1
|
von Pein J, Lippert T, Lippert S, von Estorff O. Scaling laws for mitigated pile driving: Dependence of underwater noise on strike energy, pile diameter, ram weight, water depth, and mitigation systema). THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2024; 156:2045-2059. [PMID: 39324737 DOI: 10.1121/10.0030302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 09/10/2024] [Indexed: 09/27/2024]
Abstract
Sound induced by impact pile driving is a possible risk to marine life. Therefore, it is common practice to use noise mitigation systems during piling to reduce the respective impact and to fulfill the prescribed noise limits. Scaling laws for the estimation of the underwater noise from unmitigated impact pile driving have been presented in von Pein, Lippert, Lippert, and von Estorff, "Scaling laws for unmitigated pile driving: Dependence of underwater noise on strike energy, pile diameter, ram weight, and water depth," Appl. Acoust. 198, 108986 (2022). This contribution shows how these scaling laws need to be changed if noise mitigation systems are considered. Scaling laws are developed for four different kinds of noise mitigation system setups. These include big bubble curtains, double big bubble curtain combinations, a fully absorbing system directly at the pile, and the combination of a system close to the pile and a double big bubble curtain. The derived scaling laws are verified and compared to publicly available measurement data.
Collapse
Affiliation(s)
- Jonas von Pein
- Institute of Modelling and Computation, Hamburg University of Technology, Denickestrasse 17, 21073 Hamburg, Germany
| | | | - Stephan Lippert
- Institute of Modelling and Computation, Hamburg University of Technology, Denickestrasse 17, 21073 Hamburg, Germany
| | - Otto von Estorff
- Institute of Modelling and Computation, Hamburg University of Technology, Denickestrasse 17, 21073 Hamburg, Germany
| |
Collapse
|
2
|
Mulsow J, Schlundt CE, Strahan MG, Finneran JJ. Bottlenose dolphin temporary threshold shift following exposure to 10-ms impulses centered at 8 kHza). THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 154:1287-1298. [PMID: 37646472 DOI: 10.1121/10.0020726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/03/2023] [Indexed: 09/01/2023]
Abstract
Studies of marine mammal temporary threshold shift (TTS) from impulsive sources have typically produced small TTS magnitudes, likely due to much of the energy in tested sources lying below the subjects' range of best hearing. In this study of dolphin TTS, 10-ms impulses centered at 8 kHz were used with the goal of inducing larger magnitudes of TTS and assessing the time course of hearing recovery. Most impulses had sound pressure levels of 175-180 dB re 1 μPa, while inter-pulse interval (IPI) and total number of impulses were varied. Dolphin TTS increased with increasing cumulative sound exposure level (SEL) and there was no apparent effect of IPI for exposures with equal SEL. The lowest TTS onset was 184 dB re 1 μPa2s, although early exposures with 20-s IPI and cumulative SEL of 182-183 dB re 1 μPa2s produced respective TTS of 35 and 16 dB in two dolphins. Continued testing with higher SELs up to 191 dB re 1 μPa2s in one of those dolphins, however, failed to result in TTS greater than 14 dB. Recovery rates were similar to those from other studies with non-impulsive sources and depended on the magnitude of the initial TTS.
Collapse
Affiliation(s)
- Jason Mulsow
- National Marine Mammal Foundation, 2240 Shelter Island Drive, Suite 200, San Diego, California 92106, USA
| | - Carolyn E Schlundt
- Peraton Corporation, 4045 Hancock Street, Suite 210, San Diego, California 92110, USA
| | - Madelyn G Strahan
- National Marine Mammal Foundation, 2240 Shelter Island Drive, Suite 200, San Diego, California 92106, USA
| | - James J Finneran
- U.S. Navy Marine Mammal Program, Naval Information Warfare Center Pacific Code 56710, 53560 Hull Street, San Diego, California 92152, USA
| |
Collapse
|
3
|
Tougaard J, Beedholm K, Madsen PT. Thresholds for noise induced hearing loss in harbor porpoises and phocid seals. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 151:4252. [PMID: 35778178 DOI: 10.1121/10.0011560] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Intense sound sources, such as pile driving, airguns, and military sonars, have the potential to inflict hearing loss in marine mammals and are, therefore, regulated in many countries. The most recent criteria for noise induced hearing loss are based on empirical data collected until 2015 and recommend frequency-weighted and species group-specific thresholds to predict the onset of temporary threshold shift (TTS). Here, evidence made available after 2015 in light of the current criteria for two functional hearing groups is reviewed. For impulsive sounds (from pile driving and air guns), there is strong support for the current threshold for very high frequency cetaceans, including harbor porpoises (Phocoena phocoena). Less strong support also exists for the threshold for phocid seals in water, including harbor seals (Phoca vitulina). For non-impulsive sounds, there is good correspondence between exposure functions and empirical thresholds below 10 kHz for porpoises (applicable to assessment and regulation of military sonars) and between 3 and 16 kHz for seals. Above 10 kHz for porpoises and outside of the range 3-16 kHz for seals, there are substantial differences (up to 35 dB) between the predicted thresholds for TTS and empirical results. These discrepancies call for further studies.
Collapse
Affiliation(s)
- Jakob Tougaard
- Department of Ecoscience, Marine Mammal Research, Aarhus University, C. F. Møllers Allé 3, Aarhus 8000, Denmark
| | - Kristian Beedholm
- Department of Biology, Zoophysiology, Aarhus University, C. F. Møllers Allé 3, Aarhus 8000, Denmark
| | - Peter T Madsen
- Department of Biology, Zoophysiology, Aarhus University, C. F. Møllers Allé 3, Aarhus 8000, Denmark
| |
Collapse
|
4
|
Guan S, Brookens T, Miner R. Acoustic characteristics from an in-water down-the-hole pile drilling activity. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 151:310. [PMID: 35105028 DOI: 10.1121/10.0009272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Sound generated by pile installation using a down-the-hole (DTH) hammer is not well documented and differs in character from sound generated by conventional impact and vibratory pile driving. This paper describes underwater acoustic characteristics from DTH pile drilling during the installation of 0.84-m shafts within 1.22-m steel piles in Ketchikan, Alaska. The median single-strike sound exposure levels were 138 and 142 dB re 1 μPa2s at 10 m for each of the two piles, with cumulative sound exposure levels of 185 and 193 dB re 1 μPa2s at 10 m, respectively. The sound levels measured at Ketchikan were significantly lower than previous studies, and the sound was determined to be non-impulsive in this study as compared to impulsive in previous studies. These differences likely result from the DTH hammer not making direct contact with the pile, as had been the case in previous studies. Therefore, we suggest using the term DTH pile drilling to distinguish from DTH pile driving when the hammer strikes the pile. Further research is needed to investigate DTH piling techniques and associated sound-generating mechanisms and to differentiate the various types of sound emitted, which has important implications for the underwater sound regulatory community.
Collapse
Affiliation(s)
- Shane Guan
- Division of Environmental Sciences, Bureau of Ocean Energy Management, Sterling, Virginia 20166, USA
| | | | - Robert Miner
- Robert Miner Dynamic Testing of Alaska Inc., Manchester, Washington 98353, USA
| |
Collapse
|
5
|
von Pein J, Lippert S, von Estorff O. Validation of a finite element modelling approach for mitigated and unmitigated pile driving noise prognosis. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2021; 149:1737. [PMID: 33765783 DOI: 10.1121/10.0003756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
Piles are the state-of-the-art foundation type for offshore structures like offshore wind turbines. The pile driving process induces high sound pressure levels into the water, which are potentially harmful for the marine environment. To protect the marine life, regulations for these levels apply in many regions of the world. Therefore, detailed pile driving noise models are necessary to allow for both a prognosis of the underwater noise levels and the dimensioning and optimization of possible noise mitigation systems. In this paper, an established model based on a finite element approach is validated by means of three measurement campaigns. These have been conducted at different sites in the North Sea and include piling with and without noise mitigation measures. The noise mitigation systems are modelled as fully absorbing by applying a mixed Dirichlet-Neumann boundary condition at its position. Therefore, the computational results with noise mitigation measures are generally below the measured data and present the highest achievable noise reduction. The measurement campaigns have been conducted with a big bubble curtain and a noise mitigation screen. The occurring differences between the modelled and measured results with and without noise mitigation are shown.
Collapse
Affiliation(s)
- Jonas von Pein
- Hamburg University of Technology, Institute of Modelling and Computation, Denickestrasse 17, Hamburg, 21073, Germany
| | - Stephan Lippert
- Hamburg University of Technology, Institute of Modelling and Computation, Denickestrasse 17, Hamburg, 21073, Germany
| | - Otto von Estorff
- Hamburg University of Technology, Institute of Modelling and Computation, Denickestrasse 17, Hamburg, 21073, Germany
| |
Collapse
|
6
|
Duarte CM, Chapuis L, Collin SP, Costa DP, Devassy RP, Eguiluz VM, Erbe C, Gordon TAC, Halpern BS, Harding HR, Havlik MN, Meekan M, Merchant ND, Miksis-Olds JL, Parsons M, Predragovic M, Radford AN, Radford CA, Simpson SD, Slabbekoorn H, Staaterman E, Van Opzeeland IC, Winderen J, Zhang X, Juanes F. The soundscape of the Anthropocene ocean. Science 2021; 371:371/6529/eaba4658. [DOI: 10.1126/science.aba4658] [Citation(s) in RCA: 161] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Carlos M. Duarte
- Red Sea Research Centre (RSRC) and Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
- Arctic Research Centre, Department of Biology, Aarhus University, C.F. Møllers Allé 8, DK-8000 Århus C, Denmark
| | - Lucille Chapuis
- Biosciences, University of Exeter, Prince of Wales Road, Exeter EX4 4PS, UK
| | - Shaun P. Collin
- School of Life Sciences, La Trobe University, Bundoora, VIC 3086, Australia
| | - Daniel P. Costa
- Institute of Marine Sciences, University of California, Santa Cruz, CA 95060, USA
| | - Reny P. Devassy
- Red Sea Research Centre (RSRC) and Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Victor M. Eguiluz
- Instituto de Física Interdisciplinar y Sistemas Complejos IFISC (CSIC-UIB), E07122 Palma de Mallorca, Spain
| | - Christine Erbe
- Centre for Marine Science & Technology, Curtin University, Perth, WA 6102, Australia
| | - Timothy A. C. Gordon
- Biosciences, University of Exeter, Prince of Wales Road, Exeter EX4 4PS, UK
- Australian Institute of Marine Science, Perth, WA 6009, Australia
| | - Benjamin S. Halpern
- National Center for Ecological Analysis and Synthesis, University of California, Santa Barbara, CA 93101, USA
- Bren School of Environmental Science and Management, University of California, Santa Barbara, CA 93106, USA
| | - Harry R. Harding
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Michelle N. Havlik
- Red Sea Research Centre (RSRC) and Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Mark Meekan
- Australian Institute of Marine Science, Perth, WA 6009, Australia
| | - Nathan D. Merchant
- Centre for Environment, Fisheries and Aquaculture Science, Lowestoft NR33 0HT, UK
| | - Jennifer L. Miksis-Olds
- Center for Acoustics Research and Education, University of New Hampshire, Durham, NH 03824, USA
| | - Miles Parsons
- Centre for Marine Science & Technology, Curtin University, Perth, WA 6102, Australia
- Australian Institute of Marine Science, Perth, WA 6009, Australia
| | - Milica Predragovic
- Red Sea Research Centre (RSRC) and Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Andrew N. Radford
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Craig A. Radford
- Institute of Marine Science, Leigh Marine Laboratory, University of Auckland, P.O. Box 349, Warkworth 0941, New Zealand
| | - Stephen D. Simpson
- Biosciences, University of Exeter, Prince of Wales Road, Exeter EX4 4PS, UK
| | - Hans Slabbekoorn
- Institute of Biology, Leiden University, P.O. Box 9505, 2300 RA Leiden, Netherlands
| | | | - Ilse C. Van Opzeeland
- Alfred-Wegener Institute for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
| | | | - Xiangliang Zhang
- Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Francis Juanes
- Department of Biology, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
7
|
Guan S, Miner R. Underwater noise characterization of down-the-hole pile driving activities off Biorka Island, Alaska. MARINE POLLUTION BULLETIN 2020; 160:111664. [PMID: 33181939 DOI: 10.1016/j.marpolbul.2020.111664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/06/2020] [Accepted: 09/06/2020] [Indexed: 06/11/2023]
Abstract
Although down-the-hole (DTH) pile driving is increasingly used for in-water pile installation, the characteristics of underwater noise from DTH pile driving is largely undocumented and unstudied. This study presents a comprehensive analysis of the noise characteristics during DTH pile driving of two steel pipe piles in shallow waters off southeast Alaska. The results showed that single-strike sound exposure levels measured at 10 m were 147 and 145 dB re 1 μPa2s with a total of 21,742 and 38,631 hammer strikes, with cumulative sound exposure levels to install each pile at 192 and 191 dB re 1 μPa2s, respectively. Though noise levels from a single strike was lower than impact pile driving of a similar pile, the cumulative sound exposure levels are likely comparable due to the much higher striking rate.
Collapse
Affiliation(s)
- Shane Guan
- The Catholic University of America, Department of Mechanical Engineering, 620 Michigan Ave NE, Washington, DC 20064, USA.
| | - Robert Miner
- Robert Miner Dynamic Testing of Alaska Inc., 2288 Colchester Drive East, Manchester, WA 98353, USA
| |
Collapse
|
8
|
Sills JM, Ruscher B, Nichols R, Southall BL, Reichmuth C. Evaluating temporary threshold shift onset levels for impulsive noise in seals. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2020; 148:2973. [PMID: 33261408 DOI: 10.1121/10.0002649] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/28/2020] [Indexed: 06/12/2023]
Abstract
The auditory effects of single- and multiple-shot impulsive noise exposures were evaluated in a bearded seal (Erignathus barbatus). This study replicated and expanded upon recent work with related species [Reichmuth, Ghoul, Sills, Rouse, and Southall (2016). J. Acoust. Soc. Am. 140, 2646-2658]. Behavioral methods were used to measure hearing sensitivity before and immediately following exposure to underwater noise from a seismic air gun. Hearing was evaluated at 100 Hz-close to the maximum energy in the received pulse, and 400 Hz-the frequency with the highest sensation level. When no evidence of a temporary threshold shift (TTS) was found following single shots at 185 dB re 1 μPa2 s unweighted sound exposure level (SEL) and 207 dB re 1 μPa peak-to-peak sound pressure, the number of exposures was gradually increased from one to ten. Transient shifts in hearing thresholds at 400 Hz were apparent following exposure to four to ten consecutive pulses (cumulative SEL 191-195 dB re 1 μPa2 s; 167-171 dB re 1 μPa2 s with frequency weighting for phocid carnivores in water). Along with these auditory data, the effects of seismic exposures on response time, response bias, and behavior were investigated. This study has implications for predicting TTS onset following impulsive noise exposure in seals.
Collapse
Affiliation(s)
- Jillian M Sills
- Institute of Marine Sciences, Long Marine Laboratory, University of California Santa Cruz, Santa Cruz, California 95060, USA
| | - Brandi Ruscher
- Department of Ocean Sciences, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | - Ross Nichols
- Department of Ocean Sciences, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | - Brandon L Southall
- Southall Environmental Associates, Inc., 9099 Soquel Drive, Suite 8, Aptos, California 95003, USA
| | - Colleen Reichmuth
- Institute of Marine Sciences, Long Marine Laboratory, University of California Santa Cruz, Santa Cruz, California 95060, USA
| |
Collapse
|
9
|
Ainslie MA, Halvorsen MB, Müller RAJ, Lippert T. Application of damped cylindrical spreading to assess range to injury threshold for fishes from impact pile driving. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2020; 148:108. [PMID: 32752788 DOI: 10.1121/10.0001443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 05/31/2020] [Indexed: 06/11/2023]
Abstract
Environmental risk assessment for impact pile driving requires characterization of the radiated sound field. Damped cylindrical spreading (DCS) describes propagation of the acoustic Mach cone generated by striking a pile and predicts sound exposure level (LE) versus range. For known water depth and sediment properties, DCS permits extrapolation from a measurement at a known range. Impact assessment criteria typically involve zero-to-peak sound pressure level (Lp,pk), root-mean-square sound pressure level (Lp,rms), and cumulative sound exposure level (LE,cum). To facilitate predictions using DCS, Lp,pk and Lp,rms were estimated from LE using empirical regressions. Using a wind farm construction scenario in the North Sea, DCS was applied to estimate ranges to recommended thresholds in fishes. For 3500 hammer strikes, the estimated LE,cum impact ranges for mortal and recoverable injury were up to 1.8 and 3.1 km, respectively. Applying a 10 dB noise abatement measure, these distances reduced to 0.29 km for mortal injury and 0.65 km for recoverable injury. An underlying detail that produces unstable results is the averaging time for calculating Lp,rms, which by convention is equal to the 90%-energy signal duration. A stable alternative is proposed for this quantity based on the effective signal duration.
Collapse
Affiliation(s)
- Michael A Ainslie
- JASCO Applied Sciences (Deutschland) GmbH, Mergenthaler Allee 15-21, 65760 Eschborn, Hesse, Germany
| | - Michele B Halvorsen
- CSA Ocean Sciences Inc., 8502 Southwest Kansas Avenue, Stuart, Florida 34997, USA
| | - Roel A J Müller
- TNO Acoustics and Sonar, Oude Waalsdorperweg 63, 2597 AK Den Haag, the Netherlands
| | | |
Collapse
|
10
|
Schaffeld T, Schnitzler JG, Ruser A, Woelfing B, Baltzer J, Siebert U. Effects of multiple exposures to pile driving noise on harbor porpoise hearing during simulated flights-An evaluation tool. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2020; 147:685. [PMID: 32113263 DOI: 10.1121/10.0000595] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 11/27/2019] [Indexed: 06/10/2023]
Abstract
Exploitation of renewable energy from offshore wind farms is substantially increasing worldwide. The majority of wind turbines are bottom mounted, causing high levels of impulsive noise during construction. To prevent temporary threshold shifts (TTS) in harbor porpoise hearing, single strike sound exposure levels (SELSS) are restricted in Germany by law to a maximum of 160 dB re 1 μPa2s at a distance of 750 m from the sound source. Underwater recordings of pile driving strikes, recorded during the construction of an offshore wind farm in the German North Sea, were analyzed. Using a simulation approach, it was tested whether a TTS can still be induced under current protective regulations by multiple exposures. The evaluation tool presented here can be easily adjusted for different sound propagation, acoustic signals, or species and enables one to calculate a minimum deterrence distance. Based on this simulation approach, only the combination of SELSS regulation, previous deterrence, and soft start allow harbor porpoises to avoid a TTS from multiple exposures. However, deterrence efficiency has to be monitored.
Collapse
Affiliation(s)
- Tobias Schaffeld
- Institute for Terrestrial and Aquatic Wildlife Research (ITAW), University of Veterinary Medicine Hannover, Foundation, Werftstrasse 6, D-25761 Buesum, Germany
| | - Joseph G Schnitzler
- Institute for Terrestrial and Aquatic Wildlife Research (ITAW), University of Veterinary Medicine Hannover, Foundation, Werftstrasse 6, D-25761 Buesum, Germany
| | - Andreas Ruser
- Institute for Terrestrial and Aquatic Wildlife Research (ITAW), University of Veterinary Medicine Hannover, Foundation, Werftstrasse 6, D-25761 Buesum, Germany
| | - Benno Woelfing
- Institute for Terrestrial and Aquatic Wildlife Research (ITAW), University of Veterinary Medicine Hannover, Foundation, Werftstrasse 6, D-25761 Buesum, Germany
| | - Johannes Baltzer
- Institute for Terrestrial and Aquatic Wildlife Research (ITAW), University of Veterinary Medicine Hannover, Foundation, Werftstrasse 6, D-25761 Buesum, Germany
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research (ITAW), University of Veterinary Medicine Hannover, Foundation, Werftstrasse 6, D-25761 Buesum, Germany
| |
Collapse
|
11
|
Schaffeld T, Ruser A, Woelfing B, Baltzer J, Kristensen JH, Larsson J, Schnitzler JG, Siebert U. The use of seal scarers as a protective mitigation measure can induce hearing impairment in harbour porpoises. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:4288. [PMID: 31893707 DOI: 10.1121/1.5135303] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/05/2019] [Indexed: 06/10/2023]
Abstract
Acoustic deterrent devices (ADDs) are used to deter seals from aquacultures but exposure of harbour porpoises (Phocoena phocoena) occurs as a side-effect. At construction sites, by contrast, ADDs are used to deter harbour porpoises from the zone in which pile driving noise can induce temporary threshold shifts (TTSs). ADDs emit such high pressure levels that there is concern that ADDs themselves may induce a TTS. A harbour porpoise in human care was exposed to an artificial ADD signal with a peak frequency of 14 kHz. A significant TTS was found, measured by auditory evoked potentials, with an onset of 142 dB re 1 μPa2s at 20 kHz and 147 dB re 1 μPa2s at 28 kHz. The authors therefore strongly recommend to gradually increase and down regulate source levels of ADDs to the desired deterrence range. However, further research is needed to develop a reliable relationship between received levels and deterrence.
Collapse
Affiliation(s)
- Tobias Schaffeld
- Institute for Terrestrial and Aquatic Wildlife Research (ITAW), University of Veterinary Medicine Hannover, Foundation, Werftstrasse 6, 25761 Buesum, Germany
| | - Andreas Ruser
- Institute for Terrestrial and Aquatic Wildlife Research (ITAW), University of Veterinary Medicine Hannover, Foundation, Werftstrasse 6, 25761 Buesum, Germany
| | - Benno Woelfing
- Institute for Terrestrial and Aquatic Wildlife Research (ITAW), University of Veterinary Medicine Hannover, Foundation, Werftstrasse 6, 25761 Buesum, Germany
| | - Johannes Baltzer
- Institute for Terrestrial and Aquatic Wildlife Research (ITAW), University of Veterinary Medicine Hannover, Foundation, Werftstrasse 6, 25761 Buesum, Germany
| | | | | | - Joseph G Schnitzler
- Institute for Terrestrial and Aquatic Wildlife Research (ITAW), University of Veterinary Medicine Hannover, Foundation, Werftstrasse 6, 25761 Buesum, Germany
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research (ITAW), University of Veterinary Medicine Hannover, Foundation, Werftstrasse 6, 25761 Buesum, Germany
| |
Collapse
|
12
|
Hastie G, Merchant ND, Götz T, Russell DJF, Thompson P, Janik VM. Effects of impulsive noise on marine mammals: investigating range-dependent risk. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2019; 29:e01906. [PMID: 30986328 DOI: 10.1002/eap.1906] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 01/09/2019] [Accepted: 02/19/2019] [Indexed: 06/09/2023]
Abstract
Concerns exist about the impacts of underwater noise on marine mammals. These include auditory damage, which is a significant risk for marine mammals exposed to impulsive sounds such as explosions, pile-driving, and seismic air guns. Currently, impact assessments use different risk criteria for impulsive and non-impulsive sounds (e.g., ships, drilling). However, as impulsive sounds dissipate through the environment, they potentially lose hazardous features (e.g., sudden onset) and become non-impulsive at some distance from the source. Despite management implications, a lack of data on range-dependent characteristics currently limits their inclusion in impact assessments. We address this using acoustic recordings of seismic air guns and pile-driving to quantify range dependency in impulsive characteristics using four criteria: (1) rise time < 25 ms; (2) quotient of peak pressure and pulse duration > 5,000 Pa/s; (3) duration < 1 s; (4) crest factor > 15 dB. We demonstrate that some characteristics changed markedly within ranges of ~10 km, and that the mean probability of exceeding criteria 1 and 2 was <0.5 at ranges >3.5 km. In contrast, the mean probability of exceeding criteria 3 remained >0.5 up to ~37.0 km, and the mean probability of exceeding criteria 4 remained <0.5 throughout the range. These results suggest that a proportion of the recorded signals should be defined as impulsive based on each of the criteria, and that some of the criteria change markedly as a result of propagation. However, the impulsive nature of a sound is likely to be a complex interaction of all these criteria, and many other unrelated parameters such as duty cycle, recovery periods, and sound levels will also strongly affect the risk of hearing damage. We recommend future auditory damage studies and impact assessments explicitly consider the ranges at which sounds may lose some of their potentially hazardous characteristics.
Collapse
Affiliation(s)
- Gordon Hastie
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, KY16 8LB, United Kingdom
| | - Nathan D Merchant
- Centre for Environment, Fisheries and Aquaculture Science, Pakefield Road, Lowestoft, NR33 0HT, United Kingdom
| | - Thomas Götz
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, KY16 8LB, United Kingdom
| | - Debbie J F Russell
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, KY16 8LB, United Kingdom
- Centre for Research into Ecological and Environmental Modelling, The Observatory, University of St Andrews, St Andrews, KY16 9LZ, United Kingdom
| | - Paul Thompson
- Lighthouse Field Station, Institute of Biological and Environmental Sciences, University of Aberdeen, George Street, Cromarty, IV11 8YL, United Kingdom
| | - Vincent M Janik
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, KY16 8LB, United Kingdom
| |
Collapse
|
13
|
Popper AN, Hawkins AD. An overview of fish bioacoustics and the impacts of anthropogenic sounds on fishes. JOURNAL OF FISH BIOLOGY 2019; 94:692-713. [PMID: 30864159 PMCID: PMC6849755 DOI: 10.1111/jfb.13948] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 03/07/2019] [Indexed: 05/06/2023]
Abstract
Fishes use a variety of sensory systems to learn about their environments and to communicate. Of the various senses, hearing plays a particularly important role for fishes in providing information, often from great distances, from all around these animals. This information is in all three spatial dimensions, often overcoming the limitations of other senses such as vision, touch, taste and smell. Sound is used for communication between fishes, mating behaviour, the detection of prey and predators, orientation and migration and habitat selection. Thus, anything that interferes with the ability of a fish to detect and respond to biologically relevant sounds can decrease survival and fitness of individuals and populations. Since the onset of the Industrial Revolution, there has been a growing increase in the noise that humans put into the water. These anthropogenic sounds are from a wide range of sources that include shipping, sonars, construction activities (e.g., wind farms, harbours), trawling, dredging and exploration for oil and gas. Anthropogenic sounds may be sufficiently intense to result in death or mortal injury. However, anthropogenic sounds at lower levels may result in temporary hearing impairment, physiological changes including stress effects, changes in behaviour or the masking of biologically important sounds. The intent of this paper is to review the potential effects of anthropogenic sounds upon fishes, the potential consequences for populations and ecosystems and the need to develop sound exposure criteria and relevant regulations. However, assuming that many readers may not have a background in fish bioacoustics, the paper first provides information on underwater acoustics, with a focus on introducing the very important concept of particle motion, the primary acoustic stimulus for all fishes, including elasmobranchs. The paper then provides background material on fish hearing, sound production and acoustic behaviour. This is followed by an overview of what is known about effects of anthropogenic sounds on fishes and considers the current guidelines and criteria being used world-wide to assess potential effects on fishes. Most importantly, the paper provides the most complete summary of the effects of anthropogenic noise on fishes to date. It is also made clear that there are currently so many information gaps that it is almost impossible to reach clear conclusions on the nature and levels of anthropogenic sounds that have potential to cause changes in animal behaviour, or even result in physical harm. Further research is required on the responses of a range of fish species to different sound sources, under different conditions. There is a need both to examine the immediate effects of sound exposure and the longer-term effects, in terms of fitness and likely impacts upon populations.
Collapse
Affiliation(s)
- Arthur N. Popper
- Department of BiologyUniversity of MarylandCollege ParkMarylandUSA
| | | |
Collapse
|
14
|
Leunissen EM, Rayment WJ, Dawson SM. Impact of pile-driving on Hector's dolphin in Lyttelton Harbour, New Zealand. MARINE POLLUTION BULLETIN 2019; 142:31-42. [PMID: 31232309 DOI: 10.1016/j.marpolbul.2019.03.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/09/2019] [Accepted: 03/09/2019] [Indexed: 06/09/2023]
Abstract
Several dolphin species occur close inshore and in harbours, where underwater noise generated by pile-driving used in wharf construction may constitute an important impact. Such impacts are likely to be greatest on species such as the endangered Hector's dolphin (Cephalorhynchus hectori), which has small home ranges and uses this habitat type routinely. Using automated echolocation detectors in Lyttelton Harbour (New Zealand), we studied the distribution of Hector's dolphins using a gradient sampling design over 92 days within which pile-driving occurred on 46 days. During piling operations, dolphin positive minutes per day decreased at the detector closest to the piling but increased at the mid-harbour detector. Finer-grained analyses showed that close to the piling operation, detections decreased with increasing sound exposure level, that longer piling events were associated with longer reductions in detections, and that effects were long-lasting - detection rates took up to 83 h to return to pre-piling levels.
Collapse
Affiliation(s)
- Eva M Leunissen
- Marine Science Department, University of Otago, P.O. Box 56, Dunedin, New Zealand.
| | - William J Rayment
- Marine Science Department, University of Otago, P.O. Box 56, Dunedin, New Zealand.
| | - Stephen M Dawson
- Marine Science Department, University of Otago, P.O. Box 56, Dunedin, New Zealand.
| |
Collapse
|
15
|
Kastelein RA, Helder-Hoek L, Gransier R. Frequency of greatest temporary hearing threshold shift in harbor seals (Phoca vitulina) depends on fatiguing sound level. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 145:1353. [PMID: 31067933 DOI: 10.1121/1.5092608] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 02/11/2019] [Indexed: 06/09/2023]
Abstract
Harbor seals may suffer hearing loss due to intense sounds. After exposure for 60 min to a continuous 6.5 kHz tone at sound pressure levels of 123-159 dB re 1 µPa, resulting in sound exposure levels (SELs) of 159-195 dB re 1 μPa2s, temporary threshold shifts (TTSs) in two harbor seals were quantified at the center frequency of the fatiguing sound (6.5 kHz) and at 0.5 and 1.0 octaves above that frequency (9.2 and 13.0 kHz) by means of a psychoacoustic technique. Taking into account the different timing of post-exposure hearing tests, susceptibility to TTS was similar in both animals. The higher the SEL, the higher the TTS induced at frequencies above the fatiguing sound's center frequency. Below ∼179 dB re 1 μPa2s, the maximum TTS was at the center frequency (6.5 kHz); above ∼179 dB re 1 μPa2s, the maximum TTS was at half an octave above the center frequency (9.2 kHz). These results should be considered when interpreting previous TTS studies, and when estimating ecological impacts of anthropogenic sound on the hearing and ecology of harbor seals. Based on the results of the present study and previous studies, harbor seal hearing, in the frequency range 2.5-6.5 kHz, appears to be approximately equally susceptible to TTS.
Collapse
Affiliation(s)
- Ronald A Kastelein
- Sea Mammal Research Company (SEAMARCO), Julianalaan 46, 3843 CC Harderwijk, The Netherlands
| | - Lean Helder-Hoek
- Sea Mammal Research Company (SEAMARCO), Julianalaan 46, 3843 CC Harderwijk, The Netherlands
| | - Robin Gransier
- Department of Neurosciences, KU Leuven-University of Leuven, ExpORL, Herestraat 49, Box 721, 3000 Leuven, Belgium
| |
Collapse
|
16
|
Leunissen EM, Dawson SM. Underwater noise levels of pile-driving in a New Zealand harbour, and the potential impacts on endangered Hector's dolphins. MARINE POLLUTION BULLETIN 2018; 135:195-204. [PMID: 30301031 DOI: 10.1016/j.marpolbul.2018.07.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/06/2018] [Accepted: 07/06/2018] [Indexed: 06/08/2023]
Abstract
Impact pile-driving generates loud underwater anthropogenic sounds, and is routinely conducted in harbours around the world. Surprisingly few studies of these sounds and their propagation are published in the primary literature. To partially redress this we studied pile-driving sounds in Lyttelton Harbour, New Zealand, during wharf reconstruction after earthquake damage. That Lyttelton harbour is routinely used by Hector's dolphins (Cephalorhynchus hectori), an endangered species found only in New Zealand, provided further context for this study. Steel piles of 0.61 or 0.71 m diameter were driven using three different pile-drivers. Maximum calculated source SEL was 192 dB re 1 μPa2s @ 1 m (SPL0-p of 213 dB re 1 μPa @ 1 m). Propagation of piling noise was strongly influenced by harbour bathymetry and a rock breakwater near the piling operation. We calculated range estimates at which Hector's dolphins may suffer temporary hearing threshold shift and behavioural change.
Collapse
Affiliation(s)
- Eva M Leunissen
- Marine Science Department, University of Otago, P.O. Box 56, Dunedin, New Zealand.
| | - Stephen M Dawson
- Marine Science Department, University of Otago, P.O. Box 56, Dunedin, New Zealand.
| |
Collapse
|
17
|
Kastelein RA, Helder-Hoek L, Kommeren A, Covi J, Gransier R. Effect of pile-driving sounds on harbor seal (Phoca vitulina) hearing. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2018; 143:3583. [PMID: 29960448 DOI: 10.1121/1.5040493] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Seals exposed to intense sounds may suffer hearing loss. After exposure to playbacks of broadband pile-driving sounds, the temporary hearing threshold shift (TTS) of two harbor seals was quantified at 4 and 8 kHz (frequencies of the highest TTS) with a psychoacoustic technique. The pile-driving sounds had: a 127 ms pulse duration, 2760 strikes per h, a 1.3 s inter-pulse interval, a ∼9.5% duty cycle, and an average received single-strike unweighted sound exposure level (SELss) of 151 dB re 1 μPa2s. Exposure durations were 180 and 360 min [cumulative sound exposure level (SELcum): 190 and 193 dB re 1 μPa2s]. Control sessions were conducted under low ambient noise. TTS only occurred after 360 min exposures (mean TTS: seal 02, 1-4 min after sound stopped: 3.9 dB at 4 kHz and 2.4 dB at 8 kHz; seal 01, 12-16 min after sound stopped: 2.8 dB at 4 kHz and 2.6 dB at 8 kHz). Hearing recovered within 60 min post-exposure. The TTSs were small, due to the small amount of sound energy to which the seals were exposed. Biological TTS onset SELcum for the pile-driving sounds used in this study is around 192 dB re 1 μPa2s (for mean received SELss of 151 dB re 1 μPa and a duty cycle of ∼9.5%).
Collapse
Affiliation(s)
- Ronald A Kastelein
- Sea Mammal Research Company (SEAMARCO), Julianalaan 46, 3843 CC Harderwijk, The Netherlands
| | - Lean Helder-Hoek
- Sea Mammal Research Company (SEAMARCO), Julianalaan 46, 3843 CC Harderwijk, The Netherlands
| | - Aimée Kommeren
- Sea Mammal Research Company (SEAMARCO), Julianalaan 46, 3843 CC Harderwijk, The Netherlands
| | - Jennifer Covi
- Sea Mammal Research Company (SEAMARCO), Julianalaan 46, 3843 CC Harderwijk, The Netherlands
| | - Robin Gransier
- Sea Mammal Research Company (SEAMARCO), Julianalaan 46, 3843 CC Harderwijk, The Netherlands
| |
Collapse
|
18
|
Lossent J, Lejart M, Folegot T, Clorennec D, Di Iorio L, Gervaise C. Underwater operational noise level emitted by a tidal current turbine and its potential impact on marine fauna. MARINE POLLUTION BULLETIN 2018; 131:323-334. [PMID: 29886954 DOI: 10.1016/j.marpolbul.2018.03.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 03/12/2018] [Accepted: 03/15/2018] [Indexed: 06/08/2023]
Abstract
Marine renewable energy development raised concerns over the impact of underwater noise. Here we assess the acoustic impacts of an operating tidal current turbine (Paimpol-Bréhat site, France) on marine fauna. Its source level (SL) has been measured in situ using 19 drifting transects at distances between 100 m to 2400 m from the turbine. SL ranged from 118 to 152 dB re1 μPa@1 m in third-octave bands at frequencies between 40 and 8192 Hz. It is comparable to the SL of a 19 m boat travelling at 10kt speed. This SL was used to estimate the impact of this noise type based on acoustic propagation simulations. The acoustic footprint of the device corresponds to a 1.5 km radius disk. Our results show that within this area of greatest potential impact, physiological injury of the hearing apparatus of invertebrates, fishes and marine mammals is improbable. Behavioral disturbance may occur up to 1 km around the device for harbor porpoises only. This is of little concern for a single turbine. However, greater concern on turbine noise impact, particularly on behavioral reactions has to be granted for a farm with up to 100 turbine. The lack of consolidated knowledge on behavioral disturbances identifies the needs for specific research programs.
Collapse
Affiliation(s)
- J Lossent
- France Energies Marines, Bâtiment Cap Ocean, Technopôle Brest-Iroise, 525 avenue Alexis de Rochon, 29280 Plouzané, France; Gipsa-lab, Univ. Grenoble Alpes, CNRS, Grenoble INP (Institute of Engineering Univ. Grenoble Alpes), TIMA, 38000 Grenoble, France; Chorus Research Institute, 3 parvis Louis Néel, 38000 Grenoble, France.
| | - M Lejart
- France Energies Marines, Bâtiment Cap Ocean, Technopôle Brest-Iroise, 525 avenue Alexis de Rochon, 29280 Plouzané, France
| | - T Folegot
- Quiet Oceans, Bâtiment Cap Ocean, Technopôle Brest-Iroise, 525 avenue Alexis de Rochon, 29280 Plouzané, France
| | - D Clorennec
- Quiet Oceans, Bâtiment Cap Ocean, Technopôle Brest-Iroise, 525 avenue Alexis de Rochon, 29280 Plouzané, France
| | - L Di Iorio
- Chorus Research Institute, 3 parvis Louis Néel, 38000 Grenoble, France; Foundation of the Grenoble Institute of Technology, 46 Rue Felix Viallet, 38000 Grenoble, France
| | - C Gervaise
- Chorus Research Institute, 3 parvis Louis Néel, 38000 Grenoble, France; Foundation of the Grenoble Institute of Technology, 46 Rue Felix Viallet, 38000 Grenoble, France
| |
Collapse
|
19
|
MacGillivray A. Underwater noise from pile driving of conductor casing at a deep-water oil platform. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2018; 143:450. [PMID: 29390745 DOI: 10.1121/1.5021554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Underwater noise from impact pile driving of 512 -m-long conductor casings was measured at a deep-water offshore oil platform in the Santa Barbara Channel. Beamforming measurements, obtained with a vertical array, confirmed that the primary wave front generated by hammering the conductor casing was a Mach cone propagating at an angle of 17.6° below the horizontal. Analysis of the processed array data also revealed the presence of high-frequency secondary waves at angles steeper than 45° below the horizontal. These secondary waves, which appeared to be generated near the sea-surface, dominated the acoustic spectrum of the pulses at frequencies above 1 kHz. Shallow hydrophone measurements outside the Mach cone showed clear evidence of a surface shadow zone, which was caused by the strong downward directivity of the source. Although reflected waves, diffraction, and secondary waves still produced sound inside the surface shadow zone, sound levels were 10-15 dB lower in this region. Long-term hydrophone measurements showed that there was little difference (±1 dB) in mean sound levels from impact hammering of different conductors installed at the same platform over three months.
Collapse
|
20
|
Lippert T, Ainslie MA, von Estorff O. Pile driving acoustics made simple: Damped cylindrical spreading model. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2018; 143:310. [PMID: 29390766 DOI: 10.1121/1.5011158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Sound produced by marine pile driving activities poses a possible risk to marine life. The assessment and mitigation of this risk requires a precise prediction of the expected levels. An analytical approach to estimate the radiated sound exposure levels is presented, based on the axial symmetry of the problem, resulting in damped cylindrical spreading. The approach is verified against numerical results from the recently held COMPILE benchmark workshop and validated with data from three different wind farm construction sites in the North Sea. In addition, found to yield more accurate estimates of the sound exposure level than an empirical decay formula sometimes used to evaluate the impact of marine pile driving.
Collapse
Affiliation(s)
- Tristan Lippert
- Institute of Modelling and Computation, Hamburg University of Technology, Denickestraße 17, 21073 Hamburg, Germany
| | - Michael A Ainslie
- Netherlands Organisation for Applied Scientific Research (TNO), The Hague, The Netherlands
| | - Otto von Estorff
- Institute of Modelling and Computation, Hamburg University of Technology, Denickestraße 17, 21073 Hamburg, Germany
| |
Collapse
|
21
|
Tougaard J, Dähne M. Why is auditory frequency weighting so important in regulation of underwater noise? THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2017; 142:EL415. [PMID: 29092598 DOI: 10.1121/1.5008901] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A key question related to regulating noise from pile driving, air guns, and sonars is how to take into account the hearing abilities of different animals by means of auditory frequency weighting. Recordings of pile driving sounds, both in the presence and absence of a bubble curtain, were evaluated against recent thresholds for temporary threshold shift (TTS) for harbor porpoises by means of four different weighting functions. The assessed effectivity, expressed as time until TTS, depended strongly on choice of weighting function: 2 orders of magnitude larger for an audiogram-weighted TTS criterion relative to an unweighted criterion, highlighting the importance of selecting the right frequency weighting.
Collapse
Affiliation(s)
- Jakob Tougaard
- Department of Bioscience, Aarhus University, DK-4000 Roskilde, Denmark
| | - Michael Dähne
- German Oceanographic Museum, Katharinenberg 14-20, 18439 Stralsund, Germany
| |
Collapse
|
22
|
Kastelein RA, Helder-Hoek L, Van de Voorde S, von Benda-Beckmann AM, Lam FPA, Jansen E, de Jong CAF, Ainslie MA. Temporary hearing threshold shift in a harbor porpoise (Phocoena phocoena) after exposure to multiple airgun sounds. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2017; 142:2430. [PMID: 29092610 DOI: 10.1121/1.5007720] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In seismic surveys, reflected sounds from airguns are used under water to detect gas and oil below the sea floor. The airguns produce broadband high-amplitude impulsive sounds, which may cause temporary or permanent threshold shifts (TTS or PTS) in cetaceans. The magnitude of the threshold shifts and the hearing frequencies at which they occur depend on factors such as the received cumulative sound exposure level (SELcum), the number of exposures, and the frequency content of the sounds. To quantify TTS caused by airgun exposure and the subsequent hearing recovery, the hearing of a harbor porpoise was tested by means of a psychophysical technique. TTS was observed after exposure to 10 and 20 consecutive shots fired from two airguns simultaneously (SELcum: 188 and 191 dB re 1 μPa2s) with mean shot intervals of around 17 s. Although most of the airgun sounds' energy was below 1 kHz, statistically significant initial TTS1-4 (1-4 min after sound exposure stopped) of ∼4.4 dB occurred only at the hearing frequency 4 kHz, and not at lower hearing frequencies tested (0.5, 1, and 2 kHz). Recovery occurred within 12 min post-exposure. The study indicates that frequency-weighted SELcum is a good predictor for the low levels of TTS observed.
Collapse
Affiliation(s)
- Ronald A Kastelein
- Sea Mammal Research Company (SEAMARCO), Julianalaan 46, 3843 CC Harderwijk, The Netherlands
| | - Lean Helder-Hoek
- Sea Mammal Research Company (SEAMARCO), Julianalaan 46, 3843 CC Harderwijk, The Netherlands
| | - Shirley Van de Voorde
- Sea Mammal Research Company (SEAMARCO), Julianalaan 46, 3843 CC Harderwijk, The Netherlands
| | | | - Frans-Peter A Lam
- TNO Acoustics and Sonar, Oude Waalsdorperweg 63, 2597 AK, The Hague, The Netherlands
| | - Erwin Jansen
- TNO Acoustics and Sonar, Oude Waalsdorperweg 63, 2597 AK, The Hague, The Netherlands
| | - Christ A F de Jong
- TNO Acoustics and Sonar, Oude Waalsdorperweg 63, 2597 AK, The Hague, The Netherlands
| | - Michael A Ainslie
- TNO Acoustics and Sonar, Oude Waalsdorperweg 63, 2597 AK, The Hague, The Netherlands
| |
Collapse
|
23
|
Wilkes DR, Gavrilov AN. Sound radiation from impact-driven raked piles. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2017; 142:1. [PMID: 28764416 DOI: 10.1121/1.4990021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Sound emissions from impact pile driving of raked piles present a significant azimuthal dependence in the radiated sound field due to the non-axisymmetric orientation of the pile. In this work the sound radiation from raked piles is modeled using a finite element method (FEM) model of the pile and near-field region. The near-field model of the sound field is then used as input into a normal mode model to predict the sound radiation in the far-field. The azimuthal dependence of the radiated sound field is shown to be accurately predicted using an equivalent axisymmetric FEM model of the pile configuration, thus negating the need to construct a fully three-dimensional model (3D) of the raked pile. This is achieved by matching the radiated field from the equivalent axisymmetric pile model to a vertical array of phased point sources, and then horizontally offsetting the source locations to match the incline of the raked pile. The resulting sound field closely matches the numerical predictions from a fully 3D FEM model of the raked pile. The results of numerical modeling are compared to corresponding acoustic measurements taken on the North West shelf of Western Australia.
Collapse
Affiliation(s)
- Daniel R Wilkes
- Centre for Marine Science and Technology, Department of Imaging and Applied Physics, Curtin University, GPO Box U1987, Perth, Western Australia 6845, Australia
| | - Alexander N Gavrilov
- Centre for Marine Science and Technology, Department of Imaging and Applied Physics, Curtin University, GPO Box U1987, Perth, Western Australia 6845, Australia
| |
Collapse
|
24
|
Forney KA, Southall BL, Slooten E, Dawson S, Read AJ, Baird RW, Brownell RL. Nowhere to go: noise impact assessments for marine mammal populations with high site fidelity. ENDANGER SPECIES RES 2017. [DOI: 10.3354/esr00820] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
25
|
Houser DS, Yost W, Burkard R, Finneran JJ, Reichmuth C, Mulsow J. A review of the history, development and application of auditory weighting functions in humans and marine mammals. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2017; 141:1371. [PMID: 28372133 DOI: 10.1121/1.4976086] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This document reviews the history, development, and use of auditory weighting functions for noise impact assessment in humans and marine mammals. Advances from the modern era of electroacoustics, psychophysical studies of loudness, and other related hearing studies are reviewed with respect to the development and application of human auditory weighting functions, particularly A-weighting. The use of auditory weighting functions to assess the effects of environmental noise on humans-such as hearing damage-risk criteria-are presented, as well as lower-level effects such as annoyance and masking. The article also reviews marine mammal auditory weighting functions, the development of which has been fundamentally directed by the objective of predicting and preventing noise-induced hearing loss. Compared to the development of human auditory weighting functions, the development of marine mammal auditory weighting functions have faced additional challenges, including a large number of species that must be considered, a lack of audiometric information on most species, and small sample sizes for nearly all species for which auditory data are available. The review concludes with research recommendations to address data gaps and assumptions underlying marine mammal auditory weighting function design and application.
Collapse
Affiliation(s)
- Dorian S Houser
- National Marine Mammal Foundation, 2240 Shelter Island Drive, Suite 200, San Diego, California 92106, USA
| | - William Yost
- Speech and Hearing Science, Arizona State University, Tempe, Arizona 85287, USA
| | - Robert Burkard
- Department of Rehabilitation Science, University at Buffalo, 510 Kimball Tower, Buffalo, New York 14214, USA
| | - James J Finneran
- United States Navy Marine Mammal Program, Space and Naval Warfare Systems Center Pacific, Code 71510, 53560 Hull Street, San Diego, California 92152, USA
| | - Colleen Reichmuth
- Institute of Marine Sciences, Long Marine Laboratory, University of California Santa Cruz, Santa Cruz, California 95060, USA
| | - Jason Mulsow
- National Marine Mammal Foundation, 2240 Shelter Island Drive, Suite 200, San Diego, California 92106, USA
| |
Collapse
|
26
|
Nachtigall PE, Supin AY, Pacini AF, Kastelein RA. Conditioned hearing sensitivity change in the harbor porpoise (Phocoena phocoena). THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2016; 140:960. [PMID: 27586728 DOI: 10.1121/1.4960783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Hearing sensitivity, during trials in which a warning sound preceding a loud sound, was investigated in two harbor porpoises (Phocoena phocoena). Sensitivity was measured using pip-train test stimuli and auditory evoked potential recording. When a hearing test/warning stimulus, with a frequency of either 45 or 32 kHz, preceded a loud 32 kHz tone with a sound pressure level of 152 dB re 1 μPa root mean square, lasting 2 s yielding an sound exposure level (SEL) of 155 dB re 1 μPa(2)s, pooled hearing thresholds measured just before the loud sound increased relative to baseline thresholds. During two experimental sessions the threshold increased up to 17 dB for the test frequency of 45 kHz and up to 11 dB for the test frequency of 32 kHz. An extinction test revealed very rapid threshold recovery within the first two experimental sessions. The SEL producing the hearing dampening effect was low compared to previous other odontocete hearing change efforts with each individual trial equal to 155 dB re 1 μPa(2) but the cumulative SEL for each subsession may have been as high as 168 dB re 1 μPa(2). Interpretations of conditioned hearing sensation change and possible change due to temporary threshold shifts are considered for the harbor porpoise and discussed in the light of potential mechanisms and echolocation.
Collapse
Affiliation(s)
- Paul E Nachtigall
- Hawaii Institute of Marine Biology, University of Hawaii, P.O. Box 1346, Kaneohe, Hawaii 96744, USA
| | - Alexander Ya Supin
- Institute of Ecology and Evolution of the Russian Academy of Sciences, Moscow, Russia
| | - Aude F Pacini
- Hawaii Institute of Marine Biology, University of Hawaii, P.O. Box 1346, Kaneohe, Hawaii 96744, USA
| | - Ronald A Kastelein
- Sea Mammal Research Company (SEAMARCO), Julianalaan 46, 3843 CC Harderwijk, The Netherlands
| |
Collapse
|
27
|
Kastelein RA, Helder-Hoek L, Covi J, Gransier R. Pile driving playback sounds and temporary threshold shift in harbor porpoises (Phocoena phocoena): Effect of exposure duration. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2016; 139:2842. [PMID: 27250176 DOI: 10.1121/1.4948571] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
High intensity underwater sounds may cause temporary hearing threshold shifts (TTSs) in harbor porpoises, the magnitude of which may depend on the exposure duration. After exposure to playbacks of pile driving sounds, TTSs in two porpoises were quantified at 4 and 8 kHz with a psychophysical technique. At 8 kHz, the pile driving sounds caused the highest TTS. Pile driving sounds had the following: pulse duration 124 ms, rate 2760 strikes/h, inter-pulse interval 1.3 s, duty cycle ∼9.5%, average received single-strike unweighted broadband sound exposure level (SELss) 145 dB re 1 μPa(2)s, exposure duration range 15-360 min (cumulative SEL range: 173-187 dB re 1 μPa(2)s). Control sessions were also carried out. Mean TTS (1-4 min after sound exposure stopped in one porpoise, and 12-16 min in the other animal) increased from 0 dB after 15 min exposure to 5 dB after 360 min exposure. Recovery occurred within 60 min post-exposure. For the signal duration, sound pressure level (SPL), and duty cycle used, the TTS onset SELcum is estimated to be around 175 dB re 1 μPa(2)s. The small increase in TTS between 15 and 360 min exposures is due to the small amount of sound energy per unit of time to which the porpoises were exposed [average (over time) broadband SPL ∼144 dB re 1 μPa].
Collapse
Affiliation(s)
- Ronald A Kastelein
- Sea Mammal Research Company, Julianalaan 46, 3843 CC Harderwijk, The Netherlands
| | - Lean Helder-Hoek
- Sea Mammal Research Company, Julianalaan 46, 3843 CC Harderwijk, The Netherlands
| | - Jennifer Covi
- Sea Mammal Research Company, Julianalaan 46, 3843 CC Harderwijk, The Netherlands
| | - Robin Gransier
- Sea Mammal Research Company, Julianalaan 46, 3843 CC Harderwijk, The Netherlands
| |
Collapse
|
28
|
Kastelein RA, Schop J, Hoek L, Covi J. Hearing thresholds of a harbor porpoise (Phocoena phocoena) for narrow-band sweeps. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2015; 138:2508-2512. [PMID: 26520333 DOI: 10.1121/1.4932024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The hearing sensitivity of a 2-yr-old male harbor porpoise was measured using a standard psycho-acoustic technique under low ambient noise conditions. Auditory sensitivity was measured for narrow-band 1 s sweeps (center frequencies: 0.125-150 kHz). The audiogram was U-shaped; range of best hearing (within 10 dB of maximum sensitivity) was from 13 to ∼140 kHz. Maximum sensitivity (threshold: ∼39 dB re 1 μPa) occurred at 125 kHz at the peak frequency of echolocation pulses produced by harbor porpoises. Reduced sensitivity occurred at 32 and 63 kHz. Sensitivity fell by ∼10 dB per octave below 16 kHz and declined sharply above 125 kHz. Apart from this individual's ca. 10 dB higher sensitivity at 0.250 kHz, ca. 10 dB lower sensitivity at 32 kHz, and ca. 59 dB lower sensitivity at 150 kHz, his audiogram is similar to that of two harbor porpoises tested previously with a similar psycho-acoustic technique.
Collapse
Affiliation(s)
- Ronald A Kastelein
- Sea Mammal Research Company, Julianalaan 46, 3843 CC Harderwijk, The Netherlands
| | - Jessica Schop
- Sea Mammal Research Company, Julianalaan 46, 3843 CC Harderwijk, The Netherlands
| | - Lean Hoek
- Sea Mammal Research Company, Julianalaan 46, 3843 CC Harderwijk, The Netherlands
| | - Jennifer Covi
- Sea Mammal Research Company, Julianalaan 46, 3843 CC Harderwijk, The Netherlands
| |
Collapse
|
29
|
Finneran JJ. Noise-induced hearing loss in marine mammals: A review of temporary threshold shift studies from 1996 to 2015. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2015; 138:1702-1726. [PMID: 26428808 DOI: 10.1121/1.4927418] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
One of the most widely recognized effects of intense noise exposure is a noise-induced threshold shift—an elevation of hearing thresholds following cessation of the noise. Over the past twenty years, as concerns over the potential effects of human-generated noise on marine mammals have increased, a number of studies have been conducted to investigate noise-induced threshold shift phenomena in marine mammals. The experiments have focused on measuring temporary threshold shift (TTS)—a noise-induced threshold shift that fully recovers over time—in marine mammals exposed to intense tones, band-limited noise, and underwater impulses with various sound pressure levels, frequencies, durations, and temporal patterns. In this review, the methods employed by the groups conducting marine mammal TTS experiments are described and the relationships between the experimental conditions, the noise exposure parameters, and the observed TTS are summarized. An attempt has been made to synthesize the major findings across experiments to provide the current state of knowledge for the effects of noise on marine mammal hearing.
Collapse
Affiliation(s)
- James J Finneran
- United States Navy Marine Mammal Program, Space and Naval Warfare Systems Center Pacific, 53560 Hull Street, San Diego, California 92152, USA
| |
Collapse
|