1
|
Shimizu H, Nishitani K, Kitagawa T, Sasaki K, Aoyama T, Kodaira T. Development of a generic focal spot measurement method suitable for bore-type linacs. J Appl Clin Med Phys 2025:e70077. [PMID: 40195289 DOI: 10.1002/acm2.70077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 02/12/2025] [Accepted: 03/04/2025] [Indexed: 04/09/2025] Open
Abstract
PURPOSE In linear accelerators, deviations in the x-ray focal spot position significantly affect the accuracy of radiation therapy. However, as the focal spot position in bore-type linac systems such as the Radixact system, cannot be assessed using conventional methods, a new evaluation method is required. This study aimed to develop a novel method to measure the focal spot position of Radixact and evaluate any deviations from the ideal x-ray focal spot position. METHODS A structurally simplified measurement system was developed to evaluate the focal spot position of the Radixact system. This system consisted of a vertically aligned metal bar and an ionization chamber, which was moved stepwise to acquire the beam profiles. The focal spot position deviation was calculated based on the center differences of the profiles obtained from two different upstream and downstream locations of the metal bar. RESULTS The measurement results indicated that the focal spot position shift was 0.42 mm and -0.36 mm at the target height in the IEC-X and -Y directions, respectively. The measurement uncertainty was 0.187 mm, confirming a slight deviation from the ideal focal position. CONCLUSIONS This study developed a novel method to accurately evaluate the x-ray focal spot position of the Radixact system, which can potentially be applied to other conventional linear accelerators and bore-type systems, such as Halcyon, to improve the accuracy of radiotherapy. However, its generalizability and applicability to different radiotherapy machines must be explored further.
Collapse
Affiliation(s)
- Hidetoshi Shimizu
- Department of Radiation Oncology, Aichi Cancer Center Hospital, Nagoya, Aichi, Japan
- Division of Medical Physics, School of Medical Sciences, Fujita Health University, Toyoake, Aichi, Japan
| | | | - Tomoki Kitagawa
- Department of Radiation Oncology, Aichi Cancer Center Hospital, Nagoya, Aichi, Japan
| | - Koji Sasaki
- Graduate School of Radiological Technology, Gunma Prefectural College of Health Sciences, Maebashi, Gunma, Japan
| | - Takahiro Aoyama
- Department of Radiation Oncology, Aichi Cancer Center Hospital, Nagoya, Aichi, Japan
| | - Takeshi Kodaira
- Department of Radiation Oncology, Aichi Cancer Center Hospital, Nagoya, Aichi, Japan
| |
Collapse
|
2
|
Zamanian M, Irannejad M, Abedi I, Saeb M, Roayaei M. Nested CNN architecture for three-dimensional dose distribution prediction in tomotherapy for prostate cancer. Strahlenther Onkol 2025; 201:306-315. [PMID: 39283345 DOI: 10.1007/s00066-024-02290-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/29/2024] [Indexed: 02/21/2025]
Abstract
BACKGROUND The hypothesis of changing network layers to increase the accuracy of dose distribution prediction, instead of expanding their dimensions, which requires complex calculations, has been considered in our study. MATERIALS AND METHODS A total of 137 prostate cancer patients treated with the tomotherapy technique were categorized as 80% training and validating as well as 20% testing for the nested UNet and UNet architectures. Mean absolute error (MAE) was used to measure the dosimetry indices of dose-volume histograms (DVHs), and geometry indices, including the structural similarity index measure (SSIM), dice similarity coefficient (DSC), and Jaccard similarity coefficient (JSC), were used to evaluate the isodose volume (IV) similarity prediction. To verify a statistically significant difference, the two-way statistical Wilcoxon test was used at a level of 0.05 (p < 0.05). RESULTS Use of a nested UNet architecture reduced the predicted dose MAE in DVH indices. The MAE for planning target volume (PTV), bladder, rectum, and right and left femur were D98% = 1.11 ± 0.90; D98% = 2.27 ± 2.85, Dmean = 0.84 ± 0.62; D98% = 1.47 ± 12.02, Dmean = 0.77 ± 1.59; D2% = 0.65 ± 0.70, Dmean = 0.96 ± 2.82; and D2% = 1.18 ± 6.65, Dmean = 0.44 ± 1.13, respectively. Additionally, the greatest geometric similarity was observed in the mean SSIM for UNet and nested UNet (0.91 vs. 0.94, respectively). CONCLUSION The nested UNet network can be considered a suitable network due to its ability to improve the accuracy of dose distribution prediction compared to the UNet network in an acceptable time.
Collapse
Affiliation(s)
- Maryam Zamanian
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maziar Irannejad
- Department of Electrical Engineering, Islamic Azad University Najafabad Branch, Najafabad, Iran
| | - Iraj Abedi
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mohsen Saeb
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Radiation Oncology, Isfahan Seyedoshohada Hospital, Isfahan, Iran
| | - Mahnaz Roayaei
- Department of Radiation Oncology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
3
|
Corradini NA, Vite C, Urso P. Performance of binary MLC using real-time optical sensor feedback system. J Appl Clin Med Phys 2024; 25:e14506. [PMID: 39250633 PMCID: PMC11539967 DOI: 10.1002/acm2.14506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/08/2024] [Accepted: 07/29/2024] [Indexed: 09/11/2024] Open
Abstract
The Radixact system (Accuray Inc., Sunnyvale, CA) is the latest platform release based on the TomoTherapy technology. The most recent system does not apply a leaf latency model correction after plan optimization to ensure the correct MLC leaf-open time (LOT) agreement between the TPS and machine delivery. The MLC uses optical sensors to measure the delivered LOTs in real-time and individual leaf-specific latency corrections are made to ensure agreement. The aim of this study was to assess the performance of the Radixact MLC with leaf-specific latency correction using the optical sensor's real-time feedback. Specifically, the study statistically evaluated the MLC LOT errors observed from 290 plan-specific quality assurance (PSQA) measurements. Repeatability testing was performed to quantify the uncertainty in the MLC feedback system delivery by analyzing > 1300 delivered treatment fractions throughout the course of radiotherapy. The clinical impact was evaluated by estimating the resulting dose difference in the patient targets due to the measured plan latencies. Our study measured an average plan latency equal to 2.0 ± 0.4 ms (0.6% ± 0.2%) for 290 PSQAs. Repeatability tests showed a mean standard deviation in plan latencies measuring 0.05 ms (0.02%). The deviation from the TPS in the mean target dose due to the plan latencies was estimated to be 0.0% ± 0.2% (range: -0.7%-1.1%). The current MLC system with real-time optical sensor feedback is capable of accurately delivering the TPS-generated sinograms. Repeatability test results showed that the system allows for high reliability in daily sinogram delivery. The MLC latency deviations were shown to have minimal clinical impact on the overall target dosimetry.
Collapse
Affiliation(s)
- Nathan A. Corradini
- Radiotherapy Center, Gruppo Ospedaliero MoncuccoClinica MoncuccoLuganoSwitzerland
| | - Cristina Vite
- Radiotherapy Center, Gruppo Ospedaliero MoncuccoClinica MoncuccoLuganoSwitzerland
| | - Patrizia Urso
- Radiotherapy Center, Gruppo Ospedaliero MoncuccoClinica MoncuccoLuganoSwitzerland
| |
Collapse
|
4
|
Nasrallah M, Bochud F, Tellapragada N, Bourhis J, Chao E, Casey D, Moeckli R. Validation of MLC leaf open time calculation methods for PSQA in adaptive radiotherapy with tomotherapy units. J Appl Clin Med Phys 2024; 25:e14478. [PMID: 39115142 PMCID: PMC11466468 DOI: 10.1002/acm2.14478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/10/2024] [Accepted: 07/08/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Treatment delivery safety and accuracy are essential to control the disease and protect healthy tissues in radiation therapy. For usual treatment, a phantom-based patient specific quality assurance (PSQA) is performed to verify the delivery prior to the treatment. The emergence of adaptive radiation therapy (ART) adds new complexities to PSQA. In fact, organ at risks and target volume re-contouring as well as plan re-optimization and treatment delivery are performed with the patient immobilized on the treatment couch, making phantom-based pretreatment PSQA impractical. In this case, phantomless PSQA tools based on multileaf collimator (MLC) leaf open times (LOTs) verifications provide alternative approaches for the Radixact® treatment units. However, their validity is compromised by the lack of independent and reliable methods for calculating the LOT performed by the MLC during deliveries. PURPOSE To provide independent and reliable methods of LOT calculation for the Radixact® treatment units. METHODS Two methods for calculating the LOTs performed by the MLC during deliveries have been implemented. The first method uses the signal recorded by the build-in detector and the second method uses the signal recorded by optical sensors mounted on the MLC. To calibrate the methods to the ground truth, in-phantom ionization chamber LOT measurements have been conducted on a Radixact® treatment unit. The methods were validated by comparing LOT calculations with in-phantom ionization chamber LOT measurements performed on two Radixact® treatment units. RESULTS The study shows a good agreement between the two LOT calculation methods and the in-phantom ionization chamber measurements. There are no notable differences between the two methods and the same results were observed on the different treatment units. CONCLUSIONS The two implemented methods have the potential to be part of a PSQA solution for ART in tomotherapy.
Collapse
Affiliation(s)
- Marie Nasrallah
- Institute of Radiation PhysicsLausanne University Hospital and Lausanne UniversityLausanneSwitzerland
| | - François Bochud
- Institute of Radiation PhysicsLausanne University Hospital and Lausanne UniversityLausanneSwitzerland
| | | | - Jean Bourhis
- Radiation Oncology DepartmentLausanne University Hospital and Lausanne UniversityLausanneSwitzerland
| | | | | | - Raphaël Moeckli
- Institute of Radiation PhysicsLausanne University Hospital and Lausanne UniversityLausanneSwitzerland
| |
Collapse
|
5
|
Piffer S, Greto D, Ubaldi L, Mortilla M, Ciccarone A, Desideri I, Genitori L, Livi L, Marrazzo L, Pallotta S, Retico A, Sardi I, Talamonti C. Radiomic- and dosiomic-based clustering development for radio-induced neurotoxicity in pediatric medulloblastoma. Childs Nerv Syst 2024; 40:2301-2310. [PMID: 38642113 PMCID: PMC11269375 DOI: 10.1007/s00381-024-06416-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 04/15/2024] [Indexed: 04/22/2024]
Abstract
BACKGROUND Texture analysis extracts many quantitative image features, offering a valuable, cost-effective, and non-invasive approach for individual medicine. Furthermore, multimodal machine learning could have a large impact for precision medicine, as texture biomarkers can underlie tissue microstructure. This study aims to investigate imaging-based biomarkers of radio-induced neurotoxicity in pediatric patients with metastatic medulloblastoma, using radiomic and dosiomic analysis. METHODS This single-center study retrospectively enrolled children diagnosed with metastatic medulloblastoma (MB) and treated with hyperfractionated craniospinal irradiation (CSI). Histological confirmation of medulloblastoma and baseline follow-up magnetic resonance imaging (MRI) were mandatory. Treatment involved helical tomotherapy (HT) delivering a dose of 39 Gray (Gy) to brain and spinal axis and a posterior fossa boost up to 60 Gy. Clinical outcomes, such as local and distant brain control and neurotoxicity, were recorded. Radiomic and dosiomic features were extracted from tumor regions on T1, T2, FLAIR (fluid-attenuated inversion recovery) MRI-maps, and radiotherapy dose distribution. Different machine learning feature selection and reduction approaches were performed for supervised and unsupervised clustering. RESULTS Forty-eight metastatic medulloblastoma patients (29 males and 19 females) with a mean age of 12 ± 6 years were enrolled. For each patient, 332 features were extracted. Greater level of abstraction of input data by combining selection of most performing features and dimensionality reduction returns the best performance. The resulting one-component radiomic signature yielded an accuracy of 0.73 with sensitivity, specificity, and precision of 0.83, 0.64, and 0.68, respectively. CONCLUSIONS Machine learning radiomic-dosiomic approach effectively stratified pediatric medulloblastoma patients who experienced radio-induced neurotoxicity. Strategy needs further validation in external dataset for its potential clinical use in ab initio management paradigms of medulloblastoma.
Collapse
Affiliation(s)
- Stefano Piffer
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy.
- National Institute for Nuclear Physics (INFN), Florence Division, Florence, Italy.
| | - Daniela Greto
- Radiation Oncology Unit, Careggi University Hospital, Florence, Italy
| | - Leonardo Ubaldi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
- National Institute for Nuclear Physics (INFN), Florence Division, Florence, Italy
| | - Marzia Mortilla
- Radiology Unit, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Antonio Ciccarone
- Medical Physics Unit, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Isacco Desideri
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Lorenzo Genitori
- Neuro-Oncology Unit, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Lorenzo Livi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
- Radiation Oncology Unit, Careggi University Hospital, Florence, Italy
| | - Livia Marrazzo
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
- National Institute for Nuclear Physics (INFN), Florence Division, Florence, Italy
| | - Stefania Pallotta
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
- National Institute for Nuclear Physics (INFN), Florence Division, Florence, Italy
| | | | - Iacopo Sardi
- Neuro-Oncology Unit, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Cinzia Talamonti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
- National Institute for Nuclear Physics (INFN), Florence Division, Florence, Italy
| |
Collapse
|
6
|
Orda Y, Shayakhmetov T, Baiturova S, Berikbol D, Otynshiyev R, Brimova A, Saktashev B, Baisalbayeva A, Samigatova A. Tomotherapy in synchronous and metachronous bilateral breast cancer: Clinical experience. J Appl Clin Med Phys 2024; 25:e14367. [PMID: 38685589 PMCID: PMC11244662 DOI: 10.1002/acm2.14367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/14/2024] [Accepted: 04/02/2024] [Indexed: 05/02/2024] Open
Abstract
PURPOSE OF STUDY The objective of this research is to present our firsthand experience and provide up-to-date data for the further study of cases involving simultaneous breast irradiation using helical Tomotherapy, ©Accuray Inc. METHODS The radical treatment options for bilateral breast cancer are surgery, chemotherapy, and radiation therapy. Being that radiotherapy for bilateral breast cancer is challenging due to limitations in the geometry of modern radiotherapy equipment, helical Tomotherapy was chosen as an appropriate technique of irradiation. The retrospective review focused on the records of patients who underwent bilateral irradiation of the breast or chest wall and regional lymph nodes using helical Tomotherapy. RESULTS Only four patients with bilateral breast cancer completed a radiation therapy course in our center from 2018 to 2023. Two patients underwent radical mastectomy with lymph node dissection on both sides before irradiation. For the other two patients, radical mastectomy was done after neoadjuvant chemotherapy. Acute radiation toxicity scoring was based on Common Terminology Criteria for Adverse Events (CTCAE) version 5.0. Only mild adverse effects, such as general weakness and slight skin irritation below Grade 3, were observed, with no instances of skin swelling, dryness, or pigmentation noted. Evaluation of late complications revealed tissue fibrosis in the area of the internal mammary nodes and respiratory failure with various severity. Complications and deterioration in the cardiovascular system were not observed during the follow-up period, which varied from 3 to 48 months. CONCLUSION Our results show the efficacy of using helical Tomotherapy considering positive outcomes, being that three out of four patients are in remission with low acute toxicity and late complications. There are a small number of articles describing bilateral breast cancer treatment with helical Tomotherapy. On this occasion, our data could contribute to the studies of tolerant doses for organs at risk and improve the parameters of treatment plans for bilateral breast cancer. Since the small sample of patients with bilateral breast cancer limits the study, a larger cohort of patients is essential to obtain statistically reliable results.
Collapse
Affiliation(s)
- Yernar Orda
- Medical Physics Department, UMIT International Oncological Center of Tomotherapy: Astana, Astana, Kazakhstan
| | - Tanzhas Shayakhmetov
- Medical Physics Department, UMIT International Oncological Center of Tomotherapy: Astana, Astana, Kazakhstan
| | - Saniya Baiturova
- Radiation Oncology Department, UMIT International Oncological Center of Tomotherapy, Astana, Kazakhstan
| | - Daulet Berikbol
- Radiation Oncology Department, UMIT International Oncological Center of Tomotherapy, Astana, Kazakhstan
| | - Rauan Otynshiyev
- Radiation Oncology Department, UMIT International Oncological Center of Tomotherapy, Astana, Kazakhstan
| | - Aigul Brimova
- Clinical Department, UMIT International Oncological Center of Tomotherapy, Astana, Kazakhstan
| | - Bolat Saktashev
- Clinical Department, UMIT International Oncological Center of Tomotherapy, Astana, Kazakhstan
| | - Ainur Baisalbayeva
- Research Management Department, UMIT International Oncological Center of Tomotherapy, Astana, Kazakhstan
| | - Ainur Samigatova
- Research Management Department, UMIT International Oncological Center of Tomotherapy, Astana, Kazakhstan
| |
Collapse
|
7
|
Chen S, Wang J, Hu W, Xu Y. Comparative Evaluation of Dosimetric Quality and Treatment Efficiency for Halcyon, TrueBeam, and TomoTherapy in Cervical-Thoracic Esophageal Cancer Radiotherapy. Technol Cancer Res Treat 2024; 23:15330338241293321. [PMID: 39474726 PMCID: PMC11528764 DOI: 10.1177/15330338241293321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/15/2024] [Accepted: 09/03/2024] [Indexed: 11/03/2024] Open
Abstract
INTRODUCTION This study primarily aims to investigate the suitability of Halcyon in the context of cervical-thoracic esophageal cancer by exploring the dosimetric quality and delivery efficiency of Halcyon plans with different arc configurations. Additionally, it compares these findings with the dosimetric indices and delivery efficiency of TrueBeam and TomoTherapy accelerators, focusing on their capability to optimize protection for organs at risk (OARs) while maintaining efficient treatment delivery strategies. METHODS This retrospective study involved 26 patients diagnosed with cervical-thoracic esophageal cancer, and new radiotherapy plans were created using Halcyon, TrueBeam, and TomoTherapy. Dose volume histogram (DVH) metrics and delivery efficiency for plans involving different arc numbers on Halcyon (2, 3, and 4 arcs) were compared with those from TrueBeam and TomoTherapy. T-tests were employed to evaluate differences in organ protection among the accelerators. RESULTS The Halcyon plans, especially those with 4 arcs, provided superior protection for organs at risk, including the heart, lungs, and spinal cord, while maintaining excellent delivery efficiency. Compared to TrueBeam 2arc plans and TomoTherapy helical plans, Halcyon plans with 3 arcs also showed slight advantages. Although TomoTherapy offered better uniformity in dose distribution, it did not demonstrate a clear advantage over the other accelerators in terms of OAR protection or treatment efficiency. Furthermore, despite the lack of clear advantages in TrueBeam 2arc plans with flattening filter (FF), TrueBeam with flattening filter free (FFF) plans may hold potential in the treatment. CONCLUSION Halcyon, particularly with 4 arcs, offers an optimal balance between reducing toxicity to organs at risk and maintaining treatment efficiency, making it a preferred choice in cervical thoracic esophageal cancer radiotherapy. The findings highlight the need for careful selection of radiotherapy accelerators based on specific clinical goals, with Halcyon showing potential advantages in scenarios where both treatment efficiency and OAR protection are paramount.
Collapse
Affiliation(s)
- Shilin Chen
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center Xiamen Hospital, Xiamen, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Clinical Research Center for Radiation Oncology, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| | - Jiazhou Wang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Clinical Research Center for Radiation Oncology, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| | - Weigang Hu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Clinical Research Center for Radiation Oncology, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| | - Yao Xu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Clinical Research Center for Radiation Oncology, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| |
Collapse
|
8
|
Lv T, Xie C, Zhang Y, Liu Y, Zhang G, Qu B, Zhao W, Xu S. A qualitative study of improving megavoltage computed tomography image quality and maintaining dose accuracy using cycleGAN-based image synthesis. Med Phys 2024; 51:394-406. [PMID: 37475544 DOI: 10.1002/mp.16633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/18/2023] [Accepted: 07/02/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUND Due to inconsistent positioning, tumor shrinking, and weight loss during fractionated treatment, the initial plan was no longer appropriate after a few fractional treatments, and the patient will require adaptive helical tomotherapy (HT) to overcome the issue. Patients are scanned with megavoltage computed tomography (MVCT) before each fractional treatment, which is utilized for patient setup and provides information for dose reconstruction. However, the low contrast and high noise of MVCT make it challenging to delineate treatment targets and organs at risk (OAR). PURPOSE This study developed a deep-learning-based approach to generate high-quality synthetic kilovoltage computed tomography (skVCT) from MVCT and meet clinical dose requirements. METHODS Data from 41 head and neck cancer patients were collected; 25 (2995 slices) were used for training, and 16 (1898 slices) for testing. A cycle generative adversarial network (cycleGAN) based on attention gate and residual blocks was used to generate MVCT-based skVCT. For the 16 patients, kVCT-based plans were transferred to skVCT images and electron density profile-corrected MVCT images to recalculate the dose. The quantitative indices and clinically relevant dosimetric metrics, including the mean absolute error (MAE), structural similarity index measure (SSIM), peak signal-to-noise ratio (PSNR), gamma passing rates, and dose-volume-histogram (DVH) parameters (Dmax , Dmean , Dmin ), were used to assess the skVCT images. RESULTS The MAE, PSNR, and SSIM of MVCT were 109.6 ± 12.3 HU, 27.5 ± 1.1 dB, and 91.9% ± 1.7%, respectively, while those of skVCT were 60.6 ± 9.0 HU, 34.0 ± 1.9 dB, and 96.5% ± 1.1%. The image quality and contrast were enhanced, and the noise was reduced. The gamma passing rates improved from 98.31% ± 1.11% to 99.71% ± 0.20% (2 mm/2%) and 99.77% ± 0.18% to 99.98% ± 0.02% (3 mm/3%). No significant differences (p > 0.05) were observed in DVH parameters between kVCT and skVCT. CONCLUSION With training on a small data set (2995 slices), the model successfully generated skVCT with improved image quality, and the dose calculation accuracy was similar to that of MVCT. MVCT-based skVCT can increase treatment accuracy and offer the possibility of implementing adaptive radiotherapy.
Collapse
Affiliation(s)
- Tie Lv
- Beihang University, School of Physics, Beijing, China
- The First Medical Center of PLA General Hospital, Department of Radiation Oncology, Beijing, China
| | - Chuanbin Xie
- Beihang University, School of Physics, Beijing, China
- The First Medical Center of PLA General Hospital, Department of Radiation Oncology, Beijing, China
| | - Yihang Zhang
- Beihang University, School of Physics, Beijing, China
- The First Medical Center of PLA General Hospital, Department of Radiation Oncology, Beijing, China
| | - Yaoying Liu
- Beihang University, School of Physics, Beijing, China
- The First Medical Center of PLA General Hospital, Department of Radiation Oncology, Beijing, China
| | - Gaolong Zhang
- Beihang University, School of Physics, Beijing, China
| | - Baolin Qu
- The First Medical Center of PLA General Hospital, Department of Radiation Oncology, Beijing, China
| | - Wei Zhao
- Beihang University, School of Physics, Beijing, China
| | - Shouping Xu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
9
|
SHIRATO H. Biomedical advances and future prospects of high-precision three-dimensional radiotherapy and four-dimensional radiotherapy. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2023; 99:389-426. [PMID: 37821390 PMCID: PMC10749389 DOI: 10.2183/pjab.99.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/13/2023] [Indexed: 10/13/2023]
Abstract
Biomedical advances of external-beam radiotherapy (EBRT) with improvements in physical accuracy are reviewed. High-precision (±1 mm) three-dimensional radiotherapy (3DRT) can utilize respective therapeutic open doors in the tumor control probability curve and in the normal tissue complication probability curve instead of the one single therapeutic window in two-dimensional EBRT. High-precision 3DRT achieved higher tumor control and probable survival rates for patients with small peripheral lung and liver cancers. Four-dimensional radiotherapy (4DRT), which can reduce uncertainties in 3DRT due to organ motion by real-time (every 0.1-1 s) tumor-tracking and immediate (0.1-1 s) irradiation, have achieved reduced adverse effects for prostate and pancreatic tumors near the digestive tract and with similar or better tumor control. Particle beam therapy improved tumor control and probable survival for patients with large liver tumors. The clinical outcomes of locally advanced or multiple tumors located near serial-type organs can theoretically be improved further by integrating the 4DRT concept with particle beams.
Collapse
Affiliation(s)
- Hiroki SHIRATO
- Global Center for Biomedical Science and Engineering, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
10
|
Tanaka Y, Hashimoto M, Ishigami M, Nakano M, Hasegawa T. Development of a novel delivery quality assurance system based on simultaneous verification of dose distribution and binary multi-leaf collimator opening in helical tomotherapy. Radiat Oncol 2023; 18:180. [PMID: 37919745 PMCID: PMC10621123 DOI: 10.1186/s13014-023-02366-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 10/22/2023] [Indexed: 11/04/2023] Open
Abstract
BACKGROUND Intensity-modulated radiation therapy (IMRT) requires delivery quality assurance (DQA) to ensure treatment accuracy and safety. Irradiation techniques such as helical tomotherapy (HT) have become increasingly complex, rendering conventional verification methods insufficient. This study aims to develop a novel DQA system to simultaneously verify dose distribution and multi-leaf collimator (MLC) opening during HT. METHODS We developed a prototype detector consisting of a cylindrical plastic scintillator (PS) and a cooled charge-coupled device (CCD) camera. Scintillation light was recorded using a CCD camera. A TomoHDA (Accuray Inc.) was used as the irradiation device. The characteristics of the developed system were evaluated based on the light intensity. The IMRT plan was irradiated onto the PS to record a moving image of the scintillation light. MLC opening and light distribution were obtained from the recorded images. To detect MLC opening, we placed a region of interest (ROI) on the image, corresponding to the leaf position, and analyzed the temporal change in the light intensity within each ROI. Corrections were made for light changes due to differences in the PS shape and irradiation position. The corrected light intensity was converted into the leaf opening time (LOT), and an MLC sinogram was constructed. The reconstructed MLC sinogram was compared with that calculated using the treatment planning system (TPS). Light distribution was obtained by integrating all frames obtained during IMRT irradiation. The light distribution was compared with the dose distribution calculated using the TPS. RESULTS The LOT and the light intensity followed a linear relationship. Owing to MLC movements, the sensitivity and specificity of the reconstructed sinogram exceeded 97%, with an LOT error of - 3.9 ± 7.8%. The light distribution pattern closely resembled that of the dose distribution. The average dose difference and the pass rate of gamma analysis with 3%/3 mm were 1.4 ± 0.2% and 99%, respectively. CONCLUSION We developed a DQA system for simultaneous and accurate verification of both dose distribution and MLC opening during HT.
Collapse
Affiliation(s)
- Yuichi Tanaka
- Graduate School of Medical Sciences, Kitasato University, 1-15-1 Kitazato, Minami-ku, Sagamihara-shi, Kanagawa, Japan.
| | - Masatoshi Hashimoto
- School of Allied Health Sciences, Kitasato University, 1-15-1 Kitazato, Minami-ku, Sagamihara-shi, Kanagawa, Japan
| | - Minoru Ishigami
- Department of Radiology, Kitasato University Hospital, 1-15-1 Kitazato, Minami-ku, Sagamihara-shi, Kanagawa, Japan
| | - Masahiro Nakano
- Department of Radiation Oncology, Kitasato University School of Medicine, 1-15-1 Kitazato, Minami-ku, Sagamihara-shi, Kanagawa, Japan
| | - Tomoyuki Hasegawa
- School of Allied Health Sciences, Kitasato University, 1-15-1 Kitazato, Minami-ku, Sagamihara-shi, Kanagawa, Japan
| |
Collapse
|
11
|
Köksal M, Özkan O, Holderried T, Heine A, Brossart P, Gawish A, Scafa D, Sarria GR, Leitzen C, Schmeel LC, Müdder T. Optimized Conformal Total Body Irradiation with VMAT Using a Linear-Accelerator-Based Radiosurgery Treatment System in Comparison to the Golden Standard Helical TomoTherapy. Cancers (Basel) 2023; 15:4220. [PMID: 37686498 PMCID: PMC10486387 DOI: 10.3390/cancers15174220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Modern irradiation techniques for optimized conformal TBI can be realized by Helical Tomotherapy (HT) or Volumetric Modulated Arc Therapy (VMAT), depending on the availability of suitable specialized equipment. In this dosimetric planning study, we compared both modalities and addressed the question of whether VMAT with small field sizes is also suitable as a backup in case of HT equipment malfunctions. For this purpose, we retrospectively used planning computed tomography (CT) data from 10 patients treated with HT with a total dose of 8 Gy (n = 5) or 12 Gy (n = 5) for treatment planning for VMAT with a small field size (36 × 22 cm). The target volume coverage, dose homogeneity at target volume, and dose reduction in organs at risk (OAR) (lungs, kidneys, lenses) were analyzed and compared. One patient was irradiated with both modalities due to a device failure of the HT equipment during the study, which facilitated a comparison in a real clinical setting. The findings indicate that in addition to a higher mean dose to the lenses in the 12 Gy group for VMAT and a better dose homogeneity in the target volume for HT, comparably good and adequate target dose coverage and dose reduction in the other OAR could be achieved for both modalities, with significantly longer treatment times for VMAT. In conclusion, after appropriate optimization of the treatment times, VMAT using linear accelerator radiosurgery technology can be used both as a backup in addition to HT and in clinical routines to perform optimized conformal TBI.
Collapse
Affiliation(s)
- Mümtaz Köksal
- Department of Radiation Oncology, University Hospital of Bonn, 53127 Bonn, Germany
| | - Oğuzhan Özkan
- Department of Radiation Oncology, University Hospital of Bonn, 53127 Bonn, Germany
| | - Tobias Holderried
- Department of Internal Medicine—Oncology, Hematology and Rheumatology, University Hospital of Bonn, 53127 Bonn, Germany (P.B.)
| | - Annkristin Heine
- Department of Internal Medicine—Oncology, Hematology and Rheumatology, University Hospital of Bonn, 53127 Bonn, Germany (P.B.)
| | - Peter Brossart
- Department of Internal Medicine—Oncology, Hematology and Rheumatology, University Hospital of Bonn, 53127 Bonn, Germany (P.B.)
| | - Ahmed Gawish
- Department of Radiation Oncology, University Hospital of Marburg, 35043 Marburg, Germany
| | - Davide Scafa
- Department of Radiation Oncology, University Hospital of Bonn, 53127 Bonn, Germany
| | - Gustavo R. Sarria
- Department of Radiation Oncology, University Hospital of Bonn, 53127 Bonn, Germany
| | - Christina Leitzen
- Department of Radiation Oncology, University Hospital of Bonn, 53127 Bonn, Germany
| | - Leonard C. Schmeel
- Department of Radiation Oncology, University Hospital of Bonn, 53127 Bonn, Germany
| | - Thomas Müdder
- Department of Radiation Oncology, University Hospital of Bonn, 53127 Bonn, Germany
| |
Collapse
|
12
|
Zhang Y, Huang Y, Lin J, Ding S, Gong X, Liu Q, Gong C. Multi-isocenter VMAT craniospinal irradiation using feasibility dose-volume histogram-guided auto-planning technique. JOURNAL OF RADIATION RESEARCH 2023:7150737. [PMID: 37141634 DOI: 10.1093/jrr/rrad026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/07/2022] [Indexed: 05/06/2023]
Abstract
This study aims to propose a novel treatment planning methodology for multi-isocenter volumetric modulated arc therapy (VMAT) craniospinal irradiation (CSI) using the special feasibility dose-volume histogram (FDVH)-guided auto-planning (AP) technique. Three different multi-isocenter VMAT -CSI plans were created, including manually based plans (MUPs), conventional AP plans (CAPs) and FDVH-guided AP plans (FAPs). The CAPs and FAPs were specially designed by combining multi-isocenter VMAT and AP techniques in the Pinnacle treatment planning system. Specially, the personalized optimization parameters for FAPs were generated using the FDVH function implemented in PlanIQ software, which provides the ideal organs at risk (OARs) sparing for the specific anatomical geometry based on the valuable assumption of the dose fall-off. Compared to MUPs, CAPs and FAPs significantly reduced the dose for most of the OARs. FAPs achieved the best homogeneity index (0.092 ± 0.013) and conformity index (0.980 ± 0.011), while CAPs were slightly inferior to the FAPs but superior to the MUPs. As opposed to MUPs, FAPs delivered a lower dose to OARs, whereas the difference between FAPs and CAPs was not statistically significant except for the optic chiasm and inner ear_L. The two AP approaches had similar MUs, which were significantly lower than the MUPs. The planning time of FAPs (145.00 ± 10.25 min) was slightly lower than that of CAPs (149.83 ± 14.37 min) and was substantially lower than that of MUPs (157.92 ± 16.11 min) with P < 0.0167. Overall, introducing the multi-isocenter AP technique into VMAT-CSI yielded positive outcomes and may play an important role in clinical CSI planning in the future.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Radiation Oncology, Jiangxi Cancer Hospital, 519 East Beijing Road, Qingshanhu District, Nanchang 330029, China
| | - Yuling Huang
- Department of Radiation Oncology, Jiangxi Cancer Hospital, 519 East Beijing Road, Qingshanhu District, Nanchang 330029, China
| | - Jiafan Lin
- Department of Radiation Oncology, Jiangxi Cancer Hospital, 519 East Beijing Road, Qingshanhu District, Nanchang 330029, China
| | - Shenggou Ding
- Department of Radiation Oncology, Jiangxi Cancer Hospital, 519 East Beijing Road, Qingshanhu District, Nanchang 330029, China
| | - Xiaochang Gong
- Department of Radiation Oncology, Jiangxi Cancer Hospital, 519 East Beijing Road, Qingshanhu District, Nanchang 330029, China
| | - Qiegen Liu
- Department of Electronic Information Engineering, 999 Xuefu Dadao, Honggutan District, Nanchang 330031, China
| | - Changfei Gong
- Department of Radiation Oncology, Jiangxi Cancer Hospital, 519 East Beijing Road, Qingshanhu District, Nanchang 330029, China
| |
Collapse
|
13
|
Chen Q, Rong Y, Burmeister JW, Chao EH, Corradini NA, Followill DS, Li XA, Liu A, Qi XS, Shi H, Smilowitz JB. AAPM Task Group Report 306: Quality control and assurance for tomotherapy: An update to Task Group Report 148. Med Phys 2023; 50:e25-e52. [PMID: 36512742 DOI: 10.1002/mp.16150] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/22/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
Since the publication of AAPM Task Group (TG) 148 on quality assurance (QA) for helical tomotherapy, there have been many new developments on the tomotherapy platform involving treatment delivery, on-board imaging options, motion management, and treatment planning systems (TPSs). In response to a need for guidance on quality control (QC) and QA for these technologies, the AAPM Therapy Physics Committee commissioned TG 306 to review these changes and make recommendations related to these technology updates. The specific objectives of this TG were (1) to update, as needed, recommendations on tolerance limits, frequencies and QC/QA testing methodology in TG 148, (2) address the commissioning and necessary QA checks, as a supplement to Medical Physics Practice Guidelines (MPPG) with respect to tomotherapy TPS and (3) to provide risk-based recommendations on the new technology implemented clinically and treatment delivery workflow. Detailed recommendations on QA tests and their tolerance levels are provided for dynamic jaws, binary multileaf collimators, and Synchrony motion management. A subset of TPS commissioning and QA checks in MPPG 5.a. applicable to tomotherapy are recommended. In addition, failure mode and effects analysis has been conducted among TG members to obtain multi-institutional analysis on tomotherapy-related failure modes and their effect ranking.
Collapse
Affiliation(s)
- Quan Chen
- Radiation Oncology, City of Hope Medical Center, Duarte, California, USA
| | - Yi Rong
- Department of Radiation Oncology, Mayo Clinic Hospitals, Phoenix, Arizona, USA
| | - Jay W Burmeister
- Karmanos Cancer Center, Gershenson R.O.C., Detroit, Michigan, USA
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | | | | | - David S Followill
- Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - X Allen Li
- Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - An Liu
- Radiation Oncology, City of Hope Medical Center, Duarte, California, USA
| | - X Sharon Qi
- Radiation Oncology, UCLA School of Medicine, Los Angeles, California, USA
| | - Hairong Shi
- Radiation Oncology, Oklahoma Cancer Specialists and Research Institute, Tulsa, Oklahoma, USA
| | - Jennifer B Smilowitz
- Human Oncology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
14
|
Mackie TR. From model-based dose computation to tomotherapy. Med Phys 2023. [PMID: 36774547 DOI: 10.1002/mp.16292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/08/2023] [Accepted: 02/08/2023] [Indexed: 02/13/2023] Open
Abstract
This paper describes the first years of what became known as the Tomotherapy Research Group at the Department of Medical Physics at the University of Wisconsin-Madison (UW). The group's roots were in algorithm and software development for radiation therapy dose calculations. The concept of helical tomotherapy sprang from the design of a treatment unit which could make the computation easier which in turn created a treatment unit that created the capability to do image-guided radiotherapy. The paper discusses the genesis of our concepts and some of the difficulties encountered along the way.
Collapse
|
15
|
Sano K, Fujiwara M, Okada W, Tanooka M, Takaki H, Shibata M, Nakamura K, Sakai Y, Suzuki H, Takahashi K, Tanaka M, Yamakado K. Optimal threshold of a control parameter for tomotherapy respiratory tracking: A phantom study. J Appl Clin Med Phys 2023; 24:e13901. [PMID: 36635847 PMCID: PMC10161055 DOI: 10.1002/acm2.13901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/21/2022] [Accepted: 12/28/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Radixact Synchrony® , a real-time motion tracking and compensating modality, is used for helical tomotherapy. Control parameters are used for the accurate application of irradiation. Radixact Synchrony® uses the potential difference, which is an index of the accuracy of the prediction model of target motion and is represented by a statistical prediction of the 3D distance error. Although there are several reports on Radixact Synchrony® , few have reported the appropriate settings of the potential difference threshold. PURPOSE This study aims to determine the optimal threshold of the potential difference of Radixact Synchrony® during respiratory tumor-motion-tracking irradiation. METHODS The relationship among the dosimetric accuracy, motion tracking accuracy, and control parameter was evaluated using a moving platform, a phantom with a basic respiratory model (the fourth power of a sinusoidal wave), and several irregular respiratory model waveforms. The dosimetric accuracy was evaluated by gamma analysis (3%, 1 mm, 10% dose threshold). The tracking accuracy was measured by the distance error of the difference between the tracked and driven positions of the phantom. The largest potential difference for 95% of treatment time was evaluated, and its correlation with the gamma-pass ratio and distance error was investigated. The optimal threshold of the potential difference was determined by receiver operating characteristic (ROC) analysis. RESULTS A linear correlation was identified between the potential difference and the gamma-pass ratio (R = -0.704). A linear correlation was also identified between the potential difference and distance error (R = 0.827). However, as the potential difference increased, it tended to underestimate the distance error. The ROC analysis revealed that the appropriate cutoff value of the potential difference was 3.05 mm. CONCLUSION The irradiation accuracy with motion tracking by Radixact Synchrony® could be predicted from the potential difference, and the threshold of the potential difference should be set to ∼3 mm.
Collapse
Affiliation(s)
- Keisuke Sano
- Department of Radiology, Hyogo Medical University, Nishinomiya, Hyogo, Japan.,Department of Radiotherapy, Takarazuka City Hospital, Takarazuka, Hyogo, Japan
| | - Masayuki Fujiwara
- Department of Radiology, Hyogo Medical University, Nishinomiya, Hyogo, Japan.,Department of Radiotherapy, Takarazuka City Hospital, Takarazuka, Hyogo, Japan
| | - Wataru Okada
- Department of Radiology, Hyogo Medical University, Nishinomiya, Hyogo, Japan.,Department of Radiotherapy, Takarazuka City Hospital, Takarazuka, Hyogo, Japan
| | - Masao Tanooka
- Department of Radiology, Hyogo Medical University, Nishinomiya, Hyogo, Japan.,Department of Radiotherapy, Takarazuka City Hospital, Takarazuka, Hyogo, Japan
| | - Haruyuki Takaki
- Department of Radiology, Hyogo Medical University, Nishinomiya, Hyogo, Japan
| | - Mayuri Shibata
- Department of Radiotherapy, Takarazuka City Hospital, Takarazuka, Hyogo, Japan
| | - Kenji Nakamura
- Department of Radiotherapy, Takarazuka City Hospital, Takarazuka, Hyogo, Japan
| | - Yusuke Sakai
- Department of Radiotherapy, Takarazuka City Hospital, Takarazuka, Hyogo, Japan
| | - Hitomi Suzuki
- Department of Radiology, Hyogo Medical University, Nishinomiya, Hyogo, Japan.,Department of Radiotherapy, Takarazuka City Hospital, Takarazuka, Hyogo, Japan
| | - Kanae Takahashi
- Department of Biostatistics, Hyogo Medical University, Nishinomiya, Hyogo, Japan
| | - Masahiro Tanaka
- Department of Radiotherapy, Takarazuka City Hospital, Takarazuka, Hyogo, Japan
| | - Koichiro Yamakado
- Department of Radiology, Hyogo Medical University, Nishinomiya, Hyogo, Japan
| |
Collapse
|
16
|
Yagihashi T, Inoue K, Nagata H, Yamanaka M, Yamano A, Suzuki S, Yamakabe W, Sato N, Omura M, Inoue T. Effectiveness of robust optimization against geometric uncertainties in TomoHelical planning for prostate cancer. J Appl Clin Med Phys 2022; 24:e13881. [PMID: 36576418 PMCID: PMC10113685 DOI: 10.1002/acm2.13881] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/11/2022] [Accepted: 12/10/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Geometrical uncertainties in patients can severely affect the quality of radiotherapy. PURPOSE We evaluated the dosimetric efficacy of robust optimization for helical intensity-modulated radiotherapy (IMRT) planning in the presence of patient setup uncertainty and anatomical changes. METHODS Two helical IMRT plans for 10 patients with localized prostate cancer were created using either minimax robust optimization (robust plan) or a conventional planning target volume (PTV) margin approach (PTV plan). Plan robustness was evaluated by creating perturbed dose plans with setup uncertainty from isocenter shifts and anatomical changes due to organ variation. The magnitudes of the geometrical uncertainties were based on the patient setup uncertainty considered during robust optimization, which was identical to the PTV margin. The homogeneity index, and target coverage (TC, defined as the V100% of the clinical target volume), and organs at risk (OAR; rectum and bladder) doses were analyzed for all nominal and perturbed plans. A statistical t-test was performed to evaluate the differences between the robust and PTV plans. RESULTS Comparison of the nominal plans showed that the robust plans had lower OAR doses and a worse homogeneity index and TC than the PTV plans. The evaluations of robustness that considered setup errors more than the PTV margin demonstrated that the worst-case perturbed scenarios for robust plans had significantly higher TC while maintaining lower OAR doses. However, when anatomical changes were considered, improvement in TC from robust optimization was not observed in the worst-case perturbed plans. CONCLUSIONS For helical IMRT planning in localized prostate cancer, robust optimization provides benefits over PTV margin-based planning, including better OAR sparing, and increased robustness against systematic patient-setup errors.
Collapse
Affiliation(s)
- Takayuki Yagihashi
- Department of Medical Physics, Shonan Kamakura General Hospital, Kamakura City, Kanagawa, Japan.,Graduate School of Human Health Sciences, Tokyo Metropolitan University, Arakawa-ku, Tokyo, Japan
| | - Kazumasa Inoue
- Graduate School of Human Health Sciences, Tokyo Metropolitan University, Arakawa-ku, Tokyo, Japan
| | - Hironori Nagata
- Department of Medical Physics, Shonan Kamakura General Hospital, Kamakura City, Kanagawa, Japan
| | - Masashi Yamanaka
- Department of Medical Physics, Shonan Kamakura General Hospital, Kamakura City, Kanagawa, Japan.,Medical Physics Laboratory, Division of Health Science, Graduate School of Medicine, Osaka University, Suita-shi, Osaka, Japan
| | - Akihiro Yamano
- Department of Medical Physics, Shonan Kamakura General Hospital, Kamakura City, Kanagawa, Japan
| | - Shunsuke Suzuki
- Department of Medical Physics, Shonan Kamakura General Hospital, Kamakura City, Kanagawa, Japan.,Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, Japan
| | - Wataru Yamakabe
- Department of Medical Physics, Shonan Kamakura General Hospital, Kamakura City, Kanagawa, Japan
| | - Naoki Sato
- Department of Medical Physics, Shonan Kamakura General Hospital, Kamakura City, Kanagawa, Japan
| | - Motoko Omura
- Department of Radiation Oncology, Shonan Kamakura General Hospital, Kamakura City, Kanagawa, Japan
| | - Tatsuya Inoue
- Department of Medical Physics, Shonan Kamakura General Hospital, Kamakura City, Kanagawa, Japan.,Department of Radiation Oncology, Juntendo University, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
17
|
Scholey JE, Rajagopal A, Vasquez EG, Sudhyadhom A, Larson PEZ. Generation of synthetic megavoltage CT for MRI-only radiotherapy treatment planning using a 3D deep convolutional neural network. Med Phys 2022; 49:6622-6634. [PMID: 35870154 PMCID: PMC9588542 DOI: 10.1002/mp.15876] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 06/10/2022] [Accepted: 07/01/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Megavoltage computed tomography (MVCT) has been implemented on many radiotherapy treatment machines for on-board anatomical visualization, localization, and adaptive dose calculation. Implementing an MR-only workflow by synthesizing MVCT from magnetic resonance imaging (MRI) would offer numerous advantages for treatment planning and online adaptation. PURPOSE In this work, we sought to synthesize MVCT (sMVCT) datasets from MRI using deep learning to demonstrate the feasibility of MRI-MVCT only treatment planning. METHODS MVCTs and T1-weighted MRIs for 120 patients treated for head-and-neck cancer were retrospectively acquired and co-registered. A deep neural network based on a fully-convolutional 3D U-Net architecture was implemented to map MRI intensity to MVCT HU. Input to the model were volumetric patches generated from paired MRI and MVCT datasets. The U-Net was initialized with random parameters and trained on a mean absolute error (MAE) objective function. Model accuracy was evaluated on 18 withheld test exams. sMVCTs were compared to respective MVCTs. Intensity-modulated volumetric radiotherapy (IMRT) plans were generated on MVCTs of four different disease sites and compared to plans calculated onto corresponding sMVCTs using the gamma metric and dose-volume-histograms (DVHs). RESULTS MAE values between sMVCT and MVCT datasets were 93.3 ± 27.5, 78.2 ± 27.5, and 138.0 ± 43.4 HU for whole body, soft tissue, and bone volumes, respectively. Overall, there was good agreement between sMVCT and MVCT, with bone and air posing the greatest challenges. The retrospective dataset introduced additional deviations due to sinus filling or tumor growth/shrinkage between scans, differences in external contours due to variability in patient positioning, or when immobilization devices were absent from diagnostic MRIs. Dose distributions of IMRT plans evaluated for four test cases showed close agreement between sMVCT and MVCT images when evaluated using DVHs and gamma dose metrics, which averaged to 98.9 ± 1.0% and 96.8 ± 2.6% analyzed at 3%/3 mm and 2%/2 mm, respectively. CONCLUSIONS MVCT datasets can be generated from T1-weighted MRI using a 3D deep convolutional neural network with dose calculation on a sample sMVCT in close agreement with the MVCT. These results demonstrate the feasibility of using MRI-derived sMVCT in an MR-only treatment planning workflow.
Collapse
Affiliation(s)
- Jessica E Scholey
- Department of Radiation Oncology, The University of California, San Francisco; San Francisco, CA 94158 USA
| | - Abhejit Rajagopal
- Department of Radiology and Biomedical Imaging, The University of California, San Francisco; San Francisco, CA 94158 USA
| | - Elena Grace Vasquez
- Department of Physics, The University of California, Berkeley; Berkeley, CA 94720 USA
| | - Atchar Sudhyadhom
- Department of Radiation Oncology, Brigham & Women’s Hospital/Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA; 02115 USA
| | - Peder Eric Zufall Larson
- Department of Radiology and Biomedical Imaging, The University of California, San Francisco; San Francisco, CA 94158 USA
| |
Collapse
|
18
|
Quantitative comparison of different dosimetry methods in orthovoltage X-ray therapy. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.110128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Tegtmeier RC, Ferris WS, Bayouth JE, Culberson WS. Performance evaluation of image reconstruction algorithms for a megavoltage computed tomography system on a helical tomotherapy unit. Biomed Phys Eng Express 2022; 8. [PMID: 35654009 DOI: 10.1088/2057-1976/ac7584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/01/2022] [Indexed: 11/12/2022]
Abstract
Objective. To evaluate the impact of image reconstruction algorithm selection, as well as imaging mode and the reconstruction interval, on image quality metrics for megavoltage computed tomography (MVCT) image acquisition for use in image-guided (IGRT) and adaptive radiotherapy (ART) on a next-generation helical tomotherapy system.Approach. A CT image quality phantom was scanned across all available acquisition modes for filtered back projection (FBP) and both iterative reconstruction (IR) algorithms available on the system. Image quality metrics including noise, uniformity, contrast, spatial resolution, and mean CT number were compared. Analysis of DICOM data was performed using ImageJ software and Python code. ANOVA single factor and Tukey's honestly significant difference post-hoc tests were utilized for statistical analysis.Main Results. Application of both IR algorithms noticeably improved noise and image contrast when compared to the FBP algorithm available on all previous-generation helical tomotherapy systems. Use of the FBP algorithm improved image uniformity and spatial resolution in the axial plane, though values for the IR algorithms were well within tolerances recommended for IGRT and/or MVCT-based ART implementation by the American Association of Physicists in Medicine (AAPM). Additionally, longitudinal resolution showed little dependence on the reconstruction algorithm, while a negligible variation in mean CT number was observed regardless of the reconstruction algorithm or acquisition parameters. Statistical analysis confirmed the significance of these results.Significance. An overall improvement in image quality for metrics most important to IGRT and ART-mainly image noise and contrast-was evident in the application of IR when compared to FBP. Furthermore, since other imaging parameters remain identical regardless of the reconstruction algorithm, this improved image quality does not come at the expense of additional patient dose or an increased scan acquisition time for otherwise identical parameters. These improvements are expected to enhance fidelity in IGRT and ART implementation.
Collapse
Affiliation(s)
- Riley C Tegtmeier
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, United States of America
| | - William S Ferris
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, United States of America
| | - John E Bayouth
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792, United States of America
| | - Wesley S Culberson
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, United States of America
| |
Collapse
|
20
|
Li D, Wang D, Feng S, Chen Q, Sheng X, Jia J, Yan X, Zhu J, Yin Y. Comparing dosimetric and cancer control outcomes after intensity‑modulated radiation therapy and tomotherapy for advanced cervical cancer. Oncol Lett 2022; 24:239. [PMID: 35720507 PMCID: PMC9185149 DOI: 10.3892/ol.2022.13359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 04/11/2022] [Indexed: 11/14/2022] Open
Abstract
Concurrent chemoradiation therapy (CCRT) is the standard treatment for locally advanced cervical cancer. The present study aimed to compare the therapeutic responses, toxicities and dosimetric parameters between intensity-modulated radiation therapy (IMRT) and tomotherapy (TOMO) in patients with advanced cervical cancer. This retrospective study included 310 patients with stage IIB-IIIB cervical cancer who underwent CCRT, with 155 patients in each group. Intracavitary brachytherapy was performed after a course of external beam radiation therapy (EBRT), or in the last week of pelvic EBRT. The treatment planning aim at point A (defined as a reference location 2 cm above the vaginal fornix and 2 cm beside the mid axis of the uterus) was >85 Gy in an equivalent dose at 2 Gy. There was no statistical difference with regard to clinicopathological characteristics between the two groups (P>0.05). Improved dose conformity and dose homogeneity (P<0.05) were observed in TOMO planning. TOMO provided more efficacious critical organ sparing than IMRT when assessing the percentage of normal tissue receiving at least 20 Gy (V20) for the bladder, the percentage of normal tissue receiving at least 40 Gy (V40) for the femoral head, and the V40 and V20 for the rectum (P<0.05). TOMO demonstrated a greater ability to protect the ovary (P<0.05). The acute radiation toxicity of proctitis and leukopenia were significantly lower in the TOMO group (P<0.05). The chronic radiation toxicity of radiation enterocolitis and cystitis was lower in the TOMO group (P<0.05). Thus, TOMO provided better critical organ sparing than IMRT. The radiation toxicities were acceptable. Therefore, TOMO appears to be a good option for the treatment of stage IIB-IIIB cervical cancer.
Collapse
Affiliation(s)
- Dapeng Li
- Department of Gynecological Oncology, Shandong University Cancer Center, Jinan, Shandong 250117, P.R. China
| | - Dandan Wang
- Department of Radiation Oncology Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Shuai Feng
- Department of Gynecological Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Quancai Chen
- Department of Gynecology and Obstetrics, Wulian Maternal and Child Care Service Center, Rizhao, Shandong 262300, P.R. China
| | - Xiugui Sheng
- Department of Gynecological Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong 518116, P.R. China
| | - Jue Jia
- Department of Gynecological Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Xiaohui Yan
- Department of Gynecological Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Jian Zhu
- Department of Radiation Oncology Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Yueju Yin
- Department of Gynecological Oncology, Shandong University Cancer Center, Jinan, Shandong 250117, P.R. China
| |
Collapse
|
21
|
Scholey J, Vinas L, Kearney V, Yom S, Larson PEZ, Descovich M, Sudhyadhom A. Improved accuracy of relative electron density and proton stopping power ratio through CycleGAN machine learning. Phys Med Biol 2022; 67. [PMID: 35417903 PMCID: PMC9121765 DOI: 10.1088/1361-6560/ac6725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 04/13/2022] [Indexed: 11/11/2022]
Abstract
Abstract
Objective. Kilovoltage computed tomography (kVCT) is the cornerstone of radiotherapy treatment planning for delineating tissues and towards dose calculation. For the former, kVCT provides excellent contrast and signal-to-noise ratio. For the latter, kVCT may have greater uncertainty in determining relative electron density (
ρ
e
) and proton stopping power ratio (SPR). Conversely, megavoltage CT (MVCT) may result in superior dose calculation accuracy. The purpose of this work was to convert kVCT HU to MVCT HU using deep learning to obtain higher accuracy
ρ
e
and SPR. Approach. Tissue-mimicking phantoms were created to compare kVCT- and MVCT-determined
ρ
e
and SPR to physical measurements. Using 100 head-and-neck datasets, an unpaired deep learning model was trained to learn the relationship between kVCTs and MVCTs, creating synthetic MVCTs (sMVCTs). Similarity metrics were calculated between kVCTs, sMVCTs, and MVCTs in 20 test datasets. An anthropomorphic head phantom containing bone-mimicking material with known composition was scanned to provide an independent determination of
ρ
e
and SPR accuracy by sMVCT. Main results. In tissue-mimicking bone,
ρ
e
errors were 2.20% versus 0.19% and SPR errors were 4.38% versus 0.22%, for kVCT versus MVCT, respectively. Compared to MVCT, in vivo mean difference (MD) values were 11 and 327 HU for kVCT and 2 and 3 HU for sMVCT in soft tissue and bone, respectively.
ρ
e
MD decreased from 1.3% to 0.35% in soft tissue and 2.9% to 0.13% in bone, for kVCT and sMVCT, respectively. SPR MD decreased from 1.8% to 0.24% in soft tissue and 6.8% to 0.16% in bone, for kVCT and sMVCT, respectively. Relative to physical measurements,
ρ
e
and SPR error in anthropomorphic bone decreased from 7.50% and 7.48% for kVCT to <1% for both MVCT and sMVCT. Significance. Deep learning can be used to map kVCT to sMVCT, suggesting higher accuracy
ρ
e
and SPR is achievable with sMVCT versus kVCT.
Collapse
|
22
|
Kuo CY, Liu WH, Chou YC, Li MH, Tsai JT, Huang DYC, Lin JC. To Optimize Radiotherapeutic Plans for Superior Tumor Coverage Predicts Malignant Glioma Prognosis and Normal Tissue Complication Probability. J Clin Med 2022; 11:jcm11092413. [PMID: 35566538 PMCID: PMC9099532 DOI: 10.3390/jcm11092413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/06/2022] [Accepted: 04/20/2022] [Indexed: 02/05/2023] Open
Abstract
Background: Radiotherapy (RT) provides a modern treatment to enhance the malignant glioma control rate. The purpose of our study was to determine the effect of tumor coverage on disease prognosis and to predict optimal RT plans to achieve a lower normal tissue complication probability (NTCP). Methods: Ten malignant-glioma patients with tumors adjacent to organs at risk (OARs) were collected. The patients were divided into two groups according to adequate coverage or not, and prognosis was analyzed. Then, using intensity-modulated radiation therapy (IMRT), volume-modulated arc therapy (VMAT), and helical tomotherapy (TOMO) to simulate new treatment plans for 10 patients, the advantages of these planning systems were revealed for subsequent prediction of NTCP. Results: The results of clinical analysis indicated that overall survival (p = 0.078) between the adequate and inadequate groups showed no differences, while the adequate group had better recurrence-free survival (p = 0.018) and progression-free survival (p = 0.009). TOMO had better CI (p < 0.001) and also predicted a lower total-irradiated dose to the normal brain (p = 0.001) and a lower NTCP (p = 0.027). Conclusions: The TOMO system provided optimal therapeutic planning, reducing NTCP and achieving better coverage. Combined with the clinical results, our findings suggest that TOMO can make malignant glioma patients close to OARs achieve better disease control.
Collapse
Affiliation(s)
- Chun-Yuan Kuo
- Department of Radiation Oncology, Shuang Ho Hospital, Taipei Medical University, Taipei 11031, Taiwan; (C.-Y.K.); (M.-H.L.); (J.-T.T.)
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Wei-Hsiu Liu
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, No.325, Sec. 2, Cheng-Kung Road, Taipei 11490, Taiwan;
- Department of Surgery, School of Medicine, National Defense Medical Center, Taipei 11490, Taiwan
| | - Yu-Ching Chou
- School of Public Health, National Defense Medical Center, Taipei 11490, Taiwan;
| | - Ming-Hsien Li
- Department of Radiation Oncology, Shuang Ho Hospital, Taipei Medical University, Taipei 11031, Taiwan; (C.-Y.K.); (M.-H.L.); (J.-T.T.)
| | - Jo-Ting Tsai
- Department of Radiation Oncology, Shuang Ho Hospital, Taipei Medical University, Taipei 11031, Taiwan; (C.-Y.K.); (M.-H.L.); (J.-T.T.)
- Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - David YC Huang
- Department of Medical Physics, Duke University, Durham, NC 27708, USA;
| | - Jang-Chun Lin
- Department of Radiation Oncology, Shuang Ho Hospital, Taipei Medical University, Taipei 11031, Taiwan; (C.-Y.K.); (M.-H.L.); (J.-T.T.)
- Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence: ; Tel.: +886-2-22490088; Fax: +886-2-22484822
| |
Collapse
|
23
|
Clinical audit of breast cancer patients treated with helical tomotherapy for irradiation of the internal mammary chain. JOURNAL OF RADIOTHERAPY IN PRACTICE 2022. [DOI: 10.1017/s1460396921000625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Abstract
Aim:
To evaluate efficacy of helical tomotherapy (HT) for treatment of breast cancer with internal mammary lymph node involvement.
Methods:
This is a retrospective clinical audit of planning, dosimetry, toxicity and short-term survival of a cohort of 65 patients. Patients were treated between November 2014 and May 2019. The primary and nodal region was prescribed a dose of 50 Gray (Gy) in 25 fractions, while all cases of breast conserving surgery received a simultaneous integrated boost to a dose of 61 Gy in 25 fractions.
Results:
The 95% coverage for the primary, supraclavicular, internal mammary node and tumour bed was 93·4%, 96·8%, 90·7% and 98·3%, respectively. Mean dose to total lung, heart and contra-lateral breast was 10·6 Gy, 6·92 Gy and 4·32 Gy, respectively. None developed grade III skin or oesophageal toxicity. Twenty-one patients had progression; of which eighteen developed only distant failure while three also had loco-regional recurrence. At a median follow-up of 36 months, the 3-year loco-regional control, disease-free survival and overall survival were 93·5, 73·9 and 85·9%, respectively.
Conclusion:
We report encouraging clinical outcome for patients treated uniformly with HT. The predominant pattern of failure was distant metastases which suggests the need for systemic control intensification.
Collapse
|
24
|
Ozaki S, Kaji S, Nawa K, Imae T, Aoki A, Nakamoto T, Ohta T, Nozawa Y, Yamashita H, Haga A, Nakagawa K. Training of deep cross-modality conversion models with a small dataset, and their application in megavoltage CT to kilovoltage CT conversion. Med Phys 2022; 49:3769-3782. [PMID: 35315529 DOI: 10.1002/mp.15626] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 02/21/2022] [Accepted: 03/14/2022] [Indexed: 11/06/2022] Open
Abstract
PURPOSE In recent years, deep-learning-based image processing has emerged as a valuable tool for medical imaging owing to its high performance. However, the quality of deep-learning-based methods heavily relies on the amount of training data; the high cost of acquiring a large dataset is a limitation to their utilization in medical fields. Herein, based on deep learning, we developed a computed tomography (CT) modality conversion method requiring only a few unsupervised images. METHODS The proposed method is based on CycleGAN with several extensions tailored for CT images, which aims at preserving the structure in the processed images and reducing the amount of training data. This method was applied to realize the conversion of megavoltage computed tomography (MVCT) to kilovoltage computed tomography (kVCT) images. Training was conducted using several datasets acquired from patients with head and neck cancer. The size of the datasets ranged from 16 slices (two patients) to 2745 slices (137 patients) for MVCT and 2824 slices (98 patients) for kVCT. RESULTS The required size of the training data was found to be as small as a few hundred slices. By statistical and visual evaluations, the quality improvement and structure preservation of the MVCT images converted by the proposed model were investigated. As a clinical benefit, it was observed by medical doctors that the converted images enhanced the precision of contouring. CONCLUSIONS We developed an MVCT to kVCT conversion model based on deep learning, which can be trained using only a few hundred unpaired images. The stability of the model against changes in data size was demonstrated. This study promotes the reliable use of deep learning in clinical medicine by partially answering commonly asked questions, such as "Is our data sufficient?" and "How much data should we acquire?" This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Sho Ozaki
- Graduate School of Medicine, University of Tokyo, Tokyo, 113-8655, Japan
| | - Shizuo Kaji
- Institute of Mathematics for Industry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Kanabu Nawa
- Department of Radiology, University of Tokyo Hospital, Tokyo, 113-8655, Japan
| | - Toshikazu Imae
- Department of Radiology, University of Tokyo Hospital, Tokyo, 113-8655, Japan
| | - Atsushi Aoki
- Department of Radiology, University of Tokyo Hospital, Tokyo, 113-8655, Japan
| | - Takahiro Nakamoto
- Department of Biological Science and Engineering, Faculty of Health Sciences, Hokkaido University, N12-W5, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan
| | - Takeshi Ohta
- Department of Radiology, University of Tokyo Hospital, Tokyo, 113-8655, Japan
| | - Yuki Nozawa
- Department of Radiology, University of Tokyo Hospital, Tokyo, 113-8655, Japan
| | - Hideomi Yamashita
- Department of Radiology, University of Tokyo Hospital, Tokyo, 113-8655, Japan
| | - Akihiro Haga
- Graduate School of Biomedical Science, Tokushima University, Tokushima, 770-8503, Japan
| | - Keiichi Nakagawa
- Graduate School of Medicine, University of Tokyo, Tokyo, 113-8655, Japan
| |
Collapse
|
25
|
Yuan Z, Wang Y, Hu P, Zhang D, Yan B, Lu H, Zhang H, Yang Y. Accelerate treatment planning process using deep learning generated fluence maps for cervical cancer radiation therapy. Med Phys 2022; 49:2631-2641. [PMID: 35157337 DOI: 10.1002/mp.15530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 11/12/2022] Open
Affiliation(s)
- Zengtai Yuan
- Department of Engineering and Applied Physics University of Science and Technology of China Hefei Anhui 230026 China
| | - Yuxiang Wang
- Hefei Ion Medical Center the First Affiliated Hospital of USTC Division of Life Sciences and Medicine University of Science and Technology of China Hefei Anhui 231283 China
| | - Panpan Hu
- Department of Engineering and Applied Physics University of Science and Technology of China Hefei Anhui 230026 China
- Department of Radiation Oncology the First Affiliated Hospital of USTC Division of Life Sciences and Medicine University of Science and Technology of China Hefei Anhui 230026 China
| | - Duoer Zhang
- Department of Engineering and Applied Physics University of Science and Technology of China Hefei Anhui 230026 China
| | - Bing Yan
- Department of Radiation Oncology the First Affiliated Hospital of USTC Division of Life Sciences and Medicine University of Science and Technology of China Hefei Anhui 230026 China
| | - Hsiao‐Ming Lu
- Hefei Ion Medical Center the First Affiliated Hospital of USTC Division of Life Sciences and Medicine University of Science and Technology of China Hefei Anhui 231283 China
| | - Hongyan Zhang
- Hefei Ion Medical Center the First Affiliated Hospital of USTC Division of Life Sciences and Medicine University of Science and Technology of China Hefei Anhui 231283 China
- Department of Radiation Oncology the First Affiliated Hospital of USTC Division of Life Sciences and Medicine University of Science and Technology of China Hefei Anhui 230026 China
| | - Yidong Yang
- Department of Engineering and Applied Physics University of Science and Technology of China Hefei Anhui 230026 China
- Department of Radiation Oncology the First Affiliated Hospital of USTC Division of Life Sciences and Medicine University of Science and Technology of China Hefei Anhui 230026 China
| |
Collapse
|
26
|
Jeon PH, Lee CL. Improving image quality by optimizing beam width and helical pitch in CT. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2022; 30:399-408. [PMID: 35095014 DOI: 10.3233/xst-211103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
BACKGROUND Expanding computed tomography (CT) detector coverage broadens the beam width, but inaccurate tube current application can reduce image quality at the boundaries between body regions with different attenuation values along the z-axis. OBJECTIVE This study aims to develop and validate a new CT scanning technique with a fixed pitch to achieve higher imaging quality. METHODS A cylindrical water phantom and an anthropomorphic chest phantom with different diameters represent a human body with different attenuation values. By optimizing the beam width and helical pitch, the pitch is fixed during scanning. The mean noise of the images and the standard deviation were calculated, and the coefficient of variation (COV) was compared to evaluate the uniformity of image noise according to the beam width. RESULTS At the boundaries between regions with different attenuation values, the 10 mm beam width (COV: 0.065) in the water phantom showed a 47.7% COV reduction of image noise compared with the 20 mm beam width (COV: 0.125). In addition, the 20 mm beam width (COV: 0.146) in the chest phantom showed a 29.3% COV reduction of image noise compared with the 40 mm beam width (COV: 0.206). Thus, as the beam was narrowed, the mean noise was similar, but the standard deviation was reduced. CONCLUSIONS The proposed CT scanning technique with a fixed pitch, optimized beam width, and helical pitch demonstrates that image quality can be improved without increasing radiation dose at the boundary between regions with different attenuation values.
Collapse
Affiliation(s)
- Pil-Hyun Jeon
- Department of Diagnostic Radiology, Yonsei University Wonju College of Medicine, Wonju Severance Christian Hospital, Wonju-si, Gangwon-do, Republic of Korea
| | - Chang-Lae Lee
- Health & Medical Equipment Business Unit, Samsung Electronics, Suwon-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
27
|
Yonekura K. Current treatment strategies and emerging therapies for cutaneous lymphoma. J Dermatol 2021; 49:223-231. [PMID: 34958516 DOI: 10.1111/1346-8138.16289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 11/28/2022]
Abstract
Cutaneous lymphoma is generally treated with skin-directed therapies (SDT) during the early and localized stages. For the refractory or advanced stages, systemic therapies are used. Previously, retinoids and interferons were used for SDT-resistant cases. Only a few chemotherapy options were available for more advanced disease. In recent years, many novel agents have been introduced and the strategy for systemic therapy has changed, especially for cutaneous T-cell lymphoma (CTCL). For SDT, helical tomotherapy, a new radiation modality, has been drawing attention as an option for radiotherapy. Targeted therapies such as histone deacetylase inhibitors, mogamulizumab, brentuximab vedotin, and denileukin diftitox are new treatment options. Chemotherapy agents such as gemcitabine and pralatrexate have been introduced; they are expected to have meaningful efficacy as monotherapy. Allogeneic hematopoietic stem cell transplantation is still considered for young patients with advanced CTCL as the only potentially curative treatment.
Collapse
Affiliation(s)
- Kentaro Yonekura
- Department of Dermatology, Imamura General Hospital, Kagoshima, Japan
| |
Collapse
|
28
|
Finneman GM, Eichhorn OH, Meskell NR, Caplice TW, Benson AD, Abu-Halawa AS, Ademoski GL, Clark AC, Gayer DS, Hendrickson KN, Debbins PA, Onel Y, Ayan AS, Akgun U. Development of a dosimeter prototype with machine learning based 3-D dose reconstruction capabilities. Biomed Phys Eng Express 2021; 8. [PMID: 34768242 DOI: 10.1088/2057-1976/ac396c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/12/2021] [Indexed: 11/12/2022]
Abstract
A 3-D dosimeter fills the need for treatment plan and delivery verification required by every modern radiation-therapy method used today. This report summarizes a proof-of-concept study to develop a water-equivalent solid 3-D dosimeter that is based on novel radiation-hard scintillating material. The active material of the prototype dosimeter is a blend of radiation-hard peroxide-cured polysiloxane plastic doped with scintillating agent P-Terphenyl and wavelength-shifter BisMSB. The prototype detector was tested with 6 MV and 10 MV x-ray beams at Ohio State University's Comprehensive Cancer Center. A 3-D dose distribution was successfully reconstructed by a neural network specifically trained for this prototype. This report summarizes the material production procedure, the material's water equivalency investigation, the design of the prototype dosimeter and its beam tests, as well as the details of the utilized machine learning approach and the reconstructed 3-D dose distributions.
Collapse
Affiliation(s)
- G M Finneman
- Physics Department, Coe College, Cedar Rapids, IA, United States of America
| | - O H Eichhorn
- Physics Department, Coe College, Cedar Rapids, IA, United States of America
| | - N R Meskell
- Physics Department, Coe College, Cedar Rapids, IA, United States of America
| | - T W Caplice
- Physics Department, Coe College, Cedar Rapids, IA, United States of America
| | - A D Benson
- Physics Department, Coe College, Cedar Rapids, IA, United States of America
| | - A S Abu-Halawa
- Physics Department, Coe College, Cedar Rapids, IA, United States of America
| | - G L Ademoski
- Physics Department, Coe College, Cedar Rapids, IA, United States of America
| | - A C Clark
- Physics Department, Coe College, Cedar Rapids, IA, United States of America
| | - D S Gayer
- Physics Department, Coe College, Cedar Rapids, IA, United States of America
| | - K N Hendrickson
- Physics Department, Coe College, Cedar Rapids, IA, United States of America
| | - P A Debbins
- Department of Physics and Astronomy, University of Iowa, Iowa City, IA, United States of America
| | - Y Onel
- Department of Physics and Astronomy, University of Iowa, Iowa City, IA, United States of America
| | - A S Ayan
- Comprehensive Cancer Center, Ohio State University, Columbus, OH, United States of America
| | - U Akgun
- Physics Department, Coe College, Cedar Rapids, IA, United States of America
| |
Collapse
|
29
|
Yonekura K, Ichiki M, Takeda K, Uchiyama N, Nishida H, Dokiya T. Successful treatment of tumor stage mycosis fungoides with total skin helical tomotherapy. J Dermatol 2021; 49:289-293. [PMID: 34806213 DOI: 10.1111/1346-8138.16246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/26/2021] [Accepted: 11/07/2021] [Indexed: 12/01/2022]
Abstract
Total skin electron beam therapy (TSEBT) is a treatment option for mycosis fungoides (MF). In Japan, it has been rarely performed because of the time required for each treatment, physical burden on patients, and difficulties in providing uniform dosimetry. In recent years, helical tomotherapy, an intensity-modulated radiation therapy that applies helical computed tomography technology, has been used to treat cancer. Total skin helical tomotherapy (TSHT) has been suggested as a promising alternative to TSEBT for patients with MF, but there are few reports from Japan. We used TSHT to treat a 28-year-old Japanese woman with tumor stage MF. She achieved complete remission with TSHT (12 Gy in six fractions over 6 days) and remained in remission for 32 months without additional treatment. Treatment-related grade 4 myelosuppression was observed, but resolved with blood transfusions and subcutaneous injection of granulocyte colony stimulating factor. Other adverse events were tolerable. Although careful attention should be paid to myelosuppression, TSHT might be a useful treatment option for MF.
Collapse
Affiliation(s)
- Kentaro Yonekura
- Department of Dermatology, Imamura General Hospital, Kagoshima, Japan
| | - Mamoru Ichiki
- Department of Radiology, Imamura General Hospital, Kagoshima, Japan
| | - Koichiro Takeda
- Department of Dermatology, Imamura General Hospital, Kagoshima, Japan
| | - Noriaki Uchiyama
- Department of Radiology, Imamura General Hospital, Kagoshima, Japan
| | | | - Takushi Dokiya
- Department of Radiology, Imamura General Hospital, Kagoshima, Japan
| |
Collapse
|
30
|
Kouris P, Moutsatsos A, Pappas EP, Beli I, Pantelakos P, Karaiskos P, Pantelis E. Assessing the dose rate delivery of helical TomoTherapy prostate and head & neck treatments. Biomed Phys Eng Express 2021; 8. [PMID: 34755680 DOI: 10.1088/2057-1976/ac37cb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 11/09/2021] [Indexed: 11/11/2022]
Abstract
The dose rate distributions delivered to 55 prostate and head & neck (H&N) cancer patients treated with a helical TomoTherapy (HT) system were resolved and assessed with regard to pitch and field width defined during treatment planning. Statistical analysis of the studied cases showed that the median treatment delivery time was 4.4 min and 6.3 min for the prostate and H&N cases, respectively. Dose rate volume histogram data for the studied cases showed that the 25% and 12% of the volume of the planning target volumes of the prostate and H&N cases are irradiated with a dose rate of greater or equal to 1 Gy min-1. Quartile dose rate (QDR) data confirmed that in HT, where the target is irradiated in slices, most of the dose is delivered to each voxel of the target when it travels within the beam. Analysis of the planning data from all cases showed that this lasts for 68 s (median value). QDRs results showed that using the 2.5 cm field width, 75% of the prescribed dose is delivered to target voxels with a median dose rate of at least 3.2 Gy min-1and 4.5 Gy min-1, for the prostate and H&N cases, respectively. Systematically higher dose rates were observed for the H&N cases due to the shallower depths of the lesions in this anatomical site. Delivered dose rates were also found to increase with field width and pitch setting, due to the higher output of the system which, in general, results in accordingly decreased total treatment time. The biological effect of the dose rate findings of this work needs to be further investigated using in-vitro studies and clinical treatment data.
Collapse
Affiliation(s)
- P Kouris
- Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias, 11527 Athens, Greece
| | - A Moutsatsos
- Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias, 11527 Athens, Greece.,Radiotherapy and Radiosurgery Department, Latropolis Clinic, 54-56 Ethnikis Antistaseos, 15231 Athens, Greece
| | - E P Pappas
- Radiotherapy and Radiosurgery Department, Latropolis Clinic, 54-56 Ethnikis Antistaseos, 15231 Athens, Greece
| | - I Beli
- Radiotherapy and Radiosurgery Department, Latropolis Clinic, 54-56 Ethnikis Antistaseos, 15231 Athens, Greece
| | - P Pantelakos
- Radiotherapy and Radiosurgery Department, Latropolis Clinic, 54-56 Ethnikis Antistaseos, 15231 Athens, Greece
| | - P Karaiskos
- Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias, 11527 Athens, Greece
| | - E Pantelis
- Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias, 11527 Athens, Greece.,Radiotherapy and Radiosurgery Department, Latropolis Clinic, 54-56 Ethnikis Antistaseos, 15231 Athens, Greece
| |
Collapse
|
31
|
Munshi A, Sarkar B, Paul S, Chaudhari BB, Chauhan RS, Ganesh T, Mohanti BK. A mathematical formulation for volume expansions in contouring for radiotherapy planning. J Cancer Res Ther 2021; 17:1125-1131. [PMID: 34528577 DOI: 10.4103/jcrt.jcrt_614_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Context This research describe the characteristic volume expansion of a moving target as a function of differential margins. Aim We aimed to ascertain the volume change after giving margin for clinical and set up uncertainties including generating internal target volume (ITV) for moving target. Materials and Methods Settings and Design - Spheres of diameter (0.5-10 cm) with differential expansion of 1-15 mm were generated using a mathematical formula. Moving targets of radius 1-5 cm were generated, and the resultant volume envelopes with incremental motion from 1 to 20 mm were obtained. All relative volume change results were fitted with mathematical functions to obtain a generalized mathematical formula. Statistical Analysis Used None. Results The percentage increase in volume (%ΔVp) was much more pronounced for smaller radius target. For moving target with relatively smaller radius, %ΔVp is predominant over the absolute volume change and vice versa in case of larger radius. Mathematical formulae were obtained for %ΔVp as a function of radius and expansion and for %ΔVp in ITV volume as a function of radius and tumor movement. Conclusions This study provides an idea of volume change for various expansions for various size targets and/or moving target for different range of movements. It establishes a correlation of these volume changes with the changing target size and range of movements. Finally, a clinically useful mathematical formulation on volume expansion has been developed for rapid understanding of the consequence of volume expansion.
Collapse
Affiliation(s)
- Anusheel Munshi
- Department of Radiation Oncology, Manipal Hospitals, New Delhi, India
| | - Biplab Sarkar
- Department of Radiation Oncology, Manipal Hospitals, New Delhi, India
| | - Sayan Paul
- Department of Radiation Oncology, Fortis Memorial Research Institute, Guragon, Haryana, India
| | | | | | | | | |
Collapse
|
32
|
Zhang X, Yang D, Jiang Y, Huang L, Wang C, Tao D, Liu X, Lei Y, Wu Y, Zhou W. Comparison of Radiation Pneumonitis in Lung Cancer Patients Treated with HT versus IMRT and Circulating Lymphocyte Subsets as Predicting Risk Factors. J Inflamm Res 2021; 14:4205-4215. [PMID: 34483676 PMCID: PMC8409515 DOI: 10.2147/jir.s328955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/10/2021] [Indexed: 12/25/2022] Open
Abstract
Purpose We sought to compare the symptomatic radiation pneumonitis (RP) in lung cancer patients treated with helical tomotherapy (HT) versus intensity-modulated radiotherapy (IMRT), and examine the predictive value of circulating lymphocyte subsets affecting the occurrence of RP. Patients and Methods Circulating lymphocyte subsets, clinical characteristics, dosimetric parameters and pulmonary function were collected from 130 lung cancer patients treated with HT (n = 53) or IMRT (n = 77) from 2016 through 2020. Symptomatic RP was compared between groups. Binary logistic regression was used to identify predictors of RP. Results The IMRT group had larger planning target volume (319.9 vs 240.8 cc, P = 0.041); more ECOG performance status 0–1 (96.1% vs 79.2%, P = 0.002); more stage III–IV disease (94.8% vs 37.6%, P = 0.028); and more combined systemic therapy (85.7% vs 69.8%, P = 0.022). Grade ≥2 RP were comparable between IMRT and HT groups (16.9% vs 15.1%, P = 0.785). For stage III–IV disease, IMRT was associated with lower lung V10 (31.9% vs 35.8%, P = 0.047) and lower incidence of grade 5 RP (0% vs 9.1%, P = 0.018). All lymphocyte subsets reduced after radiotherapy. The decrease degree of total T cell count and CD4+ T cell count were larger after IMRT than HT (P = 0.043, P = 0.021). In univariate analysis, the smoking status, lower baseline FEV1, and higher total T cell count, higher CD8+ T cell count, lower total B cell count, lower CD4+/CD8+ ratio after radiotherapy were associated with the development of grade ≥2 RP. The higher CD8+T cell count after radiotherapy was the only risk factor associated with grade ≥2 RP in multivariable analysis (OR 1.003; 95% CI: 1.000–1.005; P = 0.044). Conclusion IMRT was associated with lower lung V10 and less grade 5 RP than HT for stage III–IV lung cancer. Higher CD8+ T cell count after radiotherapy was associated with an increased risk of RP. HT may better preserve total T cell and CD4+ T cell than IMRT.
Collapse
Affiliation(s)
- Xin Zhang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, People's Republic of China
| | - Dingyi Yang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, People's Republic of China
| | - Yong Jiang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, People's Republic of China
| | - Luo Huang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, People's Republic of China
| | - Can Wang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, People's Republic of China
| | - Dan Tao
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, People's Republic of China
| | - Xianfeng Liu
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, People's Republic of China
| | - Yongyang Lei
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, People's Republic of China
| | - Yongzhong Wu
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, People's Republic of China
| | - Wei Zhou
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, People's Republic of China
| |
Collapse
|
33
|
Yang B, Tang KK, Geng H, Lam WW, Wong YS, Huang CY, Chiu TL, Kong CW, Cheung CW, Cheung KY, Yu SK. Comparison of modeling accuracy between Radixact ®and CyberKnife ®Synchrony ®respiratory tracking system. Biomed Phys Eng Express 2021; 7. [PMID: 34416743 DOI: 10.1088/2057-1976/ac1fa5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/20/2021] [Indexed: 11/12/2022]
Abstract
Synchrony Respiratory Tracking system adapted from CyberKnife has been introduced in Radixact to compensate the tumor motion caused by respiration. This study aims to compare the modeling accuracy of the Synchrony system between Radixact and CyberKnife. Two Synchrony plans based on fiducial phantoms were created for CyberKnife and Radixact, respectively. Different respiratory motion traces were used to drive a motion platform to move along the superoinferior and left-right direction. The cycle time and the amplitude of target/surrogate motion of one selected motion trace were scaled to investigate the dependence of modeling accuracy on the motion characteristic. The predicted target position, the correlation error, potential difference (Radixact only) and standard error (CyberKnife only) were extracted from raw data or log files of the two systems. The modeling accuracy was evaluated by calculating the root-mean-square (RMS) error between the predicted target positions and the input motion trace. A threshold T95 within which 95% of the potential difference or the standard error lay was defined and evaluated. Except for the motion trace with a small amplitude and a good (linear) correlation between target and surrogate motion, Radixact showed smaller RMS errors than CyberKnife. The RMS error of both systems increased with the motion amplitude and showed a decreasing trend with the increasing cycle time. No correlation was found between the RMS error and the amplitude of surrogate motion. T95 could be a good estimator of modeling accuracy for CyberKnife rather than Radixact. The correlation error defined in Radixact were largely affected by the number of fiducial markers and the setup error. In general, the modeling accuracy of the Radixact Synchrony system is better than that of the CyberKnife Synchrony system under unfavorable conditions.
Collapse
Affiliation(s)
- B Yang
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, 2 Village Road, Happy Valley, Hong Kong
| | - K K Tang
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, 2 Village Road, Happy Valley, Hong Kong
| | - H Geng
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, 2 Village Road, Happy Valley, Hong Kong
| | - W W Lam
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, 2 Village Road, Happy Valley, Hong Kong
| | - Y S Wong
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, 2 Village Road, Happy Valley, Hong Kong
| | - C Y Huang
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, 2 Village Road, Happy Valley, Hong Kong
| | - T L Chiu
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, 2 Village Road, Happy Valley, Hong Kong
| | - C W Kong
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, 2 Village Road, Happy Valley, Hong Kong
| | - C W Cheung
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, 2 Village Road, Happy Valley, Hong Kong
| | - K Y Cheung
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, 2 Village Road, Happy Valley, Hong Kong
| | - S K Yu
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, 2 Village Road, Happy Valley, Hong Kong
| |
Collapse
|
34
|
kV-kV and kV-MV DECT based estimation of proton stopping power ratio - a simulation study. Phys Med 2021; 89:182-192. [PMID: 34390901 DOI: 10.1016/j.ejmp.2021.07.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/30/2021] [Accepted: 07/31/2021] [Indexed: 12/23/2022] Open
Abstract
PURPOSE This study aims to estimate the proton stopping power ratio (SPR) by using 80-120 kV and 120 kV-6 MV dual-energy CT (DECT) in a fully simulation-based approach for proton therapy dose calculations. METHODS Based on a virtual CT system, a two-step approach is applied to obtain the reference attenuation coefficient for image reconstruction. The effective atomic number (EAN) and electron density ratio (EDR) are estimated from two CT scans. The SPR is estimated using a calibration based on known materials to obtain a piecewise linear relationship between the EAN and the logarithm of the mean excitation energy, lnIm. The calibration phantoms are constructed from reference tissue materials taken from ICRU Report 44. Our approach is evaluated through using the ICRP110 human phantom. The respective influences of noise and beam hardening effects are studied. RESULTS With the beam hardening correction applied, the results of 120 kV-6 MV DECT are comparable to those of 80-120 kV DECT in predicting the EAN, but the former demonstrated a clear improvement in predicting the EDR and SPR. The 120 kV-6 MV DECT is able to predict the SPR within an accuracy of 10% for lung tissue and 5% for pelvis tissue, thereby outperforming the 80-120 kV DECT. CONCLUSIONS The 120 kV-6 MV DECT is less sensitive to noise but more susceptible to beam hardening effects. By applying beam hardening correction, the 120 kV-6 MV DECT can predict the SPR more accurately than the 80-120 kV DECT. To utilize our DECT approach most effectively, high-quality reconstructed images are required.
Collapse
|
35
|
Gong H, Tao S, Gagneur JD, Liu W, Shen J, McCollough CH, Hu Y, Leng S. Implementation and experimental evaluation of Mega-voltage fan-beam CT using a linear accelerator. Radiat Oncol 2021; 16:139. [PMID: 34321029 PMCID: PMC8317342 DOI: 10.1186/s13014-021-01862-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 07/19/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mega-voltage fan-beam Computed Tomography (MV-FBCT) holds potential in accurate determination of relative electron density (RED) and proton stopping power ratio (SPR) but is not widely available. OBJECTIVE To demonstrate the feasibility of MV-FBCT using a medical linear accelerator (LINAC) with a 2.5 MV imaging beam, an electronic portal imaging device (EPID) and multileaf collimators (MLCs). METHODS MLCs were used to collimate MV beam along z direction to enable a 1 cm width fan-beam. Projection data were acquired within one gantry rotation and preprocessed with in-house developed artifact correction algorithms before the reconstruction. MV-FBCT data were acquired at two dose levels: 30 and 60 monitor units (MUs). A Catphan 604 phantom was used to evaluate basic image quality. A head-sized CIRS phantom with three configurations of tissue-mimicking inserts was scanned and MV-FBCT Hounsfield unit (HU) to RED calibration was established for each insert configuration using linear regression. The determination coefficient ([Formula: see text]) was used to gauge the accuracy of HU-RED calibration. Results were compared with baseline single-energy kilo-voltage treatment planning CT (TP-CT) HU-RED calibration which represented the current standard clinical practice. RESULTS The in-house artifact correction algorithms effectively suppressed ring artifact, cupping artifact, and CT number bias in MV-FBCT. Compared to TP-CT, MV-FBCT was able to improve the prediction accuracy of the HU-RED calibration curve for all three configurations of insert materials, with [Formula: see text] > 0.9994 and [Formula: see text] < 0.9990 for MV-FBCT and TP-CT HU-RED calibration curves of soft-tissue inserts, respectively. The measured mean CT numbers of blood-iodine mixture inserts in TP-CT drastically deviated from the fitted values but not in MV-FBCT. Reducing the radiation level from 60 to 30 MU did not decrease the prediction accuracy of the MV-FBCT HU-RED calibration curve. CONCLUSION We demonstrated the feasibility of MV-FBCT and its potential in providing more accurate RED estimation.
Collapse
Affiliation(s)
- Hao Gong
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Shengzhen Tao
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Justin D Gagneur
- Department of Radiology, Mayo Clinic Arizona, 5881 East Mayo Blvd, Phoenix, AZ, 85258, USA
| | - Wei Liu
- Department of Radiology, Mayo Clinic Arizona, 5881 East Mayo Blvd, Phoenix, AZ, 85258, USA
| | - Jiajian Shen
- Department of Radiology, Mayo Clinic Arizona, 5881 East Mayo Blvd, Phoenix, AZ, 85258, USA
| | - Cynthia H McCollough
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Yanle Hu
- Department of Radiology, Mayo Clinic Arizona, 5881 East Mayo Blvd, Phoenix, AZ, 85258, USA.
| | - Shuai Leng
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
36
|
Surface dose and build-up region depth dose measurements in non-standard beams of Cyberknife and tomotherapy systems. Radiol Phys Technol 2021; 14:309-317. [PMID: 34224082 DOI: 10.1007/s12194-021-00629-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 10/20/2022]
Abstract
The purpose of this study was to measure the surface dose and build-up region depth dose characteristics of 6 MV photon beams in Cyberknife and helical tomotherapy (HT) systems for non-standard small fields using parallel plate chambers (Roos and Markus), Gafchromic EBT3 films, and nanoDot optically stimulated luminescence dosimeters (OSLDs), as well as to investigate the effect of oblique incidence on the surface dose of the beam. All measurements were conducted in a virtual water phantom under machine-specific reference conditions. The Roos and OSLDs overestimated the surface dose when compared with the Markus chamber and EBT3 films by 20%. We applied water equivalent thickness (WET) correction to account for the intrinsic build-up thickness of the detectors from their effective point of measurement (EPOM). With WET correction, a reasonably close surface dose estimate was obtained for all detectors, within 1.9% agreement for the 60 mm collimator of Cyberknife and 3.1% agreement for the HT system, with a 5 × 10 cm2 field size. The surface dose increased from the normally incident Cyberknife and HT fields with increasing angle of incidence. The surface dose increased to twice its value at normal incidence for highly oblique angles of incidence above 55°. For the tested fields, a reasonable surface dose estimate could be measured with the detectors if the correction for intrinsic buildup thickness was applied. Nevertheless, the use of Roos chambers with large dimensions and nanoDot OSLDs is not recommended for estimating the surface dose for small fields.
Collapse
|
37
|
Lee YS, Kim S, Kim GJ, Lee JH, Kim IS, Kim JI, Shin KY, Seol Y, Oh T, An NY, Lee J, Hwang J, Oh Y, Kang YN. Medical X-band linear accelerator for high-precision radiotherapy. Med Phys 2021; 48:5327-5342. [PMID: 34224166 DOI: 10.1002/mp.15077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/27/2021] [Accepted: 06/14/2021] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Recently, high-precision radiotherapy systems have been developed by integrating computerized tomography or magnetic resonance imaging to enhance the precision of radiotherapy. For integration with additional imaging systems in a limited space, miniaturization and weight reduction of the linear accelerator (linac) system have become important. The aim of this work is to develop a compact medical linac based on 9.3 GHz X-band RF technology instead of the S-band RF technology typically used in the radiotherapy field. METHODS The accelerating tube was designed by 3D finite-difference time-domain and particle-in-cell simulations because the frequency variation resulting from the structural parameters and processing errors is relatively sensitive to the operating performance of the X-band linac. Through the 3D simulation of the electric field distribution and beam dynamics process, we designed an accelerating tube to efficiently accelerate the electron beam and used a magnetron as the RF source to miniaturize the entire linac. In addition, a side-coupled structure was adopted to design a compact linac to reduce the RF power loss. To verify the performance of the linac, we developed a beam diagnostic system to analyze the electron beam characteristics and a quality assurance (QA) experimental environment including 3D lateral water phantoms to analyze the primary performance parameters (energy, dose rate, flatness, symmetry, and penumbra) The QA process was based on the standard protocols AAPM TG-51, 106, 142 and IAEA TRS-398. RESULTS The X-band linac has high shunt impedance and electric field strength. Therefore, even though the length of the accelerating tube is 37 cm, the linac could accelerate an electron beam to more than 6 MeV and produce a beam current of more than 90 mA. The transmission ratio is measured to be approximately 30% ~ 40% when the electron gun operates in the constant emission region. The percent depth dose ratio at the measured depths of 10 and 20 cm was approximately 0.572, so we verified that the photon beam energy was matched to approximately 6 MV. The maximum dose rate was measured as 820 cGy/min when the source-to-skin distance was 80 cm. The symmetry was smaller than the QA standard and the flatness had a higher than standard value due to the flattening filter-free beam characteristics. In the case of the penumbra, it was not sufficiently steep compared to commercial equipment, but it could be compensated by improving additional devices such as multileaf collimator and jaw. CONCLUSIONS A 9.3 GHz X-band medical linac was developed for high-precision radiotherapy. Since a more precise design and machining process are required for X-band RF technology, this linac was developed by performing a 3D simulation and ultraprecision machining. The X-band linac has a short length and a compact volume, but it can generate a validated therapeutic beam. Therefore, it has more flexibility to be coupled with imaging systems such as CT or MRI and can reduce the bore size of the gantry. In addition, the weight reduction can improve the mechanical stiffness of the unit and reduce the mechanical load.
Collapse
Affiliation(s)
- Yong-Seok Lee
- Electro-Medical Device Research Center, Korea Electrotechnology Research Institute, Ansan, Republic of Korea.,PLS-II Accelerator Division, Pohang Accelerator Laboratory, Pohang, Republic of Korea
| | - Sanghoon Kim
- Electro-Medical Device Research Center, Korea Electrotechnology Research Institute, Ansan, Republic of Korea
| | - Geun-Ju Kim
- Electro-Medical Device Research Center, Korea Electrotechnology Research Institute, Ansan, Republic of Korea
| | - Jeong-Hun Lee
- Electro-Medical Device Research Center, Korea Electrotechnology Research Institute, Ansan, Republic of Korea
| | - Insoo S Kim
- Electro-Medical Device Research Center, Korea Electrotechnology Research Institute, Ansan, Republic of Korea
| | - Jung-Il Kim
- Electro-Medical Device Research Center, Korea Electrotechnology Research Institute, Ansan, Republic of Korea
| | - Ki Young Shin
- Russia Science Seoul Center, Korea Electrotechnology Research Institute, Ansan, Republic of Korea
| | - Yunji Seol
- Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, Republic of Korea.,Advanced Institute for Radiation Fusion Medical Technology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Taegeon Oh
- Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, Republic of Korea.,Advanced Institute for Radiation Fusion Medical Technology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Na-Young An
- Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, Republic of Korea.,Advanced Institute for Radiation Fusion Medical Technology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jaehyeon Lee
- Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, Republic of Korea.,Advanced Institute for Radiation Fusion Medical Technology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jinho Hwang
- Department of Radiation Oncology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Incheon, Republic of Korea
| | - Youngah Oh
- Advanced Institute for Radiation Fusion Medical Technology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Young-Nam Kang
- Advanced Institute for Radiation Fusion Medical Technology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Department of Radiation Oncology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
38
|
Kinhikar R, Kaushik S, Tambe C, Kadam S, Kale S, Upreti R. Implementation and Challenges of International Atomic Energy Agency/American Association of Physicists in Medicine TRS 483 Formalism for Field Output Factors and Involved Uncertainties Determination in Small Fields for TomoTherapy. J Med Phys 2021; 46:162-170. [PMID: 34703100 PMCID: PMC8491308 DOI: 10.4103/jmp.jmp_11_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 11/04/2022] Open
Abstract
PURPOSE International Atomic Energy Agency published TRS-483 to address the issues of small field dosimetry. Our study calculates the output factor in the small fields of TomoTherapy using different detectors and dosimetric conditions. Furthermore, it estimates the various components of uncertainty and presents challenges faced during implementation. MATERIALS AND METHODS Beam quality TPR20,10(10) at the hypothetical field size of 10 cm × 10 cm was calculated from TPR20,10(S). Two ionization chambers based on the minimum field width required to satisfy the lateral charge particle equilibrium and one unshielded electron field diode (EFD) were selected. Output factor measurements were performed in various dosimetric conditions. RESULTS Beam quality TPR20,10(10) has a mean value of 0.627 ± 0.001. The maximum variation of output factor between CC01 chamber and EFD diode at the smallest field size was 11.80%. In source to surface setup, the difference between water and virtual water was up to 9.68% and 8.13%, respectively, for the CC01 chamber and EFD diode. The total uncertainty in the ionization chamber was 2.43 times higher compared to the unshielded EFD diode at the smallest field size. CONCLUSIONS Beam quality measurements, chamber selection procedure, and output factors were successfully carried out. A difference of up to 10% in output factor can occur if density scaling for electron density in virtual water is not considered. The uncertainty in output correction factors dominates, while positional and meter reading uncertainty makes a minor contribution to total uncertainty. An unshielded EFD diode is a preferred detector in small fields because of lower uncertainty in measurements compared to ionization chambers.
Collapse
Affiliation(s)
- Rajesh Kinhikar
- Department of Medical Physics, Tata Memorial Centre, Parel, Mumbai, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, Maharashtra, India
| | - Suryakant Kaushik
- Department of Radiation Oncology, Advanced Centre for Treatment Research and Education in Cancer, Tata Memorial Centre Kharghar, Navi Mumbai, Maharashtra, India
| | | | - Sudarshan Kadam
- Department of Medical Physics, Tata Memorial Centre, Parel, Mumbai, India
| | - Shrikant Kale
- Department of Medical Physics, Tata Memorial Centre, Parel, Mumbai, India
| | - Rituraj Upreti
- Department of Medical Physics, Tata Memorial Centre, Parel, Mumbai, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, Maharashtra, India
| |
Collapse
|
39
|
Practical aspects of the application of helical tomotherapy for craniospinal irradiation. Sci Rep 2021; 11:6120. [PMID: 33731843 PMCID: PMC7969733 DOI: 10.1038/s41598-021-85574-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/03/2021] [Indexed: 11/26/2022] Open
Abstract
We investigated the practical aspects of the application of craniospinal irradiation using helical tomotherapy (HT-CSI) by evaluating interfractional setup errors and intrafractional movement during each treatment in 83 patients undergoing HT-CSI between January 2014 and December 2018. Interfractional setup errors in each axis (mediolateral; ML, craniocaudal; CC, and anteroposterior; AP) were assessed as differences between pre-treatment megavoltage computed tomography (MVCT) images scanned (zygomatic arch to the C4 spine) and planning CT images. Intrafractional movements were evaluated as the difference between pre-treatment and post-treatment MVCT (T12–L4 spine) images at each fraction. Median interfractional setup error was acceptable in every axis (ML: 1.6 mm, CC: 1.9 mm, AP: 3.1 mm). Seven patients (8.4%) experienced significant intrafractional displacement from 1 to 10 fractions (0.34% for ML, 0.74% for CC, 1.21% for AP). Weight loss grade 1+ during treatment (p = 0.016) was an independent risk factor for significant intrafractional displacement. The risk factor for significant intrafractional movement in pediatric patients was weight loss grade 1+ (p = 0.020), while there was no factor in adults. HT-CSI could be a feasible treatment modality with acceptable setup verification. Inter- and intrafractional errors were acceptable; paying attention to weight loss during treatment is necessary, especially in pediatric patients.
Collapse
|
40
|
Bouchard H. Reference dosimetry of modulated and dynamic photon beams. Phys Med Biol 2021; 65:24TR05. [PMID: 33438582 DOI: 10.1088/1361-6560/abc3fb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In the late 1980s, a new technique was proposed that would revolutionize radiotherapy. Now referred to as intensity-modulated radiotherapy, it is at the core of state-of-the-art photon beam delivery techniques, such as helical tomotherapy and volumetric modulated arc therapy. Despite over two decades of clinical application, there are still no established guidelines on the calibration of dynamic modulated photon beams. In 2008, the IAEA-AAPM work group on nonstandard photon beam dosimetry published a formalism to support the development of a new generation of protocols applicable to nonstandard beam reference dosimetry (Alfonso et al 2008 Med. Phys. 35 5179-86). The recent IAEA Code of Practice TRS-483 was published as a result of this initiative and addresses exclusively small static beams. But the plan-class specific reference calibration route proposed by Alfonso et al (2008 Med. Phys. 35 5179-86) is a change of paradigm that is yet to be implemented in radiotherapy clinics. The main goals of this paper are to provide a literature review on the dosimetry of nonstandard photon beams, including dynamic deliveries, and to discuss anticipated benefits and challenges in a future implementation of the IAEA-AAPM formalism on dynamic photon beams.
Collapse
Affiliation(s)
- Hugo Bouchard
- Département de physique, Université de Montréal, Complexe des sciences, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, Québec H2V 0B3, Canada. Centre de recherche du Centre hospitalier de l'Université de Montréal, 900 Rue Saint-Denis, Montréal, Québec H2X 0A9, Canada. Département de radio-oncologie, Centre hospitalier de l'Université de Montréal (CHUM), 1051 Rue Sanguinet, Montréal, Québec H2X 3E4, Canada
| |
Collapse
|
41
|
Dosimetric comparison of constant dose rate volumetric modulated arc therapy (CDR-VMAT) and intensity-modulated radiation therapy (IMRT) for gallbladder cancer. JOURNAL OF RADIOTHERAPY IN PRACTICE 2020. [DOI: 10.1017/s1460396920001132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract
Aim:
To study the feasibility of constant dose rate volumetric modulated arc therapy (CDR-VMAT) in radiotherapy for gallbladder cancer by comparing dosimetric parameter suggested by International Commission on Radiation Units and Measurements-83 (ICRU-83) with step and shoot intensity-modulated radiation therapy (SS IMRT).
Methods:
For this study, we selected 21 post-operative gallbladder cancer patients, which were treated with the IMRT technique from 2016 to 2019. For each patient, we generated SS IMRT plan and CDR-VMAT plan and were dosimetrically compared by parameters suggested by ICRU-83 for PTV. Homogeneity Index (HI) and Conformity Index (CI) were also calculated. For evaluation of Organ at Risk (OAR), we compared the mean doses, volume doses to the right kidney, left kidney, both kidneys combined, liver and max dose to the spinal cord. Monitor units (MUs) and treatment delivery time were also compared.
Results:
On comparing, we found that CDR-VMAT plans were highly conformed as CI and PCI (CI define by Paddick) were found more (0·98 ± 0·01 vs. 0·97 ± 0·03 and 0·86 ± 0·05 vs. 0·85 ± 0·05) than IMRT plans but not statistically significant. Better dose HI was found for IMRT plans with statistical significant difference (p < 0·001). The tumour coverage was found similar 98·24% and 97·83% for SS IMRT and CDR-VMAT, respectively. For D2%, the maximum dose to PTV was significantly lower in IMRT (p = 0·001). D50% and mean dose to PTV were also comparable to IMRT with no statistically significant difference. The OAR parameters were comparable in both the techniques. The mean doses and volume doses V10, V20 and V30 to the right kidney, left kidney and liver were also comparable with no significant difference (p > 0·05) was noted among them. However, the maximum dose to the spinal cord was significantly less in CDR-VMAT (21·1 Gy vs. 25·1Gy) than SS IMRT with p = 0·006. More MUs were associated with the CDR-VMAT technique, but shorter treatment delivery time than the IMRT technique.
Conclusions:
On dosimetric comparison of two treatment techniques, we conclude that CDR-VMAT can be a valid option in radiotherapy as it achieved highly conformed dose distribution, comparable tumour coverage and OAR sparing as IMRT technique for gallbladder cancer.
Collapse
|
42
|
Qi XS, Chu FI, Zhang Z, Chin RK, Raldow A, Kishan AU, Lee P, Chang A, Kalbasi A, Kamrava M, Steinberg ML, Low DA. Clinical Development and Evaluation of Megavoltage Topogram for Fast Patient Alignment on Helical Tomotherapy. Adv Radiat Oncol 2020; 5:1334-1341. [PMID: 33305096 PMCID: PMC7718556 DOI: 10.1016/j.adro.2020.05.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 05/16/2020] [Accepted: 05/25/2020] [Indexed: 11/19/2022] Open
Abstract
Purpose To develop and evaluate a fast patient localization tool using megavoltage (MV)-topogram on helical tomotherapy. Methods and Materials Eighty-one MV-topogram pairs for 18 pelvis patients undergoing radiation were acquired weekly under an institutional review board–approved clinical trial. The MV-topogram imaging protocol requires 2 orthogonal acquisitions at static gantry angles of 0 degrees and 90 degrees for a programed scan length. A MATLAB based in-house software was developed to reconstruct the MV-topograms offline. Reference images (digitally reconstructed topograms, digitally reconstructed topograms) were generated using the planning computed tomography and tomotherapy geometry. The MV-topogram based alignment was determined by registering the MV-topograms to the digitally reconstructed topogram using bony landmark on commercial MIM software. The daily shifts in 3 translational directions determined from MV-topograms were compared with the megavoltage computed tomography (MVCT) based patient shifts. Linear-regression and two one-sided tests equivalence tests were performed to investigate the relation and equivalence between the 2 techniques. Seventy-eight MV-topogram pairs for 19 head and neck patients were included to validate the finding. Results The magnitudes of alignment differences of (MVCT − MV-topogram) (and standard deviations) were −0.3 ± 2.1, −0.8 ± 2.4, and 1.6 ± 1.7 mm for pelvis and 0.6 ± 1.2, 0.8 ± 4.2, 1.6 ± 2.6 mm for head and neck; the linear-regression coefficients between 2 imaging techniques were 1.18, 1.10, 0.94, and 0.86, 0.63, 0.38 in the lateral, longitudinal, vertical directions for pelvis and head and neck, respectively. The acquisition time for a pair of MV-topograms was up to 12.7 times less than MVCT scans (coarse scan mode) while covering longer longitudinal length. Conclusions MV-topograms showed equivalent clinical performance to the standard MVCT with significantly less acquisition time for pelvis and H&N patients. The MV-topogram can be used as an alternative or complimentary tool for bony landmark-based patient alignment on tomotherapy.
Collapse
|
43
|
Manabe Y, Miyakawa A, Kondo T, Yamada Y, Hashimoto S, Ishikura S, Shibamoto Y. Stereotactic body radiotherapy using the forward-planned static-port tomotherapy for lung cancer: a novel planning technique with the newly-developed mode. JOURNAL OF RADIATION RESEARCH 2020; 61:993-998. [PMID: 33210148 PMCID: PMC7674681 DOI: 10.1093/jrr/rraa092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/18/2020] [Indexed: 06/11/2023]
Abstract
With the newly-developed static-port forward-planning (FP) mode of tomotherapy, the ratio of the dose of the planning target volume (PTV) periphery to the maximum dose can be easily adjusted by modifying leaf margins when planning stereotactic body radiotherapy (SBRT). The purpose of this study was to evaluate the characteristics of FP plans compared to helical intensity-modulated radiotherapy (IMRT) and helical 3D conformal radiotherapy (3DCRT) plans of SBRT for lung tumors. The three plans were created for 14 tumors in 11 patients. For 13 tumors, 60 Gy in 7.5-Gy fractions was prescribed for a minimum coverage dose of 95% of the PTV (D95). The prescribed isodose line (PIL) was intended to be 60-80% of the maximum dose. Nine angles were used for the FP plans. The median D98 and D50 of the internal target volume for FP, helical-IMRT and helical-3DCRT plans were 70.4, 71.4 and 60.5 Gy, respectively (P < 0.001), and 77.7, 75.7 and 62.3 Gy, respectively (P < 0.0001). The median PIL and the lung volume receiving ≥20 Gy (V20) were 73.4, 73.4 and 94.3%, respectively (P < 0.0001), and 4.7, 4.0 and 5.7%, respectively (P < 0.0001). These parameters were not significantly different between the FP and helical-IMRT plans. The median beam-on times were 238.6, 418.9 and 197.1 s, respectively (P < 0.0001). The FP plans reduced the beam-on time by 43% compared to the helical-IMRT plans. The dose distribution of the FP plans was comparable to that of the helical-IMRT plans. The helical-3DCRT plans could not adjust PIL to be 60-80%.
Collapse
Affiliation(s)
- Yoshihiko Manabe
- Corresponding author. Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mozuho-cho, Mizuho-ku, Nagoya 467-8601, Japan. Tel: +81-52-853-8276; Fax: +81-52-852-5244;
| | - Akifumi Miyakawa
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Takuhito Kondo
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Yuki Yamada
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Seiji Hashimoto
- Department of Radiation Oncology, Nanbu Tokushukai Hospital, 171-1 Hokama, Yaese-cho, Simajiri-gun, Okinawa 901-0493, Japan
| | - Satoshi Ishikura
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Yuta Shibamoto
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| |
Collapse
|
44
|
Liu Z, Chen X, Men K, Yi J, Dai J. A deep learning model to predict dose–volume histograms of organs at risk in radiotherapy treatment plans. Med Phys 2020; 47:5467-5481. [PMID: 32677104 DOI: 10.1002/mp.14394] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/19/2020] [Accepted: 07/10/2020] [Indexed: 12/22/2022] Open
Affiliation(s)
- Zhiqiang Liu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Chinese Academy of Medical Sciences and Peking Union Medical College No. 17 Panjiayuannanli, Chaoyang District Beijing100021 China
| | - Xinyuan Chen
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Chinese Academy of Medical Sciences and Peking Union Medical College No. 17 Panjiayuannanli, Chaoyang District Beijing100021 China
| | - Kuo Men
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Chinese Academy of Medical Sciences and Peking Union Medical College No. 17 Panjiayuannanli, Chaoyang District Beijing100021 China
| | - Junlin Yi
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Chinese Academy of Medical Sciences and Peking Union Medical College No. 17 Panjiayuannanli, Chaoyang District Beijing100021 China
| | - Jianrong Dai
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Chinese Academy of Medical Sciences and Peking Union Medical College No. 17 Panjiayuannanli, Chaoyang District Beijing100021 China
| |
Collapse
|
45
|
Tiplica T, Dufreneix S, Legrand C. A Bayesian control chart based on the beta distribution for monitoring the two-dimensional gamma index pass rate in the context of patient-specific quality assurance. Med Phys 2020; 47:5408-5418. [PMID: 32970863 DOI: 10.1002/mp.14472] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 11/06/2022] Open
Abstract
PURPOSE In the context of quality assurance in intensity modulated radiation therapy (IMRT), the aim of this work was two-fold: (a) to show that the beta distribution characterizes the two-dimensional gamma index pass rate (GIPR), and that the quantiles of the distribution should be used in order to compute the control limit (CL) for the detection of abnormally low GIPR, and (b) to introduce a Bayesian control chart that allows calculation of CLs from the first measurement. METHODS In order to enable monitoring of the GIPR from the first measurement, we developed a Bayesian control chart based on the beta distribution, elaborated according to the following two steps: (a) an iterative bayesian inference approach without any prior information on the GIPR distribution was used at the start of monitoring and the CL was progressively updated; and (b) when sufficient in-control arcs had been recorded and the estimators of the parameters of the beta distribution were sufficiently accurate, the CL of the chart was fixed to a constant value corresponding to the quantile of the beta distribution. The clinical utility of this approach is illustrated through a real data case study: monitoring the GIPR of patients treated with a moving gantry IMRT technique RapidArcTM on a Novalis TrueBeam STx (Varian Medical Systems) linear accelerator equipped with an aS1200 electronic portal imager device. RESULTS We showed that some commonly used distributions for monitoring GIPR in the literature, such as normal or logarithm transformation, are not appropriate. We compared the CLs of those solutions with the CL of our chart based on the BD (CL = 95.14%). The comparison revealed that the CL for the normal law (CL = 97.62%) generated too many false positives, and that the CL of the Logarithm transformation (CL = 83.74%) could fail to efficiently detect (i.e., sufficiently early on or faster) changes in the process. CONCLUSIONS Successful GIPR monitoring requires careful and rigorous application of well-established statistical concepts in the field of statistical process control. In this paper, we stress the importance of carefully analyzing the distribution of the monitored characteristic that is plotted on the control chart. We propose a Bayesian control chart that can be viewed as a practical solution for early implementation of GIPR monitoring, starting from the first arc. We demonstrate that beta distribution is a better method for characterizing the GIPR, and thus, the use of this approach is expected to improve patient-specific quality assurance plans in radiotherapy.
Collapse
Affiliation(s)
- Teodor Tiplica
- LARIS Systems Engineering Research Laboratory, University of Angers, Angers, France
| | - Stéphane Dufreneix
- Department of Medical Physics, Institut de Cancérologie de l'Ouest, Angers, France
| | - Christophe Legrand
- Department of Medical Physics, Institut de Cancérologie de l'Ouest, Angers, France
| |
Collapse
|
46
|
Dosimetric comparison of volumetric-modulated arc therapy and helical tomotherapy for adjuvant treatment of bilateral breast cancer. JOURNAL OF RADIOTHERAPY IN PRACTICE 2020. [DOI: 10.1017/s1460396920000795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractPurpose:Dosimetric comparison between volumetric-modulated arc therapy (VMAT) and helical tomotherapy (HT) in the treatment of bilateral breast cancer (BBC).Materials and methods:Ten patients treated on HT were selected retrospectively. Dose prescription was 50 Gy in 25 fractions to breast/chest wall and supraclavicular fossa (SCF) while tumour bed was simultaneously boosted to 61 Gy in 25 fractions. VMAT plans were made with four mono-isocentric partial arcs. The monitoring unit (MU) and treatment time were used to quantify the treatment efficiency. Target volumes were compared for homogeneity index (HI), conformity index (CI) while organs at risk (OARs) were compared for relevant dose volumes and integral doses (IDs).Result:For targets, no significant difference is observed between VMAT and HT in CI but VMAT could give better HI. The mean lung dose, V20 and V5 is 10·6 Gy versus 8·4 Gy (p-value 0·03), 12% versus 11·5% (p-value 0·5) and 78·1% versus 43·4% (p-value 0·005), respectively. The mean heart dose, V30 and V5 is 4·9 Gy versus 4·7 Gy (p-value 0·88), 0·5% versus 1·5% (p-value 0·18) and 26·2% versus 22·8% (p-value 0·4). Integral dose (ID) for the whole body and heart are comparable: 289 Gy kg versus 299 Gy kg (p-value 0·24) and 2·9 Gy kg versus 2·8 Gy kg (p-value 0·80). ID for lungs was significantly higher with VMAT: 7·9 Gy kg versus 6·3 Gy kg (p-value 0·03). There is a 53% reduction in treatment time and 78% in MU with VMAT against HT.Conclusion:VMAT can generate clinically acceptable plans comparable to HT for BBC. HT shows better control over low dose spillage in lungs compared to VMAT thereby increasing ID to lungs. VMAT shows better homogeneity and efficient treatment delivery than HT.
Collapse
|
47
|
Simple calculation using anatomical features on pre-treatment verification CT for bladder volume estimation during radiation therapy for rectal cancer. BMC Cancer 2020; 20:942. [PMID: 33004026 PMCID: PMC7528380 DOI: 10.1186/s12885-020-07405-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/14/2020] [Indexed: 11/25/2022] Open
Abstract
Background Despite detailed instruction for full bladder, patients are unable to maintain consistent bladder filling during a 5-week pelvic radiation therapy (RT) course. We investigated the best bladder volume estimation procedure for verifying consistent bladder volume. Methods We reviewed 462 patients who underwent pelvic RT. Biofeedback using a bladder scanner was conducted before simulation and during treatment. Exact bladder volume was calculated by bladder inner wall contour based on CT images (Vctsim). Bladder volume was estimated either by bladder scanner (Vscan) or anatomical features from the presacral promontory to the bladder base and dome in the sagittal plane of CT (Vratio). The feasibility of Vratio was validated using daily megavoltage or kV cone-beam CT before treatment. Results Mean Vctsim was 335.6 ± 147.5 cc. Despite a positive correlation between Vctsim and Vscan (R2 = 0.278) and between Vctsim and Vratio (R2 = 0.424), Vratio yielded more consistent results than Vscan, with a mean percentage error of 26.3 (SD 19.6, p < 0.001). The correlation between Vratio and Vctsim was stronger than that between Vscan and Vctsim (Z-score: − 7.782, p < 0.001). An accuracy of Vratio was consistent in megavoltage or kV cone-beam CT during treatment. In a representative case, we can dichotomize for clinical scenarios with or without bowel displacement, using a ratio of 0.8 resulting in significant changes in bowel volume exposed to low radiation doses. Conclusions Bladder volume estimation using personalized anatomical features based on pre-treatment verification CT images was useful and more accurate than physician-dependent bladder scanners. Trial registration Retrospectively registered.
Collapse
|
48
|
Aoyama T, Shimizu H, Sasaki K, Ando M, Kaneda N, Tachibana H, Suzuki K, Kodaira T. A Relationship Between Cervical Vertebrae Twisting and Cranial Angle in Head and Neck Radiotherapy. In Vivo 2020; 34:2401-2406. [PMID: 32871765 DOI: 10.21873/invivo.12053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 11/10/2022]
Abstract
BACKGROUND/AIM Because current image-guided radiotherapy systems can only correct six axes, it is impossible to correct the twisting of cervical vertebrae. The purpose of this study was to clarify the relationship between cervical vertebrae twisting and cranial angle. MATERIALS AND METHODS Nineteen patients who underwent intensity-modulated radiation therapy were retrospectively reviewed. Twisting of cervical vertebrae was analysed using planning computed tomography (CT) and megavoltage CT images for image-guided radiotherapy. RESULTS Although the cranial angle during planning CT was not strongly correlated with twisting (correlation coefficient <0.7), when the patients were divided into two groups by cranial angle, the twisting of the small-angle group was significantly reduced. Specifically, cranial angles of <25° significantly and efficiently reduced the twisting of the upper cervical vertebra compared with those of the other groups. CONCLUSION Twisting of the upper cervical vertebrae is reduced by using a cranial angle of <25° during planning CT.
Collapse
Affiliation(s)
- Takahiro Aoyama
- Department of Radiation Oncology, Aichi Cancer Centre Hospital, Nagoya, Japan .,Graduate School of Medicine, Aichi Medical University, Nagakute, Japan
| | - Hidetoshi Shimizu
- Department of Radiation Oncology, Aichi Cancer Centre Hospital, Nagoya, Japan
| | - Koji Sasaki
- Graduate School of Radiological Technology, Gunma Prefectural College of Health Sciences, Maebashi, Japan
| | - Mio Ando
- Department of Radiological Technology, Aichi Medical University Hospital, Nagakute, Japan
| | - Naoki Kaneda
- Department of Radiological Technology, Aichi Medical University Hospital, Nagakute, Japan
| | - Hiroyuki Tachibana
- Department of Radiation Oncology, Aichi Cancer Centre Hospital, Nagoya, Japan
| | - Kojiro Suzuki
- Department of Radiology, Aichi Medical University, Aichi, Japan
| | - Takeshi Kodaira
- Department of Radiation Oncology, Aichi Cancer Centre Hospital, Nagoya, Japan
| |
Collapse
|
49
|
Ferris WS, Kissick MW, Bayouth JE, Culberson WS, Smilowitz JB. Evaluation of radixact motion synchrony for 3D respiratory motion: Modeling accuracy and dosimetric fidelity. J Appl Clin Med Phys 2020; 21:96-106. [PMID: 32691973 PMCID: PMC7497925 DOI: 10.1002/acm2.12978] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 06/11/2020] [Accepted: 06/19/2020] [Indexed: 01/22/2023] Open
Abstract
The Radixact® linear accelerator contains the motion Synchrony system, which tracks and compensates for intrafraction patient motion. For respiratory motion, the system models the motion of the target and synchronizes the delivery of radiation with this motion using the jaws and multi-leaf collimators (MLCs). It was the purpose of this work to determine the ability of the Synchrony system to track and compensate for different phantom motions using a delivery quality assurance (DQA) workflow. Thirteen helical plans were created on static datasets from liver, lung, and pancreas subjects. Dose distributions were measured using a Delta4® Phantom+ mounted on a Hexamotion® stage for the following three case scenarios for each plan: (a) no phantom motion and no Synchrony (M0S0), (b) phantom motion and no Synchrony (M1S0), and (c) phantom motion with Synchrony (M1S1). The LEDs were placed on the Phantom+ for the 13 patient cases and were placed on a separate one-dimensional surrogate stage for additional studies to investigate the effect of separate target and surrogate motion. The root-mean-square (RMS) error between the Synchrony-modeled positions and the programmed phantom positions was <1.5 mm for all Synchrony deliveries with the LEDs on the Phantom+. The tracking errors increased slightly when the LEDs were placed on the surrogate stage but were similar to tracking errors observed for other motion tracking systems such as CyberKnife Synchrony. One-dimensional profiles indicate the effects of motion interplay and dose blurring present in several of the M1S0 plans that are not present in the M1S1 plans. All 13 of the M1S1 measured doses had gamma pass rates (3%/2 mm/10%T) compared to the planned dose > 90%. Only two of the M1S0 measured doses had gamma pass rates > 90%. Motion Synchrony offers a potential alternative to the current, ITV-based motion management strategy for helical tomotherapy deliveries.
Collapse
Affiliation(s)
- William S. Ferris
- Department of Medical PhysicsSchool of Medicine and Public HealthUniversity of Wisconsin‐MadisonMadisonWIUSA
| | | | - John E. Bayouth
- Department of Human OncologySchool of Medicine and Public HealthUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Wesley S. Culberson
- Department of Medical PhysicsSchool of Medicine and Public HealthUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Jennifer B. Smilowitz
- Department of Medical PhysicsSchool of Medicine and Public HealthUniversity of Wisconsin‐MadisonMadisonWIUSA
- Department of Human OncologySchool of Medicine and Public HealthUniversity of Wisconsin‐MadisonMadisonWIUSA
| |
Collapse
|
50
|
Qiu B, Aili A, Xue L, Jiang P, Wang J. Advances in Radiobiology of Stereotactic Ablative Radiotherapy. Front Oncol 2020; 10:1165. [PMID: 32850333 PMCID: PMC7426361 DOI: 10.3389/fonc.2020.01165] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/09/2020] [Indexed: 12/16/2022] Open
Abstract
Radiotherapy (RT) has been developed with remarkable technological advances in recent years. The accuracy of RT is dramatically improved and accordingly high dose radiation of the tumors could be precisely projected. Stereotactic radiosurgery (SRS) and stereotactic body radiotherapy (SBRT), also known as stereotactic ablative radiotherapy (SABR), are rapidly becoming the accepted practice in treating solid small sized tumors. Compared with the conventional fractionation external beam radiotherapy (EBRT), SABR with very high dose per fraction and hypo-fractionated irradiation yields convincing and satisfied therapeutic effects with low toxicity, since tumor cells could be directly ablated like radiofrequency ablation (RFA). The impressive clinical efficacy of SABR is greater than expected by the linear quadratic model and the conventional radiobiological principles, i.e., 4 Rs of radiobiology (reoxygenation, repair, redistribution, and repopulation), which may no longer be suitable for the explanation of SABR's ablation effects. Based on 4 Rs of radiobiology, 5 Rs of radiobiology emphasizes the intrinsic radiosensitivity of tumor cells, which may correlate with the responsiveness of SABR. Meanwhile, SABR induced the radiobiological alteration including vascular endothelial injury and the immune activation, which has been indicated by literature reported to play a crucial role in tumor control. However, a comprehensive review involving these advances in SABR is lacking. In this review, advances in radiobiology of SABR including the role of the 4 Rs of radiobiology and potential radiobiological factors for SABR will be comprehensively reviewed and discussed.
Collapse
Affiliation(s)
- Bin Qiu
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| | | | - Lixiang Xue
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| | - Ping Jiang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| | - Junjie Wang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| |
Collapse
|