1
|
Arjmandi MK, Jahn KN, Hem CB, Arenberg JG. Relationship Between Psychophysical Tuning Curves and Vowel Identification in Noise in Children and Adults With Cochlear Implants. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2025; 68:2623-2633. [PMID: 40268737 DOI: 10.1044/2025_jslhr-24-00270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
PURPOSE Perceptual outcomes in cochlear implant (CI) listeners are influenced by the quality of the interface between individual CI electrodes and their target auditory neurons (i.e., electrode-neuron interface [ENI]). Poor ENI increases the likelihood of CI channel interaction, which may lead to the smearing of sound frequency information, reduced spectral resolution, and, thus, errors in identifying speech sounds, particularly when there is background noise. This research note aims to present preliminary data on whether psychophysical tuning curves (PTCs), as a measure of channel interaction and an indirect measure of ENI, relate to vowel identification in noise in children and adults with CIs. METHOD PTCs and medial vowel identification in four-talker babble noise were obtained for eight children (12 ears) and eight adults (eight ears) with CIs. PTCs were measured for one electrode in the middle of the array using direct stimulation and a standard two-interval, two-alternative forced choice procedure. RESULTS Adults and children with sharper PTCs performed better on vowel identification in noise (F = 6.63, p = .02), demonstrating an association between less channel interaction and better vowel identification in noise in CI listeners irrespective of age. Although no statistically significant difference was found between children and adults in their PTC sharpness, children performed better than adults on vowel identification in noise (F = 5.38, p = .034). CONCLUSIONS The findings provide evidence that the sharpness of the PTC on a mid-array electrode is related to vowel identification in noise for CI listeners. Vowel identification in noise and PTC sharpness could be further investigated for use in developing personalized programming strategies that enhance the transmission of spectral cues crucial for recognizing vowel sounds.
Collapse
Affiliation(s)
- Meisam K Arjmandi
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia
- Institute for Mind and Brain, University of South Carolina, Columbia
| | - Kelly N Jahn
- Department of Speech, Language, and Hearing, The University of Texas at Dallas, Richardson
- Callier Center for Communication Disorders, The University of Texas at Dallas, Richardson
| | - Charles B Hem
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear, Harvard Medical School, Boston
| | - Julie G Arenberg
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear, Harvard Medical School, Boston
| |
Collapse
|
2
|
Kong C, Yin G, Wang X, Sun Y. In Utero Gene Therapy and its Application in Genetic Hearing Loss. Adv Biol (Weinh) 2024; 8:e2400193. [PMID: 39007241 DOI: 10.1002/adbi.202400193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/03/2024] [Indexed: 07/16/2024]
Abstract
For monogenic genetic diseases, in utero gene therapy (IUGT) shows the potential for early prevention against irreversible and lethal pathological changes. Moreover, animal models have also demonstrated the effectiveness of IUGT in the treatment of coagulation disorders, hemoglobinopathies, neurogenetic disorders, and metabolic and pulmonary diseases. For major alpha thalassemia and severe osteogenesis imperfecta, in utero stem cell transplantation has entered the phase I clinical trial stage. Within the realm of the inner ear, genetic hearing loss significantly hampers speech, cognitive, and intellectual development in children. Nowadays, gene therapies offer substantial promise for deafness, with the success of clinical trials in autosomal recessive deafness 9 using AAV-OTOF gene therapy. However, the majority of genetic mutations that cause deafness affect the development of cochlear structures before the birth of fetuses. Thus, gene therapy before alterations in cochlear structure leading to hearing loss has promising applications. In this review, addressing advances in various fields of IUGT, the progress, and application of IUGT in the treatment of genetic hearing loss are focused, in particular its implementation methods and unique advantages.
Collapse
Affiliation(s)
- Chenyang Kong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ge Yin
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaohui Wang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yu Sun
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Otorhinolaryngology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
3
|
Wohlbauer DM, Lai WK, Dillier N. InterlACE Sound Coding for Unilateral and Bilateral Cochlear Implants. IEEE Trans Biomed Eng 2024; 71:904-915. [PMID: 37796675 DOI: 10.1109/tbme.2023.3322348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
OBJECTIVE Cochlear implant signal processing strategies define the rules of how acoustic signals are converted into electrical stimulation patterns. Technological and anatomical limitations, however, impose constraints on the signal transmission and the accurate excitation of the auditory nerve. Acoustic signals are degraded throughout cochlear implant processing, and electrical signal interactions at the electrode-neuron interface constrain spectral and temporal precision. In this work, we propose a novel InterlACE signal processing strategy to counteract the occurring limitations. METHODS By replacing the maxima selection of the Advanced Combination Encoder strategy with a method that defines spatially and temporally alternating channels, InterlACE can compensate for discarded signal content of the conventional processing. The strategy can be extended bilaterally by introducing synchronized timing and channel selection. InterlACE was explored unilaterally and bilaterally by assessing speech intelligibility and spectral resolution. Five experienced bilaterally implanted cochlear implant recipients participated in the Oldenburg Sentence Recognition Test in background noise and the spectral ripple discrimination task. RESULTS The introduced alternating channel selection methodology shows promising outcomes for speech intelligibility but could not indicate better spectral ripple discrimination. CONCLUSION InterlACE processing positively affects speech intelligibility, increases available unilateral and bilateral signal content, and may potentially counteract signal interactions at the electrode-neuron interface. SIGNIFICANCE This work shows how cochlear implant channel selection can be modified and extended bilaterally. The clinical impact of the modifications needs to be explored with a larger sample size.
Collapse
|
4
|
Choi I, Gander PE, Berger JI, Woo J, Choy MH, Hong J, Colby S, McMurray B, Griffiths TD. Spectral Grouping of Electrically Encoded Sound Predicts Speech-in-Noise Performance in Cochlear Implantees. J Assoc Res Otolaryngol 2023; 24:607-617. [PMID: 38062284 PMCID: PMC10752853 DOI: 10.1007/s10162-023-00918-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 11/14/2023] [Indexed: 12/29/2023] Open
Abstract
OBJECTIVES Cochlear implant (CI) users exhibit large variability in understanding speech in noise. Past work in CI users found that spectral and temporal resolution correlates with speech-in-noise ability, but a large portion of variance remains unexplained. Recent work on normal-hearing listeners showed that the ability to group temporally and spectrally coherent tones in a complex auditory scene predicts speech-in-noise ability independently of the audiogram, highlighting a central mechanism for auditory scene analysis that contributes to speech-in-noise. The current study examined whether the auditory grouping ability also contributes to speech-in-noise understanding in CI users. DESIGN Forty-seven post-lingually deafened CI users were tested with psychophysical measures of spectral and temporal resolution, a stochastic figure-ground task that depends on the detection of a figure by grouping multiple fixed frequency elements against a random background, and a sentence-in-noise measure. Multiple linear regression was used to predict sentence-in-noise performance from the other tasks. RESULTS No co-linearity was found between any predictor variables. All three predictors (spectral and temporal resolution plus the figure-ground task) exhibited significant contribution in the multiple linear regression model, indicating that the auditory grouping ability in a complex auditory scene explains a further proportion of variance in CI users' speech-in-noise performance that was not explained by spectral and temporal resolution. CONCLUSION Measures of cross-frequency grouping reflect an auditory cognitive mechanism that determines speech-in-noise understanding independently of cochlear function. Such measures are easily implemented clinically as predictors of CI success and suggest potential strategies for rehabilitation based on training with non-speech stimuli.
Collapse
Affiliation(s)
- Inyong Choi
- Department of Communication Sciences and Disorders, University of Iowa, 250 Hawkins Dr., Iowa City, IA, 52242, USA.
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA.
| | - Phillip E Gander
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA
- Department of Radiology, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA
| | - Joel I Berger
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA
| | - Jihwan Woo
- Department of Biomedical Engineering, University of Ulsan, Ulsan, Republic of Korea
| | - Matthew H Choy
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Jean Hong
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA
| | - Sarah Colby
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, 52242, USA
| | - Bob McMurray
- Department of Communication Sciences and Disorders, University of Iowa, 250 Hawkins Dr., Iowa City, IA, 52242, USA
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, 52242, USA
| | - Timothy D Griffiths
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| |
Collapse
|
5
|
van Groesen NRA, Briaire JJ, Frijns JHM. Evaluation of Two Spectro-Temporal Ripple Tests and Their Relation to the Matrix Speech-in-Noise Sentence Test in Cochlear Implant Recipients. Ear Hear 2023; 44:1221-1228. [PMID: 37046376 PMCID: PMC10426775 DOI: 10.1097/aud.0000000000001365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/18/2023] [Indexed: 04/14/2023]
Abstract
OBJECTIVES Spectro-temporal ripple tests are commonly used in cochlear implant (CI) research as language-independent indicators of speech recognition (in noise) or as stand-alone tests. Test-retest reliability of these tests has been scarcely documented. We evaluated the test-retest reliability of spectral-temporally modulated ripple test (SMRT) and spectro-temporal ripple for investigating processor effectiveness (STRIPES) and correlated their findings to the Dutch/Flemish Matrix speech-in-noise sentence test (MST) in CI recipients. This is the first time spectro-temporal ripple tests are correlated to an MST. DESIGN Take-home data from 15 participants over 2 test days were analyzed. Participants were fitted with their clinical speech encoding strategy (Advanced Bionics HiRes Optima) or a 14-channel non-steered monopolar strategy. Test-retest reliability was calculated through intraclass correlation coefficients and visualized through Bland Altman plots. Association of the spectro-temporal ripple tests with the MST was evaluated through linear regression analysis. RESULTS The SMRT and STRIPES possessed a similarly rated "good" test-retest reliability (SMRT: ICC = 0.81, confidence interval = 0.67 to 0.92; STRIPES: ICC = 0.87, confidence interval = 0.76 to 0.95) and an identical linear relationship to speech recognition in noise (SMRT: R2 = 0.28, p = 0.04; STRIPES: R2 = 0.28, p = 0.04). Both tests revealed a stable variability between session 1 and 2 outcome scores on Bland Altman plots. CONCLUSION On the basis of our data, both spectro-temporal ripple tests possess similar test-retest reliability and a similar association with the MST. The SMRT and STRIPES can therefore both be used equally well as a quick indicator of across-listener differences in speech recognition in noise in CI recipients.
Collapse
Affiliation(s)
- N R A van Groesen
- Otorhinolaryngology and Head and Neck Surgery, Leiden University Medical Center, the Netherlands
| | - J J Briaire
- Otorhinolaryngology and Head and Neck Surgery, Leiden University Medical Center, the Netherlands
| | - J H M Frijns
- Otorhinolaryngology and Head and Neck Surgery, Leiden University Medical Center, the Netherlands
- Leiden Institute for Brain and Cognition, Leiden, the Netherlands
| |
Collapse
|
6
|
Harris MS, Hamel BL, Wichert K, Kozlowski K, Mleziva S, Ray C, Pisoni DB, Kronenberger WG, Moberly AC. Contribution of Verbal Learning & Memory and Spectro-Temporal Discrimination to Speech Recognition in Cochlear Implant Users. Laryngoscope 2023; 133:661-669. [PMID: 35567421 PMCID: PMC9659673 DOI: 10.1002/lary.30210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/01/2022] [Accepted: 05/03/2022] [Indexed: 11/10/2022]
Abstract
OBJECTIVES Existing cochlear implant (CI) outcomes research demonstrates a high degree of variability in device effectiveness among experienced CI users. Increasing evidence suggests that verbal learning and memory (VL&M) may have an influence on speech recognition with CIs. This study examined the relations in CI users between visual measures of VL&M and speech recognition in a series of models that also incorporated spectro-temporal discrimination. Predictions were that (1) speech recognition would be associated with VL&M abilities and (2) VL&M would contribute to speech recognition outcomes above and beyond spectro-temporal discrimination in multivariable models of speech recognition. METHODS This cross-sectional study included 30 adult postlingually deaf experienced CI users who completed a nonauditory visual version of the California Verbal Learning Test-Second Edition (v-CVLT-II) to assess VL&M, and the Spectral-Temporally Modulated Ripple Test (SMRT), an auditory measure of spectro-temporal processing. Participants also completed a battery of word and sentence recognition tasks. RESULTS CI users showed significant correlations between some v-CVLT-II measures (short-delay free- and cued-recall, retroactive interference, and "subjective" organizational recall strategies) and speech recognition measures. Performance on the SMRT was correlated with all speech recognition measures. Hierarchical multivariable linear regression analyses showed that SMRT performance accounted for a significant degree of speech recognition outcome variance. Moreover, for all speech recognition measures, VL&M scores contributed independently in addition to SMRT. CONCLUSION Measures of spectro-temporal discrimination and VL&M were associated with speech recognition in CI users. After accounting for spectro-temporal discrimination, VL&M contributed independently to performance on measures of speech recognition for words and sentences produced by single and multiple talkers. LEVEL OF EVIDENCE 3 Laryngoscope, 133:661-669, 2023.
Collapse
Affiliation(s)
- Michael S. Harris
- Department of Otolaryngology & Communication Sciences, Medical College of Wisconsin, Milwaukee, WI
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI
| | | | - Kristin Wichert
- Department of Communication Sciences & Disorders, University of Wisconsin - Eau Claire, Eau Claire, WI
| | - Kristin Kozlowski
- Department of Otolaryngology & Communication Sciences, Medical College of Wisconsin, Milwaukee, WI
| | - Sarah Mleziva
- Department of Otolaryngology & Communication Sciences, Medical College of Wisconsin, Milwaukee, WI
| | - Christin Ray
- Department of Otolaryngology – Head & Neck Surgery, The Ohio State Wexner Medical Center, Columbus, OH
| | - David B. Pisoni
- Speech Research Laboratory, Department of Psychology, Indiana University, Bloomington, IN
| | | | - Aaron C. Moberly
- Department of Otolaryngology – Head & Neck Surgery, The Ohio State Wexner Medical Center, Columbus, OH
| |
Collapse
|
7
|
Noble AR, Resnick J, Broncheau M, Klotz S, Rubinstein JT, Werner LA, Horn DL. Spectrotemporal Modulation Discrimination in Infants With Normal Hearing. Ear Hear 2023; 44:109-117. [PMID: 36218270 PMCID: PMC9780152 DOI: 10.1097/aud.0000000000001277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVES Spectral resolution correlates with speech understanding in post-lingually deafened adults with cochlear implants (CIs) and is proposed as a non-linguistic measure of device efficacy in implanted infants. However, spectral resolution develops gradually through adolescence regardless of hearing status. Spectral resolution relies on two different factors that mature at markedly different rates: Resolution of ripple peaks (frequency resolution) matures during infancy whereas sensitivity to across-spectrum intensity modulation (spectral modulation sensitivity) matures by age 12. Investigation of spectral resolution as a clinical measure for implanted infants requires understanding how each factor develops and constrains speech understanding with a CI. This study addresses the limitations of the present literature. First, the paucity of relevant data requires replication and generalization across measures of spectral resolution. Second, criticism that previously used measures of spectral resolution may reflect non-spectral cues needs to be addressed. Third, rigorous behavioral measurement of spectral resolution in individual infants is limited by attrition. To address these limitations, we measured discrimination of spectrally modulated, or rippled, sounds at two modulation depths in normal hearing (NH) infants and adults. Non-spectral cues were limited by constructing stimuli with spectral envelopes that change in phase across time. Pilot testing suggested that dynamic spectral envelope stimuli appeared to hold infants' attention and lengthen habituation time relative to previously used static ripple stimuli. A post-hoc condition was added to ensure that the stimulus noise carrier was not obscuring age differences in spectral resolution. The degree of improvement in discrimination at higher ripple depth represents spectral frequency resolution independent of the overall threshold. It was hypothesized that adults would have better thresholds than infants but both groups would show similar effects of modulation depth. DESIGN Participants were 53 6- to 7-month-old infants and 23 adults with NH with no risk factors for hearing loss who passed bilateral otoacoustic emissions screening. Stimuli were created from complexes with 33- or 100-tones per octave, amplitude-modulated across frequency and time with constant 5 Hz envelope phase-drift and spectral ripple density from 1 to 20 ripples per octave (RPO). An observer-based, single-interval procedure measured the highest RPO (1 to 19) a listener could discriminate from a 20 RPO stimulus. Age-group and stimulus pure-tone complex were between-subjects variables whereas modulation depth (10 or 20 dB) was within-subjects. Linear-mixed model analysis was used to test for the significance of the main effects and interactions. RESULTS All adults and 94% of infants provided ripple density thresholds at both modulation depths. The upper range of threshold approached 17 RPO with the 100-tones/octave carrier and 20 dB depth condition. As expected, mean threshold was significantly better with the 100-tones/octave compared with the 33-tones/octave complex, better in adults than in infants, and better at 20 dB than 10 dB modulation depth. None of the interactions reached significance, suggesting that the effect of modulation depth on the threshold was not different for infants or adults. CONCLUSIONS Spectral ripple discrimination can be measured in infants with minimal listener attrition using dynamic ripple stimuli. Results are consistent with previous findings that spectral resolution is immature in infancy due to immature spectral modulation sensitivity rather than frequency resolution.
Collapse
Affiliation(s)
- Anisha R. Noble
- Department of Otolaryngology – Head and Neck Surgery, University of Washington, Seattle, WA
| | - Jesse Resnick
- Department of Otolaryngology – Head and Neck Surgery, University of Washington, Seattle, WA
| | - Mariette Broncheau
- Department of Otolaryngology – Head and Neck Surgery, University of Washington, Seattle, WA
| | - Stephanie Klotz
- Department of Speech and Hearing Sciences, University of Washington, Seattle, WA
| | - Jay T. Rubinstein
- Department of Otolaryngology – Head and Neck Surgery, University of Washington, Seattle, WA
| | - Lynne A. Werner
- Department of Otolaryngology – Head and Neck Surgery, University of Washington, Seattle, WA
- Department of Speech and Hearing Sciences, University of Washington, Seattle, WA
| | - David L. Horn
- Department of Otolaryngology – Head and Neck Surgery, University of Washington, Seattle, WA
- Department of Speech and Hearing Sciences, University of Washington, Seattle, WA
| |
Collapse
|
8
|
Gifford RH, Sunderhaus LW, Holder JT, Berg KA, Dawant BM, Noble JH, Perkins E, Camarata S. Speech recognition as a function of the number of channels for pediatric cochlear implant recipients. JASA EXPRESS LETTERS 2022; 2:094403. [PMID: 36182337 PMCID: PMC9488908 DOI: 10.1121/10.0013428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/26/2022] [Indexed: 06/16/2023]
Abstract
This study investigated the number of channels required for asymptotic speech recognition for ten pediatric cochlear implant (CI) recipients with precurved electrode arrays. Programs with 4-22 active electrodes were used to assess word and sentence recognition in noise. Children demonstrated significant performance gains up to 12 electrodes for continuous interleaved sampling (CIS) and up to 22 channels with 16 maxima. These data are consistent with the latest adult CI studies demonstrating that modern CI recipients have access to more than 8 independent channels and that both adults and children exhibit performance gains up to 22 channels.
Collapse
Affiliation(s)
- René H Gifford
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Linsey W Sunderhaus
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Jourdan T Holder
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Katelyn A Berg
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Benoit M Dawant
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Jack H Noble
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Elizabeth Perkins
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA , , , , , , ,
| | - Stephen Camarata
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| |
Collapse
|
9
|
Application of Signals with Rippled Spectra as a Training Approach for Speech Intelligibility Improvements in Cochlear Implant Users. J Pers Med 2022; 12:jpm12091426. [PMID: 36143210 PMCID: PMC9503413 DOI: 10.3390/jpm12091426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/19/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
In cochlear implant (CI) users, the discrimination of sound signals with rippled spectra correlates with speech discrimination. We suggest that rippled-spectrum signals could be a basis for training CI users to improve speech intelligibility. Fifteen CI users participated in the study. Ten of them used the software for training (the experimental group), and five did not (the control group). Software based on the phase reversal discrimination of rippled spectra was used. The experimental group was also tested for speech discrimination using phonetic material based on polysyllabic balanced speech material. An improvement in the discrimination of the rippled spectrum was observed in all CI users from the experimental group. There was no significant improvement in the control group. The result of the speech discrimination test showed that the percentage of recognized words increased after training in nine out of ten CI users. For five CI users who participated in the training program, the data on word recognition were also obtained earlier (at least eight months before training). The increase in the percentage of recognized words was greater after training compared to the period before training. The results allow the suggestion that sound signals with rippled spectra could be used not only for testing rehabilitation results after CI but also for training CI users to discriminate sounds with complex spectra.
Collapse
|
10
|
Brungart DS, Sherlock LP, Kuchinsky SE, Perry TT, Bieber RE, Grant KW, Bernstein JGW. Assessment methods for determining small changes in hearing performance over time. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 151:3866. [PMID: 35778214 DOI: 10.1121/10.0011509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Although the behavioral pure-tone threshold audiogram is considered the gold standard for quantifying hearing loss, assessment of speech understanding, especially in noise, is more relevant to quality of life but is only partly related to the audiogram. Metrics of speech understanding in noise are therefore an attractive target for assessing hearing over time. However, speech-in-noise assessments have more potential sources of variability than pure-tone threshold measures, making it a challenge to obtain results reliable enough to detect small changes in performance. This review examines the benefits and limitations of speech-understanding metrics and their application to longitudinal hearing assessment, and identifies potential sources of variability, including learning effects, differences in item difficulty, and between- and within-individual variations in effort and motivation. We conclude by recommending the integration of non-speech auditory tests, which provide information about aspects of auditory health that have reduced variability and fewer central influences than speech tests, in parallel with the traditional audiogram and speech-based assessments.
Collapse
Affiliation(s)
- Douglas S Brungart
- Audiology and Speech Pathology Center, Walter Reed National Military Medical Center, Building 19, Floor 5, 4954 North Palmer Road, Bethesda, Maryland 20889, USA
| | - LaGuinn P Sherlock
- Hearing Conservation and Readiness Branch, U.S. Army Public Health Center, E1570 8977 Sibert Road, Aberdeen Proving Ground, Maryland 21010, USA
| | - Stefanie E Kuchinsky
- Audiology and Speech Pathology Center, Walter Reed National Military Medical Center, Building 19, Floor 5, 4954 North Palmer Road, Bethesda, Maryland 20889, USA
| | - Trevor T Perry
- Hearing Conservation and Readiness Branch, U.S. Army Public Health Center, E1570 8977 Sibert Road, Aberdeen Proving Ground, Maryland 21010, USA
| | - Rebecca E Bieber
- Audiology and Speech Pathology Center, Walter Reed National Military Medical Center, Building 19, Floor 5, 4954 North Palmer Road, Bethesda, Maryland 20889, USA
| | - Ken W Grant
- Audiology and Speech Pathology Center, Walter Reed National Military Medical Center, Building 19, Floor 5, 4954 North Palmer Road, Bethesda, Maryland 20889, USA
| | - Joshua G W Bernstein
- Audiology and Speech Pathology Center, Walter Reed National Military Medical Center, Building 19, Floor 5, 4954 North Palmer Road, Bethesda, Maryland 20889, USA
| |
Collapse
|
11
|
Winn MB, O’Brien G. Distortion of Spectral Ripples Through Cochlear Implants Has Major Implications for Interpreting Performance Scores. Ear Hear 2022; 43:764-772. [PMID: 34966157 PMCID: PMC9010354 DOI: 10.1097/aud.0000000000001162] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The spectral ripple discrimination task is a psychophysical measure that has been found to correlate with speech recognition in listeners with cochlear implants (CIs). However, at ripple densities above a critical value (around 2 RPO, but device-specific), the sparse spectral sampling of CI processors results in stimulus distortions resulting in aliasing and unintended changes in modulation depth. As a result, spectral ripple thresholds above a certain number are not ordered monotonically along the RPO dimension and thus cannot be considered better or worse spectral resolution than each other, thus undermining correlation measurements. These stimulus distortions are not remediated by changing stimulus phase, indicating these issues cannot be solved by spectrotemporally modulated stimuli. Speech generally has very low-density spectral modulations, leading to questions about the mechanism of correlation between high ripple thresholds and speech recognition. Existing data showing correlations between ripple discrimination and speech recognition include many observations above the aliasing limit. These scores should be treated with caution, and experimenters could benefit by prospectively considering the limitations of the spectral ripple test.
Collapse
Affiliation(s)
- Matthew B. Winn
- Department of Speech-Language-Hearing Sciences, University of Minnesota, USA
| | | |
Collapse
|
12
|
Jahn KN, Arenberg JG, Horn DL. Spectral Resolution Development in Children With Normal Hearing and With Cochlear Implants: A Review of Behavioral Studies. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2022; 65:1646-1658. [PMID: 35201848 PMCID: PMC9499384 DOI: 10.1044/2021_jslhr-21-00307] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/09/2021] [Accepted: 12/01/2021] [Indexed: 06/14/2023]
Abstract
PURPOSE This review article provides a theoretical overview of the development of spectral resolution in children with normal hearing (cNH) and in those who use cochlear implants (CIs), with an emphasis on methodological considerations. The aim was to identify key directions for future research on spectral resolution development in children with CIs. METHOD A comprehensive literature review was conducted to summarize and synthesize previously published behavioral research on spectral resolution development in normal and impaired auditory systems. CONCLUSIONS In cNH, performance on spectral resolution tasks continues to improve through the teenage years and is likely driven by gradual maturation of across-channel intensity resolution. A small but growing body of evidence from children with CIs suggests a more complex relationship between spectral resolution development, patient demographics, and the quality of the CI electrode-neuron interface. Future research should aim to distinguish between the effects of patient-specific variables and the underlying physiology on spectral resolution abilities in children of all ages who are hard of hearing and use auditory prostheses.
Collapse
Affiliation(s)
- Kelly N. Jahn
- Department of Speech, Language, and Hearing, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson
- Callier Center for Communication Disorders, The University of Texas at Dallas
| | - Julie G. Arenberg
- Department of Otolaryngology – Head and Neck Surgery, Harvard Medical School, Boston, MA
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston
| | - David L. Horn
- Virginia Merrill Bloedel Hearing Research Center, Department of Otolaryngology – Head and Neck Surgery, University of Washington, Seattle
- Division of Otolaryngology, Seattle Children's Hospital, WA
| |
Collapse
|
13
|
Nittrouer S, Lowenstein JH, Sinex DG. The contribution of spectral processing to the acquisition of phonological sensitivity by adolescent cochlear implant users and normal-hearing controls. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2021; 150:2116. [PMID: 34598601 PMCID: PMC8463097 DOI: 10.1121/10.0006416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/27/2021] [Accepted: 09/01/2021] [Indexed: 05/31/2023]
Abstract
This study tested the hypotheses that (1) adolescents with cochlear implants (CIs) experience impaired spectral processing abilities, and (2) those impaired spectral processing abilities constrain acquisition of skills based on sensitivity to phonological structure but not those based on lexical or syntactic (lexicosyntactic) knowledge. To test these hypotheses, spectral modulation detection (SMD) thresholds were measured for 14-year-olds with normal hearing (NH) or CIs. Three measures each of phonological and lexicosyntactic skills were obtained and used to generate latent scores of each kind of skill. Relationships between SMD thresholds and both latent scores were assessed. Mean SMD threshold was poorer for adolescents with CIs than for adolescents with NH. Both latent lexicosyntactic and phonological scores were poorer for the adolescents with CIs, but the latent phonological score was disproportionately so. SMD thresholds were significantly associated with phonological but not lexicosyntactic skill for both groups. The only audiologic factor that also correlated with phonological latent scores for adolescents with CIs was the aided threshold, but it did not explain the observed relationship between SMD thresholds and phonological latent scores. Continued research is required to find ways of enhancing spectral processing for children with CIs to support their acquisition of phonological sensitivity.
Collapse
Affiliation(s)
- Susan Nittrouer
- Department of Speech, Language, and Hearing Sciences, University of Florida, Gainesville, Florida 32610, USA
| | - Joanna H Lowenstein
- Department of Speech, Language, and Hearing Sciences, University of Florida, Gainesville, Florida 32610, USA
| | - Donal G Sinex
- Department of Speech, Language, and Hearing Sciences, University of Florida, Gainesville, Florida 32610, USA
| |
Collapse
|
14
|
Harris MS, Moberly AC, Hamel BL, Vasil K, Runge CL, Riggs WJ, Shafiro V. A Longitudinal Comparison of Environmental Sound Recognition in Adults With Hearing Aids Before and After Cochlear Implantation. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2021; 64:1040-1052. [PMID: 33651956 PMCID: PMC8608242 DOI: 10.1044/2020_jslhr-20-00400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 11/18/2020] [Accepted: 11/27/2020] [Indexed: 06/12/2023]
Abstract
Purpose The aims of this study were (a) to longitudinally assess environmental sound recognition (ESR) before and after cochlear implantation in a sample of postlingually deafened adults and (b) to assess the extent to which spectro-temporal processing abilities influence ESR with cochlear implants (CIs). Method In a longitudinal cohort study, 20 postlingually deafened adults were tested with hearing aids on the Familiar Environmental Sound Test-Identification and AzBio sentences in quiet pre-CI and 6 months post-CI. A subset of 11 participants were also tested 12 months post-CI. Pre-CI spectro-temporal processing was assessed using the Spectral-temporally Modulated Ripple Test. Results Average ESR accuracy pre-CI (M = 63.60%) was not significantly different from ESR accuracy at 6 months (M = 65.40%) or 12 months (M = 69.09%) post-CI. In 11 participants (55%), however, ESR improved following implantation by 10.91 percentage points, on average. Pre-CI ESR correlated moderately and significantly with pre-CI and 12-month post-CI AzBio scores, with a trend toward significance for AzBio performance at 6 months. Pre-CI spectro-temporal processing was moderately associated with ESR at 6 and 12 months post-CI but not with speech recognition post-CI. Conclusions The present findings failed to demonstrate an overall significant improvement in ESR following implantation. Nevertheless, more than half of our sample showed some degree of improvement in ESR. Several environmental sounds were poorly identified both before and after implantation. Spectro-temporal processing ability prior to implantation appears to predict postimplantation performance for ESR. These findings indicate the need for greater attention to ESR following cochlear implantation and for developing individualized targets for ESR rehabilitation. Supplemental Material https://doi.org/10.23641/asha.13876745.
Collapse
Affiliation(s)
- Michael S. Harris
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee
| | - Aaron C. Moberly
- Department of Otolaryngology – Head and Neck Surgery, The Ohio State University Wexner Medical Center, Columbus
| | | | - Kara Vasil
- Department of Otolaryngology – Head and Neck Surgery, The Ohio State University Wexner Medical Center, Columbus
| | - Christina L. Runge
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee
| | - William J. Riggs
- Department of Otolaryngology – Head and Neck Surgery, The Ohio State University Wexner Medical Center, Columbus
| | - Valeriy Shafiro
- Department of Communication Disorders and Sciences, College of Health Sciences, Rush University, Chicago, IL
| |
Collapse
|
15
|
Yang H, Won JH, Choi I, Woo J. A computational study to model the effect of electrode-to-auditory nerve fiber distance on spectral resolution in cochlear implant. PLoS One 2020; 15:e0236784. [PMID: 32745116 PMCID: PMC7398541 DOI: 10.1371/journal.pone.0236784] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 07/15/2020] [Indexed: 11/24/2022] Open
Abstract
Spectral ripple discrimination (SRD) has been widely used to evaluate the spectral resolution in cochlear implant (CI) recipients based on its strong correlation with speech perception performance. However, despite its usefulness for predicting speech perception outcomes, SRD performance exhibits large across-subject variabilities even among subjects implanted with the same CIs and sound processors. The potential factors of this observation include current spread, nerve survival, and CI mapping. Previous studies have found that the spectral resolution reduces with increasing distance of the stimulation electrode from the auditory nerve fibers (ANFs), attributable to increasing current spread. However, it remains unclear whether the spread of excitation is the only cause of the observation, or whether other factors such as temporal interaction also contribute to it. In this study, we used a computational model to investigate channel interaction upon non-simultaneous stimulation with respect to the electrode-ANF distance, and evaluated the SRD performance for five electrode-ANF distances. The SRD performance was determined based on the similarity between two neurograms in response to standard and inverted stimuli and used to evaluate the spectral resolution in the computational model. The spread of excitation was observed to increase with increasing electrode-ANF distance, consistent with previous findings. Additionally, the preceding pulses delivered from neighboring channels induced a channel interaction that either inhibited or facilitated the neural responses to subsequent pulses depending on the electrode-ANF distance. The SRD performance was also found to decrease with increasing electrode-ANF distance. The findings of this study suggest that variation of the neural responses (inhibition or facilitation) with the electrode-ANF distance in CI users may cause spectral smearing, and hence poor spectral resolution. A computational model such as that used in this study is a useful tool for understanding the neural factors related to CI outcomes, such as cannot be accomplished by behavioral studies alone.
Collapse
Affiliation(s)
- Hyejin Yang
- Department of Biomedical Engineering, School of Electrical Engineering, University of Ulsan, Ulsan, Republic of Korea
| | - Jong Ho Won
- Division of ENT, Sleep Disordered Breathing, Respiratory, and Anesthesia, Office of Product Evaluation and Quality, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD, United States of America
| | - Inyong Choi
- Department of Communication Sciences and Disorders, University of Iowa, Iowa City, IA, United States of America
| | - Jihwan Woo
- Department of Biomedical Engineering, School of Electrical Engineering, University of Ulsan, Ulsan, Republic of Korea
| |
Collapse
|
16
|
Tejani VD, Brown CJ. Speech masking release in Hybrid cochlear implant users: Roles of spectral and temporal cues in electric-acoustic hearing. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2020; 147:3667. [PMID: 32486815 PMCID: PMC7255813 DOI: 10.1121/10.0001304] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 05/05/2020] [Accepted: 05/05/2020] [Indexed: 06/04/2023]
Abstract
When compared with cochlear implant (CI) users utilizing electric-only (E-Only) stimulation, CI users utilizing electric-acoustic stimulation (EAS) in the implanted ear show improved speech recognition in modulated noise relative to steady-state noise (i.e., speech masking release). It has been hypothesized, but not shown, that masking release is attributed to spectral resolution and temporal fine structure (TFS) provided by acoustic hearing. To address this question, speech masking release, spectral ripple density discrimination thresholds, and fundamental frequency difference limens (f0DLs) were evaluated in the acoustic-only (A-Only), E-Only, and EAS listening modes in EAS CI users. The spectral ripple and f0DL tasks are thought to reflect access to spectral and TFS cues, which could impact speech masking release. Performance in all three measures was poorest when EAS CI users were tested using the E-Only listening mode, with significant improvements in A-Only and EAS listening modes. f0DLs, but not spectral ripple density discrimination thresholds, significantly correlated with speech masking release when assessed in the EAS listening mode. Additionally, speech masking release correlated with AzBio sentence recognition in noise. The correlation between speech masking release and f0DLs likely indicates that TFS cues provided by residual hearing were used to obtain speech masking release, which aided sentence recognition in noise.
Collapse
Affiliation(s)
- Viral D Tejani
- Otolaryngology-Head and Neck Surgery, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, 21003 Pomerantz Family Pavilion, Iowa City, Iowa 52242-1078, USA
| | - Carolyn J Brown
- Communication Sciences and Disorders, Wendell Johnson Speech and Hearing Center-127B, University of Iowa, 250 Hawkins Drive, Iowa City, Iowa 52242, USA
| |
Collapse
|
17
|
Nechaev DI, Milekhina ON, Supin AY. Estimates of Ripple-Density Resolution Based on the Discrimination From Rippled and Nonrippled Reference Signals. Trends Hear 2019; 23:2331216518824435. [PMID: 30669951 DOI: 10.1177/2331216518824435] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Rippled-spectrum stimuli are used to evaluate the resolution of the spectro-temporal structure of sounds. Measurements of spectrum-pattern resolution imply the discrimination between the test and reference stimuli. Therefore, estimates of rippled-pattern resolution could depend on both the test stimulus and the reference stimulus type. In this study, the ripple-density resolution was measured using combinations of two test stimuli and two reference stimuli. The test stimuli were rippled-spectrum signals with constant phase or rippled-spectrum signals with ripple-phase reversals. The reference stimuli were rippled-spectrum signals with opposite ripple phase to the test or nonrippled signals. The spectra were centered at 2 kHz and had an equivalent rectangular bandwidth of 1 oct and a level of 70 dB sound pressure level. A three-alternative forced-choice procedure was combined with an adaptive procedure. With rippled reference stimuli, the mean ripple-density resolution limits were 8.9 ripples/oct (phase-reversals test stimulus) or 7.7 ripples/oct (constant-phase test stimulus). With nonrippled reference stimuli, the mean resolution limits were 26.1 ripples/oct (phase-reversals test stimulus) or 22.2 ripples/oct (constant-phase test stimulus). Different contributions of excitation-pattern and temporal-processing mechanisms are assumed for measurements with rippled and nonrippled reference stimuli: The excitation-pattern mechanism is more effective for the discrimination of rippled stimuli that differ in their ripple-phase patterns, whereas the temporal-processing mechanism is more effective for the discrimination of rippled and nonrippled stimuli.
Collapse
Affiliation(s)
- Dmitry I Nechaev
- 1 Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | - Olga N Milekhina
- 1 Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | - Alexander Ya Supin
- 1 Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
18
|
Milekhina ON, Nechaev DI, Supin AY. Rippled-spectrum resolution dependence on frequency: Estimates obtained by discrimination from rippled and nonrippled reference signals. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:2231. [PMID: 31672006 DOI: 10.1121/1.5127835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 09/11/2019] [Indexed: 06/10/2023]
Abstract
The resolution of spectral ripples is a useful test for the spectral resolution of hearing. However, the use of different measurement paradigms might yield diverging results because of a paradigm-dependent contribution of excitation-pattern and temporal-processing mechanisms. In the present study, ripple-density resolution was measured in normal-hearing listeners for several frequency bands (centered at 0.5, 1, 2, and 4 kHz), using two paradigms: (i) discrimination of a rippled-spectrum test signal from a rippled reference signal differing by the ripple phase pattern, and (ii) discrimination of a rippled-spectrum test signal from a nonrippled reference signal. For the rippled reference signals, the resolution slightly depended on signal frequency. For the nonrippled reference signals, the resolution depended on the signal frequency; it varied from 8.8 ripples/oct at 0.5 kHz to 34.2 ripples/oct at 4 kHz. Excitation-pattern and temporal-processing models of spectral analysis were considered. Predictions of the excitation-pattern model agreed with the data obtained with the rippled reference signals. In contrast, predictions of the temporal-processing model agreed with the data obtained with the nonrippled reference signals. Thus, depending on the used reference signal type, the ripple-density resolution estimates characterize the discrimination abilities of the corresponding mechanisms.
Collapse
Affiliation(s)
- Olga N Milekhina
- Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow 119071, Russia
| | - Dmitry I Nechaev
- Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow 119071, Russia
| | - Alexander Ya Supin
- Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow 119071, Russia
| |
Collapse
|
19
|
Zhang F, Underwood G, McGuire K, Liang C, Moore DR, Fu QJ. Frequency change detection and speech perception in cochlear implant users. Hear Res 2019; 379:12-20. [PMID: 31035223 PMCID: PMC6571168 DOI: 10.1016/j.heares.2019.04.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/21/2019] [Accepted: 04/15/2019] [Indexed: 10/27/2022]
Abstract
Dynamic frequency changes in sound provide critical cues for speech perception. Most previous studies examining frequency discrimination in cochlear implant (CI) users have employed behavioral tasks in which target and reference tones (differing in frequency) are presented statically in separate time intervals. Participants are required to identify the target frequency by comparing stimuli across these time intervals. However, perceiving dynamic frequency changes in speech requires detection of within-interval frequency change. This study explored the relationship between detection of within-interval frequency changes and speech perception performance of CI users. Frequency change detection thresholds (FCDTs) were measured in 20 adult CI users using a 3-alternative forced-choice (3AFC) procedure. Stimuli were 1-sec pure tones (base frequencies at 0.25, 1, 4 kHz) with frequency changes occurring 0.5 s after the tone onset. Speech tests were 1) Consonant-Nucleus-Consonant (CNC) monosyllabic word recognition, 2) Arizona Biomedical Sentence Recognition (AzBio) in Quiet, 3) AzBio in Noise (AzBio-N, +10 dB signal-to-noise/SNR ratio), and 4) Digits-in-noise (DIN). Participants' subjective satisfaction with the CI was obtained. Results showed that correlations between FCDTs and speech perception were all statistically significant. The satisfaction level of CI use was not related to FCDTs, after controlling for major demographic factors. DIN speech reception thresholds were significantly correlated to AzBio-N scores. The current findings suggest that the ability to detect within-interval frequency changes may play an important role in speech perception performance of CI users. FCDT and DIN can serve as simple and rapid tests that require no or minimal linguistic background for the prediction of CI speech outcomes.
Collapse
Affiliation(s)
- Fawen Zhang
- Department of Communication Sciences and Disorders, University of Cincinnati, Ohio, USA.
| | - Gabrielle Underwood
- Department of Communication Sciences and Disorders, University of Cincinnati, Ohio, USA
| | - Kelli McGuire
- Department of Communication Sciences and Disorders, University of Cincinnati, Ohio, USA
| | - Chun Liang
- Department of Communication Sciences and Disorders, University of Cincinnati, Ohio, USA; Shenzhen Maternity & Child Healthcare Hospital, Shenzhen, China
| | - David R Moore
- Communication Sciences Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Otolaryngology, University of Cincinnati, Ohio, USA
| | - Qian-Jie Fu
- Department of Head and Neck Surgery, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
20
|
O'Neill ER, Kreft HA, Oxenham AJ. Cognitive factors contribute to speech perception in cochlear-implant users and age-matched normal-hearing listeners under vocoded conditions. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:195. [PMID: 31370651 PMCID: PMC6637026 DOI: 10.1121/1.5116009] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
This study examined the contribution of perceptual and cognitive factors to speech-perception abilities in cochlear-implant (CI) users. Thirty CI users were tested on word intelligibility in sentences with and without semantic context, presented in quiet and in noise. Performance was compared with measures of spectral-ripple detection and discrimination, thought to reflect peripheral processing, as well as with cognitive measures of working memory and non-verbal intelligence. Thirty age-matched and thirty younger normal-hearing (NH) adults also participated, listening via tone-excited vocoders, adjusted to produce mean performance for speech in noise comparable to that of the CI group. Results suggest that CI users may rely more heavily on semantic context than younger or older NH listeners, and that non-auditory working memory explains significant variance in the CI and age-matched NH groups. Between-subject variability in spectral-ripple detection thresholds was similar across groups, despite the spectral resolution for all NH listeners being limited by the same vocoder, whereas speech perception scores were more variable between CI users than between NH listeners. The results highlight the potential importance of central factors in explaining individual differences in CI users and question the extent to which standard measures of spectral resolution in CIs reflect purely peripheral processing.
Collapse
Affiliation(s)
- Erin R O'Neill
- Department of Psychology, University of Minnesota, Elliott Hall, 75 East River Parkway, Minneapolis, Minnesota 55455, USA
| | - Heather A Kreft
- Department of Psychology, University of Minnesota, Elliott Hall, 75 East River Parkway, Minneapolis, Minnesota 55455, USA
| | - Andrew J Oxenham
- Department of Psychology, University of Minnesota, Elliott Hall, 75 East River Parkway, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
21
|
Gifford RH, Noble JH, Camarata SM, Sunderhaus LW, Dwyer RT, Dawant BM, Dietrich MS, Labadie RF. The Relationship Between Spectral Modulation Detection and Speech Recognition: Adult Versus Pediatric Cochlear Implant Recipients. Trends Hear 2019; 22:2331216518771176. [PMID: 29716437 PMCID: PMC5949922 DOI: 10.1177/2331216518771176] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Adult cochlear implant (CI) recipients demonstrate a reliable relationship between spectral modulation detection and speech understanding. Prior studies documenting this relationship have focused on postlingually deafened adult CI recipients—leaving an open question regarding the relationship between spectral resolution and speech understanding for adults and children with prelingual onset of deafness. Here, we report CI performance on the measures of speech recognition and spectral modulation detection for 578 CI recipients including 477 postlingual adults, 65 prelingual adults, and 36 prelingual pediatric CI users. The results demonstrated a significant correlation between spectral modulation detection and various measures of speech understanding for 542 adult CI recipients. For 36 pediatric CI recipients, however, there was no significant correlation between spectral modulation detection and speech understanding in quiet or in noise nor was spectral modulation detection significantly correlated with listener age or age at implantation. These findings suggest that pediatric CI recipients might not depend upon spectral resolution for speech understanding in the same manner as adult CI recipients. It is possible that pediatric CI users are making use of different cues, such as those contained within the temporal envelope, to achieve high levels of speech understanding. Further investigation is warranted to investigate the relationship between spectral and temporal resolution and speech recognition to describe the underlying mechanisms driving peripheral auditory processing in pediatric CI users.
Collapse
Affiliation(s)
- René H Gifford
- 1 Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.,2 Department of Otolaryngology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jack H Noble
- 1 Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.,2 Department of Otolaryngology, Vanderbilt University Medical Center, Nashville, TN, USA.,3 Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Stephen M Camarata
- 1 Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Linsey W Sunderhaus
- 1 Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Robert T Dwyer
- 1 Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Benoit M Dawant
- 2 Department of Otolaryngology, Vanderbilt University Medical Center, Nashville, TN, USA.,3 Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Mary S Dietrich
- 4 Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Robert F Labadie
- 2 Department of Otolaryngology, Vanderbilt University Medical Center, Nashville, TN, USA.,3 Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
22
|
Abstract
Autosomal recessive genetic forms (DFNB) account for most cases of profound congenital deafness. Adeno-associated virus (AAV)-based gene therapy is a promising therapeutic option, but is limited by a potentially short therapeutic window and the constrained packaging capacity of the vector. We focus here on the otoferlin gene underlying DFNB9, one of the most frequent genetic forms of congenital deafness. We adopted a dual AAV approach using two different recombinant vectors, one containing the 5' and the other the 3' portions of otoferlin cDNA, which exceed the packaging capacity of the AAV when combined. A single delivery of the vector pair into the mature cochlea of Otof -/- mutant mice reconstituted the otoferlin cDNA coding sequence through recombination of the 5' and 3' cDNAs, leading to the durable restoration of otoferlin expression in transduced cells and a reversal of the deafness phenotype, raising hopes for future gene therapy trials in DFNB9 patients.
Collapse
|
23
|
Speech Perception with Spectrally Non-overlapping Maskers as Measure of Spectral Resolution in Cochlear Implant Users. J Assoc Res Otolaryngol 2018; 20:151-167. [PMID: 30456730 DOI: 10.1007/s10162-018-00702-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 10/07/2018] [Indexed: 10/27/2022] Open
Abstract
Poor spectral resolution contributes to the difficulties experienced by cochlear implant (CI) users when listening to speech in noise. However, correlations between measures of spectral resolution and speech perception in noise have not always been found to be robust. It may be that the relationship between spectral resolution and speech perception in noise becomes clearer in conditions where the speech and noise are not spectrally matched, so that improved spectral resolution can assist in separating the speech from the masker. To test this prediction, speech intelligibility was measured with noise or tone maskers that were presented either in the same spectral channels as the speech or in interleaved spectral channels. Spectral resolution was estimated via a spectral ripple discrimination task. Results from vocoder simulations in normal-hearing listeners showed increasing differences in speech intelligibility between spectrally overlapped and interleaved maskers as well as improved spectral ripple discrimination with increasing spectral resolution. However, no clear differences were observed in CI users between performance with spectrally interleaved and overlapped maskers, or between tone and noise maskers. The results suggest that spectral resolution in current CIs is too poor to take advantage of the spectral separation produced by spectrally interleaved speech and maskers. Overall, the spectrally interleaved and tonal maskers produce a much larger difference in performance between normal-hearing listeners and CI users than do traditional speech-in-noise measures, and thus provide a more sensitive test of speech perception abilities for current and future implantable devices.
Collapse
|
24
|
Mathew R, Vickers D, Boyle P, Shaida A, Selvadurai D, Jiang D, Undurraga J. Development of electrophysiological and behavioural measures of electrode discrimination in adult cochlear implant users. Hear Res 2018; 367:74-87. [DOI: 10.1016/j.heares.2018.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 06/20/2018] [Accepted: 07/02/2018] [Indexed: 10/28/2022]
|
25
|
Abstract
OBJECTIVES Spectral resolution is a correlate of open-set speech understanding in postlingually deaf adults and prelingually deaf children who use cochlear implants (CIs). To apply measures of spectral resolution to assess device efficacy in younger CI users, it is necessary to understand how spectral resolution develops in normal-hearing children. In this study, spectral ripple discrimination (SRD) was used to measure listeners' sensitivity to a shift in phase of the spectral envelope of a broadband noise. Both resolution of peak to peak location (frequency resolution) and peak to trough intensity (across-channel intensity resolution) are required for SRD. DESIGN SRD was measured as the highest ripple density (in ripples per octave) for which a listener could discriminate a 90° shift in phase of the sinusoidally-modulated amplitude spectrum. A 2 × 3 between-subjects design was used to assess the effects of age (7-month-old infants versus adults) and ripple peak/trough "depth" (10, 13, and 20 dB) on SRD in normal-hearing listeners (experiment 1). In experiment 2, SRD thresholds in the same age groups were compared using a task in which ripple starting phases were randomized across trials to obscure within-channel intensity cues. In experiment 3, the randomized starting phase method was used to measure SRD as a function of age (3-month-old infants, 7-month-old infants, and young adults) and ripple depth (10 and 20 dB in repeated measures design). RESULTS In experiment 1, there was a significant interaction between age and ripple depth. The infant SRDs were significantly poorer than the adult SRDs at 10 and 13 dB ripple depths but adult-like at 20 dB depth. This result is consistent with immature across-channel intensity resolution. In contrast, the trajectory of SRD as a function of depth was steeper for infants than adults suggesting that frequency resolution was better in infants than adults. However, in experiment 2 infant performance was significantly poorer than adults at 20 dB depth suggesting that variability of infants' use of within-channel intensity cues, rather than better frequency resolution, explained the results of experiment 1. In experiment 3, age effects were seen with both groups of infants showing poorer SRD than adults but, unlike experiment 1, no significant interaction between age and depth was seen. CONCLUSIONS Measurement of SRD thresholds in individual 3 to 7-month-old infants is feasible. Performance of normal-hearing infants on SRD may be limited by across-channel intensity resolution despite mature frequency resolution. These findings have significant implications for design and stimulus choice for applying SRD for testing infants with CIs. The high degree of variability in infant SRD can be somewhat reduced by obscuring within-channel cues.
Collapse
Affiliation(s)
- David L Horn
- 1Virginia Merrill Bloedel Hearing Research Center, Department of Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, Washington, USA; 2Division of Otolaryngology, Seattle Children's Hospital, Seattle, Wahington, USA; and 3Department of Speech and Hearing Sciences, University of Washington, Seattle, Washington
| | | | | | | |
Collapse
|
26
|
Lai WK, Dillier N, Killian M. A Neural Excitability Based Coding Strategy for Cochlear Implants. ACTA ACUST UNITED AC 2018. [DOI: 10.4236/jbise.2018.117014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
Factors Affecting Outcomes in Cochlear Implant Recipients Implanted With a Perimodiolar Electrode Array Located in Scala Tympani. Otol Neurotol 2017; 37:1662-1668. [PMID: 27755365 DOI: 10.1097/mao.0000000000001241] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To identify primary biographic and audiologic factors contributing to cochlear implant (CI) performance variability in quiet and noise by controlling electrode array type and electrode position within the cochlea. BACKGROUND Although CI outcomes have improved over time, considerable outcome variability still exists. Biographic, audiologic, and device-related factors have been shown to influence performance. Examining CI recipients with consistent array type and electrode position may allow focused investigation into outcome variability resulting from biographic and audiologic factors. METHODS Thirty-nine adults (40 ears) implanted for at least 6 months with a perimodiolar electrode array known (via computed tomography [CT] imaging) to be in scala tympani participated. Test materials, administered CI only, included monosyllabic words, sentences in quiet and noise, and spectral ripple discrimination. RESULTS In quiet, scores were high with mean word and sentence scores of 76 and 87%, respectively; however, sentence scores decreased by an average of 35 percentage points when noise was added. A principal components (PC) analysis of biographic and audiologic factors found three distinct factors, PC1 Age, PC2 Duration, and PC3 Pre-op Hearing. PC1 Age was the only factor that correlated, albeit modestly, with speech recognition in quiet and noise. Spectral ripple discrimination strongly correlated with speech measures. CONCLUSION For these recipients with consistent electrode position, PC1 Age was related to speech recognition performance. Consistent electrode position may have contributed to high speech understanding in quiet. Inter-subject variability in noise may have been influenced by auditory/cognitive processing, known to decline with age, and mechanisms that underlie spectral resolution ability.
Collapse
|
28
|
Local gene therapy durably restores vestibular function in a mouse model of Usher syndrome type 1G. Proc Natl Acad Sci U S A 2017; 114:9695-9700. [PMID: 28835534 DOI: 10.1073/pnas.1708894114] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Our understanding of the mechanisms underlying inherited forms of inner ear deficits has considerably improved during the past 20 y, but we are still far from curative treatments. We investigated gene replacement as a strategy for restoring inner ear functions in a mouse model of Usher syndrome type 1G, characterized by congenital profound deafness and balance disorders. These mice lack the scaffold protein sans, which is involved both in the morphogenesis of the stereociliary bundle, the sensory antenna of inner ear hair cells, and in the mechanoelectrical transduction process. We show that a single delivery of the sans cDNA by the adenoassociated virus 8 to the inner ear of newborn mutant mice reestablishes the expression and targeting of the protein to the tips of stereocilia. The therapeutic gene restores the architecture and mechanosensitivity of stereociliary bundles, improves hearing thresholds, and durably rescues these mice from the balance defects. Our results open up new perspectives for efficient gene therapy of cochlear and vestibular disorders by showing that even severe dysmorphogenesis of stereociliary bundles can be corrected.
Collapse
|
29
|
He S, Teagle HFB, Buchman CA. The Electrically Evoked Compound Action Potential: From Laboratory to Clinic. Front Neurosci 2017; 11:339. [PMID: 28690494 PMCID: PMC5481377 DOI: 10.3389/fnins.2017.00339] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/30/2017] [Indexed: 11/13/2022] Open
Abstract
The electrically evoked compound action potential (eCAP) represents the synchronous firing of a population of electrically stimulated auditory nerve fibers. It can be directly recorded on a surgically exposed nerve trunk in animals or from an intra-cochlear electrode of a cochlear implant. In the past two decades, the eCAP has been widely recorded in both animals and clinical patient populations using different testing paradigms. This paper provides an overview of recording methodologies and response characteristics of the eCAP, as well as its potential applications in research and clinical situations. Relevant studies are reviewed and implications for clinicians are discussed.
Collapse
Affiliation(s)
- Shuman He
- Center for Hearing Research, Boys Town National Research HospitalOmaha, NE, United States
| | - Holly F. B. Teagle
- Department of Otolaryngology—Head and Neck Surgery, University of North Carolina at Chapel HillChapel Hill, NC, United States
| | - Craig A. Buchman
- Department of Otolaryngology—Head and Neck Surgery, Washington UniversitySt. Louis, MO, United States
| |
Collapse
|