations. Further in vivo studies will be conducted to validate the current findings by evaluating the extent of blood pressure reduction and norepinephrine changes after the laser-assisted RDN on a large animal model.
Collapse
Affiliation(s)
- Junghyun Hwang
- Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence, Pukyong National University, Busan, Republic of Korea
- Marine-Integrated Biomedical Technology Center, Pukyong National University, Busan, Republic of Korea
| | - Hwarang Shin
- Marine-Integrated Biomedical Technology Center, Pukyong National University, Busan, Republic of Korea
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, Republic of Korea
| | - Minwoo Jung
- Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence, Pukyong National University, Busan, Republic of Korea
| | - Hyun Wook Kang
- Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence, Pukyong National University, Busan, Republic of Korea
- Marine-Integrated Biomedical Technology Center, Pukyong National University, Busan, Republic of Korea
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, Republic of Korea
- Applied R&D, TeCure, Inc., Busan, Republic of Korea
| |
Collapse
|
3
|
Kim K, Gupta P, Narsinh K, Diederich CJ, Ozhinsky E. Volumetric hyperthermia delivery using the ExAblate Body MR-guided focused ultrasound system. Int J Hyperthermia 2024; 41:2349080. [PMID: 38705588 PMCID: PMC11135290 DOI: 10.1080/02656736.2024.2349080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/25/2024] [Indexed: 05/07/2024] Open
Abstract
OBJECTIVES To investigate image-guided volumetric hyperthermia strategies using the ExAblate Body MR-guided focused ultrasound ablation system, involving mechanical transducer movement and sector-vortex beamforming. MATERIALS AND METHODS Acoustic and thermal simulations were performed to investigate volumetric hyperthermia using mechanical transducer movement combined with sector-vortex beamforming, specifically for the ExAblate Body transducer. The system control in the ExAblate Body system was modified to achieve fast transducer movement and MR thermometry-based hyperthermia control, mechanical transducer movements and electronic sector-vortex beamforming were combined to optimize hyperthermia delivery. The experimental validation was performed using a tissue-mimicking phantom. RESULTS The developed simulation framework allowed for a parametric study with varying numbers of heating spots, sonication durations, and transducer movement times to evaluate the hyperthermia characteristics for mechanical transducer movement and sector-vortex beamforming. Hyperthermic patterns involving 2-4 sequential focal spots were analyzed. To demonstrate the feasibility of volumetric hyperthermia in the system, a tissue-mimicking phantom was sonicated with two distinct spots through mechanical transducer movement and sector-vortex beamforming. During hyperthermia, the average values of Tmax, T10, Tavg, T90, and Tmin over 200 s were measured within a circular ROI with a diameter of 10 pixels. These values were found to be 8.6, 7.9, 6.6, 5.2, and 4.5 °C, respectively, compared to the baseline temperature. CONCLUSIONS This study demonstrated the volumetric hyperthermia capabilities of the ExAblate Body system. The simulation framework developed in this study allowed for the evaluation of hyperthermia characteristics that could be implemented with the ExAblate MRgFUS system.
Collapse
Affiliation(s)
- Kisoo Kim
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, USA
| | - Pragya Gupta
- Department of Radiation Oncology, University of California, San Francisco, USA
| | - Kazim Narsinh
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, USA
| | - Chris J. Diederich
- Department of Radiation Oncology, University of California, San Francisco, USA
| | - Eugene Ozhinsky
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, USA
| |
Collapse
|
4
|
Littrup PJ, Mehrmohammadi M, Duric N. Breast Tomographic Ultrasound: The Spectrum from Current Dense Breast Cancer Screenings to Future Theranostic Treatments. Tomography 2024; 10:554-573. [PMID: 38668401 PMCID: PMC11053617 DOI: 10.3390/tomography10040044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/03/2024] [Accepted: 04/11/2024] [Indexed: 04/29/2024] Open
Abstract
This review provides unique insights to the scientific scope and clinical visions of the inventors and pioneers of the SoftVue breast tomographic ultrasound (BTUS). Their >20-year collaboration produced extensive basic research and technology developments, culminating in SoftVue, which recently received the Food and Drug Administration's approval as an adjunct to breast cancer screening in women with dense breasts. SoftVue's multi-center trial confirmed the diagnostic goals of the tissue characterization and localization of quantitative acoustic tissue differences in 2D and 3D coronal image sequences. SoftVue mass characterizations are also reviewed within the standard cancer risk categories of the Breast Imaging Reporting and Data System. As a quantitative diagnostic modality, SoftVue can also function as a cost-effective platform for artificial intelligence-assisted breast cancer identification. Finally, SoftVue's quantitative acoustic maps facilitate noninvasive temperature monitoring and a unique form of time-reversed, focused US in a single theranostic device that actually focuses acoustic energy better within the highly scattering breast tissues, allowing for localized hyperthermia, drug delivery, and/or ablation. Women also prefer the comfort of SoftVue over mammograms and will continue to seek out less-invasive breast care, from diagnosis to treatment.
Collapse
Affiliation(s)
- Peter J. Littrup
- Department of Imaging Sciences, University of Rochester, Rochester, NY 14642, USA; (M.M.); (N.D.)
- Delphinus Medical Technologies, Inc., Novi, MI 48374, USA
| | - Mohammad Mehrmohammadi
- Department of Imaging Sciences, University of Rochester, Rochester, NY 14642, USA; (M.M.); (N.D.)
| | - Nebojsa Duric
- Department of Imaging Sciences, University of Rochester, Rochester, NY 14642, USA; (M.M.); (N.D.)
- Delphinus Medical Technologies, Inc., Novi, MI 48374, USA
| |
Collapse
|
5
|
Zhang D, Wang X, Lin J, Xiong Y, Lu H, Huang J, Lou X. Multi-frequency therapeutic ultrasound: A review. ULTRASONICS SONOCHEMISTRY 2023; 100:106608. [PMID: 37774469 PMCID: PMC10543167 DOI: 10.1016/j.ultsonch.2023.106608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/08/2023] [Accepted: 09/18/2023] [Indexed: 10/01/2023]
Abstract
Focused ultrasound is a noninvasive, radiation-free and real-time therapeutic approach to treat deep-seated targets, which benefits numerous diseases otherwise requiring surgeries. Treatment efficiency is one of the key factors determining therapeutic outcomes, but improving it solely by increasing the total power can be limited by the performance of general ultrasound devices. To address this, multi-frequency therapeutic ultrasound, using additional ultrasound waves of different frequencies on top of the standard single-frequency wave, provides a promising method for treatment efficiency enhancement with limited power. Several applications and numerical works have demonstrated its superiority on treatment enhancement. This paper presents an overview of the mechanisms, implementations, applications and decisive parameters of the multi-frequency therapeutic ultrasound, which could help to pave the way for better understanding and further developing this technology in the future.
Collapse
Affiliation(s)
- Dong Zhang
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Xiaoyu Wang
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Jiaji Lin
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Yongqin Xiong
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Haoxuan Lu
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Jiayu Huang
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Xin Lou
- Department of Radiology, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
6
|
Kuo YY, Chen WT, Lin GB, Chen YM, Liu HH, Chao CY. Thermal cycling-hyperthermia ameliorates Aβ 25-35-induced cognitive impairment in C57BL/6 mice. Neurosci Lett 2023; 810:137337. [PMID: 37315732 DOI: 10.1016/j.neulet.2023.137337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/16/2023]
Abstract
Despite continuation of some controversies, Alzheimer's disease (AD), the most common cause of dementia nowadays, has been widely believed to derive mainly from excessive β-amyloid (Aβ) aggregation, that would increase reactive oxygen species (ROS) and induce neuroinflammation, leading to neuron loss and cognitive impairment. Existing drugs on Aβ have been ineffective or offer only temporary relief at best, due to blood-brain barrier or severe side effects. The study employed thermal cycling-hyperthermia (TC-HT) to ease the Aβ-induced cognitive impairments and compared its effect with continuous hyperthermia (HT) in vivo. It established an AD mice model via intracerebroventricular (i.c.v.) injection of Aβ25-35, proving that TC-HT is much more effective in alleviating its performance decline in Y-maze and novel object recognition (NOR) tests, in comparison with HT. In addition, TC-HT also exhibits a better performance in decreasing the hippocampal Aβ and β-secretase (BACE1) expressions as well as the neuroinflammation markers-ionized calcium-binding adapter molecule 1 (Iba-1) and glial fibrillary acidic protein (GFAP) levels. Furthermore, the study finds that TC-HT can elevate more protein expressions of insulin degrading enzyme (IDE) and antioxidative enzyme superoxide dismutase 2 (SOD2) than HT. In sum, the study proves the potential of TC-HT in AD treatment, which can be put into application with the use of focused ultrasound (FUS).
Collapse
Affiliation(s)
- Yu-Yi Kuo
- Department of Physics, Lab for Medical Physics & Biomedical Engineering, National Taiwan University, Taipei 10617, Taiwan; Molecular Imaging Center, National Taiwan University College of Medicine, Taipei 10051, Taiwan
| | - Wei-Ting Chen
- Department of Physics, Lab for Medical Physics & Biomedical Engineering, National Taiwan University, Taipei 10617, Taiwan; Molecular Imaging Center, National Taiwan University College of Medicine, Taipei 10051, Taiwan
| | - Guan-Bo Lin
- Department of Physics, Lab for Medical Physics & Biomedical Engineering, National Taiwan University, Taipei 10617, Taiwan; Molecular Imaging Center, National Taiwan University College of Medicine, Taipei 10051, Taiwan
| | - You-Ming Chen
- Molecular Imaging Center, National Taiwan University College of Medicine, Taipei 10051, Taiwan; Graduate Institute of Applied Physics, Biophysics Division, National Taiwan University, Taipei 10617, Taiwan
| | - Hsu-Hsiang Liu
- Molecular Imaging Center, National Taiwan University College of Medicine, Taipei 10051, Taiwan; Graduate Institute of Applied Physics, Biophysics Division, National Taiwan University, Taipei 10617, Taiwan
| | - Chih-Yu Chao
- Department of Physics, Lab for Medical Physics & Biomedical Engineering, National Taiwan University, Taipei 10617, Taiwan; Molecular Imaging Center, National Taiwan University College of Medicine, Taipei 10051, Taiwan; Graduate Institute of Applied Physics, Biophysics Division, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
7
|
Karzova MM, Kreider W, Partanen A, Khokhlova TD, Sapozhnikov OA, Yuldashev PV, Khokhlova VA. Comparative Characterization of Nonlinear Ultrasound Fields Generated by Sonalleve V1 and V2 MR-HIFU Systems. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2023; 70:521-537. [PMID: 37030675 PMCID: PMC10280052 DOI: 10.1109/tuffc.2023.3261420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
A Sonalleve magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) clinical system (Profound Medical, Mississauga, ON, Canada) has been shown to generate nonlinear ultrasound fields with shocks up to 100 MPa at the focus as required for HIFU applications such as boiling histotripsy of hepatic and renal tumors. The Sonalleve system has two versions V1 and V2 of the therapeutic array, with differences in focusing angle, focus depth, arrangement of elements, and the size of a central opening that is twice larger in the V2 system compared to the V1. The goal of this study was to compare the performance of the V1 and V2 transducers for generating high-amplitude shock-wave fields and to reveal the impact of different array geometries on shock amplitudes at the focus. Nonlinear modeling of the field in water using boundary conditions reconstructed from holography measurements shows that at the same power output, the V2 array generates 10-15-MPa lower shock amplitudes at the focus. Consequently, substantially higher power levels are required for the V2 system to reach the same shock-wave exposure conditions in histotripsy-type treatments. Although this difference is mainly caused by the smaller focusing angle of the V2 array, the larger central opening of the V2 array has a nontrivial impact. By excluding coherently interacting weakly focused waves coming from the central part of the source, the presence of the central opening results in a somewhat higher effective focusing angle and thus higher shock amplitudes at the focus. Axisymmetric equivalent source models were constructed for both arrays, and the importance of including the central opening was demonstrated. These models can be used in the "HIFU beam" software for simulating nonlinear fields of the Sonalleve V1 and V2 systems in water and flat-layered biological tissues.
Collapse
|
8
|
Andrés D, Rivens I, Mouratidis P, Jiménez N, Camarena F, ter Haar G. Holographic Focused Ultrasound Hyperthermia System for Uniform Simultaneous Thermal Exposure of Multiple Tumor Spheroids. Cancers (Basel) 2023; 15:2540. [PMID: 37174005 PMCID: PMC10177503 DOI: 10.3390/cancers15092540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Hyperthermia is currently used to treat cancer due to its ability to radio- and chemo-sensitize and to stimulate the immune response. While ultrasound is non-ionizing and can induce hyperthermia deep within the body non-invasively, achieving uniform and volumetric hyperthermia is challenging. This work presents a novel focused ultrasound hyperthermia system based on 3D-printed acoustic holograms combined with a high-intensity focused ultrasound (HIFU) transducer to produce a uniform iso-thermal dose in multiple targets. The system is designed with the aim of treating several 3D cell aggregates contained in an International Electrotechnical Commission (IEC) tissue-mimicking phantom with multiple wells, each holding a single tumor spheroid, with real-time temperature and thermal dose monitoring. System performance was validated using acoustic and thermal methods, ultimately yielding thermal doses in three wells that differed by less than 4%. The system was tested in vitro for delivery of thermal doses of 0-120 cumulative equivalent minutes at 43 °C (CEM43) to spheroids of U87-MG glioma cells. The effects of ultrasound-induced heating on the growth of these spheroids were compared with heating using a polymerase chain reaction (PCR) thermocycler. Results showed that exposing U87-MG spheroids to an ultrasound-induced thermal dose of 120 CEM43 shrank them by 15% and decreased their growth and metabolic activity more than seen in those exposed to a thermocycler-induced heating. This low-cost approach of modifying a HIFU transducer to deliver ultrasound hyperthermia opens new avenues for accurately controlling thermal dose delivery to complex therapeutic targets using tailored acoustic holograms. Spheroid data show that thermal and non-thermal mechanisms are implicated in the response of cancer cells to non-ablative ultrasound heating.
Collapse
Affiliation(s)
- Diana Andrés
- Instituto de Instrumentación para Imagen Molecular (I3M), CSIC—Universitat Politècnica de València, Camino de Vera S/N, 46011 Valencia, Spain; (D.A.); (N.J.); (F.C.)
| | - Ian Rivens
- Institute for Cancer Research (ICR), London SM2 5NG, UK; (I.R.); (P.M.)
| | - Petros Mouratidis
- Institute for Cancer Research (ICR), London SM2 5NG, UK; (I.R.); (P.M.)
| | - Noé Jiménez
- Instituto de Instrumentación para Imagen Molecular (I3M), CSIC—Universitat Politècnica de València, Camino de Vera S/N, 46011 Valencia, Spain; (D.A.); (N.J.); (F.C.)
| | - Francisco Camarena
- Instituto de Instrumentación para Imagen Molecular (I3M), CSIC—Universitat Politècnica de València, Camino de Vera S/N, 46011 Valencia, Spain; (D.A.); (N.J.); (F.C.)
| | - Gail ter Haar
- Institute for Cancer Research (ICR), London SM2 5NG, UK; (I.R.); (P.M.)
| |
Collapse
|
9
|
Zubair M, Adams MS, Diederich CJ. An endoluminal cylindrical sectored-ring ultrasound phased-array applicator for minimally-invasive therapeutic ultrasound. Med Phys 2023; 50:1-19. [PMID: 36413363 PMCID: PMC9870260 DOI: 10.1002/mp.16113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The size of catheter-based ultrasound devices for delivering ultrasound energy to deep-seated tumors is constrained by the access pathway which limits their therapeutic capabilities. PURPOSE To devise and investigate a deployable applicator suitable for minimally-invasive delivery of therapeutic ultrasound, consisting of a 2D cylindrical sectored-ring ultrasound phased array, integrated within an expandable paraboloid-shaped balloon-based reflector. The balloon can be collapsed for compact delivery and expanded close to the target position to mimic a larger-diameter concentric-ring sector-vortex array for enhanced dynamic control of focal depth and volume. METHODS Acoustic and biothermal simulations were employed in 3D generalized homogeneous and patient-specific heterogeneous models, for three-phased array transducers with 32, 64, and 128 elements, composed of sectored 4, 8, and 16 tubular ring transducers, respectively. The applicator performance was characterized as a function of array configuration, focal depth, phasing modes, and balloon reflector geometry. A 16-element proof-of-concept phased array applicator assembly, consisting of four tubular transducers each divided into four sectors, was fabricated, and characterized with hydrophone measurements along and across the axis, and ablations in ex vivo tissue. RESULTS Simulation results indicated that transducer arrays (1.5 MHz, 9 mm OD × 20 mm long), balloon sizes (41-50 mm expanded diameter, 20-60 mm focal depth), phasing mode (0-4) and sonication duration (30 s) can produce spatially localized acoustic intensity focal patterns (focal length: 3-22 mm, focal width: 0.7-8.7 mm) and ablative thermal lesions (width: 2.7-16 mm, length: 6-46 mm) in pancreatic tissue across a 10-90 mm focal depth range. Patient-specific studies indicated that 0.1, 0.46, and 1.2 cm3 volume of tumor can be ablated in the body of the pancreas for 120 s sonications using a single axial focus (Mode 0), or four, and eight simultaneous foci in a toroidal pattern (Mode 2 and 4, respectively). Hydrophone measurements demonstrated good agreement with simulation. Experiments in which chicken meat was thermally ablated indicated that volumetric ablation can be produced using single or multiple foci. CONCLUSIONS The results of this study demonstrated the feasibility of a novel compact ultrasound applicator design capable of focusing, deep penetration, electronic steering, and volumetric thermal ablation. The proposed applicator can be used for compact endoluminal or laparoscopic delivery of localized ultrasound energy to deep-seated targets.
Collapse
Affiliation(s)
- Muhammad Zubair
- Department of Radiation Oncology University of California San Francisco USA
| | - Matthew S. Adams
- Department of Radiation Oncology University of California San Francisco USA
| | - Chris J. Diederich
- Department of Radiation Oncology University of California San Francisco USA
| |
Collapse
|
10
|
Thies M, Oelze ML. Combined Therapy Planning, Real-Time Monitoring, and Low Intensity Focused Ultrasound Treatment Using a Diagnostic Imaging Array. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:1410-1419. [PMID: 34986094 PMCID: PMC9199060 DOI: 10.1109/tmi.2021.3140176] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Low intensity focused ultrasound (FUS) therapies use low intensity focused ultrasound waves, typically in combination with microbubbles, to non-invasively induce a variety of therapeutic effects. FUS therapies require pre-therapy planning and real-time monitoring during treatment to ensure the FUS beam is correctly targeted to the desired tissue region. To facilitate more streamlined FUS treatments, we present a system for pre-therapy planning, real-time FUS beam visualization, and low intensity FUS treatment using a single diagnostic imaging array. Therapy planning was accomplished by manually segmenting a B-mode image captured by the imaging array and calculating a sonication pattern for the treatment based on the user-input region of interest. For real-time monitoring, the imaging array transmitted a visualization pulse which was focused to the same location as the FUS therapy beam and ultrasonic backscatter from this pulse was used to reconstruct the intensity field of the FUS beam. The therapy planning and beam monitoring techniques were demonstrated in a tissue-mimicking phantom and in a rat tumor in vivo while a mock FUS treatment was carried out. The FUS pulse from the imaging array was excited with an MI of 0.78, which suggests that the array could be used to administer select low intensity FUS treatments involving microbubble activation.
Collapse
|
11
|
Kim K, Zubair M, Adams M, Diederich CJ, Ozhinsky E. Sonication strategies toward volumetric ultrasound hyperthermia treatment using the ExAblate body MRgFUS system. Int J Hyperthermia 2021; 38:1590-1600. [PMID: 34749579 DOI: 10.1080/02656736.2021.1998658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
PURPOSE The ExAblate body MRgFUS system requires advanced beamforming strategies for volumetric hyperthermia. This study aims to develop and evaluate electronic beam steering, multi-focal patterns, and sector vortex beamforming approaches in conjunction with partial array activation using an acoustic and biothermal simulation framework along with phantom experiments. METHODS The simulation framework was developed to calculate the 3D acoustic intensity and temperature distribution resulting from various beamforming and scanning strategies. A treatment cell electronically sweeping a single focus was implemented and evaluated in phantom experiments. The acoustic and thermal focal size of vortex beam propagation was quantified according to the vortex modes, number of active array elements, and focal depth. RESULTS Turning off a percentage of the outer array to increase the f-number increased the focal size with a decrease in focal gain. 60% active elements allowed generating a sonication cell with an off-axis of 10 mm. The vortex mode number 4 with 60% active elements resulted in a larger heating volume than using the full array. Volumetric hyperthermia in the phantom was evaluated with the vortex mode 4 and respectively performed with 100% and 80% active elements. MR thermometry demonstrated that the volumes were found to be 18.8 and 29.7 cm3, respectively, with 80% array activation producing 1.58 times larger volume than the full array. CONCLUSIONS This study demonstrated that both electronic beam steering and sector vortex beamforming approaches in conjunction with partial array activation could generate large volume heating for HT delivery using the ExAblate body array.
Collapse
Affiliation(s)
- Kisoo Kim
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Muhammad Zubair
- Department of Radiation Oncology, University of California, San Francisco, CA, USA
| | - Matthew Adams
- Department of Radiation Oncology, University of California, San Francisco, CA, USA
| | - Chris J Diederich
- Department of Radiation Oncology, University of California, San Francisco, CA, USA
| | - Eugene Ozhinsky
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, CA, USA
| |
Collapse
|
12
|
Zubair M, Adams MS, Diederich CJ. Deployable ultrasound applicators for endoluminal delivery of volumetric hyperthermia. Int J Hyperthermia 2021; 38:1188-1204. [PMID: 34376103 DOI: 10.1080/02656736.2021.1936216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
PURPOSE To investigate the design of an endoluminal deployable ultrasound applicator for delivering volumetric hyperthermia to deep tissue sites as a possible adjunct to radiation and chemotherapy. METHOD This study considers an ultrasound applicator consisting of two tubular transducers situated at the end of a catheter assembly, encased within a distensible conical shaped balloon-based reflector that redirects acoustic energy distally into the tissue. The applicator assembly can be inserted endoluminally or laparoscopically in a compact form and expanded after delivery to the target site. Comprehensive acoustic and biothermal simulations and parametric studies were employed in generalized 3D and patient-specific pancreatic head and body tumor models to characterize the acoustic performance and evaluate heating capabilities of the applicator by investigating the device at a range of operating frequencies, tissue acoustic and thermal properties, transducer configurations, power modulation, applicator positioning, and by analyzing the resultant 40, 41, and 43 °C isothermal volumes and penetration depth of the heating volume. Intensity distributions and volumetric temperature contours were calculated to define moderate hyperthermia boundaries. RESULTS Parametric studies demonstrated the frequency selection to control volume and depth of therapeutic heating from 62 to 22 cm3 and 4 to 2.6 cm as frequency ranges from 1 MHz to 4.7 MHz, respectively. Width of the heating profile tracks closely with the aperture. Water cooling within the reflector balloon was effective in controlling temperature to 37 °C maximum within the luminal wall. Patient-specific studies indicated that applicators with extended OD in the range of 3.6-6.2 cm with 0.5-1 cm long and 1 cm OD transducers can heat volumes of 1.1-7 cm3, 3-26 cm3, and 3.3-37.4 cm3 of pancreatic body and head tumors above 43, 41, and 40 °C, respectively. CONCLUSION In silico studies demonstrated the feasibility of combining endoluminal ultrasound with an integrated expandable balloon reflector for delivering volumetric hyperthermia in regions adjacent to body lumens and cavities.
Collapse
Affiliation(s)
- Muhammad Zubair
- Thermal Therapy Research Group, Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
| | - Matthew S Adams
- Thermal Therapy Research Group, Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
| | - Chris J Diederich
- Thermal Therapy Research Group, Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
13
|
Kok HP, Cressman ENK, Ceelen W, Brace CL, Ivkov R, Grüll H, Ter Haar G, Wust P, Crezee J. Heating technology for malignant tumors: a review. Int J Hyperthermia 2021; 37:711-741. [PMID: 32579419 DOI: 10.1080/02656736.2020.1779357] [Citation(s) in RCA: 177] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The therapeutic application of heat is very effective in cancer treatment. Both hyperthermia, i.e., heating to 39-45 °C to induce sensitization to radiotherapy and chemotherapy, and thermal ablation, where temperatures beyond 50 °C destroy tumor cells directly are frequently applied in the clinic. Achievement of an effective treatment requires high quality heating equipment, precise thermal dosimetry, and adequate quality assurance. Several types of devices, antennas and heating or power delivery systems have been proposed and developed in recent decades. These vary considerably in technique, heating depth, ability to focus, and in the size of the heating focus. Clinically used heating techniques involve electromagnetic and ultrasonic heating, hyperthermic perfusion and conductive heating. Depending on clinical objectives and available technology, thermal therapies can be subdivided into three broad categories: local, locoregional, or whole body heating. Clinically used local heating techniques include interstitial hyperthermia and ablation, high intensity focused ultrasound (HIFU), scanned focused ultrasound (SFUS), electroporation, nanoparticle heating, intraluminal heating and superficial heating. Locoregional heating techniques include phased array systems, capacitive systems and isolated perfusion. Whole body techniques focus on prevention of heat loss supplemented with energy deposition in the body, e.g., by infrared radiation. This review presents an overview of clinical hyperthermia and ablation devices used for local, locoregional, and whole body therapy. Proven and experimental clinical applications of thermal ablation and hyperthermia are listed. Methods for temperature measurement and the role of treatment planning to control treatments are discussed briefly, as well as future perspectives for heating technology for the treatment of tumors.
Collapse
Affiliation(s)
- H Petra Kok
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Erik N K Cressman
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wim Ceelen
- Department of GI Surgery, Ghent University Hospital, Ghent, Belgium
| | - Christopher L Brace
- Department of Radiology and Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Robert Ivkov
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Mechanical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA.,Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Holger Grüll
- Department of Diagnostic and Interventional Radiology, Faculty of Medicine, University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Gail Ter Haar
- Department of Physics, The Institute of Cancer Research, London, UK
| | - Peter Wust
- Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Johannes Crezee
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
14
|
Bawiec CR, Khokhlova TD, Sapozhnikov OA, Rosnitskiy PB, Cunitz BW, Ghanem MA, Hunter C, Kreider W, Schade GR, Yuldashev PV, Khokhlova VA. A Prototype Therapy System for Boiling Histotripsy in Abdominal Targets Based on a 256-Element Spiral Array. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:1496-1510. [PMID: 33156788 PMCID: PMC8191454 DOI: 10.1109/tuffc.2020.3036580] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Boiling histotripsy (BH) uses millisecond-long ultrasound (US) pulses with high-amplitude shocks to mechanically fractionate tissue with potential for real-time lesion monitoring by US imaging. For BH treatments of abdominal organs, a high-power multielement phased array system capable of electronic focus steering and aberration correction for body wall inhomogeneities is needed. In this work, a preclinical BH system was built comprising a custom 256-element 1.5-MHz phased array (Imasonic, Besançon, France) with a central opening for mounting an imaging probe. The array was electronically matched to a Verasonics research US system with a 1.2-kW external power source. Driving electronics and software of the system were modified to provide a pulse average acoustic power of 2.2 kW sustained for 10 ms with a 1-2-Hz repetition rate for delivering BH exposures. System performance was characterized by hydrophone measurements in water combined with nonlinear wave simulations based on the Westervelt equation. Fully developed shocks of 100-MPa amplitude are formed at the focus at 275-W acoustic power. Electronic steering capabilities of the array were evaluated for shock-producing conditions to determine power compensation strategies that equalize BH exposures at multiple focal locations across the planned treatment volume. The system was used to produce continuous volumetric BH lesions in ex vivo bovine liver with 1-mm focus spacing, 10-ms pulselength, five pulses/focus, and 1% duty cycle.
Collapse
|
15
|
Sun Y, Davis E. Nanoplatforms for Targeted Stimuli-Responsive Drug Delivery: A Review of Platform Materials and Stimuli-Responsive Release and Targeting Mechanisms. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:746. [PMID: 33809633 PMCID: PMC8000772 DOI: 10.3390/nano11030746] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022]
Abstract
To achieve the promise of stimuli-responsive drug delivery systems for the treatment of cancer, they should (1) avoid premature clearance; (2) accumulate in tumors and undergo endocytosis by cancer cells; and (3) exhibit appropriate stimuli-responsive release of the payload. It is challenging to address all of these requirements simultaneously. However, the numerous proof-of-concept studies addressing one or more of these requirements reported every year have dramatically expanded the toolbox available for the design of drug delivery systems. This review highlights recent advances in the targeting and stimuli-responsiveness of drug delivery systems. It begins with a discussion of nanocarrier types and an overview of the factors influencing nanocarrier biodistribution. On-demand release strategies and their application to each type of nanocarrier are reviewed, including both endogenous and exogenous stimuli. Recent developments in stimuli-responsive targeting strategies are also discussed. The remaining challenges and prospective solutions in the field are discussed throughout the review, which is intended to assist researchers in overcoming interdisciplinary knowledge barriers and increase the speed of development. This review presents a nanocarrier-based drug delivery systems toolbox that enables the application of techniques across platforms and inspires researchers with interdisciplinary information to boost the development of multifunctional therapeutic nanoplatforms for cancer therapy.
Collapse
Affiliation(s)
| | - Edward Davis
- Materials Engineering Program, Mechanical Engineering Department, Auburn University, 101 Wilmore Drive, Auburn, AL 36830, USA;
| |
Collapse
|
16
|
Singh A, Nyankima AG, Anthony Phipps M, Chaplin V, Dayton PA, Caskey C. Improving the heating efficiency of high intensity focused ultrasound ablation through the use of phase change nanodroplets and multifocus sonication. Phys Med Biol 2020; 65:205004. [PMID: 32438353 DOI: 10.1088/1361-6560/ab9559] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Thermal ablation by ultrasound is being explored as a local therapy for cancers of soft tissue, such as the liver or breast. One challenge for these treatments are off-target effects, including heating outside of the intended region or skin burns. Improvements in heating efficiency can mitigate these undesired outcomes, and here, we describe methods for using phase-shift nanodroplets (PSNDs) with multi-focus sonications to enhance volumetric ablation and ablation efficiency at constant powers while increasing the pre-focal temperature by less than 6 [Formula: see text]C. Multi-focus ablation with 4 foci performed the best and achieved a mean ablation volume of 120.2 ± 22.4 mm3 and ablation efficiency of 0.04 mm3 J-1 versus an ablation volume of 61.2 ± 21.16 mm3 and ablation efficiency of 0.02 mm3 J-1 in single focus case. The combined use of PSNDs with multi-focal ultrasound presented here is a new approach to increasing ablation efficiency while reducing off-target effects and could be generally applied in various focused ultrasound thermal ablation treatments.
Collapse
Affiliation(s)
- Aparna Singh
- Department of Biomedical Engineering, Vanderbilt University, Nashville Tennessee 37212, United States of America
| | | | | | | | | | | |
Collapse
|
17
|
Chen WT, Kuo YY, Lin GB, Lu CH, Hsu HP, Sun YK, Chao CY. Thermal cycling protects SH-SY5Y cells against hydrogen peroxide and β-amyloid-induced cell injury through stress response mechanisms involving Akt pathway. PLoS One 2020; 15:e0240022. [PMID: 33002038 PMCID: PMC7529293 DOI: 10.1371/journal.pone.0240022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 09/17/2020] [Indexed: 12/24/2022] Open
Abstract
Neurodegenerative diseases (NDDs) are becoming a major threat to public health, according to the World Health Organization (WHO). The most common form of NDDs is Alzheimer’s disease (AD), boasting 60–70% share. Although some debates still exist, excessive aggregation of β-amyloid protein (Aβ) and neurofibrillary tangles has been deemed one of the major causes for the pathogenesis of AD. A growing number of evidences from studies, however, have suggested that reactive oxygen species (ROS) also play a key role in the onset and progression of AD. Although scientists have had some understanding of the pathogenesis of AD, the disease still cannot be cured, with existing treatment only capable of providing a temporary relief at best, partly due to the obstacle of blood-brain barrier (BBB). The study was aimed to ascertain the neuroprotective effect of thermal cycle hyperthermia (TC-HT) against hydrogen peroxide (H2O2) and Aβ-induced cytotoxicity in SH-SY5Y cells. Treating cells with this physical stimulation beforehand significantly improved the cell viability and decreased the ROS content. The underlying mechanisms may be due to the activation of Akt pathway and the downstream antioxidant and prosurvival proteins. The findings manifest significant potential of TC-HT in neuroprotection, via inhibition of oxidative stress and cell apoptosis. It is believed that coupled with the use of drugs or natural compounds, this methodology can be even more effective in treating NDDs.
Collapse
Affiliation(s)
- Wei-Ting Chen
- Department of Physics, Lab for Medical Physics & Biomedical Engineering, National Taiwan University, Taipei, Taiwan
- Biomedical & Molecular Imaging Center, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yu-Yi Kuo
- Department of Physics, Lab for Medical Physics & Biomedical Engineering, National Taiwan University, Taipei, Taiwan
- Biomedical & Molecular Imaging Center, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Guan-Bo Lin
- Department of Physics, Lab for Medical Physics & Biomedical Engineering, National Taiwan University, Taipei, Taiwan
- Biomedical & Molecular Imaging Center, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chueh-Hsuan Lu
- Department of Physics, Lab for Medical Physics & Biomedical Engineering, National Taiwan University, Taipei, Taiwan
- Biomedical & Molecular Imaging Center, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Hao-Ping Hsu
- Department of Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yi-Kun Sun
- Biomedical & Molecular Imaging Center, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chih-Yu Chao
- Department of Physics, Lab for Medical Physics & Biomedical Engineering, National Taiwan University, Taipei, Taiwan
- Biomedical & Molecular Imaging Center, National Taiwan University College of Medicine, Taipei, Taiwan
- Graduate Institute of Applied Physics, Biophysics Division, National Taiwan University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
18
|
Cao R, Huang Z, Nabi G, Melzer A. Patient-Specific 3-Dimensional Model for High-Intensity Focused Ultrasound Treatment Through the Rib Cage: A Preliminary Study. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2020; 39:883-899. [PMID: 31721248 DOI: 10.1002/jum.15170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 09/12/2019] [Accepted: 10/16/2019] [Indexed: 06/10/2023]
Abstract
OBJECTIVES The purpose of this study was to develop a patient-specific 3-dimensional model for high-intensity focused ultrasound (HIFU) treatment through the rib cage using patient data. METHODS Experimental testing to derive parameters used in defining the amount of energy and alteration needed in treatment protocols for upper abdominal disorders under the rib cage was performed. Reconstructed rib cage models based on patient data, tissue-mimicking material phantoms, and magnetic resonance imaging-guided HIFU using a multielement phased array transducer were used in the experiments. Changes in the focal temperature, acoustic power, and acoustic pressure distribution were investigated with and without the presence of the rib cage model. An ExAblate system (InSightec Ltd, Tirat Carmel, Israel) was used to sonicate phantoms by varying the target phantom or rib cage model location. RESULTS The effect of the rib cage on the acoustic pressure distribution and acoustic power was closely related to the anatomic structures of the ribs. Thermometry revealed that heating at the focus could be controlled by changing either the power or duration of HIFU application to improve the focal temperature change. The focal temperature change was found to be related to the distance between the rib cage model and focus and the shadow area on the transducer elements covered by the rib cage model in the beam path. CONCLUSIONS Experimental results suggest that the rib cage model is a valuable and useful tool that can provide realistic human anatomic structures and properties for evaluating the effects of the rib cage on ultrasound propagation.
Collapse
Affiliation(s)
- Rui Cao
- Tianjin Key Laboratory of Integrated Design and On-line Monitoring for Light Industry & Food Machinery and Equipment, College of Mechanical Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Zhihong Huang
- School of Science and Engineering, University of Dundee, Dundee, UK
| | - Ghulam Nabi
- School of Medicine, Ninewells Hospital, Dundee, UK
| | - Andreas Melzer
- Institute for Medical Science and Technology, Dundee, UK
| |
Collapse
|
19
|
Lu CH, Kuo YY, Lin GB, Chen WT, Chao CY. Application of non-invasive low-intensity pulsed electric field with thermal cycling-hyperthermia for synergistically enhanced anticancer effect of chlorogenic acid on PANC-1 cells. PLoS One 2020; 15:e0222126. [PMID: 31995555 PMCID: PMC6988950 DOI: 10.1371/journal.pone.0222126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 01/09/2020] [Indexed: 12/21/2022] Open
Abstract
Most existing cancer treatments involve high-cost chemotherapy and radiotherapy, with major side effects, prompting effort to develop alternative treatment modalities. It was reported that the combination of thermal-cycling hyperthermia (TC-HT) and phenolic compound exhibited a moderate cytotoxic effect against human pancreatic cancer PANC-1 cells. In this study, we investigate the efficacy of triple combination in PANC-1 cancer cells by adopting low-intensity pulsed electric field (LIPEF) to couple with TC-HT and CGA (chlorogenic acid). The study finds that this triple combination can significantly impede the proliferation of PANC-1 cells, with only about 20% viable cells left after 24h, whereas being non-toxic to normal cells. The synergistic activity against the PANC-1 cells was achieved by inducing G2/M phase arrest and apoptosis, which were associated with up-regulation of p53 and coupled with increased expression of downstream proteins p21 and Bax. Further mechanism investigations revealed that the cytotoxic activity could be related to mitochondrial apoptosis, characterized by the reduced level of Bcl-2, mitochondrial dysfunction, and sequential activation of caspase-9 and PARP. Also, we found that the triple treatment led to the increase of intracellular reactive oxygen species (ROS) production. Notably, the triple treatment-induced cytotoxic effects and the elevated expression of p53 and p21 proteins as well as the increased Bax/Bcl-2 ratio, all could be alleviated by the ROS scavenger, N-acetyl-cysteine (NAC). These findings indicate that the combination of CGA, TC-HT, and LIPEF may be a promising modality for cancer treatment, as it can induce p53-dependent cell cycle arrest and apoptosis through accumulation of ROS in PANC-1 cells.
Collapse
Affiliation(s)
- Chueh-Hsuan Lu
- Department of Physics, Lab for Medical Physics & Biomedical Engineering, National Taiwan University, Taipei, Taiwan
- Biomedical & Molecular Imaging Center, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yu-Yi Kuo
- Department of Physics, Lab for Medical Physics & Biomedical Engineering, National Taiwan University, Taipei, Taiwan
- Biomedical & Molecular Imaging Center, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Guan-Bo Lin
- Department of Physics, Lab for Medical Physics & Biomedical Engineering, National Taiwan University, Taipei, Taiwan
- Biomedical & Molecular Imaging Center, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Wei-Ting Chen
- Department of Physics, Lab for Medical Physics & Biomedical Engineering, National Taiwan University, Taipei, Taiwan
- Biomedical & Molecular Imaging Center, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chih-Yu Chao
- Department of Physics, Lab for Medical Physics & Biomedical Engineering, National Taiwan University, Taipei, Taiwan
- Biomedical & Molecular Imaging Center, National Taiwan University College of Medicine, Taipei, Taiwan
- Institute of Applied Physics, National Taiwan University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
20
|
Chen WT, Sun YK, Lu CH, Chao CY. Thermal cycling as a novel thermal therapy to synergistically enhance the anticancer effect of propolis on PANC‑1 cells. Int J Oncol 2019; 55:617-628. [PMID: 31322205 PMCID: PMC6685589 DOI: 10.3892/ijo.2019.4844] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 07/01/2019] [Indexed: 01/14/2023] Open
Abstract
Hyperthermia (HT) has shown potential in cancer therapy. In particular, it appears to sensitize cancer cells to chemotherapy. However, a major concern associated with HT is that the thermal dosage applied to the tumor cells may also harm the normal tissue cells. Besides, the drugs used in HT are conventional chemotherapy drugs, which may cause serious side effects. The present study demonstrated a novel methodology in HT therapy called thermal cycle (TC)‑HT. With this strategy, a therapeutic window with a maximum synergistic effect was created by combining TC‑HT with natural compounds, with minimal unwanted cell damage. The natural compound propolis was selected, and the synergistic anticancer effect of TC‑HT and propolis was investigated in pancreatic cancer cells. The present results demonstrated for the first time that TC‑HT could enhance the anticancer effect of propolis on PANC‑1 cancer cells through the mitochondria‑dependent apoptosis pathway and cell cycle arrest. Combined treatment greatly suppressed mitochondrial membrane potential, which is an important indicator of damaged and dysfunctional mitochondria. Furthermore, the cell cycle‑regulating protein cell division cycle protein 2 was downregulated upon combined treatment, which prevented cellular progression into mitosis. The present study offers the first report, to the best of our knowledge, on the combination of TC‑HT with a natural compound for pancreatic cancer treatment. It is anticipated that this methodology may be a starting point for more sophisticated cancer treatments and may thereby improve the quality of life of many patients with cancer.
Collapse
Affiliation(s)
- Wei-Ting Chen
- Department of Physics, Laboratory for Medical Physics and Biomedical Engineering, National Taiwan University, Taipei 10617
- Biomedical and Molecular Imaging Center, National Taiwan University College of Medicine, Taipei 10051
| | - Yi-Kun Sun
- Biomedical and Molecular Imaging Center, National Taiwan University College of Medicine, Taipei 10051
| | - Chueh-Hsuan Lu
- Department of Physics, Laboratory for Medical Physics and Biomedical Engineering, National Taiwan University, Taipei 10617
- Biomedical and Molecular Imaging Center, National Taiwan University College of Medicine, Taipei 10051
| | - Chih-Yu Chao
- Department of Physics, Laboratory for Medical Physics and Biomedical Engineering, National Taiwan University, Taipei 10617
- Biomedical and Molecular Imaging Center, National Taiwan University College of Medicine, Taipei 10051
- Institute of Applied Physics, National Taiwan University, Taipei 10617, Taiwan, R.O.C
| |
Collapse
|
21
|
Bing C, Cheng B, Staruch RM, Nofiele J, Staruch MW, Szczepanski D, Farrow-Gillespie A, Yang A, Laetsch TW, Chopra R. Breath-hold MR-HIFU hyperthermia: phantom and in vivo feasibility. Int J Hyperthermia 2019; 36:1084-1097. [PMID: 31707872 PMCID: PMC6873809 DOI: 10.1080/02656736.2019.1679893] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 09/04/2019] [Accepted: 10/06/2019] [Indexed: 01/01/2023] Open
Abstract
Background: The use of magnetic resonance imaging-guided high-intensity focused ultrasound (MR-HIFU) to deliver mild hyperthermia requires stable temperature mapping for long durations. This study evaluates the effects of respiratory motion on MR thermometry precision in pediatric subjects and determines the in vivo feasibility of circumventing breathing-related motion artifacts by delivering MR thermometry-controlled HIFU mild hyperthermia during repeated forced breath holds.Materials and methods: Clinical and preclinical studies were conducted. Clinical studies were conducted without breath-holds. In phantoms, breathing motion was simulated by moving an aluminum block towards the phantom along a sinusoidal trajectory using an MR-compatible motion platform. In vivo experiments were performed in ventilated pigs. MR thermometry accuracy and stability were evaluated.Results: Clinical data confirmed acceptable MR thermometry accuracy (0.12-0.44 °C) in extremity tumors, but not in the tumors in the chest/spine and pelvis. In phantom studies, MR thermometry accuracy and stability improved to 0.37 ± 0.08 and 0.55 ± 0.18 °C during simulated breath-holds. In vivo MR thermometry accuracy and stability in porcine back muscle improved to 0.64 ± 0.22 and 0.71 ± 0.25 °C during breath-holds. MR-HIFU hyperthermia delivered during intermittent forced breath holds over 10 min duration heated an 18-mm diameter target region above 41 °C for 10.0 ± 1.0 min, without significant overheating. For a 10-min mild hyperthermia treatment, an optimal treatment effect (TIR > 9 min) could be achieved when combining 36-60 s periods of forced apnea with 60-155.5 s free-breathing.Conclusion: MR-HIFU delivery during forced breath holds enables stable control of mild hyperthermia in targets adjacent to moving anatomical structures.
Collapse
Affiliation(s)
- Chenchen Bing
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Bingbing Cheng
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Robert M. Staruch
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX
- Clinical Sites Research Program, Philips Research North America, Cambridge, MA
| | - Joris Nofiele
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX
| | | | - Debra Szczepanski
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Alan Farrow-Gillespie
- Department of Anesthesiology and Pain Management, University of Texas Southwestern Medical Center, Dallas, TX
| | - Adeline Yang
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Theodore W. Laetsch
- Department of Pediatrics and Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX
- Pauline Allen Gill Center for Cancer and Blood Disorders, Children’s Health, Dallas, TX
| | - Rajiv Chopra
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
22
|
Ozhinsky E, Salgaonkar VA, Diederich CJ, Rieke V. MR thermometry-guided ultrasound hyperthermia of user-defined regions using the ExAblate prostate ablation array. J Ther Ultrasound 2018; 6:7. [PMID: 30123506 PMCID: PMC6088423 DOI: 10.1186/s40349-018-0115-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/26/2018] [Indexed: 01/21/2023] Open
Abstract
Background Hyperthermia therapy (HT) has shown to be an effective adjuvant to radiation, chemotherapy, and immunotherapy. In order to be safe and effective, delivery of HT requires maintenance of target tissue temperature within a narrow range (40-44 °C) for 30-60 min, which necessitates conformal heat delivery and accurate temperature monitoring. The goal of this project was to develop an MR thermometry-guided hyperthermia delivery platform based upon the ExAblate prostate array that would achieve uniform stable heating over large volumes within the prostate, while allowing the user to precisely control the power deposition patterns and shape of the region of treatment (ROT). Methods The HT platform incorporates an accelerated multi-slice real time MR thermometry pulse sequence and reconstruction pipeline. Temperature uniformity over a large contiguous area was achieved by multi-point temperature sampling with multi-focal feedback power control. The hyperthermia delivery system was based on an InSightec ExAblate 2100 prostate focused ultrasound ablation system, and HeartVista's RTHawk real-time MRI system integrated with a 3 T MRI scanner. The integrated system was evaluated in experiments with a tissue-mimicking phantom for prolonged exposures with a target temperature increase of 7 °C from baseline. Results Five various shapes of the region of treatment, defined on a 5 × 5 grid (35 × 35 mm, 11-25 focal spots per shape), were implemented to evaluate the performance of the system. MR temperature images, acquired after steady state was reached, showed different patterns of heating that closely matched the prescribed regions. Temperature uncertainty of the thermometry acquisition was 0.5 °C. The time to reach the target temperature (2:58-7:44 min) depended on the chosen ROT shape and on the distance from transducer to focal plane. Pre-cooling with circulating water helped to reduce near-field heating. Conclusions We have implemented a real-time MR thermometry-guided system for hyperthermia delivery within user-defined regions with the ExAblate prostate array and evaluated it in phantom experiments for different shapes and focal depths. Our results demonstrate the feasibility of using a commercially available endorectal FUS transducer to perform spatially-conformal hyperthermia therapy and could lead to a new set of exciting applications for these devices.
Collapse
Affiliation(s)
- Eugene Ozhinsky
- 1Department of Radiology and Biomedical Imaging, University of California San Francisco, 185 Berry Street, Suite 350, Box 0946, San Francisco, CA 94107 USA
| | - Vasant A Salgaonkar
- 2Department of Radiation Oncology, University of California San Francisco, 2340 Sutter Street, S331, Box 1708, San Francisco, CA 94115 USA
| | - Chris J Diederich
- 2Department of Radiation Oncology, University of California San Francisco, 2340 Sutter Street, S331, Box 1708, San Francisco, CA 94115 USA
| | - Viola Rieke
- 1Department of Radiology and Biomedical Imaging, University of California San Francisco, 185 Berry Street, Suite 350, Box 0946, San Francisco, CA 94107 USA
| |
Collapse
|
23
|
Magnetic Resonance Imaging-guided High-intensity Focused Ultrasound Applications in Pediatrics: Early Experience at Children's National Medical Center. Top Magn Reson Imaging 2018; 27:45-51. [PMID: 29406415 DOI: 10.1097/rmr.0000000000000163] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Magnetic resonance imaging-guided high-intensity focused ultrasound (MR-HIFU) is a novel technology that integrates magnetic resonance imaging with therapeutic ultrasound. This unique approach provides a completely noninvasive method for precise thermal ablation of targeted tissues with real-time imaging feedback. Over the past 2 decades, MR-HIFU has shown clinical success in several adult applications ranging from treatment of painful bone metastases to uterine fibroids to prostate cancer and essential tremor. Although clinical experience in pediatrics is relatively small, the advantages of a completely noninvasive and radiation-free therapy are especially attractive to growing children. Unlike elderly patients, young children must deal with an entire lifetime of negative effects related to collateral tissue damage associated with invasive surgery, side effects of chemotherapy, and risk of secondary malignancy due to radiation exposure. These reasons provide a clear rationale and strong motivation to further advance clinical utility of MR-HIFU in pediatrics. We begin with an introduction to MR-HIFU technology and the clinical experience in adults. We then describe our early institutional experience in using MR-HIFU ablation to treat symptomatic benign, locally aggressive, and metastatic tumors in children and young adults. We also review some limitations and challenges encountered in treating pediatric patients and highlight additional pediatric applications which may be feasible in the near future.
Collapse
|
24
|
Chaplin V, Caskey CF. Multi-focal HIFU reduces cavitation in mild-hyperthermia. J Ther Ultrasound 2017; 5:12. [PMID: 28413682 PMCID: PMC5390440 DOI: 10.1186/s40349-017-0089-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 02/07/2017] [Indexed: 12/21/2022] Open
Abstract
Background Mild-hyperthermia therapy (40–45 °C) with high-intensity focused ultrasound (HIFU) is a technique being considered in a number of different treatments such as thermally activated drug delivery, immune-stimulation, and as a chemotherapy adjuvant. Mechanical damage and loss of cell viability associated with HIFU-induced acoustic cavitation may pose a risk during these treatments or may hinder their success. Here we present a method that achieves mild heating and reduces cavitation by using a multi-focused HIFU beam. We quantify cavitation level and temperature rise in multi-focal sonications and compare it to single-focus sonications at the transducer geometric focus. Methods Continuous wave sonications were performed with the Sonalleve V2 transducer in gel phantoms and pork at 5, 10, 20, 40, 60, 80 acoustic watts for 30 s. Cavitation activity was measured with two ultrasound (US) imaging probes, both by computing the raw channel variance and using passive acoustic mapping (PAM). Temperature rise was measured with MR thermometry at 3 T. Cavitation and heating were compared for single- and multi-focal sonication geometries. Multi-focal sonications used four points equally spaced on a ring of either 4 mm or 8 mm diameter. Single-focus sonications were not steered. Results Multi-focal sonication generated distinct foci that were visible in MRI thermal maps in both phantoms and pork, and visible in PAM images in phantoms only. Cavitation activity (measured by channel variance) and mean PAM image value were highly correlated (r > 0.9). In phantoms, cavitation exponentially decreased over the 30-second sonication, consistent with depletion of cavitation nuclei. In pork, sporadic spikes signaling cavitation were observed with single focusing only. In both materials, the widest beam reduced average and peak cavitation level by a factor of two or more at each power tested when compared to a single focus. The widest beam reduced peak temperature by at least 10 °C at powers above 5 W, and created heating that was more spatially diffuse than single focus, resulting in more voxels in the mild heating (3–8 °C) range. Conclusions Multi-focal HIFU can be used to achieve mild temperature elevation and reduce cavitation activity.
Collapse
Affiliation(s)
- Vandiver Chaplin
- Vanderbilt University Institute of Imaging Science, 1161 21st Avenue South, Nashville, TN 37232 USA
| | - Charles F Caskey
- Vanderbilt University Institute of Imaging Science, 1161 21st Avenue South, Nashville, TN 37232 USA.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, 1161 21st Avenue South, Nashville, TN 37232 USA
| |
Collapse
|
25
|
Devarakonda SB, Myers MR, Lanier M, Dumoulin C, Banerjee RK. Assessment of Gold Nanoparticle-Mediated-Enhanced Hyperthermia Using MR-Guided High-Intensity Focused Ultrasound Ablation Procedure. NANO LETTERS 2017; 17:2532-2538. [PMID: 28287747 DOI: 10.1021/acs.nanolett.7b00272] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
High-intensity focused ultrasound (HIFU) has gained increasing popularity as a noninvasive therapeutic procedure to treat solid tumors. However, collateral damage due to the use of high acoustic powers during HIFU procedures remains a challenge. The objective of this study is to assess the utility of using gold nanoparticles (gNPs) during HIFU procedures to locally enhance heating at low powers, thereby reducing the likelihood of collateral damage. Phantoms containing tissue-mimicking material (TMM) and physiologically relevant concentrations (0%, 0.0625%, and 0.125%) of gNPs were fabricated. Sonications at acoustic powers of 10, 15, and 20 W were performed for a duration of 16 s using an MR-HIFU system. Temperature rises and lesion volumes were calculated and compared for phantoms with and without gNPs. For an acoustic power of 10 W, the maximum temperature rise increased by 32% and 43% for gNPs concentrations of 0.0625% and 0.125%, respectively, when compared to the 0% gNPs concentration. For the power of 15 W, a lesion volume of 0, 44.5 ± 7, and 63.4 ± 32 mm3 was calculated for the gNPs concentration of 0%, 0.0625%, and 0.125%, respectively. For a power of 20 W, it was found that the lesion volume doubled and tripled for concentrations of 0.0625% and 0.125% gNPs, respectively, when compared to the concentration of 0% gNPs. We conclude that gNPs have the potential to locally enhance the heating and reduce damage to healthy tissue during tumor ablation using HIFU.
Collapse
Affiliation(s)
- Surendra B Devarakonda
- Department of Mechanical, Materials Engineering College of Engineering and Applied Science, University of Cincinnati , Cincinnati, Ohio 45221, United States
| | - Matthew R Myers
- Division of Solid and Fluid Mechanics Center for Devices and Radiological Health, U.S. Food and Drug Administration , Silver Spring, Maryland 20993, United States
| | - Mathew Lanier
- Department of Radiology, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio 45221, United States
| | - Charles Dumoulin
- Department of Radiology, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio 45221, United States
| | - Rupak K Banerjee
- Department of Mechanical, Materials Engineering College of Engineering and Applied Science, University of Cincinnati , Cincinnati, Ohio 45221, United States
| |
Collapse
|
26
|
Mikhail AS, Negussie AH, Graham C, Mathew M, Wood BJ, Partanen A. Evaluation of a tissue-mimicking thermochromic phantom for radiofrequency ablation. Med Phys 2017; 43:4304. [PMID: 27370145 DOI: 10.1118/1.4953394] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE This work describes the characterization and evaluation of a tissue-mimicking thermochromic phantom (TMTCP) for direct visualization and quantitative determination of temperatures during radiofrequency ablation (RFA). METHODS TMTCP material was prepared using polyacrylamide gel and thermochromic ink that permanently changes color from white to magenta when heated. Color vs temperature calibration was generated in matlab by extracting RGB color values from digital photographs of phantom standards heated in a water bath at 25-75 °C. RGB and temperature values were plotted prior to curve fitting in mathematica using logistic functions of form f(t) = a + b/(1 + e((c(t-d)))), where a, b, c, and d are coefficients and t denotes temperature. To quantify temperatures based on TMTCP color, phantom samples were heated to temperatures blinded to the investigators, and two methods were evaluated: (1) visual comparison of sample color to the calibration series and (2) in silico analysis using the inverse of the logistic functions to convert sample photograph RGB values to absolute temperatures. For evaluation of TMTCP performance with RFA, temperatures in phantom samples and in a bovine liver were measured radially from an RF electrode during heating using fiber-optic temperature probes. Heating and cooling rates as well as the area under the temperature vs time curves were compared. Finally, temperature isotherms were generated computationally based on color change in bisected phantoms following RFA and compared to temperature probe measurements. RESULTS TMTCP heating resulted in incremental, permanent color changes between 40 and 64 °C. Visual and computational temperature estimation methods were accurate to within 1.4 and 1.9 °C between 48 and 67 °C, respectively. Temperature estimates were most accurate between 52 and 62 °C, resulting in differences from actual temperatures of 0.6 and 1.6 °C for visual and computational methods, respectively. Temperature measurements during RFA using fiber-optic probes matched closely with maximum temperatures predicted by color changes in the TMTCP. Heating rate and cooling rate, as well as the area under the temperature vs time curve were similar for TMTCP and ex vivo liver. CONCLUSIONS The TMTCP formulated for use with RFA can be used to provide quantitative temperature information in mild hyperthermic (40-45 °C), subablative (45-50 °C), and ablative (>50 °C) temperature ranges. Accurate visual or computational estimates of absolute temperatures and ablation zone geometry can be made with high spatial resolution based on TMTCP color. As such, the TMTCP can be used to assess RFA heating characteristics in a controlled, predictable environment.
Collapse
Affiliation(s)
- Andrew S Mikhail
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892
| | - Ayele H Negussie
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892
| | - Cole Graham
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892
| | - Manoj Mathew
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892
| | - Bradford J Wood
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892
| | - Ari Partanen
- Center for Interventional Oncology, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892 and Clinical Science MR Therapy, Philips, Andover, Massachusetts 01810
| |
Collapse
|
27
|
Ellens NPK, Partanen A. Preclinical MRI-Guided Focused Ultrasound: A Review of Systems and Current Practices. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2017; 64:291-305. [PMID: 27662675 DOI: 10.1109/tuffc.2016.2609238] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Effective preclinical research is a vital component in the development of MRI-guided focused ultrasound (MRgFUS) and its translation to clinic. In this review, we seek to outline the challenges at hand for effective preclinical research, survey different solutions, and underline best practices. Furthermore, we summarize efforts to build and characterize dedicated preclinical MRgFUS equipment, including lab prototypes and available commercial products. Finally, we discuss constraints and considerations specific to using clinical MRgFUS equipment in preclinical research. Specifically, we examine additional hardware that has been used to adapt clinical MRgFUS equipment to better position, constrain, and image preclinical subjects, as well as software solutions that have been used to extend the potential and capabilities of clinical devices.
Collapse
|
28
|
Fast and high temperature hyperthermia coupled with radiotherapy as a possible new treatment for glioblastoma. J Ther Ultrasound 2016; 4:32. [PMID: 27980785 PMCID: PMC5143464 DOI: 10.1186/s40349-016-0078-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 11/18/2016] [Indexed: 12/21/2022] Open
Abstract
Background A new transcranial focused ultrasound device has been developed that can induce hyperthermia in a large tissue volume. The purpose of this work is to investigate theoretically how glioblastoma multiforme (GBM) can be effectively treated by combining the fast hyperthermia generated by this focused ultrasound device with external beam radiotherapy. Methods/Design To investigate the effect of tumor growth, we have developed a mathematical description of GBM proliferation and diffusion in the context of reaction–diffusion theory. In addition, we have formulated equations describing the impact of radiotherapy and heat on GBM in the reaction–diffusion equation, including tumor regrowth by stem cells. This formulation has been used to predict the effectiveness of the combination treatment for a realistic focused ultrasound heating scenario. Our results show that patient survival could be significantly improved by this combined treatment modality. Discussion High priority should be given to experiments to validate the therapeutic benefit predicted by our model. Electronic supplementary material The online version of this article (doi:10.1186/s40349-016-0078-3) contains supplementary material, which is available to authorized users.
Collapse
|
29
|
Deng L, O'Reilly MA, Jones RM, An R, Hynynen K. A multi-frequency sparse hemispherical ultrasound phased array for microbubble-mediated transcranial therapy and simultaneous cavitation mapping. Phys Med Biol 2016; 61:8476-8501. [PMID: 27845920 DOI: 10.1088/0031-9155/61/24/8476] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Focused ultrasound (FUS) phased arrays show promise for non-invasive brain therapy. However, the majority of them are limited to a single transmit/receive frequency and therefore lack the versatility to expose and monitor the treatment volume. Multi-frequency arrays could offer variable transmit focal sizes under a fixed aperture, and detect different spectral content on receive for imaging purposes. Here, a three-frequency (306, 612, and 1224 kHz) sparse hemispherical ultrasound phased array (31.8 cm aperture; 128 transducer modules) was constructed and evaluated for microbubble-mediated transcranial therapy and simultaneous cavitation mapping. The array is able to perform effective electronic beam steering over a volume spanning (-40, 40) and (-30, 50) mm in the lateral and axial directions, respectively. The focal size at the geometric center is approximately 0.9 (2.1) mm, 1.7 (3.9) mm, and 3.1 (6.5) mm in lateral (axial) pressure full width at half maximum (FWHM) at 1224, 612, and 306 kHz, respectively. The array was also found capable of dual-frequency excitation and simultaneous multi-foci sonication, which enables the future exploration of more complex exposure strategies. Passive acoustic mapping of dilute microbubble clouds demonstrated that the point spread function of the receive array has a lateral (axial) intensity FWHM between 0.8-3.5 mm (1.7-11.7 mm) over a volume spanning (-25, 25) mm in both the lateral and axial directions, depending on the transmit/receive frequency combination and the imaging location. The device enabled both half and second harmonic imaging through the intact skull, which may be useful for improving the contrast-to-tissue ratio or imaging resolution, respectively. Preliminary in vivo experiments demonstrated the system's ability to induce blood-brain barrier opening and simultaneously spatially map microbubble cavitation activity in a rat model. This work presents a tool to investigate optimal strategies for non-thermal FUS brain therapy and concurrent microbubble cavitation monitoring through the availability of multiple frequencies.
Collapse
Affiliation(s)
- Lulu Deng
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | | | | | | | | |
Collapse
|
30
|
Hynynen K, Jones RM. Image-guided ultrasound phased arrays are a disruptive technology for non-invasive therapy. Phys Med Biol 2016; 61:R206-48. [PMID: 27494561 PMCID: PMC5022373 DOI: 10.1088/0031-9155/61/17/r206] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Focused ultrasound offers a non-invasive way of depositing acoustic energy deep into the body, which can be harnessed for a broad spectrum of therapeutic purposes, including tissue ablation, the targeting of therapeutic agents, and stem cell delivery. Phased array transducers enable electronic control over the beam geometry and direction, and can be tailored to provide optimal energy deposition patterns for a given therapeutic application. Their use in combination with modern medical imaging for therapy guidance allows precise targeting, online monitoring, and post-treatment evaluation of the ultrasound-mediated bioeffects. In the past there have been some technical obstacles hindering the construction of large aperture, high-power, densely-populated phased arrays and, as a result, they have not been fully exploited for therapy delivery to date. However, recent research has made the construction of such arrays feasible, and it is expected that their continued development will both greatly improve the safety and efficacy of existing ultrasound therapies as well as enable treatments that are not currently possible with existing technology. This review will summarize the basic principles, current statures, and future potential of image-guided ultrasound phased arrays for therapy.
Collapse
Affiliation(s)
- Kullervo Hynynen
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada. Department of Medical Biophysics, University of Toronto, Toronto, Canada. Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| | | |
Collapse
|
31
|
Spatial and Temporal Control of Hyperthermia Using Real Time Ultrasonic Thermal Strain Imaging with Motion Compensation, Phantom Study. PLoS One 2015. [PMID: 26244783 DOI: 10.1371/journal.pone.0134938.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Mild hyperthermia has been successfully employed to induce reversible physiological changes that can directly treat cancer and enhance local drug delivery. In this approach, temperature monitoring is essential to avoid undesirable biological effects that result from thermal damage. For thermal therapies, Magnetic Resonance Imaging (MRI) has been employed to control real-time Focused Ultrasound (FUS) therapies. However, combined ultrasound imaging and therapy systems offer the benefits of simple, low-cost devices that can be broadly applied. To facilitate such technology, ultrasound thermometry has potential to reliably monitor temperature. Control of mild hyperthermia was previously achieved using a proportional-integral-derivative (PID) controller based on thermocouple measurements. Despite accurate temporal control of heating, this method is limited by the single position at which the temperature is measured. Ultrasound thermometry techniques based on exploiting the thermal dependence of acoustic parameters (such as longitudinal velocity) can be extended to create thermal maps and allow an accurate monitoring of temperature with good spatial resolution. However, in vivo applications of this technique have not been fully developed due to the high sensitivity to tissue motion. Here, we propose a motion compensation method based on the acquisition of multiple reference frames prior to treatment. The technique was tested in the presence of 2-D and 3-D physiological-scale motion and was found to provide effective real-time temperature monitoring. PID control of mild hyperthermia in presence of motion was then tested with ultrasound thermometry as feedback and temperature was maintained within 0.3°C of the requested value.
Collapse
|
32
|
Foiret J, Ferrara KW. Spatial and Temporal Control of Hyperthermia Using Real Time Ultrasonic Thermal Strain Imaging with Motion Compensation, Phantom Study. PLoS One 2015; 10:e0134938. [PMID: 26244783 PMCID: PMC4526517 DOI: 10.1371/journal.pone.0134938] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 07/16/2015] [Indexed: 11/19/2022] Open
Abstract
Mild hyperthermia has been successfully employed to induce reversible physiological changes that can directly treat cancer and enhance local drug delivery. In this approach, temperature monitoring is essential to avoid undesirable biological effects that result from thermal damage. For thermal therapies, Magnetic Resonance Imaging (MRI) has been employed to control real-time Focused Ultrasound (FUS) therapies. However, combined ultrasound imaging and therapy systems offer the benefits of simple, low-cost devices that can be broadly applied. To facilitate such technology, ultrasound thermometry has potential to reliably monitor temperature. Control of mild hyperthermia was previously achieved using a proportional-integral-derivative (PID) controller based on thermocouple measurements. Despite accurate temporal control of heating, this method is limited by the single position at which the temperature is measured. Ultrasound thermometry techniques based on exploiting the thermal dependence of acoustic parameters (such as longitudinal velocity) can be extended to create thermal maps and allow an accurate monitoring of temperature with good spatial resolution. However, in vivo applications of this technique have not been fully developed due to the high sensitivity to tissue motion. Here, we propose a motion compensation method based on the acquisition of multiple reference frames prior to treatment. The technique was tested in the presence of 2-D and 3-D physiological-scale motion and was found to provide effective real-time temperature monitoring. PID control of mild hyperthermia in presence of motion was then tested with ultrasound thermometry as feedback and temperature was maintained within 0.3°C of the requested value.
Collapse
Affiliation(s)
- Josquin Foiret
- Department of Biomedical Engineering, University of California Davis, Davis, CA, United States of America
| | - Katherine W. Ferrara
- Department of Biomedical Engineering, University of California Davis, Davis, CA, United States of America
- * E-mail:
| |
Collapse
|
33
|
Abstract
Local tumour hyperthermia for cancer treatment is currently used either for ablation purposes as an alternative to surgery or less frequently, in combination with chemotherapy and/or radiation therapy to enhance the effects of those traditional therapies. As it has become apparent that activating the immune system is crucial to successfully treat metastatic cancer, the potential of boosting anti-tumour immunity by heating tumours has become a growing area of cancer research. After reviewing the history of hyperthermia therapy for cancer and introducing methods for inducing local hyperthermia, this review describes different mechanisms by which heating tumours can elicit anti-tumour immune responses, including tumour cell damage, tumour surface molecule changes, heat shock proteins, exosomes, direct effects on immune cells, and changes in the tumour vasculature. We then go over in vivo studies that provide promising results showing that local hyperthermia therapy indeed activates various systemic anti-tumour immune responses that slow growth of untreated tumours. Finally, future research questions that will help bring the use of local hyperthermia as systemic immunotherapy closer to clinical application are discussed.
Collapse
Affiliation(s)
- Seiko Toraya-Brown
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth , Hanover , New Hampshire
| | | |
Collapse
|
34
|
Pichardo S, Köhler M, Lee J, Hynnyen K. In vivo optimisation study for multi-baseline MR-based thermometry in the context of hyperthermia using MR-guided high intensity focused ultrasound for head and neck applications. Int J Hyperthermia 2014; 30:579-92. [DOI: 10.3109/02656736.2014.981299] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
35
|
Salgaonkar VA, Prakash P, Rieke V, Ozhinsky E, Plata J, Kurhanewicz J, Hsu ICJ, Diederich CJ. Model-based feasibility assessment and evaluation of prostate hyperthermia with a commercial MR-guided endorectal HIFU ablation array. Med Phys 2014; 41:033301. [PMID: 24593742 DOI: 10.1118/1.4866226] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
PURPOSE Feasibility of targeted and volumetric hyperthermia (40-45 °C) delivery to the prostate with a commercial MR-guided endorectal ultrasound phased array system, designed specifically for thermal ablation and approved for ablation trials (ExAblate 2100, Insightec Ltd.), was assessed through computer simulations and tissue-equivalent phantom experiments with the intention of fast clinical translation for targeted hyperthermia in conjunction with radiotherapy and chemotherapy. METHODS The simulations included a 3D finite element method based biothermal model, and acoustic field calculations for the ExAblate ERUS phased array (2.3 MHz, 2.3 × 4.0 cm(2), ∼1000 channels) using the rectangular radiator method. Array beamforming strategies were investigated to deliver protracted, continuous-wave hyperthermia to focal prostate cancer targets identified from representative patient cases. Constraints on power densities, sonication durations and switching speeds imposed by ExAblate hardware and software were incorporated in the models. Preliminary experiments included beamformed sonications in tissue mimicking phantoms under MR temperature monitoring at 3 T (GE Discovery MR750W). RESULTS Acoustic intensities considered during simulation were limited to ensure mild hyperthermia (Tmax < 45 °C) and fail-safe operation of the ExAblate array (spatial and time averaged acoustic intensity ISATA < 3.4 W/cm(2)). Tissue volumes with therapeutic temperature levels (T > 41 °C) were estimated. Numerical simulations indicated that T > 41 °C was calculated in 13-23 cm(3) volumes for sonications with planar or diverging beam patterns at 0.9-1.2 W/cm(2), in 4.5-5.8 cm(3) volumes for simultaneous multipoint focus beam patterns at ∼0.7 W/cm(2), and in ∼6.0 cm(3) for curvilinear (cylindrical) beam patterns at 0.75 W/cm(2). Focused heating patterns may be practical for treating focal disease in a single posterior quadrant of the prostate and diffused heating patterns may be useful for heating quadrants, hemigland volumes or even bilateral targets. Treatable volumes may be limited by pubic bone heating. Therapeutic temperatures were estimated for a range of physiological parameters, sonication duty cycles and rectal cooling. Hyperthermia specific phasing patterns were implemented on the ExAblate prostate array and continuous-wave sonications (∼0.88 W/cm(2), 15 min) were performed in tissue-mimicking material with real-time MR-based temperature imaging (PRFS imaging at 3.0 T). Shapes of heating patterns observed during experiments were consistent with simulations. CONCLUSIONS The ExAblate 2100, designed specifically for thermal ablation, can be controlled for delivering continuous hyperthermia in prostate while working within operational constraints.
Collapse
Affiliation(s)
- Vasant A Salgaonkar
- Thermal Therapy Research Group, Radiation Oncology, University of California San Francisco, 1600 Divisadero Street, Suite H-1031, San Francisco, California 94143
| | - Punit Prakash
- Department of Electrical and Computer Engineering, Kansas State University, 2077 Rathbone Hall, Manhattan, Kansas 66506
| | - Viola Rieke
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 505 Parnassus Avenue, San Francisco, California 94143
| | - Eugene Ozhinsky
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 505 Parnassus Avenue, San Francisco, California 94143
| | - Juan Plata
- Department of Radiology, Stanford University, 1201 Welch Road, Stanford, California 94305
| | - John Kurhanewicz
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 505 Parnassus Avenue, San Francisco, California 94143
| | - I-C Joe Hsu
- Thermal Therapy Research Group, Radiation Oncology, University of California San Francisco, 1600 Divisadero Street, Suite H-1031, San Francisco, California 94143
| | - Chris J Diederich
- Thermal Therapy Research Group, Radiation Oncology, University of California San Francisco, 1600 Divisadero Street, Suite H-1031, San Francisco, California 94143
| |
Collapse
|
36
|
Lorenzato C, Oerlemans C, Cernicanu A, Ries M, Denis de Senneville B, Moonen C, Bos C. Rapid dynamic R1 /R2 */temperature assessment: a method with potential for monitoring drug delivery. NMR IN BIOMEDICINE 2014; 27:1267-1274. [PMID: 25208052 DOI: 10.1002/nbm.3182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 07/14/2014] [Accepted: 07/15/2014] [Indexed: 06/03/2023]
Abstract
Local drug delivery by hyperthermia-induced drug release from thermosensitive liposomes (TSLs) may reduce the systemic toxicity of chemotherapy, whilst maintaining or increasing its efficacy. Relaxivity contrast agents can be co-encapsulated with the drug to allow the visualization of the presence of liposomes, by means of R2 *, as well as the co-release of the contrast agent and the drug, by means of R1, on heating. Here, the mathematical method used to extract both R2 * and R1 from a fast dynamic multi-echo spoiled gradient echo (ME-SPGR) is presented and analyzed. Finally, this method is used to monitor such release events. R2 * was obtained from a fit to the ME-SPGR data. Absolute R1 was calculated from the signal magnitude changes corrected for the apparent proton density changes and a baseline Look-Locker R1 map. The method was used to monitor nearly homogeneous water bath heating and local focused ultrasound heating of muscle tissue, and to visualize the release of a gadolinium chelate from TSLs in vitro. R2 *, R1 and temperature maps were measured with a 5-s temporal resolution. Both R2 *and R1 measured were found to change with temperature. The dynamic R1 measurements after heating agreed with the Look-Locker R1 values if changes in equilibrium magnetization with temperature were considered. Release of gadolinium from TSLs was detected by an R1 increase near the phase transition temperature, as well as a shallow R2 * increase. Simultaneous temperature, R2 * and R1 mapping is feasible in real time and has the potential for use in image-guided drug delivery studies.
Collapse
Affiliation(s)
- Cyril Lorenzato
- University Medical Center Utrecht, Department of Radiology, Imaging Division, Heidelberglaan 100, 3584, CX, Utrecht, the Netherlands
| | | | | | | | | | | | | |
Collapse
|
37
|
Saha S, Bhanja P, Partanen A, Zhang W, Liu L, Tomé W, Guha C. Low intensity focused ultrasound (LOFU) modulates unfolded protein response and sensitizes prostate cancer to 17AAG. Oncoscience 2014; 1:434-45. [PMID: 25594042 PMCID: PMC4284617 DOI: 10.18632/oncoscience.48] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 06/02/2014] [Indexed: 01/08/2023] Open
Abstract
The hypoxic tumor microenvironment generates oxidative Endoplasmic Reticulum (ER) stress, resulting in protein misfolding and unfolded protein response (UPR). UPR induces several molecular chaperones including heat-shock protein 90 (HSP90), which corrects protein misfolding and improves survival of cancer cells and resistance to tumoricidal therapy although prolonged activation of UPR induces cell death. The HSP90 inhibitor, 17AAG, has shown promise against various solid tumors, including prostate cancer (PC). However, therapeutic doses of 17AAG elicit systemic toxicity. In this manuscript, we describe a new paradigm where the combination therapy of a non-ablative and non-invasive low energy focused ultrasound (LOFU) and a non-toxic, low dose 17AAG causes synthetic lethality and significant tumoricidal effects in mouse and human PC xenografts. LOFU induces ER stress and UPR in tumor cells without inducing cell death. Treatment with a non-toxic dose of 17AAG further increased ER stress in LOFU treated PC and switch UPR from a cytoprotective to an apoptotic response in tumors resulting significant induction of apoptosis and tumor growth retardation. These observations suggest that LOFU-induced ER stress makes the ultrasound-treated tumors more susceptible to chemotherapeutic agents, such as 17AAG. Thus, a novel therapy of LOFU-induced chemosensitization may be designed for locally advanced and recurrent tumors.
Collapse
Affiliation(s)
- Subhrajit Saha
- Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Payel Bhanja
- Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York, USA
| | | | - Wei Zhang
- Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Laibin Liu
- Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Wolfgang Tomé
- Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York, USA ; Montefiore Medical Center, New York, NY, USA
| | - Chandan Guha
- Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York, USA ; Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, USA ; Montefiore Medical Center, New York, NY, USA
| |
Collapse
|
38
|
Sirsi SR, Borden MA. State-of-the-art materials for ultrasound-triggered drug delivery. Adv Drug Deliv Rev 2014; 72:3-14. [PMID: 24389162 DOI: 10.1016/j.addr.2013.12.010] [Citation(s) in RCA: 322] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 12/08/2013] [Accepted: 12/19/2013] [Indexed: 12/18/2022]
Abstract
Ultrasound is a unique and exciting theranostic modality that can be used to track drug carriers, trigger drug release and improve drug deposition with high spatial precision. In this review, we briefly describe the mechanisms of interaction between drug carriers and ultrasound waves, including cavitation, streaming and hyperthermia, and how those interactions can promote drug release and tissue uptake. We then discuss the rational design of some state-of-the-art materials for ultrasound-triggered drug delivery and review recent progress for each drug carrier, focusing on the delivery of chemotherapeutic agents such as doxorubicin. These materials include nanocarrier formulations, such as liposomes and micelles, designed specifically for ultrasound-triggered drug release, as well as microbubbles, microbubble-nanocarrier hybrids, microbubble-seeded hydrogels and phase-change agents.
Collapse
Affiliation(s)
- Shashank R Sirsi
- Department of Mechanical Engineering, University of Colorado, Boulder, CO 80309, USA
| | - Mark A Borden
- Department of Mechanical Engineering, University of Colorado, Boulder, CO 80309, USA; Materials Science and Engineering Program, University of Colorado, Boulder, CO 80309, USA.
| |
Collapse
|
39
|
Magnetic resonance guided high-intensity focused ultrasound for image-guided temperature-induced drug delivery. Adv Drug Deliv Rev 2014; 72:65-81. [PMID: 24463345 DOI: 10.1016/j.addr.2014.01.006] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 01/08/2014] [Accepted: 01/14/2014] [Indexed: 12/29/2022]
Abstract
Magnetic resonance guided high-intensity focused ultrasound (MR-HIFU) is a versatile technology platform for noninvasive thermal therapies in oncology. Since MR-HIFU allows heating of deep-seated tissue to well-defined temperatures under MR image guidance, this novel technology has great potential for local heat-mediated drug delivery from temperature-sensitive liposomes (TSLs). In particular, MR provides the ability for image guidance of the drug delivery when an MRI contrast agent is co-encapsulated with the drug in the aqueous lumen of the liposomes. Monitoring of the tumor drug coverage offers possibilities for a personalized thermal treatment in oncology. This review focuses on MR-HIFU as a noninvasive technology platform, temperature-sensitive liposomal formulations for drug delivery and image-guided drug delivery, and the effect of HIFU-induced hyperthermia on the TSL and drug distribution. Finally, the opportunities and challenges of localized MR-HIFU-mediated drug delivery from temperature-sensitive liposomes in oncology are discussed.
Collapse
|
40
|
Wilson CG, Martín-Saavedra FM, Padilla F, Fabiilli ML, Zhang M, Baez AM, Bonkowski CJ, Kripfgans OD, Voellmy R, Vilaboa N, Fowlkes JB, Franceschi RT. Patterning expression of regenerative growth factors using high intensity focused ultrasound. Tissue Eng Part C Methods 2014; 20:769-79. [PMID: 24460731 DOI: 10.1089/ten.tec.2013.0518] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Temporal and spatial control of growth factor gradients is critical for tissue patterning and differentiation. Reinitiation of this developmental program is also required for regeneration of tissues during wound healing and tissue regeneration. Devising methods for reconstituting growth factor gradients remains a central challenge in regenerative medicine. In the current study we develop a novel gene therapy approach for temporal and spatial control of two important growth factors in bone regeneration, vascular endothelial growth factor, and bone morphogenetic protein 2, which involves application of high intensity focused ultrasound to cells engineered with a heat-activated- and ligand-inducible gene switch. Induction of transgene expression was tightly localized within cell-scaffold constructs to subvolumes of ∼30 mm³, and the amplitude and projected area of transgene expression was tuned by the intensity and duration of ultrasound exposure. Conditions for ultrasound-activated transgene expression resulted in minimal cytotoxicity and scaffold damage. Localized regions of growth factor expression also established gradients in signaling activity, suggesting that patterns of growth factor expression generated by this method will have utility in basic and applied studies on tissue development and regeneration.
Collapse
Affiliation(s)
- Christopher G Wilson
- 1 Department of Periodontics and Oral Medicine, Center for Craniofacial Regeneration, University of Michigan School of Dentistry , Ann Arbor, Michigan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|