1
|
Tougaard J, Beedholm K, Madsen PT. Comment on "Similar susceptibility to temporary hearing threshold shifts despite different audiograms in harbor porpoises and harbor seals" [J. Acoust. Soc. Am. 155, 396-404 (2024)] (L). THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2025; 157:538-541. [PMID: 39868780 DOI: 10.1121/10.0035452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 11/17/2024] [Indexed: 01/28/2025]
Abstract
Gransier and Kastelein [J. Acoust. Soc. Am. 155, 396-404 (2024)] present a review of selected studies on temporary threshold shift (TTS) in seals and porpoises. In contrast to the conclusion made in the paper, the results presented are fully consistent with the current understanding that sound exposure level is the best overall predictor of TTSs in marine mammals. If all available TTS studies on seals and porpoises exposed to narrowband noise are included, there is support neither for the conclusion that seals and porpoises are equally susceptible to TTSs nor for their claim that audiograms are poor predictors of the frequency dependence of TTS susceptibility.
Collapse
Affiliation(s)
- Jakob Tougaard
- Department of Ecoscience, University of Aarhus, Aarhus, 8000, Denmark
| | | | - Peter T Madsen
- Department of Biology, University of Aarhus, Aarhus, 8000, Denmark
| |
Collapse
|
2
|
Gransier R, Kastelein RA. Similar susceptibility to temporary hearing threshold shifts despite different audiograms in harbor porpoises and harbor seals. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2024; 155:396-404. [PMID: 38240666 DOI: 10.1121/10.0024343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 12/14/2023] [Indexed: 01/23/2024]
Abstract
When they are exposed to loud fatiguing sounds in the oceans, marine mammals are susceptible to hearing damage in the form of temporary hearing threshold shifts (TTSs) or permanent hearing threshold shifts. We compared the level-dependent and frequency-dependent susceptibility to TTSs in harbor seals and harbor porpoises, species with different hearing sensitivities in the low- and high-frequency regions. Both species were exposed to 100% duty cycle one-sixth-octave noise bands at frequencies that covered their entire hearing range. In the case of the 6.5 kHz exposure for the harbor seals, a pure tone (continuous wave) was used. TTS was quantified as a function of sound pressure level (SPL) half an octave above the center frequency of the fatiguing sound. The species have different audiograms, but their frequency-specific susceptibility to TTS was more similar. The hearing frequency range in which both species were most susceptible to TTS was 22.5-50 kHz. Furthermore, the frequency ranges were characterized by having similar critical levels (defined as the SPL of the fatiguing sound above which the magnitude of TTS induced as a function of SPL increases more strongly). This standardized between-species comparison indicates that the audiogram is not a good predictor of frequency-dependent susceptibility to TTS.
Collapse
Affiliation(s)
- Robin Gransier
- Research Group Experimental Oto-rhino-laryngology (ExpORL), Department of Neurosciences, KU Leuven, Herestraat 49, Box 721, 3000 Leuven, Belgium
| | - Ronald A Kastelein
- Sea Mammal Research Company (SEAMARCO), Julianalaan 46, 3842 CC Harderwijk, The Netherlands
| |
Collapse
|
3
|
Tougaard J, Beedholm K, Madsen PT. Thresholds for noise induced hearing loss in harbor porpoises and phocid seals. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 151:4252. [PMID: 35778178 DOI: 10.1121/10.0011560] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Intense sound sources, such as pile driving, airguns, and military sonars, have the potential to inflict hearing loss in marine mammals and are, therefore, regulated in many countries. The most recent criteria for noise induced hearing loss are based on empirical data collected until 2015 and recommend frequency-weighted and species group-specific thresholds to predict the onset of temporary threshold shift (TTS). Here, evidence made available after 2015 in light of the current criteria for two functional hearing groups is reviewed. For impulsive sounds (from pile driving and air guns), there is strong support for the current threshold for very high frequency cetaceans, including harbor porpoises (Phocoena phocoena). Less strong support also exists for the threshold for phocid seals in water, including harbor seals (Phoca vitulina). For non-impulsive sounds, there is good correspondence between exposure functions and empirical thresholds below 10 kHz for porpoises (applicable to assessment and regulation of military sonars) and between 3 and 16 kHz for seals. Above 10 kHz for porpoises and outside of the range 3-16 kHz for seals, there are substantial differences (up to 35 dB) between the predicted thresholds for TTS and empirical results. These discrepancies call for further studies.
Collapse
Affiliation(s)
- Jakob Tougaard
- Department of Ecoscience, Marine Mammal Research, Aarhus University, C. F. Møllers Allé 3, Aarhus 8000, Denmark
| | - Kristian Beedholm
- Department of Biology, Zoophysiology, Aarhus University, C. F. Møllers Allé 3, Aarhus 8000, Denmark
| | - Peter T Madsen
- Department of Biology, Zoophysiology, Aarhus University, C. F. Møllers Allé 3, Aarhus 8000, Denmark
| |
Collapse
|
4
|
Findlay CR, Aleynik D, Farcas A, Merchant ND, Risch D, Wilson B. Auditory impairment from acoustic seal deterrents predicted for harbour porpoises in a marine protected area. J Appl Ecol 2021. [DOI: 10.1111/1365-2664.13910] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Charlotte R. Findlay
- Scottish Association for Marine Science (SAMS) University of the Highlands and Islands Oban UK
| | - Dmitry Aleynik
- Scottish Association for Marine Science (SAMS) University of the Highlands and Islands Oban UK
| | - Adrian Farcas
- Centre for Environment, Fisheries and Aquaculture Science (Cefas) Lowestoft UK
| | - Nathan D. Merchant
- Centre for Environment, Fisheries and Aquaculture Science (Cefas) Lowestoft UK
| | - Denise Risch
- Scottish Association for Marine Science (SAMS) University of the Highlands and Islands Oban UK
| | - Ben Wilson
- Scottish Association for Marine Science (SAMS) University of the Highlands and Islands Oban UK
| |
Collapse
|
5
|
Kastelein RA, Helder-Hoek L, Cornelisse SA, Defillet LN, Huijser LAE, Terhune JM. Temporary hearing threshold shift in harbor seals (Phoca vitulina) due to one-sixth-octave noise bands centered at 0.5, 1, and 2 kHz. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2020; 148:3873. [PMID: 33379889 DOI: 10.1121/10.0002781] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/10/2020] [Indexed: 06/12/2023]
Abstract
This study concludes a larger project on the frequency-dependent susceptibility to noise-induced temporary hearing threshold shift (TTS) in harbor seals (Phoca vitulina). Here, two seals were exposed to one-sixth-octave noise bands (NBs) centered at 0.5, 1, and 2 kHz at several sound exposure levels (SELs, in dB re 1 μPa2s). TTSs were quantified at the center frequency of each NB, half an octave above, and one octave above, at the earliest within 1-4 min after exposure. Generally, elicited TTSs were low, and the highest TTS1-4 occurred at half an octave above the center frequency of the fatiguing sound: after exposure to the 0.5-kHz NB at 210 dB SEL, the TTS1-4 at 0.71 kHz was 2.3 dB; after exposure to the 1-kHz NB at 207 dB SEL, the TTS1-4 at 1.4 kHz was 6.1 dB; and after exposure to the 2-kHz NB at 215 dB SEL, TTS1-4 at 2.8 kHz was 7.9 dB. Hearing always recovered within 60 min, and susceptibility to TTS was similar in both seals. The results show that, for the studied frequency range, the lower the center frequency of the fatiguing sound, the higher the SEL required to cause the same TTS.
Collapse
Affiliation(s)
- Ronald A Kastelein
- Sea Mammal Research Company (SEAMARCO), Julianalaan 46, 3843 CC Harderwijk, the Netherlands
| | - Lean Helder-Hoek
- Sea Mammal Research Company (SEAMARCO), Julianalaan 46, 3843 CC Harderwijk, the Netherlands
| | - Suzanne A Cornelisse
- Sea Mammal Research Company (SEAMARCO), Julianalaan 46, 3843 CC Harderwijk, the Netherlands
| | - Linde N Defillet
- Sea Mammal Research Company (SEAMARCO), Julianalaan 46, 3843 CC Harderwijk, the Netherlands
| | - Léonie A E Huijser
- Cetacean Ecology and Acoustics Laboratory (CEAL), University of Queensland, 37 Fraser Street, Dunwich, Queensland 4183, Australia
| | - John M Terhune
- Department of Biological Sciences, University of New Brunswick, 100 Tucker Park Road, Saint John, New Brunswick, E2L 4L5, Canada
| |
Collapse
|
6
|
Kastelein RA, Helder-Hoek L, Cornelisse SA, von Benda-Beckmann AM, Lam FPA, de Jong CAF, Ketten DR. Lack of reproducibility of temporary hearing threshold shifts in a harbor porpoise after exposure to repeated airgun sounds. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2020; 148:556. [PMID: 32872990 DOI: 10.1121/10.0001668] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 07/11/2020] [Indexed: 06/11/2023]
Abstract
Noise-induced temporary hearing threshold shift (TTS) was studied in a harbor porpoise exposed to impulsive sounds of scaled-down airguns while both stationary and free-swimming for up to 90 min. In a previous study, ∼4 dB TTS was elicited in this porpoise, but despite 8 dB higher single-shot and cumulative exposure levels (up to 199 dB re 1 μPa2s) in the present study, the porpoise showed no significant TTS at hearing frequencies 2, 4, or 8 kHz. There were no changes in the study animal's audiogram between the studies or significant differences in the fatiguing sound that could explain the difference, but audible and visual cues in the present study may have allowed the porpoise to predict when the fatiguing sounds would be produced. The discrepancy between the studies may have resulted from self-mitigation by the porpoise. Self-mitigation, resulting in reduced hearing sensitivity, can be achieved via changes in the orientation of the head, or via alteration of the hearing threshold by processes in the ear or central nervous system.
Collapse
Affiliation(s)
- Ronald A Kastelein
- Sea Mammal Research Company (SEAMARCO), Julianalaan 46, 3843 CC Harderwijk, The Netherlands
| | - Lean Helder-Hoek
- Sea Mammal Research Company (SEAMARCO), Julianalaan 46, 3843 CC Harderwijk, The Netherlands
| | - Suzanne A Cornelisse
- Sea Mammal Research Company (SEAMARCO), Julianalaan 46, 3843 CC Harderwijk, The Netherlands
| | | | - Frans-Peter A Lam
- TNO Acoustics and Sonar, Oude Waalsdorperweg 63, 2597 AK, The Hague, The Netherlands
| | - Christ A F de Jong
- TNO Acoustics and Sonar, Oude Waalsdorperweg 63, 2597 AK, The Hague, The Netherlands
| | - Darlene R Ketten
- The Hearing Research Center, Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, Massachusetts 02155, USA
| |
Collapse
|
7
|
Whyte KF, Russell DJF, Sparling CE, Binnerts B, Hastie GD. Estimating the effects of pile driving sounds on seals: Pitfalls and possibilities. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2020; 147:3948. [PMID: 32611185 DOI: 10.1121/10.0001408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 05/27/2020] [Indexed: 06/11/2023]
Abstract
Understanding the potential effects of pile driving sounds on marine wildlife is essential for regulating offshore wind developments. Here, tracking data from 24 harbour seals were used to quantify effects and investigate sensitivity to the methods used to predict these. The Aquarius pile driving model was used to model source characteristics and acoustic propagation loss (16 Hz-20 kHz). Predicted cumulative sound exposure levels (SELcums) experienced by each seal were compared to different auditory weighting functions and damage thresholds to estimate temporary (TTS) and permanent (PTS) threshold shift occurrence. Each approach produced markedly different results; however, the most recent criteria established by Southall et al. [(2019) Aquat. Mamm. 45, 125-232] suggests that TTS occurrence was low (17% of seals). Predictions of seal density during pile driving made by Russell et al. [(2016) J. Appl. Ecol. 53, 1642-1652] were compared to distance from the wind farm and predicted single-strike sound exposure levels (SELss) by multiple approaches. Predicted seal density significantly decreased within 25 km or above SELss (averaged across depths and pile installations) of 145 dB re 1 μPa2⋅s. However, there was substantial variation in SELss with depth and installation, and thus in the predicted relationship with seal density. These results highlight uncertainty in estimated effects, which should be considered in future assessments.
Collapse
Affiliation(s)
- Katherine F Whyte
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, Fife, KY16 8LB, United Kingdom
| | - Debbie J F Russell
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, Fife, KY16 8LB, United Kingdom
| | - Carol E Sparling
- SMRU Consulting, Scottish Oceans Institute, University of St Andrews, St Andrews, Fife, KY16 8LB, United Kingdom
| | - Bas Binnerts
- TNO, Acoustics and Sonar expertise group, Oude Waalsdorperweg 63, 2597 AK, The Hague, Netherlands
| | - Gordon D Hastie
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, Fife, KY16 8LB, United Kingdom
| |
Collapse
|
8
|
Martin SB, Lucke K, Barclay DR. Techniques for distinguishing between impulsive and non-impulsive sound in the context of regulating sound exposure for marine mammals. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2020; 147:2159. [PMID: 32359266 DOI: 10.1121/10.0000971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 03/11/2020] [Indexed: 06/11/2023]
Abstract
Regulations designed to mitigate the effects of man-made sounds on marine mammal hearing specify maximum daily sound exposure levels. The limits are lower for impulsive than non-impulsive sounds. The regulations do not indicate how to quantify impulsiveness; instead sounds are grouped by properties at the source. To address this gap, three metrics of impulsiveness (kurtosis, crest factor, and the Harris impulse factor) were compared using values from random noise and real-world ocean sounds. Kurtosis is recommended for quantifying impulsiveness. Kurtosis greater than 40 indicates a sound is fully impulsive. Only sounds above the effective quiet threshold (EQT) are considered intense enough to accumulate over time and cause hearing injury. A functional definition for EQT is proposed: the auditory frequency-weighted sound pressure level (SPL) that could accumulate to cause temporary threshold shift from non-impulsive sound as described in Southall, Finneran, Reichmuth, Nachtigall, Ketten, Bowles, Ellison, Nowacek, and Tyack [(2019). Aquat. Mamm. 45, 125-232]. It is known that impulsive sounds change to non-impulsive as these sounds propagate. This paper shows that this is not relevant for assessing hearing injury because sounds retain impulsive character when SPLs are above EQT. Sounds from vessels are normally considered non-impulsive; however, 66% of vessels analyzed were impulsive when weighted for very-high frequency mammal hearing.
Collapse
Affiliation(s)
- S Bruce Martin
- JASCO Applied Sciences Canada, Suite 202, 32 Troop Avenue, Dartmouth, Nova Scotia, B3B 1Z1, Canada
| | - Klaus Lucke
- JASCO Applied Sciences, Australia, 1/14 Hook Street, Capalaba, Queensland 4157, Australia
| | - David R Barclay
- Department of Oceanography, Dalhousie University, 1355 Oxford Street, P.O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada
| |
Collapse
|
9
|
Au WWL, Kastelein RA, Helder-Hoek L. Acoustic reflectivity of a harbor porpoise (Phocoena phocoena). THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:2475. [PMID: 31672016 DOI: 10.1121/1.5128328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/17/2019] [Indexed: 06/10/2023]
Abstract
Acoustic backscatter measurements were conducted on a stationary harbor porpoise (Phocoena phocoena) under controlled conditions. The measurements were made with the porpoise in the broadside aspect using three different types of signals: (1) a 475 μs linear frequency-modulated (FM) pulse with a frequency range from 23 to 160 kHz; (2) a simulated bottlenose dolphin (Tursiops "truncates") click with a peak frequency of 120 kHz; and (3) a simulated killer whale (Orcinus orca) click with a peak frequency of 60 kHz. The measurement with the FM pulse indicated that the mean target strength at the broadside aspect decreased from -26 to -50 dB as the frequency increased from 23 to 120 kHz in a nearly linear fashion (on a logarithm plot). Target strength variation with frequency was similar to a previous backscatter measurement on a bottlenose dolphin over a comparable frequency range (23-80 kHz). The porpoise seems to be a stealth body with low backscatter properties. The target strength of the porpoise was also about 15-16 dB lower than that of the bottlenose dolphin. The difference in lung volume of the two species when expressed in dB was also approximately 15 dB.
Collapse
Affiliation(s)
- Whitlow W L Au
- Marine Mammal Research Program, Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, Hawaii 96744, USA
| | - Ronald A Kastelein
- SEAMARCO (Sea Mammal Research Company), Julianalaan 46, 3843 CC Harderwijk, The Netherlands
| | - Lean Helder-Hoek
- SEAMARCO (Sea Mammal Research Company), Julianalaan 46, 3843 CC Harderwijk, The Netherlands
| |
Collapse
|
10
|
Martin SB, Morris C, Bröker K, O'Neill C. Sound exposure level as a metric for analyzing and managing underwater soundscapes. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:135. [PMID: 31370650 DOI: 10.1121/1.5113578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 05/09/2019] [Indexed: 06/10/2023]
Abstract
The auditory frequency weighted daily sound exposure level (SEL) is used in many jurisdictions to assess possible injury to the hearing of marine life. Therefore, using daily SEL to describe soundscapes would provide baseline information about the environment using the same tools used to measure injury. Here, the daily SEL from 12 recordings with durations of 18-97 days are analyzed to: (1) identify natural soundscapes versus environments affected by human activity, (2) demonstrate how SEL accumulates from different types of sources, (3) show the effects of recorder duty cycling on daily SEL, (4) make recommendations on collecting data for daily SEL analysis, and (5) discuss the use of the daily SEL as an indicator of cumulative effects. The autocorrelation of the one-minute sound exposure is used to help identify soundscapes not affected by human activity. Human sound sources reduce the autocorrelation and add low-frequency energy to the soundscapes. To measure the daily SEL for all marine mammal auditory frequency weighting groups, data should be sampled at 64 kHz or higher, for at least 1 min out of every 30 min. The daily autocorrelation of the one-minute SEL provides a confidence interval for the daily SEL computed with duty-cycled data.
Collapse
Affiliation(s)
- S Bruce Martin
- Department of Oceanography, Dalhousie University, 1355 Oxford Street, P.O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Corey Morris
- Fisheries and Oceans Canada, Northwest Atlantic Fisheries Centre, P.O. Box 5667, 80 East White Hills Road, Saint John's, Newfoundland A1C 5X1, Canada
| | - Koen Bröker
- Shell Global Solutions International B.V., Lange Kleiweg 40, Rijswijk 2288GK, The Netherlands
| | - Caitlin O'Neill
- Fisheries and Oceans Canada, Institute of Ocean Sciences, 9860 West Saanich Road, Sidney, British Columbia, V8L 4B2, Canada
| |
Collapse
|
11
|
Kok ACM, Engelberts JP, Kastelein RA, Helder-Hoek L, Van de Voorde S, Visser F, Slabbekoorn H. Spatial avoidance to experimental increase of intermittent and continuous sound in two captive harbour porpoises. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 233:1024-1036. [PMID: 29050731 DOI: 10.1016/j.envpol.2017.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 09/28/2017] [Accepted: 10/01/2017] [Indexed: 06/07/2023]
Abstract
The continuing rise in underwater sound levels in the oceans leads to disturbance of marine life. It is thought that one of the main impacts of sound exposure is the alteration of foraging behaviour of marine species, for example by deterring animals from a prey location, or by distracting them while they are trying to catch prey. So far, only limited knowledge is available on both mechanisms in the same species. The harbour porpoise (Phocoena phocoena) is a relatively small marine mammal that could quickly suffer fitness consequences from a reduction of foraging success. To investigate effects of anthropogenic sound on their foraging efficiency, we tested whether experimentally elevated sound levels would deter two captive harbour porpoises from a noisy pool into a quiet pool (Experiment 1) and reduce their prey-search performance, measured as prey-search time in the noisy pool (Experiment 2). Furthermore, we tested the influence of the temporal structure and amplitude of the sound on the avoidance response of both animals. Both individuals avoided the pool with elevated sound levels, but they did not show a change in search time for prey when trying to find a fish hidden in one of three cages. The combination of temporal structure and SPL caused variable patterns. When the sound was intermittent, increased SPL caused increased avoidance times. When the sound was continuous, avoidance was equal for all SPLs above a threshold of 100 dB re 1 μPa. Hence, we found no evidence for an effect of sound exposure on search efficiency, but sounds of different temporal patterns did cause spatial avoidance with distinct dose-response patterns.
Collapse
Affiliation(s)
| | | | | | | | | | - Fleur Visser
- Institute of Biology Leiden, Leiden University, The Netherlands; Kelp Marine Research, Hoorn, The Netherlands.
| | - Hans Slabbekoorn
- Institute of Biology Leiden, Leiden University, The Netherlands.
| |
Collapse
|
12
|
Li S, Liu M, Dong L, Dong J, Wang D. Potential impacts of shipping noise on Indo-Pacific humpback dolphins and implications for regulation and mitigation: a review. Integr Zool 2018; 13:495-506. [PMID: 29316222 DOI: 10.1111/1749-4877.12304] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Shipping noise is a widespread and relatively loud sound source among human-induced underwater sounds. The impacts of shipping noise are of special concern for Indo-Pacific humpback dolphins (Sousa chinensis), as they inhabit shallow and nearshore habitats and are highly dependent on sound for survival. This study synthesizes our current understanding of the potential impacts of shipping noise on Indo-Pacific humpback dolphins combined with knowledge on sound production and hearing of these animals and the impacts of noise on other whales and dolphins. For further protection and management of Indo-Pacific humpback dolphins and their habitats, shipping noise should be regulated and mitigated to modify sound from ships, to reduce overall noise levels, and to set more marine protected areas (MPAs) covering most Indo-Pacific humpback dolphin habitats with seasonal and geographical restrictions to avoid ensonification of shipping noise. The emphasis for future research should be on obtaining more baseline information about the population distribution, sound production, hearing capabilities at the population level, behavior, and stress hormones of the humpback dolphins under different noise conditions or under different noise-producing activities, and/or in high-noise areas compared with relatively quiet areas, and the noise characteristics of ships of different types, sizes and speeds.
Collapse
Affiliation(s)
- Songhai Li
- Sanya Key Laboratory of Marine Mammal and Marine Bioacoustics, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Mingming Liu
- Sanya Key Laboratory of Marine Mammal and Marine Bioacoustics, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Lijun Dong
- Sanya Key Laboratory of Marine Mammal and Marine Bioacoustics, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Jianchen Dong
- Sanya Key Laboratory of Marine Mammal and Marine Bioacoustics, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ding Wang
- Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
13
|
Kastelein RA, Helder-Hoek L, Van de Voorde S, von Benda-Beckmann AM, Lam FPA, Jansen E, de Jong CAF, Ainslie MA. Temporary hearing threshold shift in a harbor porpoise (Phocoena phocoena) after exposure to multiple airgun sounds. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2017; 142:2430. [PMID: 29092610 DOI: 10.1121/1.5007720] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In seismic surveys, reflected sounds from airguns are used under water to detect gas and oil below the sea floor. The airguns produce broadband high-amplitude impulsive sounds, which may cause temporary or permanent threshold shifts (TTS or PTS) in cetaceans. The magnitude of the threshold shifts and the hearing frequencies at which they occur depend on factors such as the received cumulative sound exposure level (SELcum), the number of exposures, and the frequency content of the sounds. To quantify TTS caused by airgun exposure and the subsequent hearing recovery, the hearing of a harbor porpoise was tested by means of a psychophysical technique. TTS was observed after exposure to 10 and 20 consecutive shots fired from two airguns simultaneously (SELcum: 188 and 191 dB re 1 μPa2s) with mean shot intervals of around 17 s. Although most of the airgun sounds' energy was below 1 kHz, statistically significant initial TTS1-4 (1-4 min after sound exposure stopped) of ∼4.4 dB occurred only at the hearing frequency 4 kHz, and not at lower hearing frequencies tested (0.5, 1, and 2 kHz). Recovery occurred within 12 min post-exposure. The study indicates that frequency-weighted SELcum is a good predictor for the low levels of TTS observed.
Collapse
Affiliation(s)
- Ronald A Kastelein
- Sea Mammal Research Company (SEAMARCO), Julianalaan 46, 3843 CC Harderwijk, The Netherlands
| | - Lean Helder-Hoek
- Sea Mammal Research Company (SEAMARCO), Julianalaan 46, 3843 CC Harderwijk, The Netherlands
| | - Shirley Van de Voorde
- Sea Mammal Research Company (SEAMARCO), Julianalaan 46, 3843 CC Harderwijk, The Netherlands
| | | | - Frans-Peter A Lam
- TNO Acoustics and Sonar, Oude Waalsdorperweg 63, 2597 AK, The Hague, The Netherlands
| | - Erwin Jansen
- TNO Acoustics and Sonar, Oude Waalsdorperweg 63, 2597 AK, The Hague, The Netherlands
| | - Christ A F de Jong
- TNO Acoustics and Sonar, Oude Waalsdorperweg 63, 2597 AK, The Hague, The Netherlands
| | - Michael A Ainslie
- TNO Acoustics and Sonar, Oude Waalsdorperweg 63, 2597 AK, The Hague, The Netherlands
| |
Collapse
|
14
|
Kastelein RA, Helder-Hoek L, Van de Voorde S. Effects of exposure to sonar playback sounds (3.5 - 4.1 kHz) on harbor porpoise (Phocoena phocoena) hearing. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2017; 142:1965. [PMID: 29092538 DOI: 10.1121/1.5005613] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Safety criteria for naval sonar sounds are needed to protect harbor porpoise hearing. Two porpoises were exposed to sequences of AN/SQS-53C sonar playback sounds (3.5-4.1 kHz, without significant harmonics), at a mean received sound pressure level of 142 dB re 1 μPa, with a duty cycle of 96% (almost continuous). Behavioral hearing thresholds at 4 and 5.7 kHz were determined before and after exposure to the fatiguing sound, in order to quantify temporary threshold shifts (TTSs) and hearing recovery. Control sessions were also conducted. Significant mean initial TTS1-4 of 5.2 dB at 4 kHz and 3.1 dB at 5.7 kHz occurred after 30 min exposures (mean received cumulative sound exposure level, SELcum: 175 dB re 1 μPa2s). Hearing thresholds returned to pre-exposure levels within 12 min. Significant mean initial TTS1-4 of 5.5 dB at 4 kHz occurred after 60 min exposures (SELcum: 178 dB re 1 μPa2s). Hearing recovered within 60 min. The SELcum for AN/SQS-53C sonar sounds required to induce 6 dB of TTS 4 min after exposure (the definition of TTS onset) is expected to be between 175 and 180 dB re 1 μPa2s.
Collapse
Affiliation(s)
- Ronald A Kastelein
- Sea Mammal Research Company, Julianalaan 46, 3843 CC Harderwijk, the Netherlands
| | - Lean Helder-Hoek
- Sea Mammal Research Company, Julianalaan 46, 3843 CC Harderwijk, the Netherlands
| | | |
Collapse
|
15
|
Kastelein RA, Helder-Hoek L, Van de Voorde S. Hearing thresholds of a male and a female harbor porpoise (Phocoena phocoena). THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2017; 142:1006. [PMID: 28863581 DOI: 10.1121/1.4997907] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
To study intra-species variability in audiograms, the hearing sensitivity of a six-year-old female and a three-year-old male harbor porpoise was measured by using a standard psycho-acoustic technique under low ambient noise conditions. The porpoises' hearing thresholds for 13 narrow-band sweeps with center frequencies between 0.125 and 150 kHz were established. The resulting audiograms were U-shaped and similar. The main difference (25 dB) in mean thresholds between the two porpoises was at the high-frequency end of the hearing range (at 150 kHz). Maximum sensitivity (47 dB re 1 μPa for the female and 44 dB re 1 μPa for the male) occurred at 125 kHz. The range of most sensitive hearing (defined as within 10 dB of maximum sensitivity) was from 16 to ∼140 kHz. Sensitivity declined sharply above 125 kHz. All five porpoises for which a valid behavioral audiogram now exists were rehabilitated stranded animals, all were tested with similar psycho-acoustic techniques, and all had similar audiograms. The present study provides further evidence to confirm that the hearing range and sensitivity of the first three harbor porpoises, which have been used in secondary research and on which policy decisions have been based, are representative of those of young harbor porpoises in general.
Collapse
Affiliation(s)
- Ronald A Kastelein
- Sea Mammal Research Company (SEAMARCO), Julianalaan 46, 3843 CC Harderwijk, The Netherlands
| | - Lean Helder-Hoek
- Sea Mammal Research Company (SEAMARCO), Julianalaan 46, 3843 CC Harderwijk, The Netherlands
| | - Shirley Van de Voorde
- Sea Mammal Research Company (SEAMARCO), Julianalaan 46, 3843 CC Harderwijk, The Netherlands
| |
Collapse
|
16
|
Forney KA, Southall BL, Slooten E, Dawson S, Read AJ, Baird RW, Brownell RL. Nowhere to go: noise impact assessments for marine mammal populations with high site fidelity. ENDANGER SPECIES RES 2017. [DOI: 10.3354/esr00820] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
17
|
Houser DS, Yost W, Burkard R, Finneran JJ, Reichmuth C, Mulsow J. A review of the history, development and application of auditory weighting functions in humans and marine mammals. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2017; 141:1371. [PMID: 28372133 DOI: 10.1121/1.4976086] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This document reviews the history, development, and use of auditory weighting functions for noise impact assessment in humans and marine mammals. Advances from the modern era of electroacoustics, psychophysical studies of loudness, and other related hearing studies are reviewed with respect to the development and application of human auditory weighting functions, particularly A-weighting. The use of auditory weighting functions to assess the effects of environmental noise on humans-such as hearing damage-risk criteria-are presented, as well as lower-level effects such as annoyance and masking. The article also reviews marine mammal auditory weighting functions, the development of which has been fundamentally directed by the objective of predicting and preventing noise-induced hearing loss. Compared to the development of human auditory weighting functions, the development of marine mammal auditory weighting functions have faced additional challenges, including a large number of species that must be considered, a lack of audiometric information on most species, and small sample sizes for nearly all species for which auditory data are available. The review concludes with research recommendations to address data gaps and assumptions underlying marine mammal auditory weighting function design and application.
Collapse
Affiliation(s)
- Dorian S Houser
- National Marine Mammal Foundation, 2240 Shelter Island Drive, Suite 200, San Diego, California 92106, USA
| | - William Yost
- Speech and Hearing Science, Arizona State University, Tempe, Arizona 85287, USA
| | - Robert Burkard
- Department of Rehabilitation Science, University at Buffalo, 510 Kimball Tower, Buffalo, New York 14214, USA
| | - James J Finneran
- United States Navy Marine Mammal Program, Space and Naval Warfare Systems Center Pacific, Code 71510, 53560 Hull Street, San Diego, California 92152, USA
| | - Colleen Reichmuth
- Institute of Marine Sciences, Long Marine Laboratory, University of California Santa Cruz, Santa Cruz, California 95060, USA
| | - Jason Mulsow
- National Marine Mammal Foundation, 2240 Shelter Island Drive, Suite 200, San Diego, California 92106, USA
| |
Collapse
|
18
|
Ruser A, Dähne M, van Neer A, Lucke K, Sundermeyer J, Siebert U, Houser DS, Finneran JJ, Everaarts E, Meerbeek J, Dietz R, Sveegaard S, Teilmann J. Assessing auditory evoked potentials of wild harbor porpoises (Phocoena phocoena). THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2016; 140:442. [PMID: 27475168 DOI: 10.1121/1.4955306] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Testing the hearing abilities of marine mammals under water is a challenging task. Sample sizes are usually low, thus limiting the ability to generalize findings of susceptibility towards noise influences. A method to measure harbor porpoise hearing thresholds in situ in outdoor conditions using auditory steady state responses of the brainstem was developed and tested. The method was used on 15 live-stranded animals from the North Sea during rehabilitation, shortly before release into the wild, and on 12 wild animals incidentally caught in pound nets in Denmark (inner Danish waters). Results indicated that although the variability between individuals is wide, the shape of the hearing curve is generally similar to previously published results from behavioral trials. Using 10-kHz frequency intervals between 10 and 160 kHz, best hearing was found between 120 and 130 kHz. Additional testing using one-third octave frequency intervals (from 16 to 160 kHz) allowed for a much faster hearing assessment, but eliminated the fine scale threshold characteristics. For further investigations, the method will be used to better understand the factors influencing sensitivity differences across individuals and to establish population-level parameters describing hearing abilities of harbor porpoises.
Collapse
Affiliation(s)
- Andreas Ruser
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, Büsum, SH, Germany
| | - Michael Dähne
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, Büsum, SH, Germany
| | - Abbo van Neer
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, Büsum, SH, Germany
| | - Klaus Lucke
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, Büsum, SH, Germany
| | - Janne Sundermeyer
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, Büsum, SH, Germany
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, Büsum, SH, Germany
| | - Dorian S Houser
- National Marine Mammal Foundation, San Diego, California 92106, USA
| | - James J Finneran
- U.S. Navy Marine Mammal Program, Space and Naval Warfare Systems Center Pacific, San Diego, California 92152, USA
| | | | | | - Rune Dietz
- Department of Bioscience, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Signe Sveegaard
- Department of Bioscience, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Jonas Teilmann
- Department of Bioscience, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| |
Collapse
|
19
|
de Jong CAF, Ainslie MA, Heinis F, Janmaat J. Offshore Dredger Sounds: Source Levels, Sound Maps, and Risk Assessment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 875:189-96. [PMID: 26610959 DOI: 10.1007/978-1-4939-2981-8_22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
The underwater sound produced during construction of the Port of Rotterdam harbor extension (Maasvlakte 2) was measured, with emphasis on the contribution of the trailing suction hopper dredgers during their various activities: dredging, transport, and discharge of sediment. Measured source levels of the dredgers, estimated source levels of other shipping, and time-dependent position data from a vessel-tracking system were used as input for a propagation model to generate dynamic sound maps. Various scenarios were studied to assess the risk of possible effects of the sound from dredging activities on marine fauna, specifically on porpoises, seals, and fish.
Collapse
Affiliation(s)
- Christ A F de Jong
- Acoustics and Sonar Group, Netherlands Organization for Applied Scientific Research(TNO), Oude Waalsdorperweg 63, 2597 AK, The Hague, The Netherlands.
| | - Michael A Ainslie
- Acoustics and Sonar Group, Netherlands Organization for Applied Scientific Research(TNO), Oude Waalsdorperweg 63, 2597 AK, The Hague, The Netherlands.
| | - Floor Heinis
- Port of Rotterdam Authority, 3072 AP, Rotterdam, The Netherlands.
| | - Jeroen Janmaat
- Acoustics and Sonar Group, Netherlands Organization for Applied Scientific Research(TNO), Oude Waalsdorperweg 63, 2597 AK, The Hague, The Netherlands.
| |
Collapse
|
20
|
Kastelein RA, Helder-Hoek L, Covi J, Gransier R. Pile driving playback sounds and temporary threshold shift in harbor porpoises (Phocoena phocoena): Effect of exposure duration. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2016; 139:2842. [PMID: 27250176 DOI: 10.1121/1.4948571] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
High intensity underwater sounds may cause temporary hearing threshold shifts (TTSs) in harbor porpoises, the magnitude of which may depend on the exposure duration. After exposure to playbacks of pile driving sounds, TTSs in two porpoises were quantified at 4 and 8 kHz with a psychophysical technique. At 8 kHz, the pile driving sounds caused the highest TTS. Pile driving sounds had the following: pulse duration 124 ms, rate 2760 strikes/h, inter-pulse interval 1.3 s, duty cycle ∼9.5%, average received single-strike unweighted broadband sound exposure level (SELss) 145 dB re 1 μPa(2)s, exposure duration range 15-360 min (cumulative SEL range: 173-187 dB re 1 μPa(2)s). Control sessions were also carried out. Mean TTS (1-4 min after sound exposure stopped in one porpoise, and 12-16 min in the other animal) increased from 0 dB after 15 min exposure to 5 dB after 360 min exposure. Recovery occurred within 60 min post-exposure. For the signal duration, sound pressure level (SPL), and duty cycle used, the TTS onset SELcum is estimated to be around 175 dB re 1 μPa(2)s. The small increase in TTS between 15 and 360 min exposures is due to the small amount of sound energy per unit of time to which the porpoises were exposed [average (over time) broadband SPL ∼144 dB re 1 μPa].
Collapse
Affiliation(s)
- Ronald A Kastelein
- Sea Mammal Research Company, Julianalaan 46, 3843 CC Harderwijk, The Netherlands
| | - Lean Helder-Hoek
- Sea Mammal Research Company, Julianalaan 46, 3843 CC Harderwijk, The Netherlands
| | - Jennifer Covi
- Sea Mammal Research Company, Julianalaan 46, 3843 CC Harderwijk, The Netherlands
| | - Robin Gransier
- Sea Mammal Research Company, Julianalaan 46, 3843 CC Harderwijk, The Netherlands
| |
Collapse
|
21
|
Thomsen F, Borsani F, Clarke D, de Jong C, de Wit P, Goethals F, Holtkamp M, Martin ES, Spadaro P, van Raalte G, Victor GYV, Jensen A. WODA Technical Guidance on Underwater Sound from Dredging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 875:1161-6. [PMID: 26611082 DOI: 10.1007/978-1-4939-2981-8_145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The World Organization of Dredging Associations (WODA) has identified underwater sound as an environmental issue that needs further consideration. A WODA Expert Group on Underwater Sound (WEGUS) prepared a guidance paper in 2013 on dredging sound, including a summary of potential impacts on aquatic biota and advice on underwater sound monitoring procedures. The paper follows a risk-based approach and provides guidance for standardization of acoustic terminology and methods for data collection and analysis. Furthermore, the literature on dredging-related sounds and the effects of dredging sounds on marine life is surveyed and guidance on the management of dredging-related sound risks is provided.
Collapse
Affiliation(s)
| | - Fabrizio Borsani
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Lowestoft, Suffolk, NR33 0HT, UK.
| | | | - Christ de Jong
- Acoustics and Sonar, Netherlands Organization for Applied Scientific Research (TNO), 2509 JG, The Hague, The Netherlands.
| | - Pim de Wit
- Department of Strategy Infrastructure and Maritime Affairs, Port of Rotterdam Authority, 3072 AP, Rotterdam, The Netherlands.
| | | | | | - Elena San Martin
- ABP Marine Environmental Research Ltd. (ABPmer), Southampton, SO14 2AQ, UK.
| | - Philip Spadaro
- The Intelligence Group, Lake Union, Seattle, WA, 98109, USA.
| | | | | | | |
Collapse
|
22
|
Abstract
Despite a major research effort, no generally accepted exposure limits are available for harbor porpoises. Recent studies of the temporary threshold shift (TTS) in porpoises indicate that the sound exposure levels (SELs) required to induce low levels of TTS depend on stimulus frequency and roughly parallel the shape of the audiogram. A number of studies on behavioral avoidance reactions (negative phonotaxis) to pingers, seal scarers, and pile driving show a similar dependence on stimulus frequency. Both TTS and behavioral data suggest that weighting sound pressure levels with a filter function resembling the inverted audiogram would be appropriate.
Collapse
|
23
|
Wensveen PJ, Huijser LAE, Hoek L, Kastelein RA. Underwater Equal-Latency Contours of a Harbor Porpoise (Phocoena phocoena) for Tonal Signals Between 0.5 and 125 kHz. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 875:1223-8. [PMID: 26611090 DOI: 10.1007/978-1-4939-2981-8_153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Loudness perception can be studied based on the assumption that sounds of equal loudness elicit equal reaction time (RT; or "response latency"). We measured the underwater RTs of a harbor porpoise to narrowband frequency-modulated sounds and constructed six equal-latency contours. The contours paralleled the audiogram at low sensation levels (high RTs). At high-sensation levels, contours flattened between 0.5 and 31.5 kHz but dropped substantially (RTs shortened) beyond those frequencies. This study suggests that equal-latency-based frequency weighting can emulate noise perception in porpoises for low and middle frequencies but that the RT-loudness correlation is relatively weak for very high frequencies.
Collapse
Affiliation(s)
- Paul J Wensveen
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St. Andrews, Bute Building, St. Andrews, Fife, KY16 8LB, UK.
| | - Léonie A E Huijser
- Sea Mammal Research Company (SEAMARCO), Inc., Harderwijk, 3843, CC, The Netherlands.
| | - Lean Hoek
- Sea Mammal Research Company (SEAMARCO), Inc., Harderwijk, 3843, CC, The Netherlands.
| | - Ronald A Kastelein
- Sea Mammal Research Company (SEAMARCO), Inc., Harderwijk, 3843, CC, The Netherlands.
| |
Collapse
|
24
|
Kastelein RA, Schop J, Hoek L, Covi J. Hearing thresholds of a harbor porpoise (Phocoena phocoena) for narrow-band sweeps. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2015; 138:2508-2512. [PMID: 26520333 DOI: 10.1121/1.4932024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The hearing sensitivity of a 2-yr-old male harbor porpoise was measured using a standard psycho-acoustic technique under low ambient noise conditions. Auditory sensitivity was measured for narrow-band 1 s sweeps (center frequencies: 0.125-150 kHz). The audiogram was U-shaped; range of best hearing (within 10 dB of maximum sensitivity) was from 13 to ∼140 kHz. Maximum sensitivity (threshold: ∼39 dB re 1 μPa) occurred at 125 kHz at the peak frequency of echolocation pulses produced by harbor porpoises. Reduced sensitivity occurred at 32 and 63 kHz. Sensitivity fell by ∼10 dB per octave below 16 kHz and declined sharply above 125 kHz. Apart from this individual's ca. 10 dB higher sensitivity at 0.250 kHz, ca. 10 dB lower sensitivity at 32 kHz, and ca. 59 dB lower sensitivity at 150 kHz, his audiogram is similar to that of two harbor porpoises tested previously with a similar psycho-acoustic technique.
Collapse
Affiliation(s)
- Ronald A Kastelein
- Sea Mammal Research Company, Julianalaan 46, 3843 CC Harderwijk, The Netherlands
| | - Jessica Schop
- Sea Mammal Research Company, Julianalaan 46, 3843 CC Harderwijk, The Netherlands
| | - Lean Hoek
- Sea Mammal Research Company, Julianalaan 46, 3843 CC Harderwijk, The Netherlands
| | - Jennifer Covi
- Sea Mammal Research Company, Julianalaan 46, 3843 CC Harderwijk, The Netherlands
| |
Collapse
|
25
|
Finneran JJ. Noise-induced hearing loss in marine mammals: A review of temporary threshold shift studies from 1996 to 2015. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2015; 138:1702-1726. [PMID: 26428808 DOI: 10.1121/1.4927418] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
One of the most widely recognized effects of intense noise exposure is a noise-induced threshold shift—an elevation of hearing thresholds following cessation of the noise. Over the past twenty years, as concerns over the potential effects of human-generated noise on marine mammals have increased, a number of studies have been conducted to investigate noise-induced threshold shift phenomena in marine mammals. The experiments have focused on measuring temporary threshold shift (TTS)—a noise-induced threshold shift that fully recovers over time—in marine mammals exposed to intense tones, band-limited noise, and underwater impulses with various sound pressure levels, frequencies, durations, and temporal patterns. In this review, the methods employed by the groups conducting marine mammal TTS experiments are described and the relationships between the experimental conditions, the noise exposure parameters, and the observed TTS are summarized. An attempt has been made to synthesize the major findings across experiments to provide the current state of knowledge for the effects of noise on marine mammal hearing.
Collapse
Affiliation(s)
- James J Finneran
- United States Navy Marine Mammal Program, Space and Naval Warfare Systems Center Pacific, 53560 Hull Street, San Diego, California 92152, USA
| |
Collapse
|
26
|
Li S, Wu H, Xu Y, Peng C, Fang L, Lin M, Xing L, Zhang P. Mid- to high-frequency noise from high-speed boats and its potential impacts on humpback dolphins. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2015; 138:942-952. [PMID: 26328710 DOI: 10.1121/1.4927416] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The impact of noise made by vessels on marine animals has come under increased concern. However, most measurements on noise from vessels have only taken into account the low-frequency components. For cetaceans operating in the mid- and high-frequencies, such as the Indo-Pacific humpback dolphin (Sousa chinensis), mid- to high-frequency noise components may be of more concern, in terms of their potential impacts. In this study, noise made by a small high-speed boat was recorded using a broadband recording system in a dolphin watching area focusing on the effects on humpback dolphins in Sanniang Bay, China. The high-speed boat produced substantial mid- to high-frequency noise components with frequencies to >100 kHz, measured at three speeds: ∼40, 30, and 15 km/h. The noise from the boat raised the ambient noise levels from ∼5 to 47 decibels (dB) root-mean-square (rms) across frequency bands ranging from 1 to 125 kHz at a distance of 20 to 85 m, with louder levels recorded at higher speeds and at closer distances. To conclude, the noise produced by the small high-speed boat could be heard by Sousa chinensis and therefore potentially had adverse effects on the dolphins.
Collapse
Affiliation(s)
- Songhai Li
- Sanya Key Laboratory of Marine Mammal and Marine Bioacoustics, Sanya Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Haiping Wu
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Department of Marine Science, College of Ocean, Qinzhou University, Guangxi 535099, China
| | - Youhou Xu
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Department of Marine Science, College of Ocean, Qinzhou University, Guangxi 535099, China
| | - Chongwei Peng
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Department of Marine Science, College of Ocean, Qinzhou University, Guangxi 535099, China
| | - Liang Fang
- Sanya Key Laboratory of Marine Mammal and Marine Bioacoustics, Sanya Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Mingli Lin
- Sanya Key Laboratory of Marine Mammal and Marine Bioacoustics, Sanya Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Luru Xing
- Sanya Key Laboratory of Marine Mammal and Marine Bioacoustics, Sanya Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Peijun Zhang
- Sanya Key Laboratory of Marine Mammal and Marine Bioacoustics, Sanya Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| |
Collapse
|
27
|
Characteristics and Propagation of Airgun Pulses in Shallow Water with Implications for Effects on Small Marine Mammals. PLoS One 2015. [PMID: 26214849 PMCID: PMC4516352 DOI: 10.1371/journal.pone.0133436] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Airguns used in seismic surveys are among the most prevalent and powerful anthropogenic noise sources in marine habitats. They are designed to produce most energy below 100 Hz, but the pulses have also been reported to contain medium-to-high frequency components with the potential to affect small marine mammals, which have their best hearing sensitivity at higher frequencies. In shallow water environments, inhabited by many of such species, the impact of airgun noise may be particularly challenging to assess due to complex propagation conditions. To alleviate the current lack of knowledge on the characteristics and propagation of airgun pulses in shallow water with implications for effects on small marine mammals, we recorded pulses from a single airgun with three operating volumes (10 in3, 25 in3 and 40 in3) at six ranges (6, 120, 200, 400, 800 and 1300 m) in a uniform shallow water habitat using two calibrated Reson 4014 hydrophones and four DSG-Ocean acoustic data recorders. We show that airgun pulses in this shallow habitat propagated out to 1300 meters in a way that can be approximated by a 18log(r) geometric transmission loss model, but with a high pass filter effect from the shallow water depth. Source levels were back-calculated to 192 dB re µPa2s (sound exposure level) and 200 dB re 1 µPa dB Leq-fast (rms over 125 ms duration), and the pulses contained substantial energy up to 10 kHz, even at the furthest recording station at 1300 meters. We conclude that the risk of causing hearing damage when using single airguns in shallow waters is small for both pinnipeds and porpoises. However, there is substantial potential for significant behavioral responses out to several km from the airgun, well beyond the commonly used shut-down zone of 500 meters.
Collapse
|
28
|
Finneran JJ, Schlundt CE, Branstetter BK, Trickey JS, Bowman V, Jenkins K. Effects of multiple impulses from a seismic air gun on bottlenose dolphin hearing and behavior. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2015; 137:1634-1646. [PMID: 25920816 DOI: 10.1121/1.4916591] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
To investigate the auditory effects of multiple underwater impulses, hearing thresholds were measured in three bottlenose dolphins before and after exposure to 10 impulses produced by a seismic air gun. Thresholds were measured at multiple frequencies using both psychophysical and electrophysiological (auditory evoked potential) methods. Exposures began at relatively low levels and gradually increased over a period of several months. The highest exposures featured peak sound pressure levels from 196 to 210 dB re 1 μPa, peak-peak sound pressure levels of 200-212 dB re 1 μPa, and cumulative (unweighted) sound exposure levels from 193 to 195 dB re 1 μPa(2)s. At the cessation of the study, no significant increases were observed in psychophysical thresholds; however, a small (9 dB) shift in mean auditory evoked potential thresholds, accompanied by a suppression of the evoked potential amplitude function, was seen in one subject at 8 kHz. At the highest exposure condition, two of the dolphins also exhibited behavioral reactions indicating that they were capable of anticipating and potentially mitigating the effects of impulsive sounds presented at fixed time intervals.
Collapse
Affiliation(s)
- James J Finneran
- U.S. Navy Marine Mammal Program, Space and Naval Warfare Systems Center Pacific, Code 71510, 53560 Hull Street, San Diego, California 92152
| | | | - Brian K Branstetter
- National Marine Mammal Foundation, 2240 Shelter Island Drive, No. 200, San Diego, California 92106
| | - Jennifer S Trickey
- National Marine Mammal Foundation, 2240 Shelter Island Drive, No. 200, San Diego, California 92106
| | - Victoria Bowman
- National Marine Mammal Foundation, 2240 Shelter Island Drive, No. 200, San Diego, California 92106
| | - Keith Jenkins
- U.S. Navy Marine Mammal Program, Space and Naval Warfare Systems Center Pacific, Code 71510, 53560 Hull Street, San Diego, California 92152
| |
Collapse
|
29
|
Kastelein RA, Gransier R, Schop J, Hoek L. Effects of exposure to intermittent and continuous 6-7 kHz sonar sweeps on harbor porpoise (Phocoena phocoena) hearing. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2015; 137:1623-1633. [PMID: 25920815 DOI: 10.1121/1.4916590] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Safety criteria for mid-frequency naval sonar sounds are needed to protect harbor porpoise hearing. A porpoise was exposed to sequences of one-second 6-7 kHz sonar down-sweeps, with 10-200 sweeps in a sequence, at an average received sound pressure level (SPLav.re.) of 166 dB re 1 μPa, with duty cycles of 10% (intermittent sounds) and 100% (continuous). Behavioral hearing thresholds at 9.2 kHz were determined before and after exposure to the fatiguing noise, to quantify temporary hearing threshold shifts (TTS1-4 min) and recovery. Significant TTS1-4 min occurred after 10-25 sweeps when the duty cycle was 10% (cumulative sound exposure level, SELcum: ∼178 dB re 1 μPa(2)s). For the same SELcum, the TTS1-4 min was greater for exposures with 100% duty cycle. The difference in TTS between the two duty cycle exposures increased as the number of sweeps in the exposure sequences increased. Therefore, to predict TTS and permanent threshold shift, not only SELcum needs to be known, but also the duty cycle or equivalent sound pressure level (Leq). It appears that the injury criterion for non-pulses proposed by Southall, Bowles, Ellison, Finneran, Gentry, Greene, Kastak, Ketten, Miller, Nachtigall, Richardson, Thomas, and Tyack [(2007). Aquat. Mamm. 33, 411-521] for cetaceans echolocating at high frequency (SEL 215 dB re 1 μPa(2)s) is too high for the harbor porpoise.
Collapse
Affiliation(s)
- Ronald A Kastelein
- Sea Mammal Research Company, Julianalaan 46, 3843 CC Harderwijk, The Netherlands
| | - Robin Gransier
- Sea Mammal Research Company, Julianalaan 46, 3843 CC Harderwijk, The Netherlands
| | - Jessica Schop
- Sea Mammal Research Company, Julianalaan 46, 3843 CC Harderwijk, The Netherlands
| | - Lean Hoek
- Sea Mammal Research Company, Julianalaan 46, 3843 CC Harderwijk, The Netherlands
| |
Collapse
|
30
|
Kastelein RA, Gransier R, Marijt MAT, Hoek L. Hearing frequency thresholds of harbor porpoises (Phocoena phocoena) temporarily affected by played back offshore pile driving sounds. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2015; 137:556-564. [PMID: 25697990 DOI: 10.1121/1.4906261] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Harbor porpoises may suffer hearing loss when exposed to intense sounds. After exposure to playbacks of broadband pile driving sounds for 60 min, the temporary hearing threshold shift (TTS) of a porpoise was quantified at 0.5, 1, 2, 4, 8, 16, 32, 63, and 125 kHz with a psychoacoustic technique. Details of the pile driving sounds were as follows: pulse duration 124 ms, rate 2760 strikes/h, inter-pulse interval 1.3 s, average received single strike unweighted sound exposure level (SEL) 146 dB re 1 μPa(2) s (cumulative SEL: 180 dB re 1 μPa(2) s). Statistically significant TTS only occurred at 4 and 8 kHz; mean TTS (1-4 min. after sound exposure stopped) was 2.3 dB at 4 kHz, and 3.6 dB at 8 kHz; recovery occurred within 48 min. This study shows that exposure to multiple impulsive sounds with most of their energy in the low frequencies can cause reduced hearing at higher frequencies in harbor porpoises. The porpoise's hearing threshold for the frequency in the range of its echolocation signals was not affected by the pile driving playback sounds.
Collapse
Affiliation(s)
- Ronald A Kastelein
- Sea Mammal Research Company (SEAMARCO), Julianalaan 46, 3843 CC Harderwijk, The Netherlands
| | - Robin Gransier
- Sea Mammal Research Company (SEAMARCO), Julianalaan 46, 3843 CC Harderwijk, The Netherlands
| | - Michelle A T Marijt
- Sea Mammal Research Company (SEAMARCO), Julianalaan 46, 3843 CC Harderwijk, The Netherlands
| | - Lean Hoek
- Sea Mammal Research Company (SEAMARCO), Julianalaan 46, 3843 CC Harderwijk, The Netherlands
| |
Collapse
|
31
|
Tougaard J, Wright AJ, Madsen PT. Cetacean noise criteria revisited in the light of proposed exposure limits for harbour porpoises. MARINE POLLUTION BULLETIN 2015; 90:196-208. [PMID: 25467877 DOI: 10.1016/j.marpolbul.2014.10.051] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 10/28/2014] [Accepted: 10/30/2014] [Indexed: 05/17/2023]
Abstract
The impact of underwater noise on marine life calls for identification of exposure criteria to inform mitigation. Here we review recent experimental evidence with focus on the high-frequency cetaceans and discuss scientifically-based initial exposure criteria. A range of new TTS experiments suggest that harbour and finless porpoises are more sensitive to sound than expected from extrapolations based on results from bottlenose dolphins. Furthermore, the results from TTS experiments and field studies of behavioural reactions to noise, suggest that response thresholds and TTS critically depend on stimulus frequency. Sound exposure levels for pure tones that induce TTS are reasonably consistent at about 100 dB above the hearing threshold for pure tones and sound pressure thresholds for avoidance reactions are in the range of 40-50 dB above the hearing threshold. We propose that frequency weighting with a filter function approximating the inversed audiogram might be appropriate when assessing impact.
Collapse
Affiliation(s)
- Jakob Tougaard
- Aarhus University, Department of Bioscience, Frederiksborgvej 399, DK-4000 Roskilde, Denmark.
| | - Andrew J Wright
- Aarhus University, Department of Bioscience, Frederiksborgvej 399, DK-4000 Roskilde, Denmark; Department of Environmental Science and Policy, George Mason University, 4400 University Drive, Fairfax, VA 22030, USA
| | - Peter T Madsen
- Aarhus University, Department of Bioscience, DK-8000 Aarhus C, Denmark; Murdoch University Cetacean Research Unit, Murdoch University, WA, Australia
| |
Collapse
|
32
|
Hermannsen L, Beedholm K, Tougaard J, Madsen PT. High frequency components of ship noise in shallow water with a discussion of implications for harbor porpoises (Phocoena phocoena). THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2014; 136:1640-1653. [PMID: 25324068 DOI: 10.1121/1.4893908] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Growing ship traffic worldwide has led to increased vessel noise with possible negative impacts on marine life. Most research has focused on low frequency components of ship noise, but for high-frequency specialists, such as the harbor porpoise (Phocoena phocoena), medium-to-high frequency noise components are likely more of a concern. To test for biologically relevant levels of medium-to-high frequency vessel noise, different types of Automatic Identification System located vessels were recorded using a broadband recording system in four heavily ship-trafficked marine habitats in Denmark. Vessel noise from a range of different ship types substantially elevated ambient noise levels across the entire recording band from 0.025 to 160 kHz at ranges between 60 and 1000 m. These ship noise levels are estimated to cause hearing range reduction of >20 dB (at 1 and 10 kHz) from ships passing at distances of 1190 m and >30 dB reduction (at 125 kHz) from ships at distances of 490 m or less. It is concluded that a diverse range of vessels produce substantial noise at high frequencies, where toothed whale hearing is most sensitive, and that vessel noise should be considered over a broad frequency range, when assessing noise effects on porpoises and other small toothed whales.
Collapse
Affiliation(s)
- Line Hermannsen
- Zoophysiology, Department of Bioscience, Aarhus University, C. F. Moellers Allé 3, 8000 Aarhus C, Denmark
| | - Kristian Beedholm
- Zoophysiology, Department of Bioscience, Aarhus University, C. F. Moellers Allé 3, 8000 Aarhus C, Denmark
| | - Jakob Tougaard
- Department of Bioscience, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Peter T Madsen
- Zoophysiology, Department of Bioscience, Aarhus University, C. F. Moellers Allé 3, 8000 Aarhus C, Denmark
| |
Collapse
|
33
|
Wensveen PJ, Huijser LAE, Hoek L, Kastelein RA. Equal latency contours and auditory weighting functions for the harbour porpoise (Phocoena phocoena). ACTA ACUST UNITED AC 2014; 217:359-69. [PMID: 24477609 DOI: 10.1242/jeb.091983] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Loudness perception by human infants and animals can be studied under the assumption that sounds of equal loudness elicit equal reaction times (RTs). Simple RTs of a harbour porpoise to narrowband frequency-modulated signals were measured using a behavioural method and an RT sensor based on infrared light. Equal latency contours, which connect equal RTs across frequencies, for reference values of 150-200 ms (10 ms intervals) were derived from median RTs to 1 s signals with sound pressure levels (SPLs) of 59-168 dB re. 1 μPa and centre frequencies of 0.5, 1, 2, 4, 16, 31.5, 63, 80 and 125 kHz. The higher the signal level was above the hearing threshold of the harbour porpoise, the quicker the animal responded to the stimulus (median RT 98-522 ms). Equal latency contours roughly paralleled the hearing threshold at relatively low sensation levels (higher RTs). The difference in shape between the hearing threshold and the equal latency contours was more pronounced at higher levels (lower RTs); a flattening of the contours occurred for frequencies below 63 kHz. Relationships of the equal latency contour levels with the hearing threshold were used to create smoothed functions assumed to be representative of equal loudness contours. Auditory weighting functions were derived from these smoothed functions that may be used to predict perceived levels and correlated noise effects in the harbour porpoise, at least until actual equal loudness contours become available.
Collapse
Affiliation(s)
- Paul J Wensveen
- Sea Mammal Research Unit, University of St Andrews, St Andrews, Fife KY16 8LB, UK
| | | | | | | |
Collapse
|
34
|
Kastelein RA, Schop J, Gransier R, Hoek L. Frequency of greatest temporary hearing threshold shift in harbor porpoises (Phocoena phocoena) depends on the noise level. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2014; 136:1410. [PMID: 25190414 DOI: 10.1121/1.4892794] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Harbor porpoises may suffer hearing loss when they are exposed to high level sounds. After exposure for 60 min to a 6.5 kHz continuous tone at average received sound pressure levels (SPLav.re.) ranging from 118 to 154 dB re 1μPa, the temporary hearing threshold shifts (TTSs) of a harbor porpoise were quantified at the center frequency (6.5 kHz), at 0.5, 1.0, and 1.3 octaves above the center frequency (9.2, 13.0, and 16.0 kHz), and at a frequency assumed to be ecologically important for harbor porpoises (125 kHz, the center frequency of their echolocation signals) by means of a psychoacoustic technique. The hearing frequency at which the maximum TTS occurred depended on the SPLav.re. The higher the SPLav.re., the higher the TTS induced at frequencies higher than the exposure frequency; below 148 dB re 1 μPa, the maximum TTS was at 6.5 kHz, whereas above 148 dB re 1 μPa, the maximum TTS was at 9.2 kHz. The hearing threshold of the harbor porpoise for the center frequency of its echolocation signals (125 kHz) was not affected at the highest SPLav.re. to which the animal was exposed.
Collapse
Affiliation(s)
- Ronald A Kastelein
- Sea Mammal Research Company, Julianalaan 46, 3843 CC Harderwijk, The Netherlands
| | - Jessica Schop
- Sea Mammal Research Company, Julianalaan 46, 3843 CC Harderwijk, The Netherlands
| | - Robin Gransier
- Sea Mammal Research Company, Julianalaan 46, 3843 CC Harderwijk, The Netherlands
| | - Lean Hoek
- Sea Mammal Research Company, Julianalaan 46, 3843 CC Harderwijk, The Netherlands
| |
Collapse
|
35
|
Kastelein RA, Hoek L, Gransier R, Rambags M, Claeys N. Effect of level, duration, and inter-pulse interval of 1-2 kHz sonar signal exposures on harbor porpoise hearing. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2014; 136:412-422. [PMID: 24993225 DOI: 10.1121/1.4883596] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Safety criteria for underwater low-frequency active sonar sounds produced during naval exercises are needed to protect harbor porpoise hearing. As a first step toward defining criteria, a porpoise was exposed to sequences consisting of series of 1-s, 1-2 kHz sonar down-sweeps without harmonics (as fatiguing noise) at various combinations of average received sound pressure levels (SPLs; 144-179 dB re 1 μPa), exposure durations (1.9-240 min), and duty cycles (5%-100%). Hearing thresholds were determined for a narrow-band frequency-swept sine wave centered at 1.5 kHz before exposure to the fatiguing noise, and at 1-4, 4-8, 8-12, 48, 96, 144, and 1400 min after exposure, to quantify temporary threshold shifts (TTSs) and recovery of hearing. Results show that the inter-pulse interval of the fatiguing noise is an important parameter in determining the magnitude of noise-induced TTS. For the reported range of exposure combinations (duration and SPL), the energy of the exposure (i.e., cumulative sound exposure level; SELcum) can be used to predict the induced TTS, if the inter-pulse interval is known. Exposures with equal SELcum but with different inter-pulse intervals do not result in the same induced TTS.
Collapse
Affiliation(s)
- Ronald A Kastelein
- Sea Mammal Research Company, Julianalaan 46, 3843 CC Harderwijk, The Netherlands
| | - Lean Hoek
- Sea Mammal Research Company, Julianalaan 46, 3843 CC Harderwijk, The Netherlands
| | - Robin Gransier
- Sea Mammal Research Company, Julianalaan 46, 3843 CC Harderwijk, The Netherlands
| | - Martijn Rambags
- Sea Mammal Research Company, Julianalaan 46, 3843 CC Harderwijk, The Netherlands
| | - Naomi Claeys
- Sea Mammal Research Company, Julianalaan 46, 3843 CC Harderwijk, The Netherlands
| |
Collapse
|
36
|
Popov VV, Supin AY, Rozhnov VV, Nechaev DI, Sysueva EV. The limits of applicability of the sound exposure level (SEL) metric to temporal threshold shifts (TTS) in beluga whales, Delphinapterus leucas. J Exp Biol 2014; 217:1804-10. [DOI: 10.1242/jeb.098814] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The influence of fatiguing sound level and duration on post-exposure temporary threshold shift (TTS) was investigated in two beluga whales (Delphinapterus leucas). The fatiguing sound was half-octave noise with a center frequency of 22.5 kHz. TTS was measured at a test frequency of 32 kHz. Thresholds were measured by recording rhythmic evoked potentials (the envelope following response) to a test series of short (eight cycles) tone pips with a pip rate of 1000 s−1. TTS increased approximately proportionally to the dB measure of both sound pressure (sound pressure level, SPL) and duration of the fatiguing noise, as a product of these two variables. In particular, when the noise parameters varied in a manner that maintained the product of squared sound pressure and time (sound exposure level, SEL, which is equivalent to the overall noise energy) at a constant level, TTS was not constant. Keeping SEL constant, the highest TTS appeared at an intermediate ratio of SPL to sound duration and decreased at both higher and lower ratios. Multiplication (SPL multiplied by log duration) better described the experimental data than an equal-energy (equal SEL) model. The use of SEL as a sole universal metric may result in an implausible assessment of the impact of a fatiguing sound on hearing thresholds in odontocetes, including under-evaluation of potential risks.
Collapse
Affiliation(s)
- Vladimir V. Popov
- Institute of Ecology and Evolution of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Alexander Ya. Supin
- Institute of Ecology and Evolution of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Viatcheslav V. Rozhnov
- Institute of Ecology and Evolution of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Dmitry I. Nechaev
- Institute of Ecology and Evolution of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Evgenia V. Sysueva
- Institute of Ecology and Evolution of the Russian Academy of Sciences, 119071 Moscow, Russia
| |
Collapse
|
37
|
Kastelein RA, van Heerden D, Gransier R, Hoek L. Behavioral responses of a harbor porpoise (Phocoena phocoena) to playbacks of broadband pile driving sounds. MARINE ENVIRONMENTAL RESEARCH 2013; 92:206-214. [PMID: 24144856 DOI: 10.1016/j.marenvres.2013.09.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 09/23/2013] [Accepted: 09/27/2013] [Indexed: 06/02/2023]
Abstract
The high under-water sound pressure levels (SPLs) produced during pile driving to build offshore wind turbines may affect harbor porpoises. To estimate the discomfort threshold of pile driving sounds, a porpoise in a quiet pool was exposed to playbacks (46 strikes/min) at five SPLs (6 dB steps: 130-154 dB re 1 μPa). The spectrum of the impulsive sound resembled the spectrum of pile driving sound at tens of kilometers from the pile driving location in shallow water such as that found in the North Sea. The animal's behavior during test and baseline periods was compared. At and above a received broadband SPL of 136 dB re 1 μPa [zero-peak sound pressure level: 151 dB re 1 μPa; t90: 126 ms; sound exposure level of a single strike (SELss): 127 dB re 1 μPa(2) s] the porpoise's respiration rate increased in response to the pile driving sounds. At higher levels, he also jumped out of the water more often. Wild porpoises are expected to move tens of kilometers away from offshore pile driving locations; response distances will vary with context, the sounds' source level, parameters influencing sound propagation, and background noise levels.
Collapse
Affiliation(s)
- Ronald A Kastelein
- Sea Mammal Research Company (SEAMARCO), Julianalaan 46, 3843 CC Harderwijk, The Netherlands.
| | | | | | | |
Collapse
|
38
|
Kastelein RA, Gransier R, Hoek L, Rambags M. Hearing frequency thresholds of a harbor porpoise (Phocoena phocoena) temporarily affected by a continuous 1.5 kHz tone. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2013; 134:2286-2292. [PMID: 23967958 DOI: 10.1121/1.4816405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Harbor porpoises may suffer hearing loss when exposed to intense sounds. After exposure to a 1.5 kHz continuous tone without harmonics at a mean received sound pressure level of 154 dB re 1 μPa for 60 min (cumulative sound exposure level: 190 dB re 1 μPa(2) s), the temporary hearing threshold shift (TTS) of a porpoise was quantified at 1.5, 2, 4, 6.5, 8, 16, 32, 63, and 125 kHz with a psychoacoustic technique. Significant TTS only occurred at 1.5 and 2 kHz. Mean TTS (1-4 min after sound exposure stopped) was ~14 dB at 1.5 kHz and ~11 dB at 2 kHz, and recovery occurred within 96 min. Control hearing tests before and after a 60 min low ambient noise exposure showed that normal variation in TTS was limited (standard deviation: ± 1.0 dB). Ecological effects of TTS depend not only on the magnitude of the TTS, its duration (depending on the exposure duration), and the recovery time after the exposure stopped, but also on the hearing frequency affected by the fatiguing noise. The hearing thresholds of harbor porpoises for the frequencies of their echolocation signals are not affected by intense low frequency sounds, therefore these sounds are unlikely to affect foraging efficiency.
Collapse
Affiliation(s)
- Ronald A Kastelein
- Sea Mammal Research Company, Julianalaan 46, 3843 CC Harderwijk, The Netherlands.
| | | | | | | |
Collapse
|
39
|
Kastelein RA, Gransier R, Hoek L. Comparative temporary threshold shifts in a harbor porpoise and harbor seal, and severe shift in a seal. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2013; 134:13-16. [PMID: 23862780 DOI: 10.1121/1.4808078] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Anthropogenic noise may cause temporary hearing threshold shifts (TTSs) in marine mammals. Tests with identical methods show that harbor porpoises are more susceptible to TTS induced by octave-band white noise (OBN) centered around 4 kHz than harbor seals, although their unmasked (basic) hearing thresholds for that frequency are similar. A harbor seal was exposed for 1 h to an OBN with a very high sound pressure level (SPL), 22-30 dB above levels causing TTS onset. This elicited 44 dB TTS; hearing recovered within 4 days. Thus, for this signal and this single exposure, permanent threshold shift requires levels at least 22 dB above TTS onset levels. The severe TTS in the seal suggests that the critical level (above which TTS increases rapidly with increasing SPL) is between 150 and 160 dB re 1 μPa for a 60 min exposure to OBN centered at 4 kHz. In guidelines on TTS in marine mammals produced by policy makers in many countries, TTS is assumed to follow the equal energy hypothesis, so that when the sound exposure levels of fatiguing sounds are equal, the same TTS is predicted to be induced. However, like previous studies, the present study calls this model into question.
Collapse
Affiliation(s)
- Ronald A Kastelein
- Sea Mammal Research Company (SEAMARCO), Julianalaan 46, 3843 CC Harderwijk, The Netherlands.
| | | | | |
Collapse
|
40
|
Finneran JJ, Schlundt CE. Effects of fatiguing tone frequency on temporary threshold shift in bottlenose dolphins (Tursiops truncatus). THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2013; 133:1819-1826. [PMID: 23464050 DOI: 10.1121/1.4776211] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Temporary threshold shift (TTS) was measured in two bottlenose dolphins (Tursiops truncatus) after exposure to 16-s tones between 3 and 80 kHz to examine the effects of exposure frequency on the onset, growth, and recovery of TTS. Hearing thresholds were measured approximately one-half octave above the exposure frequency using a behavioral response paradigm featuring an adaptive staircase procedure. Results show frequency-specific differences in TTS onset and growth, and suggest increased susceptibility to auditory fatigue for frequencies between approximately 10 and 30 kHz. Between 3 and 56 kHz, the relationship between exposure frequency and the exposure level required to induce 6 dB of TTS, measured 4 min post-exposure, agrees closely with an auditory weighting function for bottlenose dolphins developed from equal loudness contours [Finneran and Schlundt. (2011). J. Acoust. Soc. Am. 130, 3124-3136].
Collapse
Affiliation(s)
- James J Finneran
- U.S. Navy Marine Mammal Program, Space and Naval Warfare Systems Center Pacific, Code 71510, 53560 Hull Street, San Diego, California 92152, USA.
| | | |
Collapse
|
41
|
McGregor PK, Horn AG, Leonard ML, Thomsen F. Anthropogenic Noise and Conservation. ANIMAL SIGNALS AND COMMUNICATION 2013. [DOI: 10.1007/978-3-642-41494-7_14] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|