1
|
Schilling A, Sedley W, Gerum R, Metzner C, Tziridis K, Maier A, Schulze H, Zeng FG, Friston KJ, Krauss P. Predictive coding and stochastic resonance as fundamental principles of auditory phantom perception. Brain 2023; 146:4809-4825. [PMID: 37503725 PMCID: PMC10690027 DOI: 10.1093/brain/awad255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 06/27/2023] [Accepted: 07/15/2023] [Indexed: 07/29/2023] Open
Abstract
Mechanistic insight is achieved only when experiments are employed to test formal or computational models. Furthermore, in analogy to lesion studies, phantom perception may serve as a vehicle to understand the fundamental processing principles underlying healthy auditory perception. With a special focus on tinnitus-as the prime example of auditory phantom perception-we review recent work at the intersection of artificial intelligence, psychology and neuroscience. In particular, we discuss why everyone with tinnitus suffers from (at least hidden) hearing loss, but not everyone with hearing loss suffers from tinnitus. We argue that intrinsic neural noise is generated and amplified along the auditory pathway as a compensatory mechanism to restore normal hearing based on adaptive stochastic resonance. The neural noise increase can then be misinterpreted as auditory input and perceived as tinnitus. This mechanism can be formalized in the Bayesian brain framework, where the percept (posterior) assimilates a prior prediction (brain's expectations) and likelihood (bottom-up neural signal). A higher mean and lower variance (i.e. enhanced precision) of the likelihood shifts the posterior, evincing a misinterpretation of sensory evidence, which may be further confounded by plastic changes in the brain that underwrite prior predictions. Hence, two fundamental processing principles provide the most explanatory power for the emergence of auditory phantom perceptions: predictive coding as a top-down and adaptive stochastic resonance as a complementary bottom-up mechanism. We conclude that both principles also play a crucial role in healthy auditory perception. Finally, in the context of neuroscience-inspired artificial intelligence, both processing principles may serve to improve contemporary machine learning techniques.
Collapse
Affiliation(s)
- Achim Schilling
- Neuroscience Lab, University Hospital Erlangen, 91054 Erlangen, Germany
- Cognitive Computational Neuroscience Group, University Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - William Sedley
- Translational and Clinical Research Institute, Newcastle University Medical School, Newcastle upon Tyne NE2 4HH, UK
| | - Richard Gerum
- Cognitive Computational Neuroscience Group, University Erlangen-Nürnberg, 91058 Erlangen, Germany
- Department of Physics and Astronomy and Center for Vision Research, York University, Toronto, ON M3J 1P3, Canada
| | - Claus Metzner
- Neuroscience Lab, University Hospital Erlangen, 91054 Erlangen, Germany
| | | | - Andreas Maier
- Pattern Recognition Lab, University Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Holger Schulze
- Neuroscience Lab, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Fan-Gang Zeng
- Center for Hearing Research, Departments of Anatomy and Neurobiology, Biomedical Engineering, Cognitive Sciences, Otolaryngology–Head and Neck Surgery, University of California Irvine, Irvine, CA 92697, USA
| | - Karl J Friston
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, London WC1N 3AR, UK
| | - Patrick Krauss
- Neuroscience Lab, University Hospital Erlangen, 91054 Erlangen, Germany
- Cognitive Computational Neuroscience Group, University Erlangen-Nürnberg, 91058 Erlangen, Germany
- Pattern Recognition Lab, University Erlangen-Nürnberg, 91058 Erlangen, Germany
| |
Collapse
|
2
|
Vasilkov V, Caswell-Midwinter B, Zhao Y, de Gruttola V, Jung DH, Liberman MC, Maison SF. Evidence of cochlear neural degeneration in normal-hearing subjects with tinnitus. Sci Rep 2023; 13:19870. [PMID: 38036538 PMCID: PMC10689483 DOI: 10.1038/s41598-023-46741-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/04/2023] [Indexed: 12/02/2023] Open
Abstract
Tinnitus, reduced sound-level tolerance, and difficulties hearing in noisy environments are the most common complaints associated with sensorineural hearing loss in adult populations. This study aims to clarify if cochlear neural degeneration estimated in a large pool of participants with normal audiograms is associated with self-report of tinnitus using a test battery probing the different stages of the auditory processing from hair cell responses to the auditory reflexes of the brainstem. Self-report of chronic tinnitus was significantly associated with (1) reduced cochlear nerve responses, (2) weaker middle-ear muscle reflexes, (3) stronger medial olivocochlear efferent reflexes and (4) hyperactivity in the central auditory pathways. These results support the model of tinnitus generation whereby decreased neural activity from a damaged cochlea can elicit hyperactivity from decreased inhibition in the central nervous system.
Collapse
Affiliation(s)
- Viacheslav Vasilkov
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, 243 Charles Street, Boston, MA, 02114, USA
- Department of Otolaryngology, Harvard Medical School, Boston, MA, 02114, USA
| | - Benjamin Caswell-Midwinter
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, 243 Charles Street, Boston, MA, 02114, USA
- Department of Otolaryngology, Harvard Medical School, Boston, MA, 02114, USA
| | - Yan Zhao
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, 243 Charles Street, Boston, MA, 02114, USA
| | - Victor de Gruttola
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02114, USA
| | - David H Jung
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, 243 Charles Street, Boston, MA, 02114, USA
- Department of Otolaryngology, Harvard Medical School, Boston, MA, 02114, USA
| | - M Charles Liberman
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, 243 Charles Street, Boston, MA, 02114, USA
- Department of Otolaryngology, Harvard Medical School, Boston, MA, 02114, USA
| | - Stéphane F Maison
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, 243 Charles Street, Boston, MA, 02114, USA.
- Department of Otolaryngology, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
3
|
Schilling A, Tziridis K, Schulze H, Krauss P. Behavioral assessment of Zwicker tone percepts in gerbils. Neuroscience 2023; 520:39-45. [PMID: 37080446 DOI: 10.1016/j.neuroscience.2023.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/15/2023] [Accepted: 04/12/2023] [Indexed: 04/22/2023]
Abstract
The Zwicker tone illusion - an auditory phantom percept after hearing a notched noise stimulus - can serve as an interesting model for acute tinnitus. Recent mechanistic models suggest that the underlying neural mechanisms of both percepts are similar. To date it is not clear if animals do perceive the Zwicker tone, as up to now no behavioral paradigms are available to objectively assess the presence of this phantom percept. Here we introduce, for the first time, a modified version of the gap pre-pulse inhibition of the acoustic startle reflex (GPIAS) paradigm to test if it is possible to induce a Zwicker tone percept in our rodent model, the Mongolian gerbil. Furthermore, we developed a new aversive conditioning learning paradigm and compare the two approaches. We found a significant increase in the GPIAS effect when presenting a notched noise compared to white noise gap pre-pulse inhibition, which is consistent with the interpretation of a Zwicker tone percept in these animals. In the aversive conditioning learning paradigm, no clear effect could be observed in the discrimination performance of the tested animals. When investigating the first 33% of the correct conditioned responses, an effect of a possible Zwicker tone percept can be seen, i.e. animals show identical behavior as if a pure tone was presented, but the paradigm needs to be further improved. Nevertheless, the results indicate that Mongolian gerbils are able to perceive a Zwicker tone and can serve as a neurophysiological model for human tinnitus generation.
Collapse
Affiliation(s)
- Achim Schilling
- Neuroscience Lab, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Germany
| | - Konstantin Tziridis
- Neuroscience Lab, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Germany
| | - Holger Schulze
- Neuroscience Lab, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Germany
| | - Patrick Krauss
- Neuroscience Lab, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Germany.
| |
Collapse
|
4
|
Hayes SH, Beh K, Typlt M, Schormans AL, Stolzberg D, Allman BL. Using an appetitive operant conditioning paradigm to screen rats for tinnitus induced by intense sound exposure: Experimental considerations and interpretation. Front Neurosci 2023; 17:1001619. [PMID: 36845432 PMCID: PMC9950262 DOI: 10.3389/fnins.2023.1001619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 01/25/2023] [Indexed: 02/12/2023] Open
Abstract
In an effort to help elucidate the neural mechanisms underlying tinnitus in humans, researchers have often relied on animal models; a preclinical approach which ultimately required that behavioral paradigms be designed to reliably screen animals for tinnitus. Previously, we developed a two-alternative forced-choice (2AFC) paradigm for rats that allowed for the simultaneous recording of neural activity at the very moments when they were reporting the presence/absence of tinnitus. Because we first validated our paradigm in rats experiencing transient tinnitus following a high-dose of sodium salicylate, the present study now sought to evaluate its utility to screen for tinnitus caused by intense sound exposure; a common tinnitus-inducer in humans. More specifically, through a series of experimental protocols, we aimed to (1) conduct sham experiments to ensure that the paradigm was able to correctly classify control rats as not having tinnitus, (2) confirm the time course over which the behavioral testing could reliably be performed post-exposure to assess chronic tinnitus, and (3) determine if the paradigm was sensitive to the variable outcomes often observed after intense sound exposure (e.g., hearing loss with our without tinnitus). Ultimately, in accordance with our predictions, the 2AFC paradigm was indeed resistant to false-positive screening of rats for intense sound-induced tinnitus, and it was able to reveal variable tinnitus and hearing loss profiles in individual rats following intense sound exposure. Taken together, the present study documents the utility of our appetitive operant conditioning paradigm to assess acute and chronic sound-induced tinnitus in rats. Finally, based on our findings, we discuss important experimental considerations that will help ensure that our paradigm is able to provide a suitable platform for future investigations into the neural basis of tinnitus.
Collapse
Affiliation(s)
- Sarah H. Hayes
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada,*Correspondence: Sarah H. Hayes,
| | - Krystal Beh
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada,National Centre for Audiology, Elborn College, The University of Western Ontario, London, ON, Canada
| | - Marei Typlt
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada,Audifon GmbH & Co. KG, Kölleda, Germany
| | - Ashley L. Schormans
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
| | - Daniel Stolzberg
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
| | - Brian L. Allman
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada,National Centre for Audiology, Elborn College, The University of Western Ontario, London, ON, Canada
| |
Collapse
|
5
|
Schilling A, Gerum R, Metzner C, Maier A, Krauss P. Intrinsic Noise Improves Speech Recognition in a Computational Model of the Auditory Pathway. Front Neurosci 2022; 16:908330. [PMID: 35757533 PMCID: PMC9215117 DOI: 10.3389/fnins.2022.908330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/09/2022] [Indexed: 01/05/2023] Open
Abstract
Noise is generally considered to harm information processing performance. However, in the context of stochastic resonance, noise has been shown to improve signal detection of weak sub- threshold signals, and it has been proposed that the brain might actively exploit this phenomenon. Especially within the auditory system, recent studies suggest that intrinsic noise plays a key role in signal processing and might even correspond to increased spontaneous neuronal firing rates observed in early processing stages of the auditory brain stem and cortex after hearing loss. Here we present a computational model of the auditory pathway based on a deep neural network, trained on speech recognition. We simulate different levels of hearing loss and investigate the effect of intrinsic noise. Remarkably, speech recognition after hearing loss actually improves with additional intrinsic noise. This surprising result indicates that intrinsic noise might not only play a crucial role in human auditory processing, but might even be beneficial for contemporary machine learning approaches.
Collapse
Affiliation(s)
- Achim Schilling
- Laboratory of Sensory and Cognitive Neuroscience, Aix-Marseille University, Marseille, France
- Neuroscience Lab, University Hospital Erlangen, Erlangen, Germany
- Cognitive Computational Neuroscience Group, Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Richard Gerum
- Department of Physics and Center for Vision Research, York University, Toronto, ON, Canada
| | - Claus Metzner
- Neuroscience Lab, University Hospital Erlangen, Erlangen, Germany
- Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Andreas Maier
- Pattern Recognition Lab, Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Patrick Krauss
- Neuroscience Lab, University Hospital Erlangen, Erlangen, Germany
- Cognitive Computational Neuroscience Group, Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Erlangen, Germany
- Pattern Recognition Lab, Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Erlangen, Germany
- Linguistics Lab, Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Erlangen, Germany
| |
Collapse
|
6
|
The Quantum Tunneling of Ions Model Can Explain the Pathophysiology of Tinnitus. Brain Sci 2022; 12:brainsci12040426. [PMID: 35447958 PMCID: PMC9025927 DOI: 10.3390/brainsci12040426] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/16/2022] [Accepted: 03/19/2022] [Indexed: 02/04/2023] Open
Abstract
Tinnitus is a well-known pathological entity in clinical practice. However, the pathophysiological mechanisms behind tinnitus seem to be elusive and cannot provide a comprehensive understanding of its pathogenesis and clinical manifestations. Hence, in the present study, we explore the mathematical model of ions’ quantum tunneling to propose an original pathophysiological mechanism for the sensation of tinnitus. The present model focuses on two major aspects: The first aspect is the ability of ions, including sodium, potassium, and calcium, to depolarize the membrane potential of inner hair cells and the neurons of the auditory pathway. This membrane depolarization is induced via the quantum tunneling of ions through closed voltage-gated channels. The state of membrane depolarization can be a state of hyper-excitability or hypo-excitability, depending on the degree of depolarization. Both of these states aid in understanding the pathophysiology of tinnitus. The second aspect is the quantum tunneling signals between the demyelinated neurons of the auditory pathway. These signals are mediated via the quantum tunneling of potassium ions, which exit to the extracellular fluid during an action potential event. These quantum signals can be viewed as a “quantum synapse” between neurons. The formation of quantum synapses results in hyper-excitability among the demyelinated neurons of the auditory pathway. Both of these aspects augment and amplify the electrical signals in the auditory pathway and result in a loss of the spatiotemporal fidelity of sound signals going to the brain centers. The brain interprets this hyper-excitability and loss of spatiotemporal fidelity as tinnitus. Herein, we show mathematically that the quantum tunneling of ions can depolarize the membrane potential of the inner hair cells and neurons of the auditory pathway. Moreover, we calculate the probability of action potential induction in the neurons of the auditory pathway generated by the quantum tunneling signals of potassium ions.
Collapse
|
7
|
Dotan A, Shriki O. Tinnitus-like "hallucinations" elicited by sensory deprivation in an entropy maximization recurrent neural network. PLoS Comput Biol 2021; 17:e1008664. [PMID: 34879061 PMCID: PMC8687580 DOI: 10.1371/journal.pcbi.1008664] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 12/20/2021] [Accepted: 11/24/2021] [Indexed: 11/19/2022] Open
Abstract
Sensory deprivation has long been known to cause hallucinations or "phantom" sensations, the most common of which is tinnitus induced by hearing loss, affecting 10-20% of the population. An observable hearing loss, causing auditory sensory deprivation over a band of frequencies, is present in over 90% of people with tinnitus. Existing plasticity-based computational models for tinnitus are usually driven by homeostatic mechanisms, modeled to fit phenomenological findings. Here, we use an objective-driven learning algorithm to model an early auditory processing neuronal network, e.g., in the dorsal cochlear nucleus. The learning algorithm maximizes the network's output entropy by learning the feed-forward and recurrent interactions in the model. We show that the connectivity patterns and responses learned by the model display several hallmarks of early auditory neuronal networks. We further demonstrate that attenuation of peripheral inputs drives the recurrent network towards its critical point and transition into a tinnitus-like state. In this state, the network activity resembles responses to genuine inputs even in the absence of external stimulation, namely, it "hallucinates" auditory responses. These findings demonstrate how objective-driven plasticity mechanisms that normally act to optimize the network's input representation can also elicit pathologies such as tinnitus as a result of sensory deprivation.
Collapse
Affiliation(s)
- Aviv Dotan
- Department of Cognitive and Brain Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Oren Shriki
- Department of Cognitive and Brain Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Department of Computer Science, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
8
|
Klein A, Schankin CJ. Visual snow syndrome, the spectrum of perceptual disorders, and migraine as a common risk factor: A narrative review. Headache 2021; 61:1306-1313. [PMID: 34570907 PMCID: PMC9293285 DOI: 10.1111/head.14213] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/06/2021] [Accepted: 08/19/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVE The aim of this narrative review is to explore the relationship between visual snow syndrome (VSS), migraine, and a group of other perceptual disorders. BACKGROUND VSS is characterized by visual snow and additional visual and nonvisual disturbances. The clinical picture suggests a hypersensitivity to internal and external stimuli. Imaging and electrophysiological findings indicate a hyperexcitability of the primary and secondary visual areas of the brain possibly due to an impairment of inhibitory feedback mechanisms. Migraine is the most frequent comorbidity. Epidemiological and clinical studies indicate that other perceptual disorders, such as tinnitus, fibromyalgia, and dizziness, are associated with VSS. Clinical overlaps and parallels in pathophysiology might exist in relation to migraine. METHODS We performed a PubMed and Google Scholar search with the following terms: visual snow syndrome, entoptic phenomenon, fibromyalgia, tinnitus, migraine, dizziness, persistent postural-perceptual dizziness (PPPD), comorbidities, symptoms, pathophysiology, thalamus, thalamocortical dysrhythmia, and salience network. RESULTS VSS, fibromyalgia, tinnitus, and PPPD share evidence of a central disturbance in the processing of different stimuli (visual, somatosensory/pain, acoustic, and vestibular) that might lead to hypersensitivity. Imaging and electrophysiological findings hint toward network disorders involving the sensory networks and other large-scale networks involved in the management of attention and emotional processing. There are clinical and epidemiological overlaps between these disorders. Similarly, migraine exhibits a multisensory hypersensitivity even in the interictal state with fluctuation during the migraine cycle. All the described perceptual disorders are associated with migraine suggesting that having migraine, that is, a disorder of sensory processing, is a common link. CONCLUSION VSS, PPPD, fibromyalgia, and chronic tinnitus might lie on a spectrum of perceptual disorders with similar pathophysiological mechanisms and the common risk factor migraine. Understanding the underlying network disturbances might give insights into how to improve these currently very difficult to treat conditions.
Collapse
Affiliation(s)
- Antonia Klein
- Department of NeurologyInselspitalBern University HospitalUniversity of BernBernSwitzerland
| | - Christoph J. Schankin
- Department of NeurologyInselspitalBern University HospitalUniversity of BernBernSwitzerland
| |
Collapse
|
9
|
Hu S, Hall DA, Zubler F, Sznitman R, Anschuetz L, Caversaccio M, Wimmer W. Bayesian brain in tinnitus: Computational modeling of three perceptual phenomena using a modified Hierarchical Gaussian Filter. Hear Res 2021; 410:108338. [PMID: 34469780 DOI: 10.1016/j.heares.2021.108338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/27/2021] [Accepted: 08/17/2021] [Indexed: 01/01/2023]
Abstract
Recently, Bayesian brain-based models emerged as a possible composite of existing theories, providing an universal explanation of tinnitus phenomena. Yet, the involvement of multiple synergistic mechanisms complicates the identification of behavioral and physiological evidence. To overcome this, an empirically tested computational model could support the evaluation of theoretical hypotheses by intrinsically encompassing different mechanisms. The aim of this work was to develop a generative computational tinnitus perception model based on the Bayesian brain concept. The behavioral responses of 46 tinnitus subjects who underwent ten consecutive residual inhibition assessments were used for model fitting. Our model was able to replicate the behavioral responses during residual inhibition in our cohort (median linear correlation coefficient of 0.79). Using the same model, we simulated two additional tinnitus phenomena: residual excitation and occurrence of tinnitus in non-tinnitus subjects after sensory deprivation. In the simulations, the trajectories of the model were consistent with previously obtained behavioral and physiological observations. Our work introduces generative computational modeling to the research field of tinnitus. It has the potential to quantitatively link experimental observations to theoretical hypotheses and to support the search for neural signatures of tinnitus by finding correlates between the latent variables of the model and measured physiological data.
Collapse
Affiliation(s)
- Suyi Hu
- Department for Otolaryngology, Head and Neck Surgery, Inselspital, University Hospital Bern, University of Bern, Switzerland; Hearing Research Laboratory, ARTORG Center for Biomedical Engineering Research, University of Bern, Switzerland
| | - Deborah A Hall
- Hearing Sciences, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, UK; Department of Psychology, School of Social Sciences, Heriot-Watt University Malaysia, Putrajaya, Malaysia
| | - Frédéric Zubler
- Department of Neurology, Inselspital, University Hospital Bern, University of Bern, Switzerland
| | - Raphael Sznitman
- Artificial Intelligence in Medical Imaging, ARTORG Center for Biomedical Engineering Research, University of Bern, Switzerland
| | - Lukas Anschuetz
- Department for Otolaryngology, Head and Neck Surgery, Inselspital, University Hospital Bern, University of Bern, Switzerland
| | - Marco Caversaccio
- Department for Otolaryngology, Head and Neck Surgery, Inselspital, University Hospital Bern, University of Bern, Switzerland; Hearing Research Laboratory, ARTORG Center for Biomedical Engineering Research, University of Bern, Switzerland
| | - Wilhelm Wimmer
- Department for Otolaryngology, Head and Neck Surgery, Inselspital, University Hospital Bern, University of Bern, Switzerland; Hearing Research Laboratory, ARTORG Center for Biomedical Engineering Research, University of Bern, Switzerland
| |
Collapse
|
10
|
Schilling A, Tziridis K, Schulze H, Krauss P. The stochastic resonance model of auditory perception: A unified explanation of tinnitus development, Zwicker tone illusion, and residual inhibition. PROGRESS IN BRAIN RESEARCH 2021; 262:139-157. [PMID: 33931176 DOI: 10.1016/bs.pbr.2021.01.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Stochastic resonance (SR) has been proposed to play a major role in auditory perception, and to maintain optimal information transmission from the cochlea to the auditory system. By this, the auditory system could adapt to changes of the auditory input at second or even sub-second timescales. In case of reduced auditory input, somatosensory projections to the dorsal cochlear nucleus would be disinhibited in order to improve hearing thresholds by means of SR. As a side effect, the increased somatosensory input corresponding to the observed tinnitus-associated neuronal hyperactivity is then perceived as tinnitus. In addition, the model can also explain transient phantom tone perceptions occurring after ear plugging, or the Zwicker tone illusion. Vice versa, the model predicts that via stimulation with acoustic noise, SR would not be needed to optimize information transmission, and hence somatosensory noise would be tuned down, resulting in a transient vanishing of tinnitus, an effect referred to as residual inhibition.
Collapse
Affiliation(s)
- Achim Schilling
- Neuroscience Lab, Experimental Otolaryngology, University Hospital Erlangen, Erlangen, Germany; Cognitive Computational Neuroscience Group at the Chair of English Philology and Linguistics, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Konstantin Tziridis
- Neuroscience Lab, Experimental Otolaryngology, University Hospital Erlangen, Erlangen, Germany
| | - Holger Schulze
- Neuroscience Lab, Experimental Otolaryngology, University Hospital Erlangen, Erlangen, Germany
| | - Patrick Krauss
- Neuroscience Lab, Experimental Otolaryngology, University Hospital Erlangen, Erlangen, Germany; Cognitive Computational Neuroscience Group at the Chair of English Philology and Linguistics, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany; FAU Linguistics Lab, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany; Department of Otorhinolaryngology/Head and Neck Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
11
|
Lee HJ, Kahinga AA, Moon IS. Clinical effect of an active transcutaneous bone-conduction implant on tinnitus in patients with ipsilateral sensorineural hearing loss. Auris Nasus Larynx 2020; 48:394-399. [PMID: 32980209 DOI: 10.1016/j.anl.2020.09.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 09/07/2020] [Accepted: 09/16/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVES This study investigated the effect of an active transcutaneous bone conduction implant (BoneBridgeⓇ) in the management of tinnitus in patients with unilateral sensorineural hearing loss. METHODS From October 2016 to July 2018, 15 patients with unilateral tinnitus accompanied by ipsilateral sensorineural hearing loss received BoneBridgeⓇ implants. Pure-tone average, tinnitus handicap inventory (THI), and a visual analogue scale (VAS) for awareness, loudness, and annoyance were measured before and 6 months after surgery. We defined improvement as a reduction of more than 20% between preoperative and postoperative VAS and THI scores, and changes in the THI of over 7 points were also assessed. RESULTS Mean THI scores before surgery (72.8 ± 16.1) had significantly improved by 6 months postoperatively (50.9 ± 18.9) (p = 0.003). VAS scores for loudness and annoyance also statistically significantly improved (p = 0.011 and 0.002). The amount of functional hearing gain correlated with changes in VAS scores for annoyance. This correlation was stronger with the improvement of high frequency hearing. CONCLUSION BoneBridgeⓇ is beneficial in patients with tinnitus accompanied by sensorineural hearing loss. This finding can help select patients who will benefit most from bone conduction implants.
Collapse
Affiliation(s)
- Hyun-Jin Lee
- Department of Otorhinolaryngology, Gyeongsang National University Changwon Hospital, Gyeongsang National University College of Medicine, Changwon, South Korea
| | | | - In Seok Moon
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
12
|
Rahman MS, Barnes KA, Crommett LE, Tommerdahl M, Yau JM. Auditory and tactile frequency representations are co-embedded in modality-defined cortical sensory systems. Neuroimage 2020; 215:116837. [PMID: 32289461 PMCID: PMC7292761 DOI: 10.1016/j.neuroimage.2020.116837] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 03/17/2020] [Accepted: 04/06/2020] [Indexed: 11/18/2022] Open
Abstract
Sensory information is represented and elaborated in hierarchical cortical systems that are thought to be dedicated to individual sensory modalities. This traditional view of sensory cortex organization has been challenged by recent evidence of multimodal responses in primary and association sensory areas. Although it is indisputable that sensory areas respond to multiple modalities, it remains unclear whether these multimodal responses reflect selective information processing for particular stimulus features. Here, we used fMRI adaptation to identify brain regions that are sensitive to the temporal frequency information contained in auditory, tactile, and audiotactile stimulus sequences. A number of brain regions distributed over the parietal and temporal lobes exhibited frequency-selective temporal response modulation for both auditory and tactile stimulus events, as indexed by repetition suppression effects. A smaller set of regions responded to crossmodal adaptation sequences in a frequency-dependent manner. Despite an extensive overlap of multimodal frequency-selective responses across the parietal and temporal lobes, representational similarity analysis revealed a cortical "regional landscape" that clearly reflected distinct somatosensory and auditory processing systems that converged on modality-invariant areas. These structured relationships between brain regions were also evident in spontaneous signal fluctuation patterns measured at rest. Our results reveal that multimodal processing in human cortex can be feature-specific and that multimodal frequency representations are embedded in the intrinsically hierarchical organization of cortical sensory systems.
Collapse
Affiliation(s)
- Md Shoaibur Rahman
- Department of Neuroscience, Baylor College of Medicine, Houston, One Baylor Plaza, Houston, TX, 77030, USA
| | - Kelly Anne Barnes
- Department of Neuroscience, Baylor College of Medicine, Houston, One Baylor Plaza, Houston, TX, 77030, USA; Department of Behavioral and Social Sciences, San Jacinto College - South, Houston, 13735 Beamer Rd, S13.269, Houston, TX, 77089, USA
| | - Lexi E Crommett
- Department of Neuroscience, Baylor College of Medicine, Houston, One Baylor Plaza, Houston, TX, 77030, USA
| | - Mark Tommerdahl
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, CB No. 7575, Chapel Hill, NC, 27599, USA
| | - Jeffrey M Yau
- Department of Neuroscience, Baylor College of Medicine, Houston, One Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
13
|
Gault R, McGinnity TM, Coleman S. Perceptual Modeling of Tinnitus Pitch and Loudness. IEEE Trans Cogn Dev Syst 2020. [DOI: 10.1109/tcds.2020.2964841] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
14
|
Cheng YF, Xirasagar S, Yang TH, Wu CS, Kao YW, Shia BC, Lin HC. Increased risk of tinnitus following a trigeminal neuralgia diagnosis: a one-year follow-up study. J Headache Pain 2020; 21:46. [PMID: 32375642 PMCID: PMC7203585 DOI: 10.1186/s10194-020-01121-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 04/28/2020] [Indexed: 02/04/2023] Open
Abstract
Background Tinnitus due to hyperactivity across neuronal ensembles along the auditory pathway is reported. We hypothesized that trigeminal neuralgia patients may subsequently suffer from tinnitus. Using nationwide, population-based data and a retrospective cohort study design, we investigated the risk of tinnitus within 1 year following trigeminal neuralgia. Methods We used the Taiwan National Health Insurance Research Dataset, a claims database, to identify all patients diagnosed with trigeminal neuralgia from January 2001 to December 2014, 12,587 patients. From the remaining patients, we identified 12,587 comparison patients without trigeminal neuralgia by propensity score matching, using sex, age, monthly income, geographic region, residential urbanization level, and tinnitus-relevant comorbidities (hyperlipidemia, diabetes, coronary heart disease, hypertension, cervical spondylosis, temporomandibular joint disorders and injury to head and neck and index year). All study patients (n = 25,174) were tracked for a one-year period to identify those with a subsequent diagnosis of tinnitus over 1-year follow-up. Results Among total 25,174 sample patients, the incidence of tinnitus was 18.21 per 100 person-years (95% CI = 17.66 ~ 18.77), the rate being 23.57 (95% CI = 22.68 ~ 24.49) among patients with trigeminal neuralgia and 13.17 (95% CI = 12.53 ~ 13.84) among comparison patients. Furthermore, the adjusted Cox proportional hazard ratio for tinnitus in the trigeminal neuralgia group was 1.68 (95% CI = 1.58 ~ 1.80) relative to the comparison cohort. Conclusions We found a significantly increased risk of tinnitus within 1 year of trigeminal neuralgia diagnosis compared to those without the diagnosis. Further studies in other countries and ethnicities are needed to explore the relationship between trigeminal neuralgia and subsequent tinnitus.
Collapse
Affiliation(s)
- Yen-Fu Cheng
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Otolaryngology-Head and Neck Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Speech, Language and Audiology, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan.,Research Center of Sleep Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Sudha Xirasagar
- Department of Health Services Policy and Management, Arnold School of Public Health, University of South Carolina, Columbia, USA
| | - Tzong-Han Yang
- Department of Speech, Language and Audiology, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan.,Department of Otolaryngology, Taipei City Hospital, Taipei, Taiwan
| | - Chuan-Song Wu
- Department of Otolaryngology, Taipei City Hospital, Taipei, Taiwan
| | - Yi-Wei Kao
- Big Data Research Center, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Business Administration, College of Management, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Ben-Chang Shia
- Big Data Research Center, Taipei Medical University, Taipei, Taiwan
| | - Herng-Ching Lin
- Department of Health Care Administration, Taipei Medical University, 250 Wu-Hsing St, Taipei, 110, Taiwan. .,Sleep Research Center, Taipei Medical University Hospital, Taipei, Taiwan.
| |
Collapse
|
15
|
Mohan A, Bhamoo N, Riquelme JS, Long S, Norena A, Vanneste S. Investigating functional changes in the brain to intermittently induced auditory illusions and its relevance to chronic tinnitus. Hum Brain Mapp 2020; 41:1819-1832. [PMID: 32154627 PMCID: PMC7268029 DOI: 10.1002/hbm.24914] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/07/2019] [Accepted: 12/16/2019] [Indexed: 12/20/2022] Open
Abstract
Several studies have demonstrated the neural correlates of chronic tinnitus. However, we still do not understand what happens in the acute phase. Past studies have established Zwicker tone (ZT) illusions as a good human model for acute tinnitus. ZT illusions are perceived following the presentation of a notched noise stimulus, that is, broadband noise with a narrow band-stop filter (notch). In the current study, we compared the neural correlates of the reliable perception of a ZT illusion to that which is not. We observed changes in evoked and total theta power in wide-spread regions of the brain particularly in the temporal-parietal junction, pregenual anterior cingulate cortex/ventromedial prefrontal cortex (pgACC/vmPFC), parahippocampus during perception of the ZT illusion. Furthermore, we observe that increased theta power significantly predicts a gradual positive change in the intensity of the ZT illusion. Such changes may suggest a malfunction of the sensory gating system that enables habituation to redundant stimuli and suppresses hyperactivity. It could also suggest a successful retrieval of the memory of the missing frequencies, resulting in their conscious perception indicating the role of higher-order processing in the mechanism of action of ZT illusions. To establish a more concrete relationship between ZT illusion and chronic tinnitus, future longitudinal studies following up a much larger sample of participants who reliably perceive a ZT illusion to see if they develop tinnitus at a later stage is essential. This could inform us if the ZT illusion may be a precursor to chronic tinnitus.
Collapse
Affiliation(s)
- Anusha Mohan
- Global Brain Health Institute & Institute of NeuroscienceTrinity College DublinDublinIreland
| | - Neil Bhamoo
- Lab for Clinical & Integrative Neuroscience, School of Behavioral and Brain SciencesThe University of Texas at DallasDallasTexas
| | - Juan S. Riquelme
- Lab for Clinical & Integrative Neuroscience, School of Behavioral and Brain SciencesThe University of Texas at DallasDallasTexas
| | - Samantha Long
- Lab for Clinical & Integrative Neuroscience, School of Behavioral and Brain SciencesThe University of Texas at DallasDallasTexas
| | - Arnaud Norena
- Laboratory of Sensory and Cognitive NeuroscienceAix‐Marseille UniversityMarseilleFrance
| | - Sven Vanneste
- Global Brain Health Institute & Institute of NeuroscienceTrinity College DublinDublinIreland
- Lab for Clinical & Integrative Neuroscience, School of Behavioral and Brain SciencesThe University of Texas at DallasDallasTexas
| |
Collapse
|
16
|
Abstract
Cochlear damage is often thought to result in hearing thresholds shift, whether permanent or temporary. The report of tinnitus in the absence of any clear deficit in cochlear function was believed to indicate that hearing loss and tinnitus, while comorbid, could arise independently from each other. In all likelihood, tinnitus that is not of central nervous system origin is associated with hearing loss. As a correlate, although a treatment of most forms of tinnitus will likely emerge in the years to come, curing tinnitus will first require curing hearing loss.
Collapse
Affiliation(s)
- Ronna Hertzano
- Department of Otorhinolaryngology Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD, USA; Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA; Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Erika L Lipford
- Department of Otorhinolaryngology Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Didier Depireux
- Department of Otorhinolaryngology Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD, USA; R&D OtolithLabs, Washington, DC, USA.
| |
Collapse
|
17
|
Sheppard A, Stocking C, Ralli M, Salvi R. A review of auditory gain, low-level noise and sound therapy for tinnitus and hyperacusis. Int J Audiol 2019; 59:5-15. [DOI: 10.1080/14992027.2019.1660812] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Adam Sheppard
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, USA
- Department of Communicative Disorders and Sciences, University at Buffalo, Buffalo, NY, USA
| | - Christina Stocking
- Department of Communicative Disorders and Sciences, University at Buffalo, Buffalo, NY, USA
| | - Massimo Ralli
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, USA
- Department of Communicative Disorders and Sciences, University at Buffalo, Buffalo, NY, USA
- Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, Rome, Italy
| | - Richard Salvi
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, USA
- Department of Communicative Disorders and Sciences, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
18
|
Steady-state auditory evoked fields reflect long-term effects of repetitive transcranial magnetic stimulation in tinnitus. Clin Neurophysiol 2019; 130:1665-1672. [DOI: 10.1016/j.clinph.2019.05.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/02/2019] [Accepted: 05/01/2019] [Indexed: 02/06/2023]
|
19
|
Brotherton H, Turtle C, Plack CJ, Munro KJ, Schaette R. Earplug-induced changes in acoustic reflex thresholds suggest that increased subcortical neural gain may be necessary but not sufficient for the occurrence of tinnitus. Neuroscience 2019; 407:192-199. [DOI: 10.1016/j.neuroscience.2019.03.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 03/06/2019] [Accepted: 03/07/2019] [Indexed: 12/14/2022]
|
20
|
Cima RFF, Mazurek B, Haider H, Kikidis D, Lapira A, Noreña A, Hoare DJ. A multidisciplinary European guideline for tinnitus: diagnostics, assessment, and treatment. HNO 2019; 67:10-42. [DOI: 10.1007/s00106-019-0633-7] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
21
|
Haider HF, Bojić T, Ribeiro SF, Paço J, Hall DA, Szczepek AJ. Pathophysiology of Subjective Tinnitus: Triggers and Maintenance. Front Neurosci 2018; 12:866. [PMID: 30538616 PMCID: PMC6277522 DOI: 10.3389/fnins.2018.00866] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 11/06/2018] [Indexed: 01/07/2023] Open
Abstract
Tinnitus is the conscious perception of a sound without a corresponding external acoustic stimulus, usually described as a phantom perception. One of the major challenges for tinnitus research is to understand the pathophysiological mechanisms triggering and maintaining the symptoms, especially for subjective chronic tinnitus. Our objective was to synthesize the published literature in order to provide a comprehensive update on theoretical and experimental advances and to identify further research and clinical directions. We performed literature searches in three electronic databases, complemented by scanning reference lists from relevant reviews in our included records, citation searching of the included articles using Web of Science, and manual searching of the last 6 months of principal otology journals. One-hundred and thirty-two records were included in the review and the information related to peripheral and central mechanisms of tinnitus pathophysiology was collected in order to update on theories and models. A narrative synthesis examined the main themes arising from this information. Tinnitus pathophysiology is complex and multifactorial, involving the auditory and non-auditory systems. Recent theories assume the necessary involvement of extra-auditory brain regions for tinnitus to reach consciousness. Tinnitus engages multiple active dynamic and overlapping networks. We conclude that advancing knowledge concerning the origin and maintenance of specific tinnitus subtypes origin and maintenance mechanisms is of paramount importance for identifying adequate treatment.
Collapse
Affiliation(s)
- Haúla Faruk Haider
- ENT Department, Hospital Cuf Infante Santo - NOVA Medical School, Lisbon, Portugal
| | - Tijana Bojić
- Laboratory of Radiobiology and Molecular Genetics, Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Sara F Ribeiro
- ENT Department, Hospital Cuf Infante Santo - NOVA Medical School, Lisbon, Portugal
| | - João Paço
- ENT Department, Hospital Cuf Infante Santo - NOVA Medical School, Lisbon, Portugal
| | - Deborah A Hall
- NIHR Nottingham Biomedical Research Centre, Nottingham, United Kingdom.,Hearing Sciences, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, United Kingdom.,Queen's Medical Centre, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom.,University of Nottingham Malaysia, Semeniyh, Malaysia
| | - Agnieszka J Szczepek
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
22
|
Intermittent Low-level Noise Causes Negative Neural Gain in the Inferior Colliculus. Neuroscience 2018; 407:135-145. [PMID: 30458217 DOI: 10.1016/j.neuroscience.2018.11.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 11/06/2018] [Accepted: 11/08/2018] [Indexed: 01/07/2023]
Abstract
The central auditory system shows a remarkable ability to rescale its neural representation of loudness following long-term, low-level acoustic exposures; even when the noise is presented intermittently. Circadian rhythms exert potent biological effects, but it remains unclear if acoustic exposures occurring during the light or dark cycle affect the neurophysiological changes involved in loudness rescaling. To address this issue we exposed rats to intermittent (12 h/day), low-level noise (10-20 kHz, 75 dB SPL) for 5 weeks; exposures occurred during either the light (inactive) or dark (active) phase of the circadian cycle. The 12-h exposures, whether occurring during the light or dark phase, did not significantly alter cochlear function as reflected in distortion product otoacoustic emissions and compound action potential responses. However, neural activity in the inferior colliculus demonstrated negative gain in a frequency- and intensity-specific manner compared to unexposed controls; the magnitude and direction of the neuroplastic changes in the inferior colliculus were largely the same regardless of whether the 12-h noise exposures occurred during the light or dark phase of the circadian cycle. These neuroplastic changes could become relevant for low-level sound therapies used to treat hyperacusis.
Collapse
|
23
|
Park JM, Kim WJ, Ha JB, Han JJ, Park SY, Park SN. Effect of sound generator on tinnitus and hyperacusis. Acta Otolaryngol 2018; 138:135-139. [PMID: 29043888 DOI: 10.1080/00016489.2017.1386801] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVE Sound generator (SG) plays a role as effective sound therapy of tinnitus retaining therapy (TRT) in patients with severe tinnitus (Category 1) or hyperacusis (Category 3). This study was performed to evaluate the therapeutic effect of SGs. METHODS A total of 120 tinnitus patients who visited our tinnitus clinic and were treated with SG along with TRT from January 2008 to December 2016 were included. The patients were divided into two groups by tinnitus category; 78 patients of category 1 and 42 patients of category 3. Their medical records including questionnaires regarding tinnitus severity were retrospectively reviewed to evaluate the therapeutic effect of SGs on tinnitus and hyperacusis. RESULTS Category 3 patients included more female patients, were younger than category 1 patients (p = .001), and were prescribed SG earlier due to their severe symptom of hyperacusis. (p = .004) All patients showed significant improvements on all categories of tinnitus visual analogue scale (VAS) scores and tinnitus handicap inventory (THI) scores after six months use of SG (p < .05). Loudness discomfort levels measured by pure tone audiometry were significantly improved in category 3 group after six months use of SGs. CONCLUSION SG with TRT seems to be an effective treatment modality for all tinnitus patients, especially those with comorbid hyperacusis.
Collapse
Affiliation(s)
- Jung Mee Park
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Woo Jin Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jin Bu Ha
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jung Ju Han
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - So Young Park
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Shi Nae Park
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
24
|
Weak Middle-Ear-Muscle Reflex in Humans with Noise-Induced Tinnitus and Normal Hearing May Reflect Cochlear Synaptopathy. eNeuro 2017; 4:eN-NWR-0363-17. [PMID: 29181442 PMCID: PMC5702873 DOI: 10.1523/eneuro.0363-17.2017] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 11/09/2017] [Indexed: 11/21/2022] Open
Abstract
Chronic tinnitus is a prevalent hearing disorder, and yet no successful treatments or objective diagnostic tests are currently available. The aim of this study was to investigate the relationship between the presence of tinnitus and the strength of the middle-ear-muscle reflex (MEMR) in humans with normal and near-normal hearing. Clicks were used as test stimuli to obtain a wideband measure of the effect of reflex activation on ear-canal sound pressure. The reflex was elicited using a contralateral broadband noise. The results show that the reflex strength is significantly reduced in individuals with noise-induced continuous tinnitus and normal or near-normal audiometric thresholds compared with no-tinnitus controls. Due to a shallower growth of the reflex strength in the tinnitus group, the difference between the two groups increased with increasing elicitor level. No significant difference in the effect of tinnitus on the strength of the middle-ear muscle reflex was found between males and females. The weaker reflex could not be accounted for by differences in audiometric hearing thresholds between the tinnitus and control groups. Similarity between our findings in humans and the findings of a reduced middle-ear muscle reflex in noise-exposed animals suggests that noise-induced tinnitus in individuals with clinically normal hearing may be a consequence of cochlear synaptopathy, a loss of synaptic connections between inner hair cells (IHCs) in the cochlea and auditory-nerve (AN) fibers that has been termed hidden hearing loss.
Collapse
|
25
|
Crommett LE, Pérez-Bellido A, Yau JM. Auditory adaptation improves tactile frequency perception. J Neurophysiol 2017; 117:1352-1362. [PMID: 28077668 PMCID: PMC5350269 DOI: 10.1152/jn.00783.2016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 01/06/2017] [Accepted: 01/06/2017] [Indexed: 11/22/2022] Open
Abstract
Our ability to process temporal frequency information by touch underlies our capacity to perceive and discriminate surface textures. Auditory signals, which also provide extensive temporal frequency information, can systematically alter the perception of vibrations on the hand. How auditory signals shape tactile processing is unclear; perceptual interactions between contemporaneous sounds and vibrations are consistent with multiple neural mechanisms. Here we used a crossmodal adaptation paradigm, which separated auditory and tactile stimulation in time, to test the hypothesis that tactile frequency perception depends on neural circuits that also process auditory frequency. We reasoned that auditory adaptation effects would transfer to touch only if signals from both senses converge on common representations. We found that auditory adaptation can improve tactile frequency discrimination thresholds. This occurred only when adaptor and test frequencies overlapped. In contrast, auditory adaptation did not influence tactile intensity judgments. Thus auditory adaptation enhances touch in a frequency- and feature-specific manner. A simple network model in which tactile frequency information is decoded from sensory neurons that are susceptible to auditory adaptation recapitulates these behavioral results. Our results imply that the neural circuits supporting tactile frequency perception also process auditory signals. This finding is consistent with the notion of supramodal operators performing canonical operations, like temporal frequency processing, regardless of input modality.NEW & NOTEWORTHY Auditory signals can influence the tactile perception of temporal frequency. Multiple neural mechanisms could account for the perceptual interactions between contemporaneous auditory and tactile signals. Using a crossmodal adaptation paradigm, we found that auditory adaptation causes frequency- and feature-specific improvements in tactile perception. This crossmodal transfer of aftereffects between audition and touch implies that tactile frequency perception relies on neural circuits that also process auditory frequency.
Collapse
Affiliation(s)
- Lexi E Crommett
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas
| | | | - Jeffrey M Yau
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
26
|
Gollnast D, Tziridis K, Krauss P, Schilling A, Hoppe U, Schulze H. Analysis of Audiometric Differences of Patients with and without Tinnitus in a Large Clinical Database. Front Neurol 2017; 8:31. [PMID: 28232817 PMCID: PMC5298966 DOI: 10.3389/fneur.2017.00031] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 01/24/2017] [Indexed: 11/13/2022] Open
Abstract
Human hearing loss (HL) and comorbidities like tinnitus pose serious problems for people's daily life, which in most severe cases may lead to social isolation, depression, and suicide. Here, we investigate the relationship between hearing deficits and tinnitus. To this end, we conducted a retrospective study on anonymized pure tone and speech audiometric data from patients of the ENT hospital Erlangen in which we compare audiometric data between patients with and without tinnitus. Overall data from 37,661 patients with sensorineural (SHL) or conductive HL (CHL) with (T, 9.5%) or without (NT, 90.5%) a tinnitus percept in different age groups and with different tinnitus pitches were included in this study. The results of the pure tone audiometry comparisons showed significant differences in T patients compared to NT patients. In young patients, we generally found lower hearing thresholds in T compared to NT patients. In adult patients, differences were more heterogeneous: hearing thresholds in T patients were lower in low frequency ranges, while they were higher at high frequencies. Furthermore, lower thresholds were more often found in CHL patients and could rarely be detected in SHL patients. In speech audiometry, only CHL patients with high-pitched tinnitus showed lower thresholds compared to NT patients' thresholds. The results of this study may point to a biologically plausible functional benefit on hearing thresholds in HL tinnitus patients. We hypothesize that the physiological mechanism of stochastic resonance counteracts HL by adding neuronal noise to the system. This neuronal noise may induce changes in the auditory pathway and finally-as a side effect of threshold improvement-lead to the development of a tinnitus percept. We propose a general model of changed hearing thresholds in T patients, being either decreased or increased compared to NT patients.
Collapse
Affiliation(s)
- Dominik Gollnast
- Experimental Otolaryngology, Department of Otorhinolaryngology, Head and Neck Surgery, Friedrich Alexander University Erlangen-Nürnberg (FAU) , Erlangen , Germany
| | - Konstantin Tziridis
- Experimental Otolaryngology, Department of Otorhinolaryngology, Head and Neck Surgery, Friedrich Alexander University Erlangen-Nürnberg (FAU) , Erlangen , Germany
| | - Patrick Krauss
- Experimental Otolaryngology, Department of Otorhinolaryngology, Head and Neck Surgery, Friedrich Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany; Department of Physics, Center for Medical Physics and Technology, Biophysics Group, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Achim Schilling
- Experimental Otolaryngology, Department of Otorhinolaryngology, Head and Neck Surgery, Friedrich Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany; Department of Physics, Center for Medical Physics and Technology, Biophysics Group, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Ulrich Hoppe
- Audiology, Department of Otorhinolaryngology, Head and Neck Surgery, Friedrich Alexander University Erlangen-Nürnberg (FAU) , Erlangen , Germany
| | - Holger Schulze
- Experimental Otolaryngology, Department of Otorhinolaryngology, Head and Neck Surgery, Friedrich Alexander University Erlangen-Nürnberg (FAU) , Erlangen , Germany
| |
Collapse
|
27
|
Sekiya K, Takahashi M, Murakami S, Kakigi R, Okamoto H. Broadened population-level frequency tuning in the auditory cortex of tinnitus patients. J Neurophysiol 2017; 117:1379-1384. [PMID: 28053240 PMCID: PMC5350267 DOI: 10.1152/jn.00385.2016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 12/29/2016] [Accepted: 12/31/2016] [Indexed: 11/22/2022] Open
Abstract
Although subjective tinnitus is one of the most common public health concerns that impair the quality of life of many individuals, no standard treatment or objective diagnostic method currently exists. We herein revealed that population-level frequency tuning was significantly broader in the tinnitus ear than in the nontinnitus ear. The results of the present study provide an insight into the development of an objective diagnostic method for subjective tinnitus. Tinnitus is a phantom auditory perception without an external sound source and is one of the most common public health concerns that impair the quality of life of many individuals. However, its neural mechanisms remain unclear. We herein examined population-level frequency tuning in the auditory cortex of unilateral tinnitus patients with similar hearing levels in both ears using magnetoencephalography. We compared auditory-evoked neural activities elicited by a stimulation to the tinnitus and nontinnitus ears. Objective magnetoencephalographic data suggested that population-level frequency tuning corresponding to the tinnitus ear was significantly broader than that corresponding to the nontinnitus ear in the human auditory cortex. The results obtained support the hypothesis that pathological alterations in inhibitory neural networks play an important role in the perception of subjective tinnitus. NEW & NOTEWORTHY Although subjective tinnitus is one of the most common public health concerns that impair the quality of life of many individuals, no standard treatment or objective diagnostic method currently exists. We herein revealed that population-level frequency tuning was significantly broader in the tinnitus ear than in the nontinnitus ear. The results of the present study provide an insight into the development of an objective diagnostic method for subjective tinnitus.
Collapse
Affiliation(s)
- Kenichi Sekiya
- Department of Integrative Physiology, National Institute for Physiological Sciences, Okazaki, Japan.,Department of Otolaryngology, Head, and Neck Surgery, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Japan; and
| | - Mariko Takahashi
- Department of Otolaryngology, Head, and Neck Surgery, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Japan; and
| | - Shingo Murakami
- Department of Otolaryngology, Head, and Neck Surgery, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Japan; and
| | - Ryusuke Kakigi
- Department of Integrative Physiology, National Institute for Physiological Sciences, Okazaki, Japan.,The Graduate University for Advanced Studies (SOKENDAI), Hayama, Japan
| | - Hidehiko Okamoto
- Department of Integrative Physiology, National Institute for Physiological Sciences, Okazaki, Japan; .,The Graduate University for Advanced Studies (SOKENDAI), Hayama, Japan
| |
Collapse
|
28
|
Krauss P, Tziridis K, Metzner C, Schilling A, Hoppe U, Schulze H. Stochastic Resonance Controlled Upregulation of Internal Noise after Hearing Loss as a Putative Cause of Tinnitus-Related Neuronal Hyperactivity. Front Neurosci 2016; 10:597. [PMID: 28082861 PMCID: PMC5187388 DOI: 10.3389/fnins.2016.00597] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 12/14/2016] [Indexed: 11/25/2022] Open
Abstract
Subjective tinnitus is generally assumed to be a consequence of hearing loss. In animal studies it has been demonstrated that acoustic trauma induced cochlear damage can lead to behavioral signs of tinnitus. In addition it was shown that noise trauma may lead to deafferentation of cochlear inner hair cells (IHC) even in the absence of elevated hearing thresholds, and it seems conceivable that such hidden hearing loss may be sufficient to cause tinnitus. Numerous studies have indicated that tinnitus is correlated with pathologically increased spontaneous firing rates and hyperactivity of neurons along the auditory pathway. It has been proposed that this hyperactivity is the consequence of a mechanism aiming to compensate for reduced input to the auditory system by increasing central neuronal gain, a mechanism referred to as homeostatic plasticity (HP), thereby maintaining mean firing rates over longer timescales for stabilization of neuronal processing. Here we propose an alternative, new interpretation of tinnitus-related development of neuronal hyperactivity in terms of information theory. In particular, we suggest that stochastic resonance (SR) plays a key role in both short- and long-term plasticity within the auditory system and that SR is the primary cause of neuronal hyperactivity and tinnitus. We argue that following hearing loss, SR serves to lift signals above the increased neuronal thresholds, thereby partly compensating for the hearing loss. In our model, the increased amount of internal noise-which is crucial for SR to work-corresponds to neuronal hyperactivity which subsequently causes neuronal plasticity along the auditory pathway and finally may lead to the development of a phantom percept, i.e., subjective tinnitus. We demonstrate the plausibility of our hypothesis using a computational model and provide exemplary findings in human patients that are consistent with that model. Finally we discuss the observed asymmetry in human tinnitus pitch distribution as a consequence of asymmetry of the distribution of auditory nerve type I fibers along the cochlea in the context of our model.
Collapse
Affiliation(s)
- Patrick Krauss
- Experimental Otolaryngology, ENT-Hospital, Head and Neck Surgery, Friedrich-Alexander University Erlangen-NürnbergErlangen, Germany
- Biophysics Group, Department of Physics, Center for Medical Physics and Technology, Friedrich-Alexander University Erlangen-NürnbergErlangen, Germany
| | - Konstantin Tziridis
- Experimental Otolaryngology, ENT-Hospital, Head and Neck Surgery, Friedrich-Alexander University Erlangen-NürnbergErlangen, Germany
| | - Claus Metzner
- Biophysics Group, Department of Physics, Center for Medical Physics and Technology, Friedrich-Alexander University Erlangen-NürnbergErlangen, Germany
| | - Achim Schilling
- Experimental Otolaryngology, ENT-Hospital, Head and Neck Surgery, Friedrich-Alexander University Erlangen-NürnbergErlangen, Germany
- Biophysics Group, Department of Physics, Center for Medical Physics and Technology, Friedrich-Alexander University Erlangen-NürnbergErlangen, Germany
| | - Ulrich Hoppe
- Department of Audiology, ENT-Hospital, Head and Neck Surgery, Friedrich-Alexander University Erlangen-NürnbergErlangen, Germany
| | - Holger Schulze
- Experimental Otolaryngology, ENT-Hospital, Head and Neck Surgery, Friedrich-Alexander University Erlangen-NürnbergErlangen, Germany
| |
Collapse
|
29
|
Henin S, Fein D, Smouha E, Parra LC. The Effects of Compensatory Auditory Stimulation and High-Definition Transcranial Direct Current Stimulation (HD-tDCS) on Tinnitus Perception - A Randomized Pilot Study. PLoS One 2016; 11:e0166208. [PMID: 27832140 PMCID: PMC5104367 DOI: 10.1371/journal.pone.0166208] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 10/20/2016] [Indexed: 02/03/2023] Open
Abstract
Background Tinnitus correlates with elevated hearing thresholds and reduced cochlear compression. We hypothesized that reduced peripheral input leads to elevated neuronal gain resulting in the perception of a phantom sound. Objective The purpose of this pilot study was to test whether compensating for this peripheral deficit could reduce the tinnitus percept acutely using customized auditory stimulation. To further enhance the effects of auditory stimulation, this intervention was paired with high-definition transcranial direct current stimulation (HD-tDCS). Methods A randomized sham-controlled, single blind study was conducted in a clinical setting on adult participants with chronic tinnitus (n = 14). Compensatory auditory stimulation (CAS) and HD-tDCS were administered either individually or in combination in order to access the effects of both interventions on tinnitus perception. CAS consisted of sound exposure typical to daily living (20-minute sound-track of a TV show), which was adapted with compressive gain to compensate for deficits in each subject's individual audiograms. Minimum masking levels and the visual analog scale were used to assess the strength of the tinnitus percept immediately before and after the treatment intervention. Results CAS reduced minimum masking levels, and visual analog scale trended towards improvement. Effects of HD-tDCS could not be resolved with the current sample size. Conclusions The results of this pilot study suggest that providing tailored auditory stimulation with frequency-specific gain and compression may alleviate tinnitus in a clinical population. Further experimentation with longer interventions is warranted in order to optimize effect sizes.
Collapse
Affiliation(s)
- Simon Henin
- Department of Biomedical Engineering, City College of New York, 160 Convent Avenue, New York, New York 10027, United States of America
- * E-mail:
| | - Dovid Fein
- Department of Biomedical Engineering, City College of New York, 160 Convent Avenue, New York, New York 10027, United States of America
| | - Eric Smouha
- Department of Otolaryngology, Head and Neck Surgery, Mount Sinai Medical Center, New York, NY, United States of America
| | - Lucas C. Parra
- Department of Biomedical Engineering, City College of New York, 160 Convent Avenue, New York, New York 10027, United States of America
| |
Collapse
|
30
|
Konadath S, Manjula P. Auditory brainstem response and late latency response in individuals with tinnitus having normal hearing. Intractable Rare Dis Res 2016; 5:262-268. [PMID: 27904821 PMCID: PMC5116861 DOI: 10.5582/irdr.2016.01053] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Tinnitus is a commonly encountered complaint in routine audiology practice. The pathophysiology and exact generation site of tinnitus is not precisely established. Auditory brainstem response (ABR) and late latency response (LLR) findings in individuals with tinnitus show mixed results in the literature. Majority of studies have focused on individuals having tinnitus with peripheral hearing loss. The present study explores ABR and LLR characteristics among tinnitus patients with normal audiometric presentation; with no direct indication of any cochlear lesion. This study aims at characterizing the ABR and LLR findings in individuals with tinnitus having normal audiometric presentation. ABR and LLR waveform characteristics were recorded and compared between participants with tinnitus (Group 1) and those without tinnitus (Group 2). The ABR analysis indicated no significant differences in latency and amplitude between Groups 1 and 2. However, patients with tinnitus showed abnormally reduced absolute amplitudes of peaks I and V. LLR analysis indicated no significant differences in latency and amplitude between Groups 1 and 2 except enhanced amplitude of P1. The reduced amplitude of peaks I and V along with normal absolute latencies of peaks I, III and V indicate that the origin of tinnitus is possibly due to reduced excitation of auditory nerve fibres arising from a peripheral hearing loss beyond 8 kHz. The P1 amplitude enhancement could be attributed to mechanism explaining central gain model; which suggests that central auditory structures recalibrates the mean firing rate, considering the reduced output from sensory structures, generating neural noise perceived as tinnitus.
Collapse
Affiliation(s)
- Sreeraj Konadath
- Department of Audiology, All India Institute of Speech and Hearing, Mysuru, Karnataka State, India
- Address correspondence to: Mr. Sreeraj Konadath, Department of Audiology, All India Institute of Speech and Hearing, Mysuru 570 006, Karnataka State, India. E-mail:
| | - Puttabasappa Manjula
- Department of Audiology, All India Institute of Speech and Hearing, Mysuru, Karnataka State, India
| |
Collapse
|
31
|
Gockel HE, Carlyon RP. On Zwicker tones and musical pitch in the likely absence of phase locking corresponding to the pitch. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2016; 140:2257. [PMID: 27794303 PMCID: PMC5436623 DOI: 10.1121/1.4963865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
It was assessed whether Zwicker tones (ZTs) (an auditory afterimage produced by a band-stop noise) have a musical pitch. First (stage I), musically trained subjects adjusted the frequency, level, and decay time of an exponentially decaying diotic sinusoid to sound similar to the ZT they perceived following the presentation of diotic broadband noise, for various band-stop positions. Next (stage II), subjects adjusted a sinusoid in frequency and level so that its pitch was a specified musical interval below that of either a preceding ZT or a preceding sinusoid, and so that it was equally loud. For each subject the reference sinusoid corresponded to their adjusted sinusoid from stage I. Subjects selected appropriate frequency ratios for ZTs, although the standard deviations of the adjustments were larger for the ZTs than for the equally salient sinusoids by a factor of 1.0-2.2. Experiments with monaural stimuli led to similar results, although the pitch of the ZTs could differ for monaural and diotic presentation of the ZT-exciting noise. The results suggest that a weak musical pitch may exist in the absence of phase locking in the auditory nerve to the frequency corresponding to the pitch (or harmonics thereof) at the time of the percept.
Collapse
|
32
|
Hesse LL, Bakay W, Ong HC, Anderson L, Ashmore J, McAlpine D, Linden J, Schaette R. Non-Monotonic Relation between Noise Exposure Severity and Neuronal Hyperactivity in the Auditory Midbrain. Front Neurol 2016; 7:133. [PMID: 27625631 PMCID: PMC5004570 DOI: 10.3389/fneur.2016.00133] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 08/02/2016] [Indexed: 12/13/2022] Open
Abstract
The occurrence of tinnitus can be linked to hearing loss in the majority of cases, but there is nevertheless a large degree of unexplained heterogeneity in the relation between hearing loss and tinnitus. Part of the problem might be that hearing loss is usually quantified in terms of increased hearing thresholds, which only provides limited information about the underlying cochlear damage. Moreover, noise exposure that does not cause hearing threshold loss can still lead to “hidden hearing loss” (HHL), i.e., functional deafferentation of auditory nerve fibers (ANFs) through loss of synaptic ribbons in inner hair cells. While it is known that increased hearing thresholds can trigger increases in spontaneous neural activity in the central auditory system, i.e., a putative neural correlate of tinnitus, the central effects of HHL have not yet been investigated. Here, we exposed mice to octave-band noise at 100 and 105 dB SPL to generate HHL and permanent increases of hearing thresholds, respectively. Deafferentation of ANFs was confirmed through measurement of auditory brainstem responses and cochlear immunohistochemistry. Acute extracellular recordings from the auditory midbrain (inferior colliculus) demonstrated increases in spontaneous neuronal activity (a putative neural correlate of tinnitus) in both groups. Surprisingly, the increase in spontaneous activity was most pronounced in the mice with HHL, suggesting that the relation between hearing loss and neuronal hyperactivity might be more complex than currently understood. Our computational model indicated that these differences in neuronal hyperactivity could arise from different degrees of deafferentation of low-threshold ANFs in the two exposure groups. Our results demonstrate that HHL is sufficient to induce changes in central auditory processing, and they also indicate a non-monotonic relationship between cochlear damage and neuronal hyperactivity, suggesting an explanation for why tinnitus might occur without obvious hearing loss and conversely why hearing loss does not always lead to tinnitus.
Collapse
Affiliation(s)
- Lara Li Hesse
- UCL Ear Institute, London, UK; Klinik für HNO, Universitätsklinikum Schleswig-Holstein, Lübeck, Germany
| | | | | | | | - Jonathan Ashmore
- UCL Ear Institute, London, UK; Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | | | | | | |
Collapse
|
33
|
Hamilton C, D'Arcy S, Pearlmutter BA, Crispino G, Lalor EC, Conlon BJ. An Investigation of Feasibility and Safety of Bi-Modal Stimulation for the Treatment of Tinnitus: An Open-Label Pilot Study. Neuromodulation 2016; 19:832-837. [PMID: 27310062 PMCID: PMC5157761 DOI: 10.1111/ner.12452] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 03/31/2016] [Accepted: 04/22/2016] [Indexed: 01/23/2023]
Abstract
Objectives Tinnitus is the perception of sound in the absence of an external auditory stimulus. It is widely believed that tinnitus, in patients with associated hearing loss, is a neurological phenomenon primarily affecting the central auditory structures. However, there is growing evidence for the involvement of the somatosensory system in this form of tinnitus. For this reason it has been suggested that the condition may be amenable to bi‐modal stimulation of the auditory and somatosensory systems. We conducted a pilot study to investigate the feasibility and safety of a device that delivers simultaneous auditory and somatosensory stimulation to treat the symptoms of chronic tinnitus. Methods A cohort of 54 patients used the stimulation device for 10 weeks. Auditory stimulation was delivered via headphones and somatosensory stimulation was delivered via electrical stimulation of the tongue. Patient usage, logged by the device, was used to classify patients as compliant or noncompliant. Safety was assessed by reported adverse events and changes in tinnitus outcome measures. Response to treatment was assessed using tinnitus outcome measures: Minimum Masking Level (MML), Tinnitus Loudness Matching (TLM), and Tinnitus Handicap Inventory (THI). Results The device was well tolerated by patients and no adverse events or serious difficulties using the device were reported. Overall, 68% of patients met the defined compliance threshold. Compliant patients (N = 30) demonstrated statistically significant improvements in mean outcome measures after 10 weeks of treatment: THI (−11.7 pts, p < 0.001), TLM (−7.5dB, p < 0.001), and MML (−9.7dB, p < 0.001). The noncompliant group (N = 14) demonstrated no statistical improvements. Conclusion This study demonstrates the feasibility and safety of a new bi‐modal stimulation device and supports the potential efficacy of this new treatment for tinnitus.
Collapse
Affiliation(s)
- Caroline Hamilton
- Brain and Computation Lab, National University of Ireland Maynooth, Co. Kildare, Ireland.,ENT Department, Hermitage Medical Centre, Dublin, Ireland
| | | | - Barak A Pearlmutter
- Brain and Computation Lab, National University of Ireland Maynooth, Co. Kildare, Ireland
| | | | - Edmund C Lalor
- Neural-Engineering, School of Engineering, Trinity College Institute of Neuroscience and Trinity Centre for Bioengineering, Trinity College Dublin, Dublin, Ireland
| | - Brendan J Conlon
- ENT Department, Hermitage Medical Centre, Dublin, Ireland.,Department of Otolaryngology, St. James's Hospital, Dublin, Ireland
| |
Collapse
|
34
|
Long-Lasting Sound-Evoked Afterdischarge in the Auditory Midbrain. Sci Rep 2016; 6:20757. [PMID: 26867811 PMCID: PMC4751617 DOI: 10.1038/srep20757] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 01/07/2016] [Indexed: 12/24/2022] Open
Abstract
Different forms of plasticity are known to play a critical role in the processing of information about sound. Here, we report a novel neural plastic response in the inferior colliculus, an auditory center in the midbrain of the auditory pathway. A vigorous, long-lasting sound-evoked afterdischarge (LSA) is seen in a subpopulation of both glutamatergic and GABAergic neurons in the central nucleus of the inferior colliculus of normal hearing mice. These neurons were identified with single unit recordings and optogenetics in vivo. The LSA can continue for up to several minutes after the offset of the sound. LSA is induced by long-lasting, or repetitive short-duration, innocuous sounds. Neurons with LSA showed less adaptation than the neurons without LSA. The mechanisms that cause this neural behavior are unknown but may be a function of intrinsic mechanisms or the microcircuitry of the inferior colliculus. Since LSA produces long-lasting firing in the absence of sound, it may be relevant to temporary or chronic tinnitus or to some other aftereffect of long-duration sound.
Collapse
|
35
|
Kiefer L, Schauen A, Abendroth S, Gaese B, Nowotny M. Variation in acoustic overstimulation changes tinnitus characteristics. Neuroscience 2015; 310:176-87. [DOI: 10.1016/j.neuroscience.2015.09.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 08/12/2015] [Accepted: 09/07/2015] [Indexed: 10/23/2022]
|
36
|
Integrative properties of retinal ganglion cell electrical responsiveness depend on neurotrophic support and genotype in the mouse. Exp Eye Res 2015; 145:68-74. [PMID: 26614910 DOI: 10.1016/j.exer.2015.11.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 10/30/2015] [Accepted: 11/09/2015] [Indexed: 12/18/2022]
Abstract
Early stages of glaucoma and optic neuropathies are thought to show inner retina remodeling and functional changes of retinal ganglion cells (RGCs) before they die. To assess RGC functional plasticity, we investigated the contrast-gain control properties of the pattern electroretinogram (PERG), a sensitive measure of RGC function, as an index of spatio-temporal integration occurring in the inner retina circuitry subserving PERG generators. We studied the integrative properties of the PERG in mice exposed to different conditions of neurotrophic support. We also investigated the effect of genotypic differences among mouse strains with different susceptibility to glaucoma (C57BL/6J, DBA/2J, DBA/2.Gpnmb(+)). Results show that the integrative properties of the PERG recorded in the standard C57BL/6J inbred mouse strain are impaired after deficit of neurotrophic support and partially restored after exogenous neurotrophic administration. Changes in PERG amplitude, latency, and contrast-dependent responses differ between mouse strains with different susceptibility to glaucoma. Results represent a proof of concept that the PERG could be used as a tool for in-vivo monitoring of RGC functional plasticity before RGC death, the effect of neuroactive treatments, as well as for high-throughput tool for phenotypic screening of different mouse genotypes.
Collapse
|
37
|
Diehl PU, Schaette R. Abnormal Auditory Gain in Hyperacusis: Investigation with a Computational Model. Front Neurol 2015; 6:157. [PMID: 26236277 PMCID: PMC4502361 DOI: 10.3389/fneur.2015.00157] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 06/24/2015] [Indexed: 12/27/2022] Open
Abstract
Hyperacusis is a frequent auditory disorder that is characterized by abnormal loudness perception where sounds of relatively normal volume are perceived as too loud or even painfully loud. As hyperacusis patients show decreased loudness discomfort levels (LDLs) and steeper loudness growth functions, it has been hypothesized that hyperacusis might be caused by an increase in neuronal response gain in the auditory system. Moreover, since about 85% of hyperacusis patients also experience tinnitus, the conditions might be caused by a common mechanism. However, the mechanisms that give rise to hyperacusis have remained unclear. Here, we have used a computational model of the auditory system to investigate candidate mechanisms for hyperacusis. Assuming that perceived loudness is proportional to the summed activity of all auditory nerve (AN) fibers, the model was tuned to reproduce normal loudness perception. We then evaluated a variety of potential hyperacusis gain mechanisms by determining their effects on model equal-loudness contours and comparing the results to the LDLs of hyperacusis patients with normal hearing thresholds. Hyperacusis was best accounted for by an increase in non-linear gain in the central auditory system. Good fits to the average patient LDLs were obtained for a general increase in gain that affected all frequency channels to the same degree, and also for a frequency-specific gain increase in the high-frequency range. Moreover, the gain needed to be applied after subtraction of spontaneous activity of the AN, which is in contrast to current theories of tinnitus generation based on amplification of spontaneous activity. Hyperacusis and tinnitus might therefore be caused by different changes in neuronal processing in the central auditory system.
Collapse
Affiliation(s)
- Peter U. Diehl
- Bernstein Center for Computational Neuroscience, Berlin, Germany
| | | |
Collapse
|
38
|
Montejo N, Noreña AJ. Dynamic representation of spectral edges in guinea pig primary auditory cortex. J Neurophysiol 2015; 113:2998-3012. [PMID: 25744885 PMCID: PMC4416612 DOI: 10.1152/jn.00785.2014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 03/02/2015] [Indexed: 11/22/2022] Open
Abstract
The central representation of a given acoustic motif is thought to be strongly context dependent, i.e., to rely on the spectrotemporal past and present of the acoustic mixture in which it is embedded. The present study investigated the cortical representation of spectral edges (i.e., where stimulus energy changes abruptly over frequency) and its dependence on stimulus duration and depth of the spectral contrast in guinea pig. We devised a stimulus ensemble composed of random tone pips with or without an attenuated frequency band (AFB) of variable depth. Additionally, the multitone ensemble with AFB was interleaved with periods of silence or with multitone ensembles without AFB. We have shown that the representation of the frequencies near but outside the AFB is greatly enhanced, whereas the representation of frequencies near and inside the AFB is strongly suppressed. These cortical changes depend on the depth of the AFB: although they are maximal for the largest depth of the AFB, they are also statistically significant for depths as small as 10 dB. Finally, the cortical changes are quick, occurring within a few seconds of stimulus ensemble presentation with AFB, and are very labile, disappearing within a few seconds after the presentation without AFB. Overall, this study demonstrates that the representation of spectral edges is dynamically enhanced in the auditory centers. These central changes may have important functional implications, particularly in noisy environments where they could contribute to preserving the central representation of spectral edges.
Collapse
Affiliation(s)
- Noelia Montejo
- Laboratoire de Neurosciences Intégratives et Adaptatives, Aix Marseille Université, CNRS UMR 7260, Marseille, France
| | - Arnaud J Noreña
- Laboratoire de Neurosciences Intégratives et Adaptatives, Aix Marseille Université, CNRS UMR 7260, Marseille, France
| |
Collapse
|
39
|
Pienkowski M, Tyler RS, Roncancio ER, Jun HJ, Brozoski T, Dauman N, Coelho CB, Andersson G, Keiner AJ, Cacace AT, Martin N, Moore BCJ. A review of hyperacusis and future directions: part II. Measurement, mechanisms, and treatment. Am J Audiol 2014; 23:420-36. [PMID: 25478787 DOI: 10.1044/2014_aja-13-0037] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 02/21/2014] [Indexed: 12/24/2022] Open
Abstract
PURPOSE Hyperacusis can be extremely debilitating, and at present, there is no cure. In this detailed review of the field, we consolidate present knowledge in the hope of facilitating future research. METHOD We review and reference the literature on hyperacusis and related areas. This is the 2nd of a 2-part review. RESULTS Hyperacusis encompasses a wide range of reactions to sounds, which can be grouped into the categories of excessive loudness, annoyance, fear, and pain. Reasonable approaches to assessing the different forms of hyperacusis are emerging, including brain-imaging studies. Researchers are only beginning to understand the many mechanisms at play, and valid animal models are still evolving. There are many counseling and sound-therapy approaches that some patients find helpful, but well-controlled studies are needed to measure their long-term efficacy and to test new approaches. CONCLUSIONS Hyperacusis can make life difficult in this increasingly noisy world, forcing sufferers to dramatically alter their work and social habits. We believe this is an opportune time to explore approaches to better understand and treat hyperacusis.
Collapse
Affiliation(s)
| | | | | | | | - Tom Brozoski
- Southern Illinois University School of Medicine, Springfield
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Furness DN. Abstracts of the Fourth Joint Annual Conference, Experimental and Clinical Short Papers Meetings of the British Society of Audiology. Int J Audiol 2014. [DOI: 10.3109/14992027.2014.938194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
41
|
Zhao F, Stephens SDG, Ishak WS, Meyer-Bisch C. The characteristics of Audioscan and DPOAE measures in tinnitus patients with normal hearing thresholds. Int J Audiol 2014; 53:309-17. [DOI: 10.3109/14992027.2013.868047] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
42
|
Tinnitus in men, mice (as well as other rodents), and machines. Hear Res 2013; 311:63-71. [PMID: 24374091 DOI: 10.1016/j.heares.2013.12.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Revised: 12/13/2013] [Accepted: 12/17/2013] [Indexed: 11/20/2022]
Abstract
The phantom auditory sensation of tinnitus is now studied in humans, animals, and computer models, and our understanding of how tinnitus is triggered and which neural mechanisms give rise to the phantom sensation in the brain has increased considerably. In most cases, tinnitus is associated with hearing loss, and even tinnitus patients with normal hearing thresholds might have cochlear damage that is not detected through conventional audiometry, as has been recently shown through auditory brainstem response measurements. Animals show behavioural signs of tinnitus after induction of hearing loss, indicating a causal relation. Moreover, surgical reduction of hearing loss in otosclerosis can reduce or even abolish tinnitus. However, hearing loss does not always lead to tinnitus. Psychophysical measurements have indicated that certain types of cochlear damage might be more closely linked to tinnitus than others. Recent animal studies have used behavioural testing to distinguish between animals with and without tinnitus after noise exposure. Comparisons between these groups of animals have helped identify neural correlates of tinnitus as well as factors that could represent a predisposition for tinnitus. Human neuroimaging studies have also begun to separate the neural signature of tinnitus from other consequences of hearing loss. The functional mechanisms that could underlie tinnitus development tinnitus have been analysed in computational modelling studies, which indicate that tinnitus could be a side-effect of the brain's attempt to compensate for hearing loss. Even though causal treatments for tinnitus are currently not available, hearing aids can provide considerable benefit when used in conjunction with counselling, tinnitus retraining therapy or cognitive behavioural therapy. Finally, animal studies demonstrate that the development of chronic noise-induced tinnitus might be prevented through timely interventions after noise exposure. This article is part of a Special Issue entitled <Annual Reviews 2014>.
Collapse
|
43
|
Kiani F, Yoganantha U, Tan CM, Meddis R, Schaette R. Off-frequency listening in subjects with chronic tinnitus. Hear Res 2013; 306:1-10. [DOI: 10.1016/j.heares.2013.08.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 08/21/2013] [Accepted: 08/26/2013] [Indexed: 11/15/2022]
|
44
|
Husain FT. Effect of tinnitus on distortion product otoacoustic emissions varies with hearing loss. Am J Audiol 2013; 22:125-34. [PMID: 23800808 DOI: 10.1044/1059-0889(2012/12-0059)] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
PURPOSE The aim of this study was to measure the effect of tinnitus, while accounting for the effect of hearing loss and aging, on distortion product otoacoustic emissions (DPOAEs). METHOD DPOAEs were measured twice in both ears in 5 groups of participants: young adults with normal hearing, middle-age adults with normal hearing, adults with high-frequency sensorineural hearing loss, age-matched adults with similar hearing loss and tinnitus, and adults with normal hearing and chronic tinnitus. RESULTS Multivariate analysis revealed a main effect of hearing loss and age, but no effect of tinnitus, across all 5 groups. Separate tests revealed significant effects of age and tinnitus in the normal-hearing groups and hearing loss in adults with or without tinnitus, but no effect of tinnitus in those with hearing loss. CONCLUSION DPOAE levels in the group of adults with hearing loss and tinnitus were diminished, but those in the group with normal hearing and tinnitus were enhanced, relative to DPOAE levels in the controls. Outer hair cell function, as indexed by DPOAEs, exhibits a complex association with tinnitus, and this has implications in the use of DPOAEs as a tool both for testing for tinnitus presence and for creating a model of neural mechanisms underlying tinnitus.
Collapse
|
45
|
Catz N, Noreña AJ. Enhanced representation of spectral contrasts in the primary auditory cortex. Front Syst Neurosci 2013; 7:21. [PMID: 23801943 PMCID: PMC3686080 DOI: 10.3389/fnsys.2013.00021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Accepted: 05/23/2013] [Indexed: 11/15/2022] Open
Abstract
The role of early auditory processing may be to extract some elementary features from an acoustic mixture in order to organize the auditory scene. To accomplish this task, the central auditory system may rely on the fact that sensory objects are often composed of spectral edges, i.e., regions where the stimulus energy changes abruptly over frequency. The processing of acoustic stimuli may benefit from a mechanism enhancing the internal representation of spectral edges. While the visual system is thought to rely heavily on this mechanism (enhancing spatial edges), it is still unclear whether a related process plays a significant role in audition. We investigated the cortical representation of spectral edges, using acoustic stimuli composed of multi-tone pips whose time-averaged spectral envelope contained suppressed or enhanced regions. Importantly, the stimuli were designed such that neural responses properties could be assessed as a function of stimulus frequency during stimulus presentation. Our results suggest that the representation of acoustic spectral edges is enhanced in the auditory cortex, and that this enhancement is sensitive to the characteristics of the spectral contrast profile, such as depth, sharpness and width. Spectral edges are maximally enhanced for sharp contrast and large depth. Cortical activity was also suppressed at frequencies within the suppressed region. To note, the suppression of firing was larger at frequencies nearby the lower edge of the suppressed region than at the upper edge. Overall, the present study gives critical insights into the processing of spectral contrasts in the auditory system.
Collapse
Affiliation(s)
- Nicolas Catz
- Laboratory of Adaptive and Integrative Neurobiology, Fédération de recherche 3C, UMR CNRS 7260, Université Aix-Marseille Marseille, France
| | | |
Collapse
|
46
|
The reduced cochlear output and the failure to adapt the central auditory response causes tinnitus in noise exposed rats. PLoS One 2013; 8:e57247. [PMID: 23516401 PMCID: PMC3596376 DOI: 10.1371/journal.pone.0057247] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 01/18/2013] [Indexed: 01/15/2023] Open
Abstract
Tinnitus is proposed to be caused by decreased central input from the cochlea, followed by increased spontaneous and evoked subcortical activity that is interpreted as compensation for increased responsiveness of central auditory circuits. We compared equally noise exposed rats separated into groups with and without tinnitus for differences in brain responsiveness relative to the degree of deafferentation in the periphery. We analyzed (1) the number of CtBP2/RIBEYE-positive particles in ribbon synapses of the inner hair cell (IHC) as a measure for deafferentation; (2) the fine structure of the amplitudes of auditory brainstem responses (ABR) reflecting differences in sound responses following decreased auditory nerve activity and (3) the expression of the activity-regulated gene Arc in the auditory cortex (AC) to identify long-lasting central activity following sensory deprivation. Following moderate trauma, 30% of animals exhibited tinnitus, similar to the tinnitus prevalence among hearing impaired humans. Although both tinnitus and no-tinnitus animals exhibited a reduced ABR wave I amplitude (generated by primary auditory nerve fibers), IHCs ribbon loss and high-frequency hearing impairment was more severe in tinnitus animals, associated with significantly reduced amplitudes of the more centrally generated wave IV and V and less intense staining of Arc mRNA and protein in the AC. The observed severe IHCs ribbon loss, the minimal restoration of ABR wave size, and reduced cortical Arc expression suggest that tinnitus is linked to a failure to adapt central circuits to reduced cochlear input.
Collapse
|
47
|
Simpson AJR, Reiss JD. The dynamic range paradox: a central auditory model of intensity change detection. PLoS One 2013; 8:e57497. [PMID: 23536749 PMCID: PMC3585315 DOI: 10.1371/journal.pone.0057497] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 01/22/2013] [Indexed: 11/18/2022] Open
Abstract
In this paper we use empirical loudness modeling to explore a perceptual sub-category of the dynamic range problem of auditory neuroscience. Humans are able to reliably report perceived intensity (loudness), and discriminate fine intensity differences, over a very large dynamic range. It is usually assumed that loudness and intensity change detection operate upon the same neural signal, and that intensity change detection may be predicted from loudness data and vice versa. However, while loudness grows as intensity is increased, improvement in intensity discrimination performance does not follow the same trend and so dynamic range estimations of the underlying neural signal from loudness data contradict estimations based on intensity just-noticeable difference (JND) data. In order to account for this apparent paradox we draw on recent advances in auditory neuroscience. We test the hypothesis that a central model, featuring central adaptation to the mean loudness level and operating on the detection of maximum central-loudness rate of change, can account for the paradoxical data. We use numerical optimization to find adaptation parameters that fit data for continuous-pedestal intensity change detection over a wide dynamic range. The optimized model is tested on a selection of equivalent pseudo-continuous intensity change detection data. We also report a supplementary experiment which confirms the modeling assumption that the detection process may be modeled as rate-of-change. Data are obtained from a listening test (N = 10) using linearly ramped increment-decrement envelopes applied to pseudo-continuous noise with an overall level of 33 dB SPL. Increments with half-ramp durations between 5 and 50,000 ms are used. The intensity JND is shown to increase towards long duration ramps (p<10(-6)). From the modeling, the following central adaptation parameters are derived; central dynamic range of 0.215 sones, 95% central normalization, and a central loudness JND constant of 5.5×10(-5) sones per ms. Through our findings, we argue that loudness reflects peripheral neural coding, and the intensity JND reflects central neural coding.
Collapse
Affiliation(s)
- Andrew J R Simpson
- Centre for Digital Music, Queen Mary University of London, London, United Kingdom.
| | | |
Collapse
|
48
|
The relationship between tinnitus pitch and hearing sensitivity. Eur Arch Otorhinolaryngol 2013; 271:41-8. [DOI: 10.1007/s00405-013-2375-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Accepted: 01/22/2013] [Indexed: 10/27/2022]
|
49
|
A cohort study of patients with tinnitus and sensorineural hearing loss in a Swedish population. Auris Nasus Larynx 2013; 40:41-5. [DOI: 10.1016/j.anl.2012.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 04/27/2012] [Accepted: 05/05/2012] [Indexed: 11/22/2022]
|
50
|
Park JP, Lim HW, Shim BS, Kim TS, Chung JW, Yoon TH, Park HJ. Interaural differences of distortion product otoacoustic emission amplitudes in patients with unilateral tinnitus. Otolaryngol Head Neck Surg 2012; 148:456-9. [PMID: 23151834 DOI: 10.1177/0194599812467429] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE We aimed to determine whether abnormalities in outer hair cell (OHC) function were related to tinnitus through interaural comparison of distortion product otoacoustic emissions (DPOAEs). STUDY DESIGN Cross-sectional study. SETTING Tertiary care university teaching hospital. PARTICIPANTS Twenty-seven patients with unilateral tinnitus and pure-tone average of both ears ≤ 25 dB hearing loss (HL) at 500, 1000, 2000, and 4000 Hz were included. SUBJECTS AND METHODS Pure-tone thresholds observed at 500 to 16,000 Hz and DPOAE amplitudes at f2 frequencies of 1001 to 6348 Hz were compared between the tinnitus ears and nontinnitus ears in patients with unilateral tinnitus. RESULTS The pure-tone averages (13 ± 6 dB HL) in the nontinnitus ears were similar to those (15 ± 6 dB HL) in the tinnitus ears. There were no differences in pure-tone averages at all frequencies tested. While the DPOAE amplitudes measured at f2 frequencies of 1001 to 3174 Hz in tinnitus ears were not different from those in the nontinnitus ears, the tinnitus ears showed significantly reduced DPOAE amplitudes when compared with the nontinnitus ears at frequencies of 4004 to 6348 Hz. CONCLUSION OHC dysfunction was correlated with tinnitus at high frequencies, and DPOAE amplitudes can provide additional information about cochlear dysfunction, which is complementary to pure-tone audiometry.
Collapse
Affiliation(s)
- Joon Pyo Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|