1
|
Schnupp JWH, Buchholz S, Buck AN, Budig H, Khurana L, Rosskothen-Kuhl N. Pulse timing dominates binaural hearing with cochlear implants. Proc Natl Acad Sci U S A 2025; 122:e2416697122. [PMID: 40244669 PMCID: PMC12036976 DOI: 10.1073/pnas.2416697122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 03/12/2025] [Indexed: 04/18/2025] Open
Abstract
Although cochlear implants (CIs) provide valuable auditory information to more than one million profoundly deaf patients, these devices remain inadequate in conveying fine timing cues. Early deaf patients in particular struggle to use interaural time differences (ITDs) for spatial hearing and auditory scene analysis. Why CI patients experience these limitations remains controversial. One possible explanation, which we investigate here, is that the stimulation by clinical CIs is inappropriate, as it encodes temporal features of sounds only in the envelope of electrical pulse trains, not the pulse timing. We have recently demonstrated that early deaf, adult implanted rats fitted with bilateral CIs that deliver carefully timed pulses routinely develop sensitivity to very small ITDs. Here we show that, while the early deafened mammalian auditory pathway can innately easily resolve pulse timing ITDs as small as 80 µs, it is many times less sensitive to the ITDs of pulse train envelopes. Our results indicate that the stimulation strategies in current clinical use do not present ITD cues in a manner that the inexperienced auditory pathway is highly sensitive to. This may deprive early deaf CI patients of the opportunity to hone their submillisecond temporal processing skills as they learn to hear through their prosthetic devices.
Collapse
Affiliation(s)
- Jan W. H. Schnupp
- Department of Neuroscience, City University of Hong Kong, Hong Kong, Hong Kong, Special Administrative Region of China
- Gerald Choa Neuroscience Institute, Chinese University of Hong Kong, Hong Kong, Hong Kong, Special Administrative Region of China
- Department of Otorhinolaryngology, Head and Neck Surgery, Chinese University of Hong Kong, Sha Tin, Hong Kong, Hong Kong, Special Administrative Region of China
| | - Sarah Buchholz
- Neurobiological Research Laboratory, Section for Experimental and Clinical Otology, Department of Otorhinolaryngology, Medical Center–University of Freiburg, Faculty of Medicine, Freiburg79106, Germany
| | - Alexa N. Buck
- Department of Neuroscience, City University of Hong Kong, Hong Kong, Hong Kong, Special Administrative Region of China
| | - Henrike Budig
- Neurobiological Research Laboratory, Section for Experimental and Clinical Otology, Department of Otorhinolaryngology, Medical Center–University of Freiburg, Faculty of Medicine, Freiburg79106, Germany
| | - Lakshay Khurana
- Neurobiological Research Laboratory, Section for Experimental and Clinical Otology, Department of Otorhinolaryngology, Medical Center–University of Freiburg, Faculty of Medicine, Freiburg79106, Germany
| | - Nicole Rosskothen-Kuhl
- Neurobiological Research Laboratory, Section for Experimental and Clinical Otology, Department of Otorhinolaryngology, Medical Center–University of Freiburg, Faculty of Medicine, Freiburg79106, Germany
- Bernstein Center Freiburg and Faculty of Biology, University of Freiburg, Freiburg79104, Germany
| |
Collapse
|
2
|
Carlyon RP, Deeks JM, Delgutte B, Chung Y, Vollmer M, Ohl FW, Kral A, Tillein J, Litovsky RY, Schnupp J, Rosskothen-Kuhl N, Goldsworthy RL. Limitations on Temporal Processing by Cochlear Implant Users: A Compilation of Viewpoints. Trends Hear 2025; 29:23312165251317006. [PMID: 40095543 PMCID: PMC12076235 DOI: 10.1177/23312165251317006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 12/19/2024] [Accepted: 01/03/2025] [Indexed: 03/19/2025] Open
Abstract
Cochlear implant (CI) users are usually poor at using timing information to detect changes in either pitch or sound location. This deficit occurs even for listeners with good speech perception and even when the speech processor is bypassed to present simple, idealized stimuli to one or more electrodes. The present article presents seven expert opinion pieces on the likely neural bases for these limitations, the extent to which they are modifiable by sensory experience and training, and the most promising ways to overcome them in future. The article combines insights from physiology and psychophysics in cochlear-implanted humans and animals, highlights areas of agreement and controversy, and proposes new experiments that could resolve areas of disagreement.
Collapse
Affiliation(s)
- Robert P. Carlyon
- Cambridge Hearing Group, MRC Cognition & Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - John M. Deeks
- Cambridge Hearing Group, MRC Cognition & Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Bertrand Delgutte
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, USA
| | - Yoojin Chung
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, USA
| | - Maike Vollmer
- Department of Experimental Audiology, University Clinic of Otolaryngology, Head and Neck Surgery, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Frank W. Ohl
- Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany
| | - Andrej Kral
- Institute of Audio-Neuro-Technology & Department of Experimental Otology, Clinics of Otolaryngology, Head and Neck Surgery, Hannover Medical School, Hannover, Germany
| | - Jochen Tillein
- Clinics of Otolaryngology, Head and Neck Surgery, J.W.Goethe University, Frankfurt, Germany
- MedEl Company, Hannover, Germany
| | - Ruth Y. Litovsky
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Jan Schnupp
- Gerald Choa Neuroscience Institute and Department of Otolaryngology, Chinese University of Hong Kong, Hong Kong (NB Hong Kong is a Special Administrative Region) of China
| | - Nicole Rosskothen-Kuhl
- Neurobiological Research Laboratory, Section for Experimental and Clinical Otology, Department of Oto-Rhino-Laryngology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Bernstein Center Freiburg & Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Raymond L. Goldsworthy
- Auditory Research Center, Caruso Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
3
|
Hu H, Ewert SD, Kollmeier B, Vickers D. Rate dependent neural responses of interaural-time-difference cues in fine-structure and envelope. PeerJ 2024; 12:e17104. [PMID: 38680894 PMCID: PMC11055513 DOI: 10.7717/peerj.17104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/22/2024] [Indexed: 05/01/2024] Open
Abstract
Advancements in cochlear implants (CIs) have led to a significant increase in bilateral CI users, especially among children. Yet, most bilateral CI users do not fully achieve the intended binaural benefit due to potential limitations in signal processing and/or surgical implant positioning. One crucial auditory cue that normal hearing (NH) listeners can benefit from is the interaural time difference (ITD), i.e., the time difference between the arrival of a sound at two ears. The ITD sensitivity is thought to be heavily relying on the effective utilization of temporal fine structure (very rapid oscillations in sound). Unfortunately, most current CIs do not transmit such true fine structure. Nevertheless, bilateral CI users have demonstrated sensitivity to ITD cues delivered through envelope or interaural pulse time differences, i.e., the time gap between the pulses delivered to the two implants. However, their ITD sensitivity is significantly poorer compared to NH individuals, and it further degrades at higher CI stimulation rates, especially when the rate exceeds 300 pulse per second. The overall purpose of this research thread is to improve spatial hearing abilities in bilateral CI users. This study aims to develop electroencephalography (EEG) paradigms that can be used with clinical settings to assess and optimize the delivery of ITD cues, which are crucial for spatial hearing in everyday life. The research objective of this article was to determine the effect of CI stimulation pulse rate on the ITD sensitivity, and to characterize the rate-dependent degradation in ITD perception using EEG measures. To develop protocols for bilateral CI studies, EEG responses were obtained from NH listeners using sinusoidal-amplitude-modulated (SAM) tones and filtered clicks with changes in either fine structure ITD (ITDFS) or envelope ITD (ITDENV). Multiple EEG responses were analyzed, which included the subcortical auditory steady-state responses (ASSRs) and cortical auditory evoked potentials (CAEPs) elicited by stimuli onset, offset, and changes. Results indicated that acoustic change complex (ACC) responses elicited by ITDENV changes were significantly smaller or absent compared to those elicited by ITDFS changes. The ACC morphologies evoked by ITDFS changes were similar to onset and offset CAEPs, although the peak latencies were longest for ACC responses and shortest for offset CAEPs. The high-frequency stimuli clearly elicited subcortical ASSRs, but smaller than those evoked by lower carrier frequency SAM tones. The 40-Hz ASSRs decreased with increasing carrier frequencies. Filtered clicks elicited larger ASSRs compared to high-frequency SAM tones, with the order being 40 > 160 > 80> 320 Hz ASSR for both stimulus types. Wavelet analysis revealed a clear interaction between detectable transient CAEPs and 40-Hz ASSRs in the time-frequency domain for SAM tones with a low carrier frequency.
Collapse
Affiliation(s)
- Hongmei Hu
- SOUND Lab, Cambridge Hearing Group, Department of Clinical Neuroscience, Cambridge University, Cambridge, United Kingdom
- Department of Medical Physics and Acoustics, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Stephan D. Ewert
- Department of Medical Physics and Acoustics, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Birger Kollmeier
- Department of Medical Physics and Acoustics, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Deborah Vickers
- SOUND Lab, Cambridge Hearing Group, Department of Clinical Neuroscience, Cambridge University, Cambridge, United Kingdom
| |
Collapse
|
4
|
Goupell MJ, Cleary M, Bernstein JG. Letter to the Editor: Discussion of Measurement and Analysis Techniques to Estimate Interaural Place-of-Stimulation Mismatch for Binaural Perception, Re: Staisloff and Aronoff (2021). Comparing Methods for Pairing Electrodes Across Ears With Cochlear Implants, Ear Hear, 42, 1218-1227. Ear Hear 2024; 45:523-527. [PMID: 38372759 PMCID: PMC10990077 DOI: 10.1097/aud.0000000000001390] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Affiliation(s)
- Matthew J. Goupell
- Department of Hearing and Speech Sciences, University of Maryland, College Park, Maryland, USA
| | - Miranda Cleary
- Department of Hearing and Speech Sciences, University of Maryland, College Park, Maryland, USA
| | - Joshua G.W. Bernstein
- National Military Audiology and Speech Center, Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| |
Collapse
|
5
|
Lindenbeck MJ, Majdak P, Laback B. Effects of Monaural Temporal Electrode Asynchrony and Channel Interactions in Bilateral and Unilateral Cochlear-Implant Stimulation. Trends Hear 2024; 28:23312165241271340. [PMID: 39215517 PMCID: PMC11382250 DOI: 10.1177/23312165241271340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Timing cues such as interaural time differences (ITDs) and temporal pitch are pivotal for sound localization and source segregation, but their perception is degraded in cochlear-implant (CI) listeners as compared to normal-hearing listeners. In multi-electrode stimulation, intra-aural channel interactions between electrodes are assumed to be an important factor limiting access to those cues. The monaural asynchrony of stimulation timing across electrodes is assumed to mediate the amount of these interactions. This study investigated the effect of the monaural temporal electrode asynchrony (mTEA) between two electrodes, applied similarly in both ears, on ITD-based left/right discrimination sensitivity in five CI listeners, using pulse trains with 100 pulses per second and per electrode. Forward-masked spatial tuning curves were measured at both ears to find electrode separations evoking controlled degrees of across-electrode masking. For electrode separations smaller than 3 mm, results showed an effect of mTEA. Patterns were u/v-shaped, consistent with an explanation in terms of the effective pulse rate that appears to be subject to the well-known rate limitation in electric hearing. For separations larger than 7 mm, no mTEA effects were observed. A comparison to monaural rate-pitch discrimination in a separate set of listeners and in a matched setup showed no systematic differences between percepts. Overall, an important role of the mTEA in both binaural and monaural dual-electrode stimulation is consistent with a monaural pulse-rate limitation whose effect is mediated by channel interactions. Future CI stimulation strategies aiming at improved timing-cue encoding should minimize the stimulation delay between nearby electrodes that need to be stimulated successively.
Collapse
Affiliation(s)
| | - Piotr Majdak
- Acoustics Research Institute, Austrian Academy of Sciences, Vienna, Austria
| | - Bernhard Laback
- Acoustics Research Institute, Austrian Academy of Sciences, Vienna, Austria
| |
Collapse
|
6
|
Lindenbeck MJ, Majdak P, Srinivasan S, Laback B. Pitch discrimination in electric hearing with inconsistent and consistent amplitude-modulation and inter-pulse rate cues. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 153:3268. [PMID: 37307025 PMCID: PMC10264086 DOI: 10.1121/10.0019452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 04/28/2023] [Accepted: 05/01/2023] [Indexed: 06/13/2023]
Abstract
Users of cochlear implants (CIs) struggle in situations that require selective hearing to focus on a target source while ignoring other sources. One major reason for that is the limited access to timing cues such as temporal pitch or interaural time differences (ITDs). Various approaches to improve timing-cue sensitivity while maintaining speech understanding have been proposed, among them inserting extra pulses with short inter-pulse intervals (SIPIs) into amplitude-modulated (AM) high-rate pulse trains. Indeed, SIPI rates matching the naturally occurring AM rates improve pitch discrimination. For ITD, however, low SIPI rates are required, potentially mismatching the naturally occurring AM rates and thus creating unknown pitch effects. In this study, we investigated the perceptual contribution of AM and SIPI rate to pitch discrimination in five CI listeners and with two AM depths (0.1 and 0.5). Our results show that the SIPI-rate cue generally dominated the percept for both consistent and inconsistent cues. When tested with inconsistent cues, also the AM rate contributed, however, at the large AM depth only. These findings have implications when aiming at jointly improving temporal-pitch and ITD sensitivity in a future mixed-rate stimulation approach.
Collapse
Affiliation(s)
- Martin J Lindenbeck
- Acoustics Research Institute, Austrian Academy of Sciences, Wohllebengasse 12-14, A-1040 Vienna, Austria
| | - Piotr Majdak
- Acoustics Research Institute, Austrian Academy of Sciences, Wohllebengasse 12-14, A-1040 Vienna, Austria
| | - Sridhar Srinivasan
- Acoustics Research Institute, Austrian Academy of Sciences, Wohllebengasse 12-14, A-1040 Vienna, Austria
| | - Bernhard Laback
- Acoustics Research Institute, Austrian Academy of Sciences, Wohllebengasse 12-14, A-1040 Vienna, Austria
| |
Collapse
|
7
|
Dennison SR, Thakkar T, Kan A, Litovsky RY. Lateralization of binaural envelope cues measured with a mobile cochlear-implant research processora). THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 153:3543-3558. [PMID: 37390320 PMCID: PMC10314808 DOI: 10.1121/10.0019879] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 06/09/2023] [Accepted: 06/09/2023] [Indexed: 07/02/2023]
Abstract
Bilateral cochlear implant (BICI) listeners do not have full access to the binaural cues that normal hearing (NH) listeners use for spatial hearing tasks such as localization. When using their unsynchronized everyday processors, BICI listeners demonstrate sensitivity to interaural level differences (ILDs) in the envelopes of sounds, but interaural time differences (ITDs) are less reliably available. It is unclear how BICI listeners use combinations of ILDs and envelope ITDs, and how much each cue contributes to perceived sound location. The CCi-MOBILE is a bilaterally synchronized research processor with the untested potential to provide spatial cues to BICI listeners. In the present study, the CCi-MOBILE was used to measure the ability of BICI listeners to perceive lateralized sound sources when single pairs of electrodes were presented amplitude-modulated stimuli with combinations of ILDs and envelope ITDs. Young NH listeners were also tested using amplitude-modulated high-frequency tones. A cue weighting analysis with six BICI and ten NH listeners revealed that ILDs contributed more than envelope ITDs to lateralization for both groups. Moreover, envelope ITDs contributed to lateralization for NH listeners but had negligible contribution for BICI listeners. These results suggest that the CCi-MOBILE is suitable for binaural testing and developing bilateral processing strategies.
Collapse
Affiliation(s)
| | - Tanvi Thakkar
- University of Wisconsin-La Crosse, La Crosse, Wisconsin 54601, USA
| | - Alan Kan
- Macquarie University, Macquarie Park, New South Wales, Australia
| | - Ruth Y Litovsky
- University of Wisconsin-Madison, Madison, Wisconsin 53711, USA
| |
Collapse
|
8
|
Buck AN, Buchholz S, Schnupp JW, Rosskothen-Kuhl N. Interaural time difference sensitivity under binaural cochlear implant stimulation persists at high pulse rates up to 900 pps. Sci Rep 2023; 13:3785. [PMID: 36882473 PMCID: PMC9992369 DOI: 10.1038/s41598-023-30569-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 02/27/2023] [Indexed: 03/09/2023] Open
Abstract
Spatial hearing remains one of the major challenges for bilateral cochlear implant (biCI) users, and early deaf patients in particular are often completely insensitive to interaural time differences (ITDs) delivered through biCIs. One popular hypothesis is that this may be due to a lack of early binaural experience. However, we have recently shown that neonatally deafened rats fitted with biCIs in adulthood quickly learn to discriminate ITDs as well as their normal hearing litter mates, and perform an order of magnitude better than human biCI users. Our unique behaving biCI rat model allows us to investigate other possible limiting factors of prosthetic binaural hearing, such as the effect of stimulus pulse rate and envelope shape. Previous work has indicated that ITD sensitivity may decline substantially at the high pulse rates often used in clinical practice. We therefore measured behavioral ITD thresholds in neonatally deafened, adult implanted biCI rats to pulse trains of 50, 300, 900 and 1800 pulses per second (pps), with either rectangular or Hanning window envelopes. Our rats exhibited very high sensitivity to ITDs at pulse rates up to 900 pps for both envelope shapes, similar to those in common clinical use. However, ITD sensitivity declined to near zero at 1800 pps, for both Hanning and rectangular windowed pulse trains. Current clinical cochlear implant (CI) processors are often set to pulse rates ≥ 900 pps, but ITD sensitivity in human CI listeners has been reported to decline sharply above ~ 300 pps. Our results suggest that the relatively poor ITD sensitivity seen at > 300 pps in human CI users may not reflect the hard upper limit of biCI ITD performance in the mammalian auditory pathway. Perhaps with training or better CI strategies good binaural hearing may be achievable at pulse rates high enough to allow good sampling of speech envelopes while delivering usable ITDs.
Collapse
Affiliation(s)
- Alexa N Buck
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China.,City University of Hong Kong Shenzhen Research Institute, Shenzhen, China.,Plasticity of Central Auditory Circuits, Institut de l'Audition, Institut Pasteur, Paris, France
| | - Sarah Buchholz
- Neurobiological Research Laboratory, Section of Clinical and Experimental Otology, Department of Oto-Rhino-Laryngology, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Killianst. 5, 79106, Freiburg im Breisgau, Germany
| | - Jan W Schnupp
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China.,City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Nicole Rosskothen-Kuhl
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China. .,Neurobiological Research Laboratory, Section of Clinical and Experimental Otology, Department of Oto-Rhino-Laryngology, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Killianst. 5, 79106, Freiburg im Breisgau, Germany. .,Bernstein Center Freiburg and Faculty of Biology, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
9
|
Gohari N, Dastgerdi ZH, Rouhbakhsh N, Afshar S, Mobini R. Training Programs for Improving Speech Perception in Noise: A Review. J Audiol Otol 2023; 27:1-9. [PMID: 36710414 PMCID: PMC9884994 DOI: 10.7874/jao.2022.00283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 10/26/2022] [Indexed: 01/20/2023] Open
Abstract
Understanding speech in the presence of noise is difficult and challenging, even for people with normal hearing. Accurate pitch perception, coding and decoding of temporal and intensity cues, and cognitive factors are involved in speech perception in noise (SPIN); disruption in any of these can be a barrier to SPIN. Because the physiological representations of sounds can be corrected by exercises, training methods for any impairment can be used to improve speech perception. This study describes the various types of bottom-up training methods: pitch training based on fundamental frequency (F0) and harmonics; spatial, temporal, and phoneme training; and top-down training methods, such as cognitive training of functional memory. This study also discusses music training that affects both bottom-up and top-down components and speech training in noise. Given the effectiveness of all these training methods, we recommend identifying the defects underlying SPIN disorders and selecting the best training approach.
Collapse
Affiliation(s)
- Nasrin Gohari
- Hearing Disorders Research Center, Department of Audiology, School of Rehabilitation, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Zahra Hosseini Dastgerdi
- Department of Audiology, School of Rehabilitation, Isfahan University of Medical Sciences, Isfahan, Iran,Address for correspondence Zahra Hosseini Dastgerdi, PhD Department of Audiology, School of Rehabilitation, Isfahan University of Medical Sciences, Isfahan, Iran Tel +98-09132947800 Fax +98-(311)5145-668 E-mail
| | - Nematollah Rouhbakhsh
- Department of Audiology, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Afshar
- Hearing Disorders Research Center, Department of Audiology, School of Rehabilitation, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Razieh Mobini
- Hearing Disorders Research Center, Department of Audiology, School of Rehabilitation, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
10
|
Cleary M, Bernstein JGW, Stakhovskaya OA, Noble J, Kolberg E, Jensen KK, Hoa M, Kim HJ, Goupell MJ. The Relationship Between Interaural Insertion-Depth Differences, Scalar Location, and Interaural Time-Difference Processing in Adult Bilateral Cochlear-Implant Listeners. Trends Hear 2022; 26:23312165221129165. [PMID: 36379607 PMCID: PMC9669699 DOI: 10.1177/23312165221129165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Sensitivity to interaural time differences (ITDs) in acoustic hearing involves comparison of interaurally frequency-matched inputs. Bilateral cochlear-implant arrays are, however, only approximately aligned in angular insertion depth and scalar location across the cochleae. Interaural place-of-stimulation mismatch therefore has the potential to impact binaural perception. ITD left-right discrimination thresholds were examined in 23 postlingually-deafened adult bilateral cochlear-implant listeners, using low-rate constant-amplitude pulse trains presented via direct stimulation to single electrodes in each ear. Angular insertion depth and scalar location measured from computed-tomography (CT) scans were used to quantify interaural mismatch, and their association with binaural performance was assessed. Number-matched electrodes displayed a median interaural insertion-depth mismatch of 18° and generally yielded best or near-best ITD discrimination thresholds. Two listeners whose discrimination thresholds did not show this pattern were confirmed via CT to have atypical array placement. Listeners with more number-matched electrode pairs located in the scala tympani displayed better thresholds than listeners with fewer such pairs. ITD tuning curves as a function of interaural electrode separation were broad; bandwidths at twice the threshold minimum averaged 10.5 electrodes (equivalent to 5.9 mm for a Cochlear-brand pre-curved array). Larger angular insertion-depth differences were associated with wider bandwidths. Wide ITD tuning curve bandwidths appear to be a product of both monopolar stimulation and angular insertion-depth mismatch. Cases of good ITD sensitivity with very wide bandwidths suggest that precise matching of insertion depth is not critical for discrimination thresholds. Further prioritizing scala tympani location at implantation should, however, benefit ITD sensitivity.
Collapse
Affiliation(s)
- Miranda Cleary
- Department of Hearing and Speech Sciences, University of Maryland, College Park, MD, USA
| | - Joshua G. W. Bernstein
- National Military Audiology and Speech Pathology Center, Walter Reed National Military Medical
Center, Bethesda, MD, USA
| | - Olga A. Stakhovskaya
- Department of Hearing and Speech Sciences, University of Maryland, College Park, MD, USA
| | - Jack Noble
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA,Department of Hearing and Speech Sciences, Vanderbilt University
Medical Center, Nashville, TN, USA,Department of Otolaryngology, Vanderbilt University Medical Center,
Nashville, TN, USA
| | - Elizabeth Kolberg
- Department of Hearing and Speech Sciences, University of Maryland, College Park, MD, USA
| | - Kenneth K. Jensen
- National Military Audiology and Speech Pathology Center, Walter Reed National Military Medical
Center, Bethesda, MD, USA
| | - Michael Hoa
- Department of Otolaryngology-Head and Neck Surgery, Georgetown University Medical
Center, Washington, DC, USA
| | - Hung Jeffrey Kim
- Department of Otolaryngology-Head and Neck Surgery, Georgetown University Medical
Center, Washington, DC, USA
| | - Matthew J. Goupell
- Department of Hearing and Speech Sciences, University of Maryland, College Park, MD, USA,Matthew J. Goupell, Department of Hearing
and Speech Sciences, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
11
|
Hu H, Klug J, Dietz M. Simulation of ITD-Dependent Single-Neuron Responses Under Electrical Stimulation and with Amplitude-Modulated Acoustic Stimuli. J Assoc Res Otolaryngol 2022; 23:535-550. [PMID: 35334001 PMCID: PMC9437183 DOI: 10.1007/s10162-021-00823-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 11/03/2021] [Indexed: 11/30/2022] Open
Abstract
Interaural time difference (ITD) sensitivity with cochlear implant stimulation is remarkably similar to envelope ITD sensitivity using conventional acoustic stimulation. This holds true for human perception, as well as for neural response rates recorded in the inferior colliculus of several mammalian species. We hypothesize that robust excitatory-inhibitory (EI) interaction is the dominant mechanism. Therefore, we connected the same single EI-model neuron to either a model of the normal acoustic auditory periphery or to a model of the electrically stimulated auditory nerve. The model captured most features of the experimentally obtained response properties with electric stimulation, such as the shape of rate-ITD functions, the dependence on stimulation level, and the pulse rate or modulation-frequency dependence. Rate-ITD functions with high-rate, amplitude-modulated electric stimuli were very similar to their acoustic counterparts. Responses obtained with unmodulated electric pulse trains most resembled acoustic filtered clicks. The fairly rapid decline of ITD sensitivity at rates above 300 pulses or cycles per second is correctly simulated by the 3.1-ms time constant of the inhibitory post-synaptic conductance. As the model accounts for these basic properties, it is expected to help in understanding and quantifying the binaural hearing abilities with electric stimulation when integrated in bigger simulation frameworks.
Collapse
Affiliation(s)
- Hongmei Hu
- Department of Medical Physics and Acoustics and Cluster of Excellence "Hearing4all", University of Oldenburg, 26129, Oldenburg, Germany.
| | - Jonas Klug
- Department of Medical Physics and Acoustics and Cluster of Excellence "Hearing4all", University of Oldenburg, 26129, Oldenburg, Germany
| | - Mathias Dietz
- Department of Medical Physics and Acoustics and Cluster of Excellence "Hearing4all", University of Oldenburg, 26129, Oldenburg, Germany
| |
Collapse
|
12
|
Ghosh R, Ali H, Hansen JHL. CCi-MOBILE: A Portable Real Time Speech Processing Platform for Cochlear Implant and Hearing Research. IEEE Trans Biomed Eng 2022; 69:1251-1263. [PMID: 34705633 PMCID: PMC8918373 DOI: 10.1109/tbme.2021.3123241] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Experimental hardware-research interfaces form a crucial role during developmental stages of any medical, signal-monitoring system as it allows researchers to test and optimize output results before perfecting the design for the actual FDA approved medical device and large-scale production. These testing platforms, intake raw signals through which performance of novel algorithms can be analyzed and modified to generate the desired data points for an optimized output, allowing the advancement of the medical device. With cochlear implants (CIs) and hearing aids (HAs) becoming a more common solution for varying degrees of hearing impairment, having modern signal processing strategies tested for such speech sensitive systems is a necessity. But the rigid design requirements of commercial CI and HA processors make it difficult to explore novel algorithms for research investigations and conducting longitudinal studies. This study presents the design, development, clinical evaluation, and applications of CCi-MOBILE, a computationally powerful signal processing testing platform built for researchers in the hearing-impaired field. The custom-made, portable research platform allows researchers to design and perform complex speech processing algorithm assessment offline and in real-time. It can be operated through user-friendly, open-source software and is compatible with implants manufactured by Cochlear Corporation. The FPGA design and hardware processing pipeline for CI stimulation is discussed followed by results from an acute study with implant users' speech intelligibility in quiet and noisy conditions. The results show a consistent level of performance compared with CI users' clinical processor, thus confirming the viability of the platform in chronic CI based studies.
Collapse
|
13
|
The Impact of Synchronized Cochlear Implant Sampling and Stimulation on Free-Field Spatial Hearing Outcomes: Comparing the ciPDA Research Processor to Clinical Processors. Ear Hear 2022; 43:1262-1272. [PMID: 34882619 PMCID: PMC9174346 DOI: 10.1097/aud.0000000000001179] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVES Bilateral cochlear implant (BiCI) listeners use independent processors in each ear. This independence and lack of shared hardware prevents control of the timing of sampling and stimulation across ears, which precludes the development of bilaterally-coordinated signal processing strategies. As a result, these devices potentially reduce access to binaural cues and introduce disruptive artifacts. For example, measurements from two clinical processors demonstrate that independently-running processors introduce interaural incoherence. These issues are typically avoided in the laboratory by using research processors with bilaterally-synchronized hardware. However, these research processors do not typically run in real-time and are difficult to take out into the real-world due to their benchtop nature. Hence, the question of whether just applying hardware synchronization to reduce bilateral stimulation artifacts (and thereby potentially improve functional spatial hearing performance) has been difficult to answer. The CI personal digital assistant (ciPDA) research processor, which uses one clock to drive two processors, presented an opportunity to examine whether synchronization of hardware can have an impact on spatial hearing performance. DESIGN Free-field sound localization and spatial release from masking (SRM) were assessed in 10 BiCI listeners using both their clinical processors and the synchronized ciPDA processor. For sound localization, localization accuracy was compared within-subject for the two processor types. For SRM, speech reception thresholds were compared for spatially separated and co-located configurations, and the amount of unmasking was compared for synchronized and unsynchronized hardware. There were no deliberate changes of the sound processing strategy on the ciPDA to restore or improve binaural cues. RESULTS There was no significant difference in localization accuracy between unsynchronized and synchronized hardware (p = 0.62). Speech reception thresholds were higher with the ciPDA. In addition, although five of eight participants demonstrated improved SRM with synchronized hardware, there was no significant difference in the amount of unmasking due to spatial separation between synchronized and unsynchronized hardware (p = 0.21). CONCLUSIONS Using processors with synchronized hardware did not yield an improvement in sound localization or SRM for all individuals, suggesting that mere synchronization of hardware is not sufficient for improving spatial hearing outcomes. Further work is needed to improve sound coding strategies to facilitate access to spatial hearing cues. This study provides a benchmark for spatial hearing performance with real-time, bilaterally-synchronized research processors.
Collapse
|
14
|
Sharma S, Nogueira W, van Opstal AJ, Chalupper J, Mens LHM, van Wanrooij MM. Amount of Frequency Compression in Bimodal Cochlear Implant Users Is a Poor Predictor for Audibility and Spatial Hearing. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2021; 64:5000-5013. [PMID: 34714704 DOI: 10.1044/2021_jslhr-20-00653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
PURPOSE Speech understanding in noise and horizontal sound localization is poor in most cochlear implant (CI) users with a hearing aid (bimodal stimulation). This study investigated the effect of static and less-extreme adaptive frequency compression in hearing aids on spatial hearing. By means of frequency compression, we aimed to restore high-frequency audibility, and thus improve sound localization and spatial speech recognition. METHOD Sound-detection thresholds, sound localization, and spatial speech recognition were measured in eight bimodal CI users, with and without frequency compression. We tested two compression algorithms: a static algorithm, which compressed frequencies beyond the compression knee point (160 or 480 Hz), and an adaptive algorithm, which aimed to compress only consonants leaving vowels unaffected (adaptive knee-point frequencies from 736 to 2946 Hz). RESULTS Compression yielded a strong audibility benefit (high-frequency thresholds improved by 40 and 24 dB for static and adaptive compression, respectively), no meaningful improvement in localization performance (errors remained > 30 deg), and spatial speech recognition across all participants. Localization biases without compression (toward the hearing-aid and implant side for low- and high-frequency sounds, respectively) disappeared or reversed with compression. The audibility benefits provided to each bimodal user partially explained any individual improvements in localization performance; shifts in bias; and, for six out of eight participants, benefits in spatial speech recognition. CONCLUSIONS We speculate that limiting factors such as a persistent hearing asymmetry and mismatch in spectral overlap prevent compression in bimodal users from improving sound localization. Therefore, the benefit in spatial release from masking by compression is likely due to a shift of attention to the ear with the better signal-to-noise ratio facilitated by compression, rather than an improved spatial selectivity. Supplemental Material https://doi.org/10.23641/asha.16869485.
Collapse
Affiliation(s)
- Snandan Sharma
- Department of Biophysics, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Waldo Nogueira
- Department of Otolaryngology, Cluster of Excellence Hearing4all, Medical University Hannover, Germany
| | - A John van Opstal
- Department of Biophysics, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Josef Chalupper
- Advanced Bionics, European Research Center, Hannover, Germany
| | - Lucas H M Mens
- Department of Otorhinolaryngology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Marc M van Wanrooij
- Department of Biophysics, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| |
Collapse
|
15
|
Reweighting of Binaural Localization Cues in Bilateral Cochlear-Implant Listeners. J Assoc Res Otolaryngol 2021; 23:119-136. [PMID: 34812980 PMCID: PMC8782964 DOI: 10.1007/s10162-021-00821-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 10/13/2021] [Indexed: 11/24/2022] Open
Abstract
Normal-hearing (NH) listeners rely on two binaural cues, the interaural time (ITD) and level difference (ILD), for azimuthal sound localization. Cochlear-implant (CI) listeners, however, rely almost entirely on ILDs. One reason is that present-day clinical CI stimulation strategies do not convey salient ITD cues. But even when presenting ITDs under optimal conditions using a research interface, ITD sensitivity is lower in CI compared to NH listeners. Since it has recently been shown that NH listeners change their ITD/ILD weighting when only one of the cues is consistent with visual information, such reweighting might add to CI listeners’ low perceptual contribution of ITDs, given their daily exposure to reliable ILDs but unreliable ITDs. Six bilateral CI listeners completed a multi-day lateralization training visually reinforcing ITDs, flanked by a pre- and post-measurement of ITD/ILD weights without visual reinforcement. Using direct electric stimulation, we presented 100- and 300-pps pulse trains at a single interaurally place-matched electrode pair, conveying ITDs and ILDs in various spatially consistent and inconsistent combinations. The listeners’ task was to lateralize the stimuli in a virtual environment. Additionally, ITD and ILD thresholds were measured before and after training. For 100-pps stimuli, the lateralization training increased the contribution of ITDs slightly, but significantly. Thresholds were neither affected by the training nor correlated with weights. For 300-pps stimuli, ITD weights were lower and ITD thresholds larger, but there was no effect of training. On average across test sessions, adding azimuth-dependent ITDs to stimuli containing ILDs increased the extent of lateralization for both 100- and 300-pps stimuli. The results suggest that low-rate ITD cues, robustly encoded with future CI systems, may be better exploitable for sound localization after increasing their perceptual weight via training.
Collapse
|
16
|
Klingel M, Kopčo N, Laback B. Reweighting of Binaural Localization Cues Induced by Lateralization Training. J Assoc Res Otolaryngol 2021; 22:551-566. [PMID: 33959826 PMCID: PMC8476684 DOI: 10.1007/s10162-021-00800-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 03/29/2021] [Indexed: 11/03/2022] Open
Abstract
Normal-hearing listeners adapt to alterations in sound localization cues. This adaptation can result from the establishment of a new spatial map of the altered cues or from a stronger relative weighting of unaltered compared to altered cues. Such reweighting has been shown for monaural vs. binaural cues. However, studies attempting to reweight the two binaural cues, interaural differences in time (ITD) and level (ILD), yielded inconclusive results. This study investigated whether binaural-cue reweighting can be induced by lateralization training in a virtual audio-visual environment. Twenty normal-hearing participants, divided into two groups, completed the experiment consisting of 7 days of lateralization training, preceded and followed by a test measuring the binaural-cue weights. Participants' task was to lateralize 500-ms bandpass-filtered (2-4 kHz) noise bursts containing various combinations of spatially consistent and inconsistent binaural cues. During training, additional visual cues reinforced the azimuth corresponding to ITDs in one group and ILDs in the other group and the azimuthal ranges of the binaural cues were manipulated group-specifically. Both groups showed a significant increase of the reinforced-cue weight from pre- to posttest, suggesting that participants reweighted the binaural cues in the expected direction. This reweighting occurred within the first training session. The results are relevant as binaural-cue reweighting likely occurs when normal-hearing listeners adapt to new acoustic environments. Reweighting might also be a factor underlying the low contribution of ITDs to sound localization of cochlear-implant listeners as they typically do not experience reliable ITD cues with clinical devices.
Collapse
Affiliation(s)
- Maike Klingel
- Acoustics Research Institute, Austrian Academy of Sciences, 1040 Vienna, Austria
- Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, 1010 Vienna, Austria
- Institute of Computer Science, Faculty of Science, P. J. Šafárik University in Košice, 04180 Košice, Slovakia
| | - Norbert Kopčo
- Institute of Computer Science, Faculty of Science, P. J. Šafárik University in Košice, 04180 Košice, Slovakia
| | - Bernhard Laback
- Acoustics Research Institute, Austrian Academy of Sciences, 1040 Vienna, Austria
| |
Collapse
|
17
|
Provision of interaural time difference information in chronic intracochlear electrical stimulation enhances neural sensitivity to these differences in neonatally deafened cats. Hear Res 2021; 406:108253. [PMID: 33971428 DOI: 10.1016/j.heares.2021.108253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/06/2021] [Accepted: 04/13/2021] [Indexed: 11/23/2022]
Abstract
Although performance with bilateral cochlear implants is superior to that with a unilateral implant, bilateral implantees have poor performance in sound localisation and in speech discrimination in noise compared to normal hearing subjects. Studies of the neural processing of interaural time differences (ITDs) in the inferior colliculus (IC) of long-term deaf animals, show substantial degradation compared to that in normal hearing animals. It is not known whether this degradation can be ameliorated by chronic cochlear electrical stimulation, but such amelioration is unlikely to be achieved using current clinical speech processors and cochlear implants, which do not provide good ITD cues. We therefore developed a custom sound processor to deliver salient ITDs for chronic bilateral intra-cochlear electrical stimulation in a cat model of neonatal deafness, to determine if long-term exposure to salient ITDs would prevent degradation of ITD processing. We compared the sensitivity to ITDs in cochlear electrical stimuli of neurons in the IC of cats chronically stimulated with our custom ITD-aware sound processor with sensitivity in acutely deafened cats with normal hearing development and in cats chronically stimulated with a clinical stimulator and sound processor. Animals that experienced stimulation with our custom ITD-aware sound processor had significantly higher neural sensitivity to ITDs than those that received stimulation from clinical sound processors. There was no significant difference between animals received no stimulation and those that received stimulation from clinical sound processors, consistent with findings from clinical cochlear implant users. This result suggests that development and use of clinical ITD-aware sound processing strategies from a young age may promote ITD sensitivity in the clinical population.
Collapse
|
18
|
Jensen KK, Cosentino S, Bernstein JGW, Stakhovskaya OA, Goupell MJ. A Comparison of Place-Pitch-Based Interaural Electrode Matching Methods for Bilateral Cochlear-Implant Users. Trends Hear 2021; 25:2331216521997324. [PMID: 34057382 PMCID: PMC8182630 DOI: 10.1177/2331216521997324] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 01/12/2021] [Accepted: 01/29/2021] [Indexed: 11/16/2022] Open
Abstract
Interaural place-of-stimulation mismatch for bilateral cochlear-implant (BI-CI) listeners is often evaluated using pitch-comparison tasks that can be susceptible to procedural biases. Bias effects were compared for three sequential interaural pitch-comparison tasks in six BI-CI listeners using single-electrode direct stimulation. The reference (right ear) was a single basal, middle, or apical electrode. The comparison electrode (left ear) was chosen from one of three ranges: basal half, full array, or apical half. In Experiment 1 (discrimination), interaural pairs were chosen randomly (method of constant stimuli). In Experiment 2 (ranking), an efficient adaptive procedure rank ordered 3 reference and 6 or 11 comparison electrodes. In Experiment 3 (matching), listeners adjusted the comparison electrode to pitch match the reference. Each experiment was evaluated for testing-range bias (point of subjective equality [PSE] vs. comparison-range midpoint) and reference-electrode slope bias (PSE vs. reference electrode). Discrimination showed large biases for both metrics; matching showed a smaller but significant reference-electrode bias; ranking showed no significant biases in either dimension. Ranking and matching were also evaluated for starting-point bias (PSE vs. adaptive-track starting point), but neither showed significant effects. A response-distribution truncation model explained a nonsignificant bias for ranking but it could not fully explain the observed biases for discrimination or matching. It is concluded that (a) BI-CI interaural pitch comparisons are inconsistent across test methods; (b) biases must be evaluated in more than one dimension before accepting the results as valid; and (c) of the three methods tested, ranking was least susceptible to biases and therefore emerged as the optimal approach.
Collapse
Affiliation(s)
- Kenneth K. Jensen
- National Military Audiology and Speech Pathology Center, Walter Reed National Military Medical Center, Bethesda, Maryland, United States
| | - Stefano Cosentino
- Department of Hearing and Speech Sciences, University of Maryland, College Park, United States
| | - Joshua G. W. Bernstein
- National Military Audiology and Speech Pathology Center, Walter Reed National Military Medical Center, Bethesda, Maryland, United States
| | - Olga A. Stakhovskaya
- National Military Audiology and Speech Pathology Center, Walter Reed National Military Medical Center, Bethesda, Maryland, United States
- Department of Hearing and Speech Sciences, University of Maryland, College Park, United States
| | - Matthew J. Goupell
- Department of Hearing and Speech Sciences, University of Maryland, College Park, United States
| |
Collapse
|
19
|
Improving Interaural Time Difference Sensitivity Using Short Inter-pulse Intervals with Amplitude-Modulated Pulse Trains in Bilateral Cochlear Implants. J Assoc Res Otolaryngol 2020; 21:105-120. [PMID: 32040655 DOI: 10.1007/s10162-020-00743-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 01/22/2020] [Indexed: 10/25/2022] Open
Abstract
Interaural time differences (ITDs) at low frequencies are important for sound localization and spatial speech unmasking. These ITD cues are not encoded in commonly used envelope-based stimulation strategies for cochlear implants (CIs) using high pulse rates. However, ITD sensitivity can be improved by adding extra pulses with short inter-pulse intervals (SIPIs) in unmodulated high-rate trains. Here, we investigated whether this improvement also applies to amplitude-modulated (AM) high-rate pulse trains. To this end, we systematically varied the temporal position of SIPI pulses within the envelope cycle (SIPI phase), the fundamental frequency (F0) of AM (125 Hz and 250 Hz), and AM depth (from 0.1 to 0.9). Stimuli were presented at an interaurally place-matched electrode pair at a reference pulse rate of 1000 pulses/s. Participants performed an ITD-based left/right discrimination task. SIPI insertion resulted in improved ITD sensitivity throughout the range of modulation depths and for both male and female F0s. The improvements were largest for insertion at and around the envelope peak. These results are promising for conveying salient ITD cues at high pulse rates commonly used to encode speech information.
Collapse
|
20
|
Abstract
OBJECTIVE The objectives of this study were to assess the effectiveness of various measures of speech understanding in distinguishing performance differences between adult bimodal and bilateral cochlear implant (CI) recipients and to provide a preliminary evidence-based tool guiding clinical decisions regarding bilateral CI candidacy. DESIGN This study used a multiple-baseline, cross-sectional design investigating speech recognition performance for 85 experienced adult CI recipients (49 bimodal, 36 bilateral). Speech recognition was assessed in a standard clinical test environment with a single loudspeaker using the minimum speech test battery for adult CI recipients as well as with an R-SPACE 8-loudspeaker, sound-simulation system. All participants were tested in three listening conditions for each measure including each ear alone as well as in the bilateral/bimodal condition. In addition, we asked each bimodal listener to provide a yes/no answer to the question, "Do you think you need a second CI?" RESULTS This study yielded three primary findings: (1) there were no significant differences between bimodal and bilateral CI performance or binaural summation on clinical measures of speech recognition, (2) an adaptive speech recognition task in the R-SPACE system revealed significant differences in performance and binaural summation between bimodal and bilateral CI users, with bilateral CI users achieving significantly better performance and greater summation, and (3) the patient's answer to the question, "Do you think you need a second CI?" held high sensitivity (100% hit rate) for identifying likely bilateral CI candidates and moderately high specificity (77% correct rejection rate) for correctly identifying listeners best suited with a bimodal hearing configuration. CONCLUSIONS Clinics cannot rely on current clinical measures of speech understanding, with a single loudspeaker, to determine bilateral CI candidacy for adult bimodal listeners nor to accurately document bilateral benefit relative to a previous bimodal hearing configuration. Speech recognition in a complex listening environment, such as R-SPACE, is a sensitive and appropriate measure for determining bilateral CI candidacy and also likely for documenting bilateral benefit relative to a previous bimodal configuration. In the absence of an available R-SPACE system, asking the patient whether or not s/he thinks s/he needs a second CI is a highly sensitive measure, which may prove clinically useful.
Collapse
|
21
|
Anderson SR, Easter K, Goupell MJ. Effects of rate and age in processing interaural time and level differences in normal-hearing and bilateral cochlear-implant listeners. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:3232. [PMID: 31795662 PMCID: PMC6948219 DOI: 10.1121/1.5130384] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 09/27/2019] [Accepted: 10/02/2019] [Indexed: 05/25/2023]
Abstract
Bilateral cochlear implants (BICIs) provide improved sound localization and speech understanding in noise compared to unilateral CIs. However, normal-hearing (NH) listeners demonstrate superior binaural processing abilities compared to BICI listeners. This investigation sought to understand differences between NH and BICI listeners' processing of interaural time differences (ITDs) and interaural level differences (ILDs) as a function of fine-structure and envelope rate using an intracranial lateralization task. The NH listeners were presented band-limited acoustical pulse trains and sinusoidally amplitude-modulated tones using headphones, and the BICI listeners were presented single-electrode electrical pulse trains using direct stimulation. Lateralization range increased as fine-structure rate increased for ILDs in BICI listeners. Lateralization range decreased for rates above 100 Hz for fine-structure ITDs, but decreased for rates lower or higher than 100 Hz for envelope ITDs in both groups. Lateralization ranges for ITDs were smaller for BICI listeners on average. After controlling for age, older listeners showed smaller lateralization ranges and BICI listeners had a more rapid decline for ITD sensitivity at 300 pulses per second. This work suggests that age confounds comparisons between NH and BICI listeners in temporal processing tasks and that some NH-BICI binaural processing differences persist even when age differences are adequately addressed.
Collapse
Affiliation(s)
- Sean R Anderson
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Kyle Easter
- Department of Hearing and Speech Sciences, University of Maryland, College Park, Maryland 20742, USA
| | - Matthew J Goupell
- Department of Hearing and Speech Sciences, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
22
|
Wijetillake AA, van Hoesel RJM, Cowan R. Sequential stream segregation with bilateral cochlear implants. Hear Res 2019; 383:107812. [PMID: 31630083 DOI: 10.1016/j.heares.2019.107812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 10/05/2019] [Accepted: 10/07/2019] [Indexed: 11/18/2022]
Abstract
Sequential stream segregation on the basis of binaural 'ear-of-entry', modulation rate and electrode place-of-stimulation cues was investigated in bilateral cochlear implant (CI) listeners using a rhythm anisochrony detection task. Sequences of alternating 'A' and 'B' bursts were presented via direct electrical stimulation and comprised either an isochronous timing structure or an anisochronous structure that was generated by delaying just the 'B' bursts. 'B' delay thresholds that enabled rhythm anisochrony detection were determined. Higher thresholds were assumed to indicate a greater likelihood of stream segregation, resulting specifically from stream integration breakdown. Results averaged across subjects showed that thresholds were significantly higher when monaural 'A' and 'B' bursts were presented contralaterally rather than ipsilaterally, and that diotic presentation of 'A', with a monaural 'B', yielded intermediate thresholds. When presented monaurally and ipsilaterally, higher thresholds were also found when successive bursts had mismatched rather than matched modulation rates. In agreement with previous studies, average delay thresholds also increased as electrode separation between bursts increased when presented ipsilaterally. No interactions were found between ear-of-entry, modulation rate and place-of-stimulation. However, combining moderate electrode difference cues with either diotic-'A' ear-of-entry cues or modulation-rate mismatch cues did yield greater threshold increases than observed with any of those cues alone. The results from the present study indicate that sequential stream segregation can be elicited in bilateral CI users by differences in the signal across ears (binaural cues), in modulation rate (monaural cues) and in place-of-stimulation (monaural cues), and that those differences can be combined to further increase segregation.
Collapse
Affiliation(s)
| | | | - Robert Cowan
- The Hearing CRC, 550 Swanston St, Carlton, 3053, Victoria, Australia.
| |
Collapse
|
23
|
Pieper SH, Bahmer A. Rate pitch discrimination in cochlear implant users with the use of double pulses and different interpulse intervals. Cochlear Implants Int 2019; 20:312-323. [PMID: 31448701 DOI: 10.1080/14670100.2019.1656847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The rate pitch discrimination ability of cochlear implant (CI) users is poor compared to normal-hearing (NH) listeners. At low pulse rates, the just noticeable difference (JND) is on average 20% of the base rate, while NH listeners can discriminate small frequency differences of 0.2% at 1 kHz. Recent investigations suggest that double pulses with short interpulse intervals (IPIs) may have a beneficial effect on rate pitch discrimination in CI users. In a first experiment psychophysical tests were carried out to establish whether rate pitch in CI users could be improved by applying double pulses with equal amplitude and short IPIs. Pulse trains with base rates of 200 and 400 pps, composed of either single pulses or double pulses with IPIs of 15, 50, and 150 μs were presented. In a second experiment pairwise comparisons were carried out between pitch of a pulse train composed of alternating double and single pulses with pitch of pulse trains composed of single pulses. The alternating pulse train had a base rate of 400 pps, the pulse trains with solely single pulses had base rates of 200, 300, and 400 pps. The loudness and pitch perception of the different stimulus types were evaluated and compared. A significant loudness difference was found between single and double pulses for both pulse rates. The JND for pitch discrimination between double-pulse IPIs had a high inter-subject variability, and no significant group effect was found. No subject reported a pitch change between double pulse and single pulse stimulation. In contrast, most of the subjects recognized a change in pitch between single-pulse trains and pulse trains with alternating double and single pulses. The latter was lower in pitch than the single-pulse train stimulation. To conclude, using (equal amplitude) double pulses instead of single pulses in a pulse train does not effect pitch perception. Instead, loudness differs between double pulses and single pulses with the same amplitude.
Collapse
Affiliation(s)
- Sabrina H Pieper
- Clinic for Otolaryngology, Comprehensive Hearing Center, University of Würzburg , Würzburg 97080 , Germany
| | - Andreas Bahmer
- Clinic for Otolaryngology, Comprehensive Hearing Center, University of Würzburg , Würzburg 97080 , Germany
| |
Collapse
|
24
|
Todd AE, Goupell MJ, Litovsky RY. Binaural unmasking with temporal envelope and fine structure in listeners with cochlear implants. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 145:2982. [PMID: 31153315 PMCID: PMC6525004 DOI: 10.1121/1.5102158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 04/14/2019] [Accepted: 04/19/2019] [Indexed: 06/09/2023]
Abstract
For normal-hearing (NH) listeners, interaural information in both temporal envelope and temporal fine structure contribute to binaural unmasking of target signals in background noise; however, in many conditions low-frequency interaural information in temporal fine structure produces greater binaural unmasking. For bilateral cochlear-implant (CI) listeners, interaural information in temporal envelope contributes to binaural unmasking; however, the effect of encoding temporal fine structure information in electrical pulse timing (PT) is not fully understood. In this study, diotic and dichotic signal detection thresholds were measured in CI listeners using bilaterally synchronized single-electrode stimulation for conditions in which the temporal envelope was presented without temporal fine structure encoded (constant-rate pulses) or with temporal fine structure encoded (pulses timed to peaks of the temporal fine structure). CI listeners showed greater binaural unmasking at 125 pps with temporal fine structure encoded than without. There was no significant effect of encoding temporal fine structure at 250 pps. A similar pattern of performance was shown by NH listeners presented with acoustic pulse trains designed to simulate CI stimulation. The results suggest a trade-off across low rates between interaural information obtained from temporal envelope and that obtained from temporal fine structure encoded in PT.
Collapse
Affiliation(s)
- Ann E Todd
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Avenue, Madison, Wisconsin 53705, USA
| | - Matthew J Goupell
- Department of Hearing and Speech Sciences, University of Maryland at College Park, College Park, Maryland 20742, USA
| | - Ruth Y Litovsky
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Avenue, Madison, Wisconsin 53705, USA
| |
Collapse
|
25
|
Bernstein JGW, Stakhovskaya OA, Schuchman GI, Jensen KK, Goupell MJ. Interaural Time-Difference Discrimination as a Measure of Place of Stimulation for Cochlear-Implant Users With Single-Sided Deafness. Trends Hear 2019; 22:2331216518765514. [PMID: 29623771 PMCID: PMC5894906 DOI: 10.1177/2331216518765514] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Current clinical practice in programming a cochlear implant (CI) for individuals with single-sided deafness (SSD) is to maximize the transmission of speech information via the implant, with the implicit assumption that this will also result in improved spatial-hearing abilities. However, binaural sensitivity is reduced by interaural place-of-stimulation mismatch, a likely occurrence with a standard CI frequency-to-electrode allocation table (FAT). As a step toward reducing interaural mismatch, this study investigated whether a test of interaural-time-difference (ITD) discrimination could be used to estimate the acoustic frequency yielding the best place match for a given CI electrode. ITD-discrimination performance was measured by presenting 300-ms bursts of 100-pulses-per-second electrical pulse trains to a single CI electrode and band-limited pulse trains with variable carrier frequencies to the acoustic ear. Listeners discriminated between two reference intervals (four bursts each with constant ITD) and a moving target interval (four bursts with variable ITD). For 17 out of the 26 electrodes tested across eight listeners, the function describing the relationship between ITD-discrimination performance and carrier frequency had a discernable peak where listeners achieved 70% to 100% performance. On average, this peak occurred 1.15 octaves above the CI manufacturer’s default FAT. ITD discrimination shows promise as a method of estimating the cochlear place of stimulation for a given electrode, thereby providing information to optimize the FAT for SSD-CI listeners.
Collapse
Affiliation(s)
- Joshua G W Bernstein
- 1 National Military Audiology and Speech Pathology Center, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Olga A Stakhovskaya
- 1 National Military Audiology and Speech Pathology Center, Walter Reed National Military Medical Center, Bethesda, MD, USA.,2 Department of Hearing and Speech Sciences, University of Maryland, College Park, MD, USA
| | - Gerald I Schuchman
- 1 National Military Audiology and Speech Pathology Center, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Kenneth K Jensen
- 1 National Military Audiology and Speech Pathology Center, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Matthew J Goupell
- 2 Department of Hearing and Speech Sciences, University of Maryland, College Park, MD, USA
| |
Collapse
|
26
|
Litovsky RY, Goupell MJ, Kan A, Landsberger DM. Use of Research Interfaces for Psychophysical Studies With Cochlear-Implant Users. Trends Hear 2019; 21:2331216517736464. [PMID: 29113579 PMCID: PMC5764139 DOI: 10.1177/2331216517736464] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A growing number of laboratories are using research interfaces to conduct experiments with cochlear-implant (CI) users. Because these interfaces bypass a subject’s clinical sound processor, several concerns exist regarding safety and stimulation levels. Here we suggest best-practice approaches for how to safely and ethically perform this type of research and highlight areas of limited knowledge where further research is needed to help clarify safety limits. The article is designed to provide an introductory level of technical detail about the devices and the effects of electrical stimulation on perception and neurophysiology. From this, we summarize what should be the best practices in the field, based on the literature and our experience. Findings from the review of the literature suggest that there are three main safety concerns: (a) to prevent biological or neural damage, (b) to avoid presentation of uncomfortably loud sounds, and (c) to ensure that subjects have control over stimulus presentation. Researchers must pay close attention to the software–hardware interface to ensure that the three main safety concerns are closely monitored. An important area for future research will be the determination of the amount of biological damage that can occur from electrical stimulation from a CI placed in the cochlea, not in direct contact with neural tissue. As technology used in research with CIs evolve, some of these approaches may change. However, the three main safety principles outlined here are not anticipated to undergo change with technological advances.
Collapse
Affiliation(s)
| | - Matthew J Goupell
- 2 Department of Hearing and Speech Sciences, University of Maryland-College Park, MD, USA
| | - Alan Kan
- 1 University of Wisconsin-Madison, WI, USA
| | | |
Collapse
|
27
|
Neural Processing of Acoustic and Electric Interaural Time Differences in Normal-Hearing Gerbils. J Neurosci 2018; 38:6949-6966. [PMID: 29959238 DOI: 10.1523/jneurosci.3328-17.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 06/04/2018] [Accepted: 06/04/2018] [Indexed: 12/18/2022] Open
Abstract
Bilateral cochlear implants (CIs) provide benefits for speech perception in noise and directional hearing, but users typically show poor sensitivity to interaural time differences (ITDs). Possible explanations for this deficit are deafness-induced degradations in neural ITD sensitivity, between-ear mismatches in electrode positions or activation sites, or differences in binaural brain circuits activated by electric versus acoustic stimulation. To identify potential limitations of electric ITD coding in the normal-hearing system, responses of single neurons in the dorsal nucleus of the lateral lemniscus and in the inferior colliculus to ITDs of electric (biphasic pulses) and acoustic (noise, clicks, chirps, and tones) stimuli were recorded in normal-hearing gerbils of either sex. To maintain acoustic sensitivity, electric stimuli were delivered to the round window. ITD tuning metrics (e.g., best ITD) and ITD discrimination thresholds for electric versus transient acoustic stimuli (clicks, chirps) obtained from the same neurons were not significantly correlated. Across populations of neurons with similar characteristic frequencies, however, ITD tuning metrics and ITD discrimination thresholds were similar for electric and acoustic stimuli and largely independent of the spectrotemporal properties of the acoustic stimuli when measured in the central range of ITDs. The similarity of acoustic and electric ITD coding on the population level in animals with normal hearing experience suggests that poorer ITD sensitivity in bilateral CI users compared with normal-hearing listeners is likely due to deprivation-induced changes in neural ITD coding rather than to differences in the binaural brain circuits involved in the processing of electric and acoustic ITDs.SIGNIFICANCE STATEMENT Small differences in the arrival time of sound at the two ears (interaural time differences, ITDs) provide important cues for speech understanding in noise and directional hearing. Deaf subjects with bilateral cochlear implants obtain only little benefit from ITDs. It is unclear whether these limitations are due to between-ear mismatches in activation sites, differences in binaural brain circuits activated by electric versus acoustic stimulation, or deafness-induced degradations in neural ITD processing. This study is the first to directly compare electric and acoustic ITD coding in neurons of known characteristic frequencies. In animals with normal hearing, populations of auditory brainstem and midbrain neurons demonstrate general similarities in electric and acoustic ITD coding, suggesting similar underlying central auditory processing mechanisms.
Collapse
|
28
|
Gifford RH, Loiselle L, Natale S, Sheffield SW, Sunderhaus LW, S. Dietrich M, Dorman MF. Speech Understanding in Noise for Adults With Cochlear Implants: Effects of Hearing Configuration, Source Location Certainty, and Head Movement. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2018; 61:1306-1321. [PMID: 29800361 PMCID: PMC6195075 DOI: 10.1044/2018_jslhr-h-16-0444] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 07/27/2017] [Accepted: 02/04/2018] [Indexed: 05/11/2023]
Abstract
Purpose The primary purpose of this study was to assess speech understanding in quiet and in diffuse noise for adult cochlear implant (CI) recipients utilizing bimodal hearing or bilateral CIs. Our primary hypothesis was that bilateral CI recipients would demonstrate less effect of source azimuth in the bilateral CI condition due to symmetric interaural head shadow. Method Sentence recognition was assessed for adult bilateral (n = 25) CI users and bimodal listeners (n = 12) in three conditions: (1) source location certainty regarding fixed target azimuth, (2) source location uncertainty regarding roving target azimuth, and (3) Condition 2 repeated, allowing listeners to turn their heads, as needed. Results (a) Bilateral CI users exhibited relatively similar performance regardless of source azimuth in the bilateral CI condition; (b) bimodal listeners exhibited higher performance for speech directed to the better hearing ear even in the bimodal condition; (c) the unilateral, better ear condition yielded higher performance for speech presented to the better ear versus speech to the front or to the poorer ear; (d) source location certainty did not affect speech understanding performance; and (e) head turns did not improve performance. The results confirmed our hypothesis that bilateral CI users exhibited less effect of source azimuth than bimodal listeners. That is, they exhibited similar performance for speech recognition irrespective of source azimuth, whereas bimodal listeners exhibited significantly poorer performance with speech originating from the poorer hearing ear (typically the nonimplanted ear). Conclusions Bilateral CI users overcame ear and source location effects observed for the bimodal listeners. Bilateral CI users have access to head shadow on both sides, whereas bimodal listeners generally have interaural asymmetry in both speech understanding and audible bandwidth limiting the head shadow benefit obtained from the poorer ear (generally the nonimplanted ear). In summary, we found that, in conditions with source location uncertainty and increased ecological validity, bilateral CI performance was superior to bimodal listening.
Collapse
Affiliation(s)
| | - Louise Loiselle
- Arizona State University, Tempe, AZ
- MED-EL Corporation, Durham, NC
| | | | | | | | | | | |
Collapse
|
29
|
Srinivasan S, Laback B, Majdak P, Delgutte B. Introducing Short Interpulse Intervals in High-Rate Pulse Trains Enhances Binaural Timing Sensitivity in Electric Hearing. J Assoc Res Otolaryngol 2018; 19:301-315. [PMID: 29549593 DOI: 10.1007/s10162-018-0659-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 02/12/2018] [Indexed: 10/17/2022] Open
Abstract
Common envelope-based stimulation strategies for cochlear implants (CIs) use relatively high carrier rates in order to properly encode the speech envelope. For such rates, CI listeners show poor sensitivity to interaural time differences (ITDs), which are important for horizontal-plane sound localization and spatial unmasking of speech. Based on the findings from previous studies, we predicted that ITD sensitivity can be enhanced by including pulses with short interpulse intervals (SIPIs), to a 1000-pulses-per-second (pps) reference pulse train. We measured the sensitivity of eight bilateral CI listeners to ITD while systematically varying both the rate at which SIPIs are introduced ("SIPI rate") and the time interval between the two pulses forming a SIPI ("SIPI fraction"). Results showed largely enhanced ITD sensitivity relative to the reference condition, with the size of the improvement increasing with decreasing SIPI rate and decreasing SIPI fraction. For the lowest SIPI fraction, insertion of extra pulses brought ITD sensitivity to the level measured for low-rate pulse trains with rates matching the SIPI rates. The results appear promising for the goal of enhancing ITD sensitivity with envelope-based CI strategies by inserting SIPI pulses at strategic times in speech stimuli.
Collapse
Affiliation(s)
- Sridhar Srinivasan
- Acoustics Research Institute, Austrian Academy of Sciences, Wohllebengasse 12-14, 1040, Vienna, Austria
| | - Bernhard Laback
- Acoustics Research Institute, Austrian Academy of Sciences, Wohllebengasse 12-14, 1040, Vienna, Austria.
| | - Piotr Majdak
- Acoustics Research Institute, Austrian Academy of Sciences, Wohllebengasse 12-14, 1040, Vienna, Austria
| | - Bertrand Delgutte
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, 243 Charles Street, Boston, MA, 02114, USA
| |
Collapse
|
30
|
Delphi M, Lotfi Y, Moossavi A, Bakhshi E, Banimostafa M. Envelope-based inter-aural time difference localization training to improve speech-in-noise perception in the elderly. Med J Islam Repub Iran 2017; 31:36. [PMID: 29445665 PMCID: PMC5804443 DOI: 10.14196/mjiri.31.36] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Indexed: 11/22/2022] Open
Abstract
Background: Many elderly individuals complain of difficulty in understanding speech in noise despite having normal hearing thresholds. According to previous studies, auditory training leads to improvement in speech-in-noise perception, but these studies did not consider the etiology, so their results cannot be generalized. The present study aimed at investigating the effectiveness of envelopebased interaural time difference (ITD ENV) localization training on improving ITD threshold and speech-in-noise perception. Methods: Thirty-two elderly males aged 55 to 65 years with clinically diagnosed normal hearing at 250-2000 Hertz, who suffered from speech-in-noise perception difficulty participated in this study. These individuals were randomly divided into training and control groups: 16 elderlies in the experimental group received envelope-based interaural time difference localization training in 9 sessions, but 16 matched elderlies in the control group did not receive any training. The ITD ENV threshold and spatial word recognition score (WRS) in noise were analyzed before and after the localization training. Results: Findings demonstrated that following the training program, the interaural time difference envelope threshold and spatial word recognition score (WRS) in noise were improved significantly in the experimental group (p≤ 0.001). Moreover, a significant difference was detected in interaural time difference envelope threshold and spatial word recognition score (WRS) in noise (p≤ 0.001) before and after the training in the experimental group. Conclusion: The results of the present study revealed the effectiveness of envelope- based interaural time difference localization training in localization ability and speech in noise perception in the elderlies with normal hearing up to 2000 Hz who suffered from speech-in-noise perception difficulty.
Collapse
Affiliation(s)
- Maryam Delphi
- Department of Audiology, University of Social Welfare and Rehabilitation Sciences, Tehran & Musculoskeletal Rehabilitation Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz ,Iran
| | - Yones Lotfi
- Department of Audiology, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Abdollah Moossavi
- Department of Otolaryngology and Head and Neck Surgery, School of Medicine, Iran University of Medical sciences, Tehran, Iran
| | - Enayatollah Bakhshi
- Department of Biostatistics, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Maryam Banimostafa
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
31
|
Egger K, Majdak P, Laback B. Binaural timing information in electric hearing at low rates: Effects of inaccurate encoding and loudness. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2017; 141:3164. [PMID: 28599571 DOI: 10.1121/1.4982888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Stimulation strategies for cochlear implants potentially impose timing limitations that may hinder the correct encoding and representation of interaural time differences (ITDs) in realistic bilateral signals. This study aimed to specify the tolerable room for inaccurate encoding of ITDs at low rates by investigating the perceptual degradation due to the removal of individual pulses at various levels of loudness. Unmodulated, 100-pulses-per-second pulse trains were presented at a single, interaurally pitch-matched electrode pair. In experiment I, ITD thresholds were measured applying different degrees of bilateral, interaurally-uncorrelated pulse removal. The ITD sensitivity deteriorated with increasing degree of pulse removal, with significant deterioration for degrees of 16% or greater. In experiment II, the interaction between loudness and pulse removal was investigated. Louder stimuli yielded better ITD sensitivity, however, no further improvement was found for stimuli louder than "medium." When removing 8% of the pulses, the ITD sensitivity deteriorated significantly across the entire loudness range tested. A loudness-induced compensation for the deterioration of ITD sensitivity due to pulse removal seems to be feasible for soft stimuli but not for medium or loud stimuli. Overall, our findings suggest that the degree of pulse removal employed in low-rate channels within coding strategies should not exceed 8%.
Collapse
Affiliation(s)
- Katharina Egger
- Acoustics Research Institute, Austrian Academy of Sciences, Wohllebengasse 12-14, A-1040 Vienna, Austria
| | - Piotr Majdak
- Acoustics Research Institute, Austrian Academy of Sciences, Wohllebengasse 12-14, A-1040 Vienna, Austria
| | - Bernhard Laback
- Acoustics Research Institute, Austrian Academy of Sciences, Wohllebengasse 12-14, A-1040 Vienna, Austria
| |
Collapse
|
32
|
Hu H, Ewert SD, McAlpine D, Dietz M. Differences in the temporal course of interaural time difference sensitivity between acoustic and electric hearing in amplitude modulated stimuli. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2017; 141:1862. [PMID: 28372072 DOI: 10.1121/1.4977014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Previous studies have shown that normal-hearing (NH) listeners' spatial perception of non-stationary interaural time differences (ITDs) is dominated by the carrier ITD during rising amplitude segments. Here, ITD sensitivity throughout the amplitude-modulation cycle in NH listeners and bilateral cochlear implant (CI) subjects is compared, the latter by means of direct stimulation of a single electrode pair. The data indicate that, while NH listeners are most sensitive to ITDs applied toward the beginning of a modulation cycle at 600 Hz, NH listeners at 200 Hz and especially bilateral CI subjects at 200 pulses per second (pps) are more sensitive to ITDs applied to the modulation maximum. This has implications for spatial-hearing in complex environments: NH listeners' dominant 600-Hz ITD information from the rising amplitude segments comprises direct sound information. The 200-pps low rate required to get ITD sensitivity in CI users results in a higher weight of pulses later in the modulation cycle where the source ITDs are more likely corrupted by reflections. This indirectly indicates that even if future binaural CI processors are able to provide perceptually exploitable ITD information, CI users will likely not get the full benefit from such pulse-based ITD cues in reverberant and other complex environments.
Collapse
Affiliation(s)
- Hongmei Hu
- Medizinische Physik and Cluster of Excellence "Hearing4all," Universität Oldenburg, D-26111 Oldenburg, Germany
| | - Stephan D Ewert
- Medizinische Physik and Cluster of Excellence "Hearing4all," Universität Oldenburg, D-26111 Oldenburg, Germany
| | - David McAlpine
- Department of Linguistics, Australian Hearing Hub, Macquarie University, New South Wales 2109, Australia
| | - Mathias Dietz
- Medizinische Physik and Cluster of Excellence "Hearing4all," Universität Oldenburg, D-26111 Oldenburg, Germany
| |
Collapse
|
33
|
Todd AE, Mertens G, Van de Heyning P, Landsberger DM. Encoding a Melody Using Only Temporal Information for Cochlear-Implant and Normal-Hearing Listeners. Trends Hear 2017; 21:2331216517739745. [PMID: 29161987 PMCID: PMC5703098 DOI: 10.1177/2331216517739745] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 10/05/2017] [Indexed: 11/16/2022] Open
Abstract
One way to provide pitch information to cochlear implant users is through amplitude-modulation rate. It is currently unknown whether amplitude-modulation rate can provide cochlear implant users with pitch information adequate for perceiving melodic information. In the present study, the notes of a song were encoded via amplitude-modulation rate of pulse trains on single electrodes at the apex or middle of long electrode arrays. The melody of the song was either physically correct or modified by compression or expansion. Nine cochlear implant users rated the extent to which the song was out of tune in the different conditions. Cochlear implant users on average did not show sensitivity to melody compression or expansion regardless of place of stimulation. These results were found despite the fact that three of the cochlear implant users showed the expected sensitivity to melody compression and expansion with the same task using acoustic pure tones in a contralateral acoustic ear. Normal-hearing listeners showed an inconsistent and weak effect of melody compression and expansion when the notes of the song were encoded with acoustic pulse rate. The results suggest that amplitude-modulation rate provides insufficient access to melodic information for cochlear-implant and normal-hearing listeners.
Collapse
Affiliation(s)
- Ann E. Todd
- Department of Otolaryngology, New York University School of Medicine, NY, USA
| | - Griet Mertens
- Department of Otorhinolaryngology, Head and Neck Surgery, Antwerp University Hospital, University of Antwerp, Belgium
| | - Paul Van de Heyning
- Department of Otorhinolaryngology, Head and Neck Surgery, Antwerp University Hospital, University of Antwerp, Belgium
| | | |
Collapse
|
34
|
Cosentino S, Carlyon RP, Deeks JM, Parkinson W, Bierer JA. Rate discrimination, gap detection and ranking of temporal pitch in cochlear implant users. J Assoc Res Otolaryngol 2016; 17:371-82. [PMID: 27101997 PMCID: PMC4940289 DOI: 10.1007/s10162-016-0569-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 04/10/2016] [Indexed: 01/04/2023] Open
Abstract
Cochlear implant (CI) users have poor temporal pitch perception, as revealed by two key outcomes of rate discrimination tests: (i) rate discrimination thresholds (RDTs) are typically larger than the corresponding frequency difference limen for pure tones in normal hearing listeners, and (ii) above a few hundred pulses per second (i.e. the "upper limit" of pitch), CI users cannot discriminate further increases in pulse rate. Both RDTs at low rates and the upper limit of pitch vary across listeners and across electrodes in a given listener. Here, we compare across-electrode and across-subject variation in these two measures with the variation in performance on another temporal processing task, gap detection, in order to explore the limitations of temporal processing in CI users. RDTs were obtained for 4-5 electrodes in each of 10 Advanced Bionics CI users using two interleaved adaptive tracks, corresponding to standard rates of 100 and 400 pps. Gap detection was measured using the adaptive procedure and stimuli described by Bierer et al. (JARO 16:273-284, 2015), and for the same electrodes and listeners as for the rate discrimination measures. Pitch ranking was also performed using a mid-point comparison technique. There was a marginal across-electrode correlation between gap detection and rate discrimination at 400 pps, but neither measure correlated with rate discrimination at 100 pps. Similarly, there was a highly significant across-subject correlation between gap detection and rate discrimination at 400, but not 100 pps, and these two correlations differed significantly from each other. Estimates of low-rate sensitivity and of the upper limit of pitch, obtained from the pitch ranking experiment, correlated well with rate discrimination for the 100- and 400-pps standards, respectively. The results are consistent with the upper limit of rate discrimination sharing a common basis with gap detection. There was no evidence that this limitation also applied to rate discrimination at lower rates.
Collapse
Affiliation(s)
- Stefano Cosentino
- />MRC Cognition and Brain Sciences Unit, 15 Chaucer Rd, Cambridge, CB2 7EF UK
| | - Robert P. Carlyon
- />MRC Cognition and Brain Sciences Unit, 15 Chaucer Rd, Cambridge, CB2 7EF UK
| | - John M. Deeks
- />MRC Cognition and Brain Sciences Unit, 15 Chaucer Rd, Cambridge, CB2 7EF UK
| | - Wendy Parkinson
- />Department of Speech and Hearing Sciences, University of Washington, 1417 NE 42nd St, Seattle, WA 98105 USA
| | - Julie A. Bierer
- />Department of Speech and Hearing Sciences, University of Washington, 1417 NE 42nd St, Seattle, WA 98105 USA
| |
Collapse
|
35
|
Monaghan JJM, Bleeck S, McAlpine D. Sensitivity to Envelope Interaural Time Differences at High Modulation Rates. Trends Hear 2015; 19:2331216515619331. [PMID: 26721926 PMCID: PMC4871209 DOI: 10.1177/2331216515619331] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Sensitivity to interaural time differences (ITDs) conveyed in the temporal fine structure of low-frequency tones and the modulated envelopes of high-frequency sounds are considered comparable, particularly for envelopes shaped to transmit similar fidelity of temporal information normally present for low-frequency sounds. Nevertheless, discrimination performance for envelope modulation rates above a few hundred Hertz is reported to be poor-to the point of discrimination thresholds being unattainable-compared with the much higher (>1,000 Hz) limit for low-frequency ITD sensitivity, suggesting the presence of a low-pass filter in the envelope domain. Further, performance for identical modulation rates appears to decline with increasing carrier frequency, supporting the view that the low-pass characteristics observed for envelope ITD processing is carrier-frequency dependent. Here, we assessed listeners' sensitivity to ITDs conveyed in pure tones and in the modulated envelopes of high-frequency tones. ITD discrimination for the modulated high-frequency tones was measured as a function of both modulation rate and carrier frequency. Some well-trained listeners appear able to discriminate ITDs extremely well, even at modulation rates well beyond 500 Hz, for 4-kHz carriers. For one listener, thresholds were even obtained for a modulation rate of 800 Hz. The highest modulation rate for which thresholds could be obtained declined with increasing carrier frequency for all listeners. At 10 kHz, the highest modulation rate at which thresholds could be obtained was 600 Hz. The upper limit of sensitivity to ITDs conveyed in the envelope of high-frequency modulated sounds appears to be higher than previously considered.
Collapse
Affiliation(s)
| | - Stefan Bleeck
- Institute of Sound and Vibration Research, University of Southampton, UK
| | | |
Collapse
|
36
|
Kelvasa D, Dietz M. Auditory Model-Based Sound Direction Estimation With Bilateral Cochlear Implants. Trends Hear 2015; 19:19/0/2331216515616378. [PMID: 26631106 PMCID: PMC4771030 DOI: 10.1177/2331216515616378] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Users of bilateral cochlear implants (CIs) show above-chance performance in localizing the source of a sound in the azimuthal (horizontal) plane; although localization errors are far worse than for normal-hearing listeners, they are considerably better than for CI listeners with only one implant. In most previous studies, subjects had access to interaural level differences and to interaural time differences conveyed in the temporal envelope. Here, we present a binaural model that predicts the azimuthal direction of sound arrival from a two-channel input signal as it is received at the left and right CI processor. The model includes a replication of a clinical speech-coding strategy, a model of the electrode-nerve interface and binaural brainstem neurons, and three different prediction stages that are trained to map the neural response rate to an azimuthal angle. The model is trained and tested with various noise and speech stimuli created by means of virtual acoustics. Localization error patterns of the model match experimental data and are explicable largely in terms of the nonmonotonic relationship between interaural level difference and azimuthal angle.
Collapse
|
37
|
Egger K, Majdak P, Laback B. Channel Interaction and Current Level Affect Across-Electrode Integration of Interaural Time Differences in Bilateral Cochlear-Implant Listeners. J Assoc Res Otolaryngol 2015; 17:55-67. [PMID: 26377826 DOI: 10.1007/s10162-015-0542-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 08/30/2015] [Indexed: 11/26/2022] Open
Abstract
Sensitivity to interaural time differences (ITDs) is important for sound localization. Normal-hearing listeners benefit from across-frequency processing, as seen with improved ITD thresholds when consistent ITD cues are presented over a range of frequency channels compared with when ITD information is only presented in a single frequency channel. This study aimed to clarify whether cochlear-implant (CI) listeners can make use of similar processing when being stimulated with multiple interaural electrode pairs transmitting consistent ITD information. ITD thresholds for unmodulated, 100-pulse-per-second pulse trains were measured in seven bilateral CI listeners using research interfaces. Consistent ITDs were presented at either one or two electrode pairs at different current levels, allowing for comparisons at either constant level per component electrode or equal overall loudness. Different tonotopic distances between the pairs were tested in order to clarify the potential influence of channel interaction. Comparison of ITD thresholds between double pairs and the respective single pairs revealed systematic effects of tonotopic separation and current level. At constant levels, performance with double-pair stimulation improved compared with single-pair stimulation but only for large tonotopic separation. Comparisons at equal overall loudness revealed no benefit from presenting ITD information at two electrode pairs for any tonotopic spacing. Irrespective of electrode-pair configuration, ITD sensitivity improved with increasing current level. Hence, the improved ITD sensitivity for double pairs found for a large tonotopic separation and constant current levels seems to be due to increased loudness. The overall data suggest that CI listeners can benefit from combining consistent ITD information across multiple electrodes, provided sufficient stimulus levels and that stimulating electrode pairs are widely spaced.
Collapse
Affiliation(s)
- Katharina Egger
- Acoustics Research Institute, Austrian Academy of Sciences, Wohllebengasse 12-14, 1040, Vienna, Austria.
| | - Piotr Majdak
- Acoustics Research Institute, Austrian Academy of Sciences, Wohllebengasse 12-14, 1040, Vienna, Austria.
| | - Bernhard Laback
- Acoustics Research Institute, Austrian Academy of Sciences, Wohllebengasse 12-14, 1040, Vienna, Austria.
| |
Collapse
|
38
|
Zheng Y, Godar SP, Litovsky RY. Development of Sound Localization Strategies in Children with Bilateral Cochlear Implants. PLoS One 2015; 10:e0135790. [PMID: 26288142 PMCID: PMC4545829 DOI: 10.1371/journal.pone.0135790] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 07/27/2015] [Indexed: 11/24/2022] Open
Abstract
Localizing sounds in our environment is one of the fundamental perceptual abilities that enable humans to communicate, and to remain safe. Because the acoustic cues necessary for computing source locations consist of differences between the two ears in signal intensity and arrival time, sound localization is fairly poor when a single ear is available. In adults who become deaf and are fitted with cochlear implants (CIs) sound localization is known to improve when bilateral CIs (BiCIs) are used compared to when a single CI is used. The aim of the present study was to investigate the emergence of spatial hearing sensitivity in children who use BiCIs, with a particular focus on the development of behavioral localization patterns when stimuli are presented in free-field horizontal acoustic space. A new analysis was implemented to quantify patterns observed in children for mapping acoustic space to a spatially relevant perceptual representation. Children with normal hearing were found to distribute their responses in a manner that demonstrated high spatial sensitivity. In contrast, children with BiCIs tended to classify sound source locations to the left and right; with increased bilateral hearing experience, they developed a perceptual map of space that was better aligned with the acoustic space. The results indicate experience-dependent refinement of spatial hearing skills in children with CIs. Localization strategies appear to undergo transitions from sound source categorization strategies to more fine-grained location identification strategies. This may provide evidence for neural plasticity, with implications for training of spatial hearing ability in CI users.
Collapse
Affiliation(s)
- Yi Zheng
- Waisman Center, University of Wisconsin Madison, Madison, Wisconsin, United States of America
| | - Shelly P. Godar
- Waisman Center, University of Wisconsin Madison, Madison, Wisconsin, United States of America
| | - Ruth Y. Litovsky
- Waisman Center, University of Wisconsin Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
39
|
Limitations on Monaural and Binaural Temporal Processing in Bilateral Cochlear Implant Listeners. J Assoc Res Otolaryngol 2015; 16:641-52. [PMID: 26105749 PMCID: PMC4569611 DOI: 10.1007/s10162-015-0527-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 05/20/2015] [Indexed: 11/20/2022] Open
Abstract
Monaural rate discrimination and binaural interaural time difference (ITD) discrimination were studied as functions of pulse rate in a group of bilaterally implanted cochlear implant users. Stimuli for the rate discrimination task were pulse trains presented to one electrode, which could be in the apical, middle, or basal part of the array, and in either the left or the right ear. In each two-interval trial, the standard stimulus had a rate of 100, 200, 300, or 500 pulses per second and the signal stimulus had a rate 35 % higher. ITD discrimination between pitch-matched electrode pairs was measured for the same standard rates as in the rate discrimination task and with an ITD of +/− 500 μs. Sensitivity (d′) on both tasks decreased with increasing rate, as has been reported previously. This study tested the hypothesis that deterioration in performance at high rates occurs for the two tasks due to a common neural basis, specific to the stimulation of each electrode. Results show that ITD scores for different pairs of electrodes correlated with the lower rate discrimination scores for those two electrodes. Statistical analysis, which partialed out overall differences between listeners, electrodes, and rates, supports the hypothesis that monaural and binaural temporal processing limitations are at least partly due to a common mechanism.
Collapse
|
40
|
Perception and coding of interaural time differences with bilateral cochlear implants. Hear Res 2015; 322:138-50. [DOI: 10.1016/j.heares.2014.10.004] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 10/01/2014] [Accepted: 10/07/2014] [Indexed: 11/21/2022]
|
41
|
Jones H, Kan A, Litovsky RY. Comparing sound localization deficits in bilateral cochlear-implant users and vocoder simulations with normal-hearing listeners. Trends Hear 2014; 18:18/0/2331216514554574. [PMID: 25385244 PMCID: PMC4271768 DOI: 10.1177/2331216514554574] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Bilateral cochlear-implant (BiCI) users are less accurate at localizing free-field (FF) sound sources than normal-hearing (NH) listeners. This performance gap is not well understood but is likely due to a combination of compromises in acoustic signal representation by the two independent speech processors and neural degradation of auditory pathways associated with a patient's hearing loss. To exclusively investigate the effect of CI speech encoding on horizontal-plane sound localization, the present study measured sound localization performance in NH subjects listening to vocoder processed and nonvocoded virtual acoustic space (VAS) stimuli. Various aspects of BiCI stimulation such as independently functioning devices, variable across-ear channel selection, and pulsatile stimulation were simulated using uncorrelated noise (Nu), correlated noise (N0), or Gaussian-enveloped tone (GET) carriers during vocoder processing. Additionally, FF sound localization in BiCI users was measured in the same testing environment for comparison. Distinct response patterns across azimuthal locations were evident for both listener groups and were analyzed using a multilevel regression analysis. Simulated implant speech encoding, regardless of carrier, was detrimental to NH localization and the GET vocoder best simulated BiCI FF performance in NH listeners. Overall, the detrimental effect of vocoder processing on NH performance suggests that sound localization deficits may persist even for BiCI patients who have minimal neural degradation associated with their hearing loss and indicates that CI speech encoding plays a significant role in the sound localization deficits experienced by BiCI users.
Collapse
Affiliation(s)
- Heath Jones
- Waisman Center, University of Wisconsin-Madison, WI, USA
| | - Alan Kan
- Waisman Center, University of Wisconsin-Madison, WI, USA
| | | |
Collapse
|
42
|
Kan A, Litovsky RY. Binaural hearing with electrical stimulation. Hear Res 2014; 322:127-37. [PMID: 25193553 DOI: 10.1016/j.heares.2014.08.005] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Revised: 07/16/2014] [Accepted: 08/18/2014] [Indexed: 11/18/2022]
Abstract
Bilateral cochlear implantation is becoming a standard of care in many clinics. While much benefit has been shown through bilateral implantation, patients who have bilateral cochlear implants (CIs) still do not perform as well as normal hearing listeners in sound localization and understanding speech in noisy environments. This difference in performance can arise from a number of different factors, including the areas of hardware and engineering, surgical precision and pathology of the auditory system in deaf persons. While surgical precision and individual pathology are factors that are beyond careful control, improvements can be made in the areas of clinical practice and the engineering of binaural speech processors. These improvements should be grounded in a good understanding of the sensitivities of bilateral CI patients to the acoustic binaural cues that are important to normal hearing listeners for sound localization and speech in noise understanding. To this end, we review the current state-of-the-art in the understanding of the sensitivities of bilateral CI patients to binaural cues in electric hearing, and highlight the important issues and challenges as they relate to clinical practice and the development of new binaural processing strategies. This article is part of a Special Issue entitled <Lasker Award>.
Collapse
Affiliation(s)
- Alan Kan
- University of Wisconsin-Madison Waisman Center, 1500 Highland Ave, Madison WI 53705, USA.
| | - Ruth Y Litovsky
- University of Wisconsin-Madison Waisman Center, 1500 Highland Ave, Madison WI 53705, USA.
| |
Collapse
|
43
|
Churchill TH, Kan A, Goupell MJ, Litovsky RY. Spatial hearing benefits demonstrated with presentation of acoustic temporal fine structure cues in bilateral cochlear implant listeners. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2014; 136:1246. [PMID: 25190398 PMCID: PMC4165227 DOI: 10.1121/1.4892764] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Most contemporary cochlear implant (CI) processing strategies discard acoustic temporal fine structure (TFS) information, and this may contribute to the observed deficits in bilateral CI listeners' ability to localize sounds when compared to normal hearing listeners. Additionally, for best speech envelope representation, most contemporary speech processing strategies use high-rate carriers (≥900 Hz) that exceed the limit for interaural pulse timing to provide useful binaural information. Many bilateral CI listeners are sensitive to interaural time differences (ITDs) in low-rate (<300 Hz) constant-amplitude pulse trains. This study explored the trade-off between superior speech temporal envelope representation with high-rate carriers and binaural pulse timing sensitivity with low-rate carriers. The effects of carrier pulse rate and pulse timing on ITD discrimination, ITD lateralization, and speech recognition in quiet were examined in eight bilateral CI listeners. Stimuli consisted of speech tokens processed at different electrical stimulation rates, and pulse timings that either preserved or did not preserve acoustic TFS cues. Results showed that CI listeners were able to use low-rate pulse timing cues derived from acoustic TFS when presented redundantly on multiple electrodes for ITD discrimination and lateralization of speech stimuli.
Collapse
Affiliation(s)
- Tyler H Churchill
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Avenue, Madison, Wisconsin 53705
| | - Alan Kan
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Avenue, Madison, Wisconsin 53705
| | - Matthew J Goupell
- Department of Hearing and Speech Sciences, University of Maryland-College Park, College Park, Maryland 20742
| | - Ruth Y Litovsky
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Avenue, Madison, Wisconsin 53705
| |
Collapse
|
44
|
Francart T, Lenssen A, Wouters J. Modulation enhancement in the electrical signal improves perception of interaural time differences with bimodal stimulation. J Assoc Res Otolaryngol 2014; 15:633-47. [PMID: 24890714 DOI: 10.1007/s10162-014-0457-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 04/21/2014] [Indexed: 10/25/2022] Open
Abstract
Interaural timing cues are important for sound source localization and for binaural unmasking of speech that is spatially separated from interfering sounds. Users of a cochlear implant (CI) with residual hearing in the non-implanted ear (bimodal listeners) can only make very limited use of interaural timing cues with their clinical devices. Previous studies showed that bimodal listeners can be sensitive to interaural time differences (ITDs) for simple single- and three-channel stimuli. The modulation enhancement strategy (MEnS) was developed to improve the ITD perception of bimodal listeners. It enhances temporal modulations on all stimulated electrodes, synchronously with modulations in the acoustic signal presented to the non-implanted ear, based on measurement of the amplitude peaks occurring at the rate of the fundamental frequency in voiced phonemes. In the first experiment, ITD detection thresholds were measured using the method of constant stimuli for five bimodal listeners for an artificial vowel, processed with either the advanced combination encoder (ACE) strategy or with MEnS. With MEnS, detection thresholds were significantly lower, and for four subjects well within the physically relevant range. In the second experiment, the extent of lateralization was measured in three subjects with both strategies, and ITD sensitivity was determined using an adaptive procedure. All subjects could lateralize sounds based on ITD and sensitivity was significantly better with MEnS than with ACE. The current results indicate that ITD cues can be provided to bimodal listeners with modified sound processing.
Collapse
Affiliation(s)
- Tom Francart
- KU Leuven, Department of Neurosciences, ExpORL, O&N2, Herestraat 49 Bus 721, 3000, Leuven, Belgium,
| | | | | |
Collapse
|
45
|
Noel VA, Eddington DK. Sensitivity of bilateral cochlear implant users to fine-structure and envelope interaural time differences. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2013; 133:2314-28. [PMID: 23556598 PMCID: PMC3631249 DOI: 10.1121/1.4794372] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 01/11/2013] [Accepted: 02/11/2013] [Indexed: 05/25/2023]
Abstract
Bilateral cochlear implant users have poor sensitivity to interaural time differences (ITDs) of high-rate pulse trains, which precludes use of these stimuli to convey fine-structure ITD cues. However, previous reports of single-neuron recordings in cats demonstrated good ITD sensitivity to 1000 pulses-per-second (pps) pulses when the pulses were sinusoidally amplitude modulated. The ability of modulation to restore ITD sensitivity to high-rate pulses in humans was tested by measuring ITD thresholds for three conditions: ITD encoded in the modulated carrier pulses alone, in the envelope alone, and in the whole waveform. Five of six subjects were not sensitive to ITD in the 1000-pps carrier, even with modulation. One subject's 1000-pps carrier ITD sensitivity did significantly improve due to modulation. Sensitivity to ITD encoded in the envelope was also measured as a function of modulation frequency, including at frequencies from 4 to 16 Hz where much of the speech envelope's energy and information resides. Sensitivity was best at the modulation frequency of 100 Hz and degraded rapidly outside of a narrow range. These results provide little evidence to support encoding ITD in the carrier of current bilateral processors, and suggest envelope ITD sensitivity is poor for an important segment of the speech modulation spectrum.
Collapse
Affiliation(s)
- Victor A Noel
- Cochlear Implant Research Laboratory, Massachusetts Eye and Ear Infirmary, 243 Charles Street, Boston, Massachusetts 02114, USA.
| | | |
Collapse
|
46
|
Laback B. Neural basis of improved ITD sensitivity with jitter. J Neurophysiol 2012; 108:712-3. [DOI: 10.1152/jn.00422.2012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
47
|
van Hoesel RJ. Contrasting benefits from contralateral implants and hearing aids in cochlear implant users. Hear Res 2012; 288:100-13. [DOI: 10.1016/j.heares.2011.11.014] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 11/28/2011] [Accepted: 11/30/2011] [Indexed: 11/26/2022]
|
48
|
Lavandier M, Jelfs S, Culling JF, Watkins AJ, Raimond AP, Makin SJ. Binaural prediction of speech intelligibility in reverberant rooms with multiple noise sources. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2012; 131:218-31. [PMID: 22280586 DOI: 10.1121/1.3662075] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
When speech is in competition with interfering sources in rooms, monaural indicators of intelligibility fail to take account of the listener's abilities to separate target speech from interfering sounds using the binaural system. In order to incorporate these segregation abilities and their susceptibility to reverberation, Lavandier and Culling [J. Acoust. Soc. Am. 127, 387-399 (2010)] proposed a model which combines effects of better-ear listening and binaural unmasking. A computationally efficient version of this model is evaluated here under more realistic conditions that include head shadow, multiple stationary noise sources, and real-room acoustics. Three experiments are presented in which speech reception thresholds were measured in the presence of one to three interferers using real-room listening over headphones, simulated by convolving anechoic stimuli with binaural room impulse-responses measured with dummy-head transducers in five rooms. Without fitting any parameter of the model, there was close correspondence between measured and predicted differences in threshold across all tested conditions. The model's components of better-ear listening and binaural unmasking were validated both in isolation and in combination. The computational efficiency of this prediction method allows the generation of complex "intelligibility maps" from room designs.
Collapse
Affiliation(s)
- Mathieu Lavandier
- Département Génie Civil et Bâtiment, Université de Lyon, Ecole Nationale des Travaux Publics de l’Etat, Rue M Audin, 69518 Vaulx-en-Velin Cedex, France.
| | | | | | | | | | | |
Collapse
|
49
|
Best V, Laback B, Majdak P. Binaural interference in bilateral cochlear-implant listeners. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2011; 130:2939-50. [PMID: 22087922 DOI: 10.1121/1.3641400] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
This work was aimed at determining whether binaural interference occurs in electric hearing, and if so, whether it occurs as a consequence of perceptual grouping (central explanation) or if it is related to the spread of excitation in the cochlea (peripheral explanation). Six bilateral cochlear-implant listeners completed a series of experiments in which they judged the lateral position of a target pulse train, lateralized via interaural time or level differences, in the presence of an interfering diotic pulse train. The target and interferer were presented at widely separated electrode pairs (one basal and one apical). The results are broadly similar to those reported for acoustic hearing. All listeners but one showed significant binaural interference in at least one of the stimulus conditions. In all cases of interference, a robust recovery was observed when the interferer was presented as part of an ongoing stream of identical pulse trains, suggesting that the interference was at least partly centrally mediated. Overall, the results suggest that both simultaneous and sequential grouping mechanisms operate in electric hearing, at least for stimuli with a wide tonotopic separation.
Collapse
Affiliation(s)
- Virginia Best
- School of Medical Sciences, University of Sydney, Sydney, NSW 2006, Australia.
| | | | | |
Collapse
|
50
|
Laback B, Zimmermann I, Majdak P, Baumgartner WD, Pok SM. Effects of envelope shape on interaural envelope delay sensitivity in acoustic and electric hearing. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2011; 130:1515-29. [PMID: 21895091 DOI: 10.1121/1.3613704] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The envelope shape is important for the perception of interaural time difference (ITD) in the envelope as supported by the improved sensitivity for transposed tones compared to sinusoidally amplitude-modulated (SAM) tones. The present study investigated the effects of specific envelope parameters in nine normal-hearing (NH) and seven cochlear-implant (CI) listeners, using high-rate carriers with 27-Hz trapezoidal modulation. In NH listeners, increasing the off time (the silent interval in each modulation cycle) up to 12 ms, increasing the envelope slope from 6 to 8 dB/ms, and increasing the peak level improved ITD sensitivity. The combined effect of the off time and slope accounts for the gain in sensitivity for transposed tones relative to SAM tones. In CI listeners, increasing the off time up to 20 ms improved sensitivity, but increasing the slope showed no systematic effect. A 27-pulses/s electric pulse train, representing a special case of modulation with infinitely steep slopes and maximum possible off time, yielded considerably higher sensitivity compared to the best condition with trapezoidal modulation. Overall, the results of this study indicate that envelope-ITD sensitivity could be improved by using CI processing schemes that simultaneously increase the off time and the peak level of the signal envelope.
Collapse
Affiliation(s)
- Bernhard Laback
- Acoustics Research Institute, Austrian Academy of Sciences, Wohllebengasse 12-14, A-1040 Vienna, Austria.
| | | | | | | | | |
Collapse
|