1
|
Schvartz-Leyzac KC, Colesa DJ, Swiderski DL, Raphael Y, Pfingst BE. Cochlear Health and Cochlear-implant Function. J Assoc Res Otolaryngol 2023; 24:5-29. [PMID: 36600147 PMCID: PMC9971430 DOI: 10.1007/s10162-022-00882-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/24/2022] [Indexed: 01/06/2023] Open
Abstract
The cochlear implant (CI) is widely considered to be one of the most innovative and successful neuroprosthetic treatments developed to date. Although outcomes vary, CIs are able to effectively improve hearing in nearly all recipients and can substantially improve speech understanding and quality of life for patients with significant hearing loss. A wealth of research has focused on underlying factors that contribute to success with a CI, and recent evidence suggests that the overall health of the cochlea could potentially play a larger role than previously recognized. This article defines and reviews attributes of cochlear health and describes procedures to evaluate cochlear health in humans and animal models in order to examine the effects of cochlear health on performance with a CI. Lastly, we describe how future biologic approaches can be used to preserve and/or enhance cochlear health in order to maximize performance for individual CI recipients.
Collapse
Affiliation(s)
- Kara C Schvartz-Leyzac
- Department of Otolaryngology-Head and Neck Surgery, Michigan Medicine, Kresge Hearing Research Institute, University of Michigan, 1150 Medical Center Drive, Ann Arbor, MI, 48109-5616, USA
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, 135 Rutledge Ave, Charleston, SC, 29425, USA
| | - Deborah J Colesa
- Department of Otolaryngology-Head and Neck Surgery, Michigan Medicine, Kresge Hearing Research Institute, University of Michigan, 1150 Medical Center Drive, Ann Arbor, MI, 48109-5616, USA
| | - Donald L Swiderski
- Department of Otolaryngology-Head and Neck Surgery, Michigan Medicine, Kresge Hearing Research Institute, University of Michigan, 1150 Medical Center Drive, Ann Arbor, MI, 48109-5616, USA
| | - Yehoash Raphael
- Department of Otolaryngology-Head and Neck Surgery, Michigan Medicine, Kresge Hearing Research Institute, University of Michigan, 1150 Medical Center Drive, Ann Arbor, MI, 48109-5616, USA
| | - Bryan E Pfingst
- Department of Otolaryngology-Head and Neck Surgery, Michigan Medicine, Kresge Hearing Research Institute, University of Michigan, 1150 Medical Center Drive, Ann Arbor, MI, 48109-5616, USA.
| |
Collapse
|
2
|
Suh MW, Tran P, Richardson M, Sun S, Xu Y, Djalilian HR, Lin HW, Zeng FG. Electric hearing and tinnitus suppression by noninvasive ear stimulation. Hear Res 2022; 415:108431. [PMID: 35016022 DOI: 10.1016/j.heares.2022.108431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 12/22/2021] [Accepted: 01/04/2022] [Indexed: 11/04/2022]
Abstract
While noninvasive brain stimulation is convenient and cost effective, its utility is limited by the substantial distance between scalp electrodes and their intended neural targets in the head. The tympanic membrane, or eardrum, is a thin flap of skin deep in an orifice of the head that may serve as a port for improved efficiency of noninvasive stimulation. Here we chose the cochlea as a target because it resides in the densest bone of the skull and is adjacent to many deep-brain-stimulation structures. We also tested the hypothesis that noninvasive electric stimulation of the cochlea may restore neural activities that are missing in acoustic stimulation. We placed an electrode in the ear canal or on the tympanic membrane in 25 human adults (10 females) and compared their stimulation efficiency by characterizing the electrically-evoked auditory sensation. Relative to ear canal stimulation, tympanic membrane stimulation was four times more likely to produce an auditory percept, required eight times lower electric current to reach the threshold and produced two-to-four times more linear suprathreshold responses. We further measured tinnitus suppression in 14 of the 25 subjects who had chronic tinnitus. Compared with ear canal stimulation, tympanic membrane stimulation doubled both the probability (22% vs. 55%) and the amount (-15% vs. -34%) of tinnitus suppression. These findings extended previous work comparing evoked perception and tinnitus suppression between electrodes placed in the ear canal and on the scalp. Together, the previous and present results suggest that the efficiency of conventional scalp-based noninvasive electric stimulation can be improved by at least one order of magnitude via tympanic membrane stimulation. This increased efficiency is most likely due to the shortened distance between the electrode placed on the tympanic membrane and the targeted cochlea. The present findings have implications for the management of tinnitus by offering a potential alternative to interventions using invasive electrical stimulation such as cochlear implantation, or other non-invasive transcranial electrical stimulation methods.
Collapse
Affiliation(s)
- Myung-Whan Suh
- Center for Hearing Research, Departments of Anatomy and Neurobiology, Biomedical Engineering, Cognitive Sciences, Otolaryngology - Head and Neck Surgery, University of California Irvine, Irvine, CA 92697, United States; Department of Otorhinolaryngology - Head and Neck Surgery, Seoul National University Hospital, Seoul, South Korea
| | - Phillip Tran
- Center for Hearing Research, Departments of Anatomy and Neurobiology, Biomedical Engineering, Cognitive Sciences, Otolaryngology - Head and Neck Surgery, University of California Irvine, Irvine, CA 92697, United States
| | - Matthew Richardson
- Center for Hearing Research, Departments of Anatomy and Neurobiology, Biomedical Engineering, Cognitive Sciences, Otolaryngology - Head and Neck Surgery, University of California Irvine, Irvine, CA 92697, United States
| | - Shuping Sun
- Department of Otolaryngology - Head and Neck Surgery, The First Affiliated Hospital, Zhengzhou University, Henan 450052, China
| | - Yuchen Xu
- Department of Bioengineering, University of California San Diego, San Diego, California 92092, United States
| | - Hamid R Djalilian
- Center for Hearing Research, Departments of Anatomy and Neurobiology, Biomedical Engineering, Cognitive Sciences, Otolaryngology - Head and Neck Surgery, University of California Irvine, Irvine, CA 92697, United States
| | - Harrison W Lin
- Center for Hearing Research, Departments of Anatomy and Neurobiology, Biomedical Engineering, Cognitive Sciences, Otolaryngology - Head and Neck Surgery, University of California Irvine, Irvine, CA 92697, United States
| | - Fan-Gang Zeng
- Center for Hearing Research, Departments of Anatomy and Neurobiology, Biomedical Engineering, Cognitive Sciences, Otolaryngology - Head and Neck Surgery, University of California Irvine, Irvine, CA 92697, United States.
| |
Collapse
|
3
|
Le Prell CG, Hughes LF, Dolan DF, Bledsoe SC. Effects of Calcitonin-Gene-Related-Peptide on Auditory Nerve Activity. Front Cell Dev Biol 2021; 9:752963. [PMID: 34869340 PMCID: PMC8633412 DOI: 10.3389/fcell.2021.752963] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/20/2021] [Indexed: 11/13/2022] Open
Abstract
Calcitonin-gene-related peptide (CGRP) is a lateral olivocochlear (LOC) efferent neurotransmitter. Depression of sound-driven auditory brainstem response amplitude in CGRP-null mice suggests the potential for endogenous CGRP release to upregulate spontaneous and/or sound-driven auditory nerve (AN) activity. We chronically infused CGRP into the guinea pig cochlea and evaluated changes in AN activity as well as outer hair cell (OHC) function. The amplitude of both round window noise (a measure of ensemble spontaneous activity) and the synchronous whole-nerve response to sound (compound action potential, CAP) were enhanced. Lack of change in both onset adaptation and steady state amplitude of sound-evoked distortion product otoacoustic emission (DPOAE) responses indicated CGRP had no effect on OHCs, suggesting the origin of the observed changes was neural. Combined with results from the CGRP-null mice, these results appear to confirm that endogenous CGRP enhances auditory nerve activity when released by the LOC neurons. However, infusion of the CGRP receptor antagonist CGRP (8–37) did not reliably influence spontaneous or sound-driven AN activity, or OHC function, results that contrast with the decreased ABR amplitude measured in CGRP-null mice.
Collapse
Affiliation(s)
- Colleen G Le Prell
- Department of Otolaryngology, University of Michigan, Ann Arbor, MI, United States.,Department of Speech, Language, and Hearing, University of Texas at Dallas, Richardson, TX, United States
| | - Larry F Hughes
- Department of Surgery, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - David F Dolan
- Department of Otolaryngology, University of Michigan, Ann Arbor, MI, United States
| | - Sanford C Bledsoe
- Department of Otolaryngology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
4
|
Naert G, Pasdelou MP, Le Prell CG. Use of the guinea pig in studies on the development and prevention of acquired sensorineural hearing loss, with an emphasis on noise. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:3743. [PMID: 31795705 PMCID: PMC7195866 DOI: 10.1121/1.5132711] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/30/2019] [Accepted: 08/12/2019] [Indexed: 05/10/2023]
Abstract
Guinea pigs have been used in diverse studies to better understand acquired hearing loss induced by noise and ototoxic drugs. The guinea pig has its best hearing at slightly higher frequencies relative to humans, but its hearing is more similar to humans than the rat or mouse. Like other rodents, it is more vulnerable to noise injury than the human or nonhuman primate models. There is a wealth of information on auditory function and vulnerability of the inner ear to diverse insults in the guinea pig. With respect to the assessment of potential otoprotective agents, guinea pigs are also docile animals that are relatively easy to dose via systemic injections or gavage. Of interest, the cochlea and the round window are easily accessible, notably for direct cochlear therapy, as in the chinchilla, making the guinea pig a most relevant and suitable model for hearing. This article reviews the use of the guinea pig in basic auditory research, provides detailed discussion of its use in studies on noise injury and other injuries leading to acquired sensorineural hearing loss, and lists some therapeutics assessed in these laboratory animal models to prevent acquired sensorineural hearing loss.
Collapse
Affiliation(s)
| | | | - Colleen G Le Prell
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas 75080, USA
| |
Collapse
|
5
|
Auditory Performance and Electrical Stimulation Measures in Cochlear Implant Recipients With Auditory Neuropathy Compared With Severe to Profound Sensorineural Hearing Loss. Ear Hear 2018; 38:184-193. [PMID: 28225734 DOI: 10.1097/aud.0000000000000384] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVES The aim of the study was to compare auditory and speech outcomes and electrical parameters on average 8 years after cochlear implantation between children with isolated auditory neuropathy (AN) and children with sensorineural hearing loss (SNHL). DESIGN The study was conducted at a tertiary, university-affiliated pediatric medical center. The cohort included 16 patients with isolated AN with current age of 5 to 12.2 years who had been using a cochlear implant for at least 3.4 years and 16 control patients with SNHL matched for duration of deafness, age at implantation, type of implant, and unilateral/bilateral implant placement. All participants had had extensive auditory rehabilitation before and after implantation, including the use of conventional hearing aids. Most patients received Cochlear Nucleus devices, and the remainder either Med-El or Advanced Bionics devices. Unaided pure-tone audiograms were evaluated before and after implantation. Implantation outcomes were assessed by auditory and speech recognition tests in quiet and in noise. Data were also collected on the educational setting at 1 year after implantation and at school age. The electrical stimulation measures were evaluated only in the Cochlear Nucleus implant recipients in the two groups. Similar mapping and electrical measurement techniques were used in the two groups. Electrical thresholds, comfortable level, dynamic range, and objective neural response telemetry threshold were measured across the 22-electrode array in each patient. Main outcome measures were between-group differences in the following parameters: (1) Auditory and speech tests. (2) Residual hearing. (3) Electrical stimulation parameters. (4) Correlations of residual hearing at low frequencies with electrical thresholds at the basal, middle, and apical electrodes. RESULTS The children with isolated AN performed equally well to the children with SNHL on auditory and speech recognition tests in both quiet and noise. More children in the AN group than the SNHL group were attending mainstream educational settings at school age, but the difference was not statistically significant. Significant between-group differences were noted in electrical measurements: the AN group was characterized by a lower current charge to reach subjective electrical thresholds, lower comfortable level and dynamic range, and lower telemetric neural response threshold. Based on pure-tone audiograms, the children with AN also had more residual hearing before and after implantation. Highly positive coefficients were found on correlation analysis between T levels across the basal and midcochlear electrodes and low-frequency acoustic thresholds. CONCLUSIONS Prelingual children with isolated AN who fail to show expected oral and auditory progress after extensive rehabilitation with conventional hearing aids should be considered for cochlear implantation. Children with isolated AN had similar pattern as children with SNHL on auditory performance tests after cochlear implantation. The lower current charge required to evoke subjective and objective electrical thresholds in children with AN compared with children with SNHL may be attributed to the contribution to electrophonic hearing from the remaining neurons and hair cells. In addition, it is also possible that mechanical stimulation of the basilar membrane, as in acoustic stimulation, is added to the electrical stimulation of the cochlear implant.
Collapse
|
6
|
Kang SY, Colesa DJ, Swiderski DL, Su GL, Raphael Y, Pfingst BE. Effects of hearing preservation on psychophysical responses to cochlear implant stimulation. J Assoc Res Otolaryngol 2009; 11:245-65. [PMID: 19902297 DOI: 10.1007/s10162-009-0194-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Accepted: 10/01/2009] [Indexed: 10/20/2022] Open
Abstract
Previous studies have shown that residual acoustic hearing supplements cochlear implant function to improve speech recognition in noise as well as perception of music. The current study had two primary objectives. First, we sought to determine how cochlear implantation and electrical stimulation over a time period of 14 to 21 months influence cochlear structures such as hair cells and spiral ganglion neurons. Second, we sought to investigate whether the structures that provide acoustic hearing also affect the perception of electrical stimulation. We compared psychophysical responses to cochlear implant stimulation in two groups of adult guinea pigs. Group I (11 animals) received a cochlear implant in a previously untreated ear, while group II (ten animals) received a cochlear implant in an ear that had been previously infused with neomycin to destroy hearing. Psychophysical thresholds were measured in response to pulse-train and sinusoidal stimuli. Histological analysis of all group I animals and a subset of group II animals was performed. Nine of the 11 group I animals showed survival of the organ of Corti and spiral ganglion neurons adjacent to the electrode array. All group I animals showed survival of these elements in regions apical to the electrode array. Group II animals that were examined histologically showed complete loss of the organ of Corti in regions adjacent and apical to the electrode array and severe spiral ganglion neuron loss, consistent with previous reports for neomycin-treated ears. Behaviorally, group II animals had significantly lower thresholds than group I animals in response to 100 Hz sinusoidal stimuli. However, group I animals had significantly lower thresholds than group II animals in response to pulse-train stimuli (0.02 ms/phase; 156 to 5,000 pps). Additionally, the two groups showed distinct threshold versus pulse rate functions. We hypothesize that the differences in detection thresholds between groups are caused by the electrical activation of the hair cells in group I animals and/or differences between groups in the condition of the spiral ganglion neurons.
Collapse
Affiliation(s)
- Stephen Y Kang
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan, Ann Arbor, MI 48109-5616, USA
| | | | | | | | | | | |
Collapse
|
7
|
Low frequency electromagnetic radiation and hearing. The Journal of Laryngology & Otology 2009; 123:1204-11. [PMID: 19573254 DOI: 10.1017/s0022215109005684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE To analyse the possible impact of low and extremely low frequency electromagnetic fields on the outer hairs cells of the organ of Corti, in a guinea pig model. MATERIALS AND METHODS Electromagnetic fields of 50, 500, 1000, 2000, 4000 and 5000 Hz frequencies and 1.5 microT intensity were generated using a transverse electromagnetic wave guide. Guinea pigs of both sexes, weighing 100-150 g, were used, with no abnormalities on general and otic examination. Total exposure times were: 360 hours for 50, 500 and 1000 Hz; 3300 hours for 2000 Hz; 4820 hours for 4000 Hz; and 6420 hours for 5000 Hz. One control animal was used in each frequency group. The parameters measured by electric response audiometer included: hearing level; waves I-IV latencies; wave I-III interpeak latency; and percentage appearance of waves I-III at 90 and 50 dB sound pressure level intensity. RESULTS Values for the above parameters did not differ significantly, comparing the control animal and the rest of each group. In addition, no significant differences were found between our findings and those of previous studies of normal guinea pigs. CONCLUSION Prolonged exposure to electromagnetic fields of 50 Hz to 5 KHz frequencies and 1.5 microT intensity, produced no functional or morphological alteration in the outer hair cells of the guinea pig organ of Corti.
Collapse
|
8
|
Pfingst BE, Burkholder-Juhasz RA, Zwolan TA, Xu L. Psychophysical assessment of stimulation sites in auditory prosthesis electrode arrays. Hear Res 2008; 242:172-83. [PMID: 18178350 PMCID: PMC2593127 DOI: 10.1016/j.heares.2007.11.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Revised: 11/20/2007] [Accepted: 11/20/2007] [Indexed: 12/12/2022]
Abstract
Auditory prostheses use implanted electrode arrays that permit stimulation at many sites along the tonotopic axis of auditory neurons. Psychophysical studies demonstrate that measures of implant function, such as detection and discrimination thresholds, vary considerably across these sites, that the across-site patterns of these measures differ across subjects, and that the likely mechanisms underlying this variability differ across measures. Psychophysical and speech recognition studies suggest that not all stimulation sites contribute equally to perception with the prosthesis and that some sites might have negative effects on perception. Studies that reduce the number of active stimulation sites indicate that most cochlear implant users can effectively utilize a maximum of only about seven sites in their processors. These findings support a strategy for improving implant performance by selecting only the best stimulation sites for the processor map. Another approach is to revise stimulation parameters for ineffective sites in an effort to improve acuity at those sites. In this paper, we discuss data supporting these approaches and some potential pitfalls.
Collapse
Affiliation(s)
- Bryan E Pfingst
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan Health System, Ann Arbor, MI 48109-5506, USA.
| | | | | | | |
Collapse
|
9
|
Miller JM, Le Prell CG, Prieskorn DM, Wys NL, Altschuler RA. Delayed neurotrophin treatment following deafness rescues spiral ganglion cells from death and promotes regrowth of auditory nerve peripheral processes: effects of brain-derived neurotrophic factor and fibroblast growth factor. J Neurosci Res 2007; 85:1959-69. [PMID: 17492794 DOI: 10.1002/jnr.21320] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The extent to which neurotrophic factors are able to not only rescue the auditory nerve from deafferentation-induced degeneration but also promote process regrowth is of basic and clinical interest, as regrowth may enhance the therapeutic efficacy of cochlear prostheses. The use of neurotrophic factors is also relevant to interventions to promote regrowth and repair at other sites of nerve trauma. Therefore, auditory nerve survival and peripheral process regrowth were assessed in the guinea pig cochlea following chronic infusion of BDNF + FGF(1) into scala tympani, with treatment initiated 4 days, 3 weeks, or 6 weeks after deafferentation from deafening. Survival of auditory nerve somata (spiral ganglion neurons) was assessed from midmodiolar sections. Peripheral process regrowth was assessed using pan-Trk immunostaining to selectively label afferent fibers. Significantly enhanced survival was seen in each of the treatment groups compared to controls receiving artificial perilymph. A large increase in peripheral processes was found with BDNF + FGF(1) treatment after a 3-week delay compared to the artificial perilymph controls and a smaller enhancement after a 6-week delay. Neurotrophic factor treatment therefore has the potential to improve the benefits of cochlear implants by maintaining a larger excitable population of neurons and inducing neural regrowth.
Collapse
Affiliation(s)
- Josef M Miller
- Kresge Hearing Research Institute, University of Michigan, Ann Arbor, Michigan 48109-0506, USA.
| | | | | | | | | |
Collapse
|
10
|
Le Prell CG, Yamashita D, Minami SB, Yamasoba T, Miller JM. Mechanisms of noise-induced hearing loss indicate multiple methods of prevention. Hear Res 2007; 226:22-43. [PMID: 17141991 PMCID: PMC1995566 DOI: 10.1016/j.heares.2006.10.006] [Citation(s) in RCA: 245] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2006] [Revised: 10/05/2006] [Accepted: 10/24/2006] [Indexed: 12/20/2022]
Abstract
Recent research has shown the essential role of reduced blood flow and free radical formation in the cochlea in noise-induced hearing loss (NIHL). The amount, distribution, and time course of free radical formation have been defined, including a clinically significant late formation 7-10 days following noise exposure, and one mechanism underlying noise-induced reduction in cochlear blood flow has finally been identified. These new insights have led to the formulation of new hypotheses regarding the molecular mechanisms of NIHL; and, from these, we have identified interventions that prevent NIHL, even with treatment onset delayed up to 3 days post-noise. It is essential to now assess the additive effects of agents intervening at different points in the cell death pathway to optimize treatment efficacy. Finding safe and effective interventions that attenuate NIHL will provide a compelling scientific rationale to justify human trials to eliminate this single major cause of acquired hearing loss.
Collapse
Affiliation(s)
- Colleen G Le Prell
- Kresge Hearing Research Institute, University of Michigan, 1301 East Ann Street, Ann Arbor, MI 48109-0506, USA.
| | | | | | | | | |
Collapse
|