1
|
Fung AL, Blakeman AW, Alemu RZ, Negandhi J, Cushing SL, Papsin BC, Gordon KA. Clinical programming can limit access to binaural cues in children with bilateral cochlear implants. Clin Neurophysiol 2025; 173:52-63. [PMID: 40085994 DOI: 10.1016/j.clinph.2025.02.271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 01/07/2025] [Accepted: 02/21/2025] [Indexed: 03/16/2025]
Abstract
OBJECTIVE In children with bilateral cochlear implants(CIs): 1) quantify cortical access and sensitivity to inter-aural level differences(ILDs); 2) determine if cortical ILD detection predicts ILD perception; and 3) assess demographic and clinical factors that could limit ILD access. METHODS Cortical detection responses evoked by ILD changes were measured in 22/24 children with bilateral CIs(7 female) using their clinically programmed devices and in 8 children(3 female) with normal hearing. Behavioral lateralization(left vs right perception) to ILDs was also measured. RESULTS Increased cortical sensitivity(amplitude) to ILD changes did not predict more accurate behavioral perception; rather children with CIs were able to lateralize ILDs with fair accuracy but with increased cognitive effort(reaction times) compared to normal hearing children (p = 0.0004, Cohen's d = 1.17). While demographic factors did not significantly contribute to response measures, symmetry of programmed levels in the left and right CIs predicted better cortical and behavioral sensitivity to ILDs (ps < 0.05). CONCLUSIONS the developing auditory system can detect ILD cues when provided with bilateral cochlear implants; however, this access can be altered by programming and may not translate to normal binaural processing. SIGNIFICANCE There is potential for clinical programming to improve spatial hearing in children with bilateral CIs.
Collapse
Affiliation(s)
- Angela L Fung
- Archie's Cochlear Implant Laboratory, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; Institute of Medical Science, The University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Alan W Blakeman
- Archie's Cochlear Implant Laboratory, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Robel Z Alemu
- Archie's Cochlear Implant Laboratory, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; Institute of Medical Science, The University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jaina Negandhi
- Archie's Cochlear Implant Laboratory, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Sharon L Cushing
- Archie's Cochlear Implant Laboratory, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; Institute of Medical Science, The University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Otolaryngology-Head & Neck Surgery, University of Toronto, Toronto, ON M5G 1X8, Canada; Department of Communication Disorders, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Blake C Papsin
- Archie's Cochlear Implant Laboratory, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; Institute of Medical Science, The University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Otolaryngology-Head & Neck Surgery, University of Toronto, Toronto, ON M5G 1X8, Canada; Department of Communication Disorders, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Karen A Gordon
- Archie's Cochlear Implant Laboratory, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; Institute of Medical Science, The University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Otolaryngology-Head & Neck Surgery, University of Toronto, Toronto, ON M5G 1X8, Canada; Department of Communication Disorders, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada.
| |
Collapse
|
2
|
Dennison SR, Thakkar T, Kan A, Svirsky MA, Azadpour M, Litovsky RY. A Mixed-Rate Strategy on a Bilaterally-Synchronized Cochlear Implant Processor Offering the Opportunity to Provide Both Speech Understanding and Interaural Time Difference Cues. J Clin Med 2024; 13:1917. [PMID: 38610682 PMCID: PMC11012985 DOI: 10.3390/jcm13071917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Background/Objective: Bilaterally implanted cochlear implant (CI) users do not consistently have access to interaural time differences (ITDs). ITDs are crucial for restoring the ability to localize sounds and understand speech in noisy environments. Lack of access to ITDs is partly due to lack of communication between clinical processors across the ears and partly because processors must use relatively high rates of stimulation to encode envelope information. Speech understanding is best at higher stimulation rates, but sensitivity to ITDs in the timing of pulses is best at low stimulation rates. Methods: We implemented a practical "mixed rate" strategy that encodes ITD information using a low stimulation rate on some channels and speech information using high rates on the remaining channels. The strategy was tested using a bilaterally synchronized research processor, the CCi-MOBILE. Nine bilaterally implanted CI users were tested on speech understanding and were asked to judge the location of a sound based on ITDs encoded using this strategy. Results: Performance was similar in both tasks between the control strategy and the new strategy. Conclusions: We discuss the benefits and drawbacks of the sound coding strategy and provide guidelines for utilizing synchronized processors for developing strategies.
Collapse
Affiliation(s)
| | - Tanvi Thakkar
- Department of Psychology, University of Wisconsin-La Crosse, La Crosse, WI 54601, USA;
| | - Alan Kan
- School of Engineering, Macquarie University, Sydney, NSW 2109, Australia;
| | - Mario A. Svirsky
- Department of Otolaryngology, New York University, New York, NY 10016, USA; (M.A.S.); (M.A.)
| | - Mahan Azadpour
- Department of Otolaryngology, New York University, New York, NY 10016, USA; (M.A.S.); (M.A.)
| | - Ruth Y. Litovsky
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53706, USA;
| |
Collapse
|
3
|
Anderson SR, Burg E, Suveg L, Litovsky RY. Review of Binaural Processing With Asymmetrical Hearing Outcomes in Patients With Bilateral Cochlear Implants. Trends Hear 2024; 28:23312165241229880. [PMID: 38545645 PMCID: PMC10976506 DOI: 10.1177/23312165241229880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 04/01/2024] Open
Abstract
Bilateral cochlear implants (BiCIs) result in several benefits, including improvements in speech understanding in noise and sound source localization. However, the benefit bilateral implants provide among recipients varies considerably across individuals. Here we consider one of the reasons for this variability: difference in hearing function between the two ears, that is, interaural asymmetry. Thus far, investigations of interaural asymmetry have been highly specialized within various research areas. The goal of this review is to integrate these studies in one place, motivating future research in the area of interaural asymmetry. We first consider bottom-up processing, where binaural cues are represented using excitation-inhibition of signals from the left ear and right ear, varying with the location of the sound in space, and represented by the lateral superior olive in the auditory brainstem. We then consider top-down processing via predictive coding, which assumes that perception stems from expectations based on context and prior sensory experience, represented by cascading series of cortical circuits. An internal, perceptual model is maintained and updated in light of incoming sensory input. Together, we hope that this amalgamation of physiological, behavioral, and modeling studies will help bridge gaps in the field of binaural hearing and promote a clearer understanding of the implications of interaural asymmetry for future research on optimal patient interventions.
Collapse
Affiliation(s)
- Sean R. Anderson
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical School, Aurora, CO, USA
| | - Emily Burg
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lukas Suveg
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Ruth Y. Litovsky
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, WI, USA
- Department of Surgery, Division of Otolaryngology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
4
|
Dennison SR, Thakkar T, Kan A, Litovsky RY. Lateralization of binaural envelope cues measured with a mobile cochlear-implant research processora). THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 153:3543-3558. [PMID: 37390320 PMCID: PMC10314808 DOI: 10.1121/10.0019879] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 06/09/2023] [Accepted: 06/09/2023] [Indexed: 07/02/2023]
Abstract
Bilateral cochlear implant (BICI) listeners do not have full access to the binaural cues that normal hearing (NH) listeners use for spatial hearing tasks such as localization. When using their unsynchronized everyday processors, BICI listeners demonstrate sensitivity to interaural level differences (ILDs) in the envelopes of sounds, but interaural time differences (ITDs) are less reliably available. It is unclear how BICI listeners use combinations of ILDs and envelope ITDs, and how much each cue contributes to perceived sound location. The CCi-MOBILE is a bilaterally synchronized research processor with the untested potential to provide spatial cues to BICI listeners. In the present study, the CCi-MOBILE was used to measure the ability of BICI listeners to perceive lateralized sound sources when single pairs of electrodes were presented amplitude-modulated stimuli with combinations of ILDs and envelope ITDs. Young NH listeners were also tested using amplitude-modulated high-frequency tones. A cue weighting analysis with six BICI and ten NH listeners revealed that ILDs contributed more than envelope ITDs to lateralization for both groups. Moreover, envelope ITDs contributed to lateralization for NH listeners but had negligible contribution for BICI listeners. These results suggest that the CCi-MOBILE is suitable for binaural testing and developing bilateral processing strategies.
Collapse
Affiliation(s)
| | - Tanvi Thakkar
- University of Wisconsin-La Crosse, La Crosse, Wisconsin 54601, USA
| | - Alan Kan
- Macquarie University, Macquarie Park, New South Wales, Australia
| | - Ruth Y Litovsky
- University of Wisconsin-Madison, Madison, Wisconsin 53711, USA
| |
Collapse
|
5
|
Thakkar T, Kan A, Litovsky RY. Lateralization of interaural time differences with mixed rates of stimulation in bilateral cochlear implant listeners. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 153:1912. [PMID: 37002065 PMCID: PMC10036141 DOI: 10.1121/10.0017603] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 05/18/2023]
Abstract
While listeners with bilateral cochlear implants (BiCIs) are able to access information in both ears, they still struggle to perform well on spatial hearing tasks when compared to normal hearing listeners. This performance gap could be attributed to the high stimulation rates used for speech representation in clinical processors. Prior work has shown that spatial cues, such as interaural time differences (ITDs), are best conveyed at low rates. Further, BiCI listeners are sensitive to ITDs with a mixture of high and low rates. However, it remains unclear whether mixed-rate stimuli are perceived as unitary percepts and spatially mapped to intracranial locations. Here, electrical pulse trains were presented on five, interaurally pitch-matched electrode pairs using research processors, at either uniformly high rates, low rates, or mixed rates. Eight post-lingually deafened adults were tested on perceived intracranial lateralization of ITDs ranging from 50 to 1600 μs. Extent of lateralization depended on the location of low-rate stimulation along the electrode array: greatest in the low- and mixed-rate configurations, and smallest in the high-rate configuration. All but one listener perceived a unitary auditory object. These findings suggest that a mixed-rate processing strategy can result in good lateralization and convey a unitary auditory object with ITDs.
Collapse
Affiliation(s)
- Tanvi Thakkar
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Alan Kan
- School of Engineering, Macquarie University, New South Wales 2109, Australia
| | - Ruth Y Litovsky
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| |
Collapse
|
6
|
Anderson SR, Gallun FJ, Litovsky RY. Interaural asymmetry of dynamic range: Abnormal fusion, bilateral interference, and shifts in attention. Front Neurosci 2023; 16:1018190. [PMID: 36699517 PMCID: PMC9869277 DOI: 10.3389/fnins.2022.1018190] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
Speech information in the better ear interferes with the poorer ear in patients with bilateral cochlear implants (BiCIs) who have large asymmetries in speech intelligibility between ears. The goal of the present study was to assess how each ear impacts, and whether one dominates, speech perception using simulated CI processing in older and younger normal-hearing (ONH and YNH) listeners. Dynamic range (DR) was manipulated symmetrically or asymmetrically across spectral bands in a vocoder. We hypothesized that if abnormal integration of speech information occurs with asymmetrical speech understanding, listeners would demonstrate an atypical preference in accuracy when reporting speech presented to the better ear and fusion of speech between the ears (i.e., an increased number of one-word responses when two words were presented). Results from three speech conditions showed that: (1) When the same word was presented to both ears, speech identification accuracy decreased if one or both ears decreased in DR, but listeners usually reported hearing one word. (2) When two words with different vowels were presented to both ears, speech identification accuracy and percentage of two-word responses decreased consistently as DR decreased in one or both ears. (3) When two rhyming words (e.g., bed and led) previously shown to phonologically fuse between ears (e.g., bled) were presented, listeners instead demonstrated interference as DR decreased. The word responded in (2) and (3) came from the right (symmetric) or better (asymmetric) ear, especially in (3) and for ONH listeners in (2). These results suggest that the ear with poorer dynamic range is downweighted by the auditory system, resulting in abnormal fusion and interference, especially for older listeners.
Collapse
Affiliation(s)
- Sean R. Anderson
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Frederick J. Gallun
- Department of Otolaryngology-Head and Neck Surgery, Oregon Health and Science University, Portland, OR, United States
| | - Ruth Y. Litovsky
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, WI, United States
- Department of Surgery, Division of Otolaryngology, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
7
|
Cleary M, Bernstein JGW, Stakhovskaya OA, Noble J, Kolberg E, Jensen KK, Hoa M, Kim HJ, Goupell MJ. The Relationship Between Interaural Insertion-Depth Differences, Scalar Location, and Interaural Time-Difference Processing in Adult Bilateral Cochlear-Implant Listeners. Trends Hear 2022; 26:23312165221129165. [PMID: 36379607 PMCID: PMC9669699 DOI: 10.1177/23312165221129165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Sensitivity to interaural time differences (ITDs) in acoustic hearing involves comparison of interaurally frequency-matched inputs. Bilateral cochlear-implant arrays are, however, only approximately aligned in angular insertion depth and scalar location across the cochleae. Interaural place-of-stimulation mismatch therefore has the potential to impact binaural perception. ITD left-right discrimination thresholds were examined in 23 postlingually-deafened adult bilateral cochlear-implant listeners, using low-rate constant-amplitude pulse trains presented via direct stimulation to single electrodes in each ear. Angular insertion depth and scalar location measured from computed-tomography (CT) scans were used to quantify interaural mismatch, and their association with binaural performance was assessed. Number-matched electrodes displayed a median interaural insertion-depth mismatch of 18° and generally yielded best or near-best ITD discrimination thresholds. Two listeners whose discrimination thresholds did not show this pattern were confirmed via CT to have atypical array placement. Listeners with more number-matched electrode pairs located in the scala tympani displayed better thresholds than listeners with fewer such pairs. ITD tuning curves as a function of interaural electrode separation were broad; bandwidths at twice the threshold minimum averaged 10.5 electrodes (equivalent to 5.9 mm for a Cochlear-brand pre-curved array). Larger angular insertion-depth differences were associated with wider bandwidths. Wide ITD tuning curve bandwidths appear to be a product of both monopolar stimulation and angular insertion-depth mismatch. Cases of good ITD sensitivity with very wide bandwidths suggest that precise matching of insertion depth is not critical for discrimination thresholds. Further prioritizing scala tympani location at implantation should, however, benefit ITD sensitivity.
Collapse
Affiliation(s)
- Miranda Cleary
- Department of Hearing and Speech Sciences, University of Maryland, College Park, MD, USA
| | - Joshua G. W. Bernstein
- National Military Audiology and Speech Pathology Center, Walter Reed National Military Medical
Center, Bethesda, MD, USA
| | - Olga A. Stakhovskaya
- Department of Hearing and Speech Sciences, University of Maryland, College Park, MD, USA
| | - Jack Noble
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA,Department of Hearing and Speech Sciences, Vanderbilt University
Medical Center, Nashville, TN, USA,Department of Otolaryngology, Vanderbilt University Medical Center,
Nashville, TN, USA
| | - Elizabeth Kolberg
- Department of Hearing and Speech Sciences, University of Maryland, College Park, MD, USA
| | - Kenneth K. Jensen
- National Military Audiology and Speech Pathology Center, Walter Reed National Military Medical
Center, Bethesda, MD, USA
| | - Michael Hoa
- Department of Otolaryngology-Head and Neck Surgery, Georgetown University Medical
Center, Washington, DC, USA
| | - Hung Jeffrey Kim
- Department of Otolaryngology-Head and Neck Surgery, Georgetown University Medical
Center, Washington, DC, USA
| | - Matthew J. Goupell
- Department of Hearing and Speech Sciences, University of Maryland, College Park, MD, USA,Matthew J. Goupell, Department of Hearing
and Speech Sciences, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
8
|
A Modelling Study on the Comparison of Predicted Auditory Nerve Firing Rates for the Personalized Indication of Cochlear Implantation. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12105168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The decision of whether to perform cochlear implantation is crucial because implantation cannot be reversed without harm. The aim of the study was to compare model-predicted time–place representations of auditory nerve (AN) firing rates for normal hearing and impaired hearing with a view towards personalized indication of cochlear implantation. AN firing rates of 1024 virtual subjects with a wide variety of different types and degrees of hearing impairment were predicted. A normal hearing reference was compared to four hearing prosthesis options, which were unaided hearing, sole acoustic amplification, sole electrical stimulation, and a combination of the latter two. The comparisons and the fitting of the prostheses were based on a ‘loss of action potentials’ (LAP) score. Single-parameter threshold analysis suggested that cochlear implantation is indicated when more than approximately two-thirds of the inner hair cells (IHCs) are damaged. Second, cochlear implantation is also indicated when more than an average of approximately 12 synapses per IHC are damaged due to cochlear synaptopathy (CS). Cochlear gain loss (CGL) appeared to shift these thresholds only slightly. Finally, a support vector machine predicted the indication of a cochlear implantation from hearing loss parameters with a 10-fold cross-validated accuracy of 99.2%.
Collapse
|
9
|
Hu H, Klug J, Dietz M. Simulation of ITD-Dependent Single-Neuron Responses Under Electrical Stimulation and with Amplitude-Modulated Acoustic Stimuli. J Assoc Res Otolaryngol 2022; 23:535-550. [PMID: 35334001 PMCID: PMC9437183 DOI: 10.1007/s10162-021-00823-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 11/03/2021] [Indexed: 11/30/2022] Open
Abstract
Interaural time difference (ITD) sensitivity with cochlear implant stimulation is remarkably similar to envelope ITD sensitivity using conventional acoustic stimulation. This holds true for human perception, as well as for neural response rates recorded in the inferior colliculus of several mammalian species. We hypothesize that robust excitatory-inhibitory (EI) interaction is the dominant mechanism. Therefore, we connected the same single EI-model neuron to either a model of the normal acoustic auditory periphery or to a model of the electrically stimulated auditory nerve. The model captured most features of the experimentally obtained response properties with electric stimulation, such as the shape of rate-ITD functions, the dependence on stimulation level, and the pulse rate or modulation-frequency dependence. Rate-ITD functions with high-rate, amplitude-modulated electric stimuli were very similar to their acoustic counterparts. Responses obtained with unmodulated electric pulse trains most resembled acoustic filtered clicks. The fairly rapid decline of ITD sensitivity at rates above 300 pulses or cycles per second is correctly simulated by the 3.1-ms time constant of the inhibitory post-synaptic conductance. As the model accounts for these basic properties, it is expected to help in understanding and quantifying the binaural hearing abilities with electric stimulation when integrated in bigger simulation frameworks.
Collapse
Affiliation(s)
- Hongmei Hu
- Department of Medical Physics and Acoustics and Cluster of Excellence "Hearing4all", University of Oldenburg, 26129, Oldenburg, Germany.
| | - Jonas Klug
- Department of Medical Physics and Acoustics and Cluster of Excellence "Hearing4all", University of Oldenburg, 26129, Oldenburg, Germany
| | - Mathias Dietz
- Department of Medical Physics and Acoustics and Cluster of Excellence "Hearing4all", University of Oldenburg, 26129, Oldenburg, Germany
| |
Collapse
|
10
|
Anderson SR, Jocewicz R, Kan A, Zhu J, Tzeng S, Litovsky RY. Sound source localization patterns and bilateral cochlear implants: Age at onset of deafness effects. PLoS One 2022; 17:e0263516. [PMID: 35134072 PMCID: PMC8824335 DOI: 10.1371/journal.pone.0263516] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 01/20/2022] [Indexed: 11/24/2022] Open
Abstract
The ability to determine a sound’s location is critical in everyday life. However, sound source localization is severely compromised for patients with hearing loss who receive bilateral cochlear implants (BiCIs). Several patient factors relate to poorer performance in listeners with BiCIs, associated with auditory deprivation, experience, and age. Critically, characteristic errors are made by patients with BiCIs (e.g., medial responses at lateral target locations), and the relationship between patient factors and the type of errors made by patients has seldom been investigated across individuals. In the present study, several different types of analysis were used to understand localization errors and their relationship with patient-dependent factors (selected based on their robustness of prediction). Binaural hearing experience is required for developing accurate localization skills, auditory deprivation is associated with degradation of the auditory periphery, and aging leads to poorer temporal resolution. Therefore, it was hypothesized that earlier onsets of deafness would be associated with poorer localization acuity and longer periods without BiCI stimulation or older age would lead to greater amounts of variability in localization responses. A novel machine learning approach was introduced to characterize the types of errors made by listeners with BiCIs, making them simple to interpret and generalizable to everyday experience. Sound localization performance was measured in 48 listeners with BiCIs using pink noise trains presented in free-field. Our results suggest that older age at testing and earlier onset of deafness are associated with greater average error, particularly for sound sources near the center of the head, consistent with previous research. The machine learning analysis revealed that variability of localization responses tended to be greater for individuals with earlier compared to later onsets of deafness. These results suggest that early bilateral hearing is essential for best sound source localization outcomes in listeners with BiCIs.
Collapse
Affiliation(s)
- Sean R. Anderson
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| | - Rachael Jocewicz
- Department of Audiology, Stanford University, Stanford, California, United States of America
| | - Alan Kan
- School of Engineering, Macquarie University, New South Wales, Australia
| | - Jun Zhu
- Department of Statistics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - ShengLi Tzeng
- Department of Mathematics, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Ruth Y. Litovsky
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
11
|
Pieper SH, Hamze N, Brill S, Hochmuth S, Exter M, Polak M, Radeloff A, Buschermöhle M, Dietz M. Considerations for Fitting Cochlear Implants Bimodally and to the Single-Sided Deaf. Trends Hear 2022; 26:23312165221108259. [PMID: 35726211 PMCID: PMC9218456 DOI: 10.1177/23312165221108259] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/28/2022] [Accepted: 05/02/2022] [Indexed: 11/16/2022] Open
Abstract
When listening with a cochlear implant through one ear and acoustically through the other, binaural benefits and spatial hearing abilities are generally poorer than in other bilaterally stimulated configurations. With the working hypothesis that binaural neurons require interaurally matched inputs, we review causes for mismatch, their perceptual consequences, and experimental methods for mismatch measurements. The focus is on the three primary interaural dimensions of latency, frequency, and level. Often, the mismatch is not constant, but rather highly stimulus-dependent. We report on mismatch compensation strategies, taking into consideration the specific needs of the respective patient groups. Practical challenges typically faced by audiologists in the proposed fitting procedure are discussed. While improvement in certain areas (e.g., speaker localization) is definitely achievable, a more comprehensive mismatch compensation is a very ambitious endeavor. Even in the hypothetical ideal fitting case, performance is not expected to exceed that of a good bilateral cochlear implant user.
Collapse
Affiliation(s)
- Sabrina H. Pieper
- Department of Medical Physics and Acoustic, University of Oldenburg, Oldenburg, Germany
- Cluster of Excellence Hearing4all, University of Oldenburg, Oldenburg, Germany
| | - Noura Hamze
- MED-EL Medical Electronics GmbH, Innsbruck, Austria
| | - Stefan Brill
- MED-EL Medical Electronics Germany GmbH, Starnberg, Germany
| | - Sabine Hochmuth
- Division of Otorhinolaryngology, University of Oldenburg, Oldenburg, Germany
| | - Mats Exter
- Cluster of Excellence Hearing4all, University of Oldenburg, Oldenburg, Germany
- Hörzentrum Oldenburg gGmbH, Oldenburg, Germany
| | - Marek Polak
- MED-EL Medical Electronics GmbH, Innsbruck, Austria
| | - Andreas Radeloff
- Cluster of Excellence Hearing4all, University of Oldenburg, Oldenburg, Germany
- Division of Otorhinolaryngology, University of Oldenburg, Oldenburg, Germany
- Research Center Neurosensory Science, University of Oldenburg, Oldenburg, Germany
| | | | - Mathias Dietz
- Department of Medical Physics and Acoustic, University of Oldenburg, Oldenburg, Germany
- Cluster of Excellence Hearing4all, University of Oldenburg, Oldenburg, Germany
- Research Center Neurosensory Science, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
12
|
Fischer T, Schmid C, Kompis M, Mantokoudis G, Caversaccio M, Wimmer W. Effects of temporal fine structure preservation on spatial hearing in bilateral cochlear implant users. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2021; 150:673. [PMID: 34470279 DOI: 10.1121/10.0005732] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
Typically, the coding strategies of cochlear implant audio processors discard acoustic temporal fine structure information (TFS), which may be related to the poor perception of interaural time differences (ITDs) and the resulting reduced spatial hearing capabilities compared to normal-hearing individuals. This study aimed to investigate to what extent bilateral cochlear implant (BiCI) recipients can exploit ITD cues provided by a TFS preserving coding strategy (FS4) in a series of sound field spatial hearing tests. As a baseline, we assessed the sensitivity to ITDs and binaural beats of 12 BiCI subjects with a coding strategy disregarding fine structure (HDCIS) and the FS4 strategy. For 250 Hz pure-tone stimuli but not for broadband noise, the BiCI users had significantly improved ITD discrimination using the FS4 strategy. In the binaural beat detection task and the broadband sound localization, spatial discrimination, and tracking tasks, no significant differences between the two tested coding strategies were observed. These results suggest that ITD sensitivity did not generalize to broadband stimuli or sound field spatial hearing tests, suggesting that it would not be useful for real-world listening.
Collapse
Affiliation(s)
- T Fischer
- Department of ENT, Head and Neck Surgery, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse, 3010 Bern, Switzerland
| | - C Schmid
- Department of ENT, Head and Neck Surgery, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse, 3010 Bern, Switzerland
| | - M Kompis
- Department of ENT, Head and Neck Surgery, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse, 3010 Bern, Switzerland
| | - G Mantokoudis
- Department of ENT, Head and Neck Surgery, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse, 3010 Bern, Switzerland
| | - M Caversaccio
- Department of ENT, Head and Neck Surgery, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse, 3010 Bern, Switzerland
| | - W Wimmer
- Department of ENT, Head and Neck Surgery, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse, 3010 Bern, Switzerland
| |
Collapse
|
13
|
Yun D, Jennings TR, Kidd G, Goupell MJ. Benefits of triple acoustic beamforming during speech-on-speech masking and sound localization for bilateral cochlear-implant users. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2021; 149:3052. [PMID: 34241104 PMCID: PMC8102069 DOI: 10.1121/10.0003933] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 03/03/2021] [Accepted: 03/06/2021] [Indexed: 05/30/2023]
Abstract
Bilateral cochlear-implant (CI) users struggle to understand speech in noisy environments despite receiving some spatial-hearing benefits. One potential solution is to provide acoustic beamforming. A headphone-based experiment was conducted to compare speech understanding under natural CI listening conditions and for two non-adaptive beamformers, one single beam and one binaural, called "triple beam," which provides an improved signal-to-noise ratio (beamforming benefit) and usable spatial cues by reintroducing interaural level differences. Speech reception thresholds (SRTs) for speech-on-speech masking were measured with target speech presented in front and two maskers in co-located or narrow/wide separations. Numerosity judgments and sound-localization performance also were measured. Natural spatial cues, single-beam, and triple-beam conditions were compared. For CI listeners, there was a negligible change in SRTs when comparing co-located to separated maskers for natural listening conditions. In contrast, there were 4.9- and 16.9-dB improvements in SRTs for the beamformer and 3.5- and 12.3-dB improvements for triple beam (narrow and wide separations). Similar results were found for normal-hearing listeners presented with vocoded stimuli. Single beam improved speech-on-speech masking performance but yielded poor sound localization. Triple beam improved speech-on-speech masking performance, albeit less than the single beam, and sound localization. Thus, triple beam was the most versatile across multiple spatial-hearing domains.
Collapse
Affiliation(s)
- David Yun
- Department of Hearing and Speech Sciences, University of Maryland, College Park, Maryland 20742, USA
| | - Todd R Jennings
- Department of Speech, Language, and Hearing Sciences, Boston University, Boston, Massachusetts 02215, USA
| | - Gerald Kidd
- Department of Speech, Language, and Hearing Sciences, Boston University, Boston, Massachusetts 02215, USA
| | - Matthew J Goupell
- Department of Hearing and Speech Sciences, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
14
|
Dieudonné B, Van Wilderode M, Francart T. Temporal quantization deteriorates the discrimination of interaural time differences. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2020; 148:815. [PMID: 32873012 DOI: 10.1121/10.0001759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 07/24/2020] [Indexed: 06/11/2023]
Abstract
Cochlear implants (CIs) often replace acoustic temporal fine structure by a fixed-rate pulse train. If the pulse timing is arbitrary (that is, not based on the phase information of the acoustic signal), temporal information is quantized by the pulse period. This temporal quantization is probably imperceptible with current clinical devices. However, it could result in large temporal jitter for strategies that aim to improve bilateral and bimodal CI users' perception of interaural time differences (ITDs), such as envelope enhancement. In an experiment with 16 normal-hearing listeners, it is shown that such jitter could deteriorate ITD perception for temporal quantization that corresponds to the often-used stimulation rate of 900 pulses per second (pps): the just-noticeable difference in ITD with quantization was 177 μs as compared to 129 μs without quantization. For smaller quantization step sizes, no significant deterioration of ITD perception was found. In conclusion, the binaural system can only average out the effect of temporal quantization to some extent, such that pulse timing should be well-considered. As this psychophysical procedure was somewhat unconventional, different procedural parameters were compared by simulating a number of commonly used two-down one-up adaptive procedures in Appendix B.
Collapse
Affiliation(s)
- Benjamin Dieudonné
- Experimental Oto-rhino-laryngology, Department of Neurosciences, Katholieke Universiteit (KU) Leuven-University of Leuven, Herestraat 49 bus 721, Leuven, 3000, Belgium
| | - Mira Van Wilderode
- Experimental Oto-rhino-laryngology, Department of Neurosciences, Katholieke Universiteit (KU) Leuven-University of Leuven, Herestraat 49 bus 721, Leuven, 3000, Belgium
| | - Tom Francart
- Experimental Oto-rhino-laryngology, Department of Neurosciences, Katholieke Universiteit (KU) Leuven-University of Leuven, Herestraat 49 bus 721, Leuven, 3000, Belgium
| |
Collapse
|
15
|
Thakkar T, Anderson SR, Kan A, Litovsky RY. Evaluating the Impact of Age, Acoustic Exposure, and Electrical Stimulation on Binaural Sensitivity in Adult Bilateral Cochlear Implant Patients. Brain Sci 2020; 10:E406. [PMID: 32604860 PMCID: PMC7348899 DOI: 10.3390/brainsci10060406] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/15/2020] [Accepted: 06/19/2020] [Indexed: 01/10/2023] Open
Abstract
Deafness in both ears is highly disruptive to communication in everyday listening situations. Many individuals with profound deafness receive bilateral cochlear implants (CIs) to gain access to spatial cues used in localization and speech understanding in noise. However, the benefit of bilateral CIs, in particular sensitivity to interaural time and level differences (ITD and ILDs), varies among patients. We measured binaural sensitivity in 46 adult bilateral CI patients to explore the relationship between binaural sensitivity and three classes of patient-related factors: age, acoustic exposure, and electric hearing experience. Results show that ILD sensitivity increased with shorter years of acoustic exposure, younger age at testing, or an interaction between these factors, moderated by the duration of bilateral hearing impairment. ITD sensitivity was impacted by a moderating effect between years of bilateral hearing impairment and CI experience. When age at onset of deafness was treated as two categories (<18 vs. >18 years of age), there was no clear effect for ILD sensitivity, but some differences were observed for ITD sensitivity. Our findings imply that maximal binaural sensitivity is obtained by listeners with a shorter bilateral hearing impairment, a longer duration of CI experience, and potentially a younger age at testing. 198/200.
Collapse
Affiliation(s)
- Tanvi Thakkar
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; (T.T.); (S.R.A.)
| | - Sean R. Anderson
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; (T.T.); (S.R.A.)
| | - Alan Kan
- School of Engineering, Macquarie University, Sydney, NSW 2109, Australia;
| | - Ruth Y. Litovsky
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; (T.T.); (S.R.A.)
| |
Collapse
|
16
|
Anderson SR, Easter K, Goupell MJ. Effects of rate and age in processing interaural time and level differences in normal-hearing and bilateral cochlear-implant listeners. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:3232. [PMID: 31795662 PMCID: PMC6948219 DOI: 10.1121/1.5130384] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 09/27/2019] [Accepted: 10/02/2019] [Indexed: 05/25/2023]
Abstract
Bilateral cochlear implants (BICIs) provide improved sound localization and speech understanding in noise compared to unilateral CIs. However, normal-hearing (NH) listeners demonstrate superior binaural processing abilities compared to BICI listeners. This investigation sought to understand differences between NH and BICI listeners' processing of interaural time differences (ITDs) and interaural level differences (ILDs) as a function of fine-structure and envelope rate using an intracranial lateralization task. The NH listeners were presented band-limited acoustical pulse trains and sinusoidally amplitude-modulated tones using headphones, and the BICI listeners were presented single-electrode electrical pulse trains using direct stimulation. Lateralization range increased as fine-structure rate increased for ILDs in BICI listeners. Lateralization range decreased for rates above 100 Hz for fine-structure ITDs, but decreased for rates lower or higher than 100 Hz for envelope ITDs in both groups. Lateralization ranges for ITDs were smaller for BICI listeners on average. After controlling for age, older listeners showed smaller lateralization ranges and BICI listeners had a more rapid decline for ITD sensitivity at 300 pulses per second. This work suggests that age confounds comparisons between NH and BICI listeners in temporal processing tasks and that some NH-BICI binaural processing differences persist even when age differences are adequately addressed.
Collapse
Affiliation(s)
- Sean R Anderson
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Kyle Easter
- Department of Hearing and Speech Sciences, University of Maryland, College Park, Maryland 20742, USA
| | - Matthew J Goupell
- Department of Hearing and Speech Sciences, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
17
|
Wijetillake AA, van Hoesel RJM, Cowan R. Sequential stream segregation with bilateral cochlear implants. Hear Res 2019; 383:107812. [PMID: 31630083 DOI: 10.1016/j.heares.2019.107812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 10/05/2019] [Accepted: 10/07/2019] [Indexed: 11/18/2022]
Abstract
Sequential stream segregation on the basis of binaural 'ear-of-entry', modulation rate and electrode place-of-stimulation cues was investigated in bilateral cochlear implant (CI) listeners using a rhythm anisochrony detection task. Sequences of alternating 'A' and 'B' bursts were presented via direct electrical stimulation and comprised either an isochronous timing structure or an anisochronous structure that was generated by delaying just the 'B' bursts. 'B' delay thresholds that enabled rhythm anisochrony detection were determined. Higher thresholds were assumed to indicate a greater likelihood of stream segregation, resulting specifically from stream integration breakdown. Results averaged across subjects showed that thresholds were significantly higher when monaural 'A' and 'B' bursts were presented contralaterally rather than ipsilaterally, and that diotic presentation of 'A', with a monaural 'B', yielded intermediate thresholds. When presented monaurally and ipsilaterally, higher thresholds were also found when successive bursts had mismatched rather than matched modulation rates. In agreement with previous studies, average delay thresholds also increased as electrode separation between bursts increased when presented ipsilaterally. No interactions were found between ear-of-entry, modulation rate and place-of-stimulation. However, combining moderate electrode difference cues with either diotic-'A' ear-of-entry cues or modulation-rate mismatch cues did yield greater threshold increases than observed with any of those cues alone. The results from the present study indicate that sequential stream segregation can be elicited in bilateral CI users by differences in the signal across ears (binaural cues), in modulation rate (monaural cues) and in place-of-stimulation (monaural cues), and that those differences can be combined to further increase segregation.
Collapse
Affiliation(s)
| | | | - Robert Cowan
- The Hearing CRC, 550 Swanston St, Carlton, 3053, Victoria, Australia.
| |
Collapse
|
18
|
Bennett EE, Litovsky RY. Sound Localization in Toddlers with Normal Hearing and with Bilateral Cochlear Implants Revealed Through a Novel "Reaching for Sound" Task. J Am Acad Audiol 2019; 31:195-208. [PMID: 31429402 DOI: 10.3766/jaaa.18092] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Spatial hearing abilities in children with bilateral cochlear implants (BiCIs) are typically improved when two implants are used compared with a single implant. However, even with BiCIs, spatial hearing is still worse compared to normal-hearing (NH) age-matched children. Here, we focused on children who were younger than three years, hence in their toddler years. Prior research with this age focused on measuring discrimination of sounds from the right versus left. PURPOSE This study measured both discrimination and sound location identification in a nine-alternative forced-choice paradigm using the "reaching for sound" method, whereby children reached for sounding objects as a means of capturing their spatial hearing abilities. RESEARCH DESIGN Discrimination was measured with sounds randomly presented to the left versus right, and loudspeakers at fixed angles ranging from ±60° to ±15°. On a separate task, sound location identification was measured for locations ranging from ±60° in 15° increments. STUDY SAMPLE Thirteen children with BiCIs (27-42 months old) and fifteen age-matched (NH). DATA COLLECTION AND ANALYSIS Discrimination and sound localization were completed for all subjects. For the left-right discrimination task, participants were required to reach a criterion of 4/5 correct trials (80%) at each angular separation prior to beginning the localization task. For sound localization, data was analyzed in two ways. First, percent correct scores were tallied for each participant. Second, for each participant, the root-mean-square-error was calculated to determine the average distance between the response and stimulus, indicative of localization accuracy. RESULTS All BiCI users were able to discriminate left versus right at angles as small as ±15° when listening with two implants; however, performance was significantly worse when listening with a single implant. All NH toddlers also had >80% correct at ±15°. Sound localization results revealed root-mean-square errors averaging 11.15° in NH toddlers. Children in the BiCI group were generally unable to identify source location on this complex task (average error 37.03°). CONCLUSIONS Although some toddlers with BiCIs are able to localize sound in a manner consistent with NH toddlers, for the majority of toddlers with BiCIs, sound localization abilities are still emerging.
Collapse
Affiliation(s)
- Erica E Bennett
- Henry Ford Health System, Detroit, MI.,Waisman Center, University of Wisconsin-Madison, Madison, WI
| | - Ruth Y Litovsky
- Waisman Center, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
19
|
Kan A, Goupell MJ, Litovsky RY. Effect of channel separation and interaural mismatch on fusion and lateralization in normal-hearing and cochlear-implant listeners. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:1448. [PMID: 31472555 PMCID: PMC6713556 DOI: 10.1121/1.5123464] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 08/05/2019] [Accepted: 08/05/2019] [Indexed: 05/29/2023]
Abstract
Bilateral cochlear implantation has provided access to some of the benefits of binaural hearing enjoyed by normal-hearing (NH) listeners. However, a gap in performance still exists between the two populations. Single-channel stimulation studies have shown that interaural place-of-stimulation mismatch (IPM) due to differences in implantation depth leads to decreased binaural fusion and lateralization of interaural time and level differences (ITDs and ILDs, respectively). While single-channel studies are informative, multi-channel stimulation is needed for good speech understanding with cochlear implants (CIs). Some multi-channel studies have shown that channel interaction due to current spread can affect ITD sensitivity. In this work, we studied the effect of IPM and channel spacing, along with their potential interaction, on binaural fusion and ITD/ILD lateralization. Experiments were conducted in adult NH listeners and CI listeners with a history of acoustic hearing. Results showed that IPM reduced the range of lateralization for ITDs but not ILDs. CI listeners were more likely to report a fused percept in the presence of IPM with multi-channel stimulation than NH listeners. However, no effect of channel spacing was found. These results suggest that IPM should be accounted for in clinical mapping practices in order to maximize bilateral CI benefits.
Collapse
Affiliation(s)
- Alan Kan
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Avenue, Madison, Wisconsin 53705, USA
| | - Matthew J Goupell
- Department of Hearing and Speech Sciences, University of Maryland, College Park, Maryland 20742, USA
| | - Ruth Y Litovsky
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Avenue, Madison, Wisconsin 53705, USA
| |
Collapse
|
20
|
van Ginkel C, Gifford RH, Stecker GC. Binaural interference with simulated electric acoustic stimulation. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 145:2445. [PMID: 31046315 PMCID: PMC6491346 DOI: 10.1121/1.5098784] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/26/2019] [Accepted: 04/02/2019] [Indexed: 06/09/2023]
Abstract
Preserved low-frequency acoustic hearing in cochlear implant (CI) recipients affords combined electric-acoustic stimulation (EAS) that could improve access to low-frequency acoustic binaural cues and enhance spatial hearing. Such benefits, however, could be undermined by interactions between electrical and acoustical inputs to adjacent (spectral overlap) or distant (binaural interference) cochlear places in EAS. This study simulated EAS in normal-hearing listeners, measuring interaural time difference (ITD) and interaural level difference (ILD) discrimination thresholds for a low-frequency noise (simulated acoustic target) in the presence or absence of a pulsatile high-frequency complex presented monotically or diotically (simulated unilateral or bilateral electric distractor). Unilateral distractors impaired thresholds for both cue types, suggesting influences of both binaural interference (which appeared more consistently for ITD than ILD) and physical spectral overlap (for both cue types). Reducing spectral overlap with an EAS gap between 1 and 3 kHz consistently improved binaural sensitivity. Finally, listeners displayed significantly lower thresholds with simulated bilateral versus unilateral electric stimulation. The combined effects revealed similar or better thresholds in bilateral full spectral overlap than in unilateral EAS gap conditions, suggesting that bilateral implantation with bilateral acoustic hearing preservation could allow for higher tolerance of spectral overlap in CI users and improved binaural sensitivity over unilateral EAS.
Collapse
Affiliation(s)
- Chantal van Ginkel
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, 1975 Willow Drive, Madison, Wisconsin 53705, USA
| | - René H Gifford
- Department of Hearing and Speech Sciences, Vanderbilt University School of Medicine, 1215 21st Avenue South, Nashville, Tennessee 37232, USA
| | - G Christopher Stecker
- Department of Hearing and Speech Sciences, Vanderbilt University School of Medicine, 1215 21st Avenue South, Nashville, Tennessee 37232, USA
| |
Collapse
|
21
|
Williges B, Jürgens T, Hu H, Dietz M. Coherent Coding of Enhanced Interaural Cues Improves Sound Localization in Noise With Bilateral Cochlear Implants. Trends Hear 2019; 22:2331216518781746. [PMID: 29956589 PMCID: PMC6048749 DOI: 10.1177/2331216518781746] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Bilateral cochlear implant (BCI) users only have very limited spatial hearing
abilities. Speech coding strategies transmit interaural level differences (ILDs)
but in a distorted manner. Interaural time difference (ITD) information
transmission is even more limited. With these cues, most BCI users can coarsely
localize a single source in quiet, but performance quickly declines in the
presence of other sound. This proof-of-concept study presents a novel signal
processing algorithm specific for BCIs, with the aim to improve sound
localization in noise. The core part of the BCI algorithm duplicates a
monophonic electrode pulse pattern and applies quasistationary natural or
artificial ITDs or ILDs based on the estimated direction of the dominant source.
Three experiments were conducted to evaluate different algorithm variants:
Experiment 1 tested if ITD transmission alone enables BCI subjects to lateralize
speech. Results showed that six out of nine BCI subjects were able to lateralize
intelligible speech in quiet solely based on ITDs. Experiments 2 and 3 assessed
azimuthal angle discrimination in noise with natural or modified ILDs and ITDs.
Angle discrimination for frontal locations was possible with all variants,
including the pure ITD case, but for lateral reference angles, it was only
possible with a linearized ILD mapping. Speech intelligibility in noise,
limitations, and challenges of this interaural cue transmission approach are
discussed alongside suggestions for modifying and further improving the BCI
algorithm.
Collapse
Affiliation(s)
- Ben Williges
- 1 Medizinische Physik and Cluster of Excellence "Hearing4all," Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Tim Jürgens
- 1 Medizinische Physik and Cluster of Excellence "Hearing4all," Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany.,2 Institute of Acoustics, University of Applied Sciences Lübeck, Lübeck, Germany
| | - Hongmei Hu
- 1 Medizinische Physik and Cluster of Excellence "Hearing4all," Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Mathias Dietz
- 1 Medizinische Physik and Cluster of Excellence "Hearing4all," Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany.,3 National Centre for Audiology, School of Communication Sciences and Disorders, Western University, London, Ontario, Canada
| |
Collapse
|
22
|
Interaural Time Difference Perception with a Cochlear Implant and a Normal Ear. J Assoc Res Otolaryngol 2018; 19:703-715. [PMID: 30264229 DOI: 10.1007/s10162-018-00697-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 09/04/2018] [Indexed: 01/16/2023] Open
Abstract
Currently there is a growing population of cochlear-implant (CI) users with (near) normal hearing in the non-implanted ear. This configuration is often called SSD (single-sided deafness) CI. The goal of the CI is often to improve spatial perception, so the question raises to what extent SSD CI listeners are sensitive to interaural time differences (ITDs). In a controlled lab setup, sensitivity to ITDs was investigated in 11 SSD CI listeners. The stimuli were 100-pps pulse trains on the CI side and band-limited click trains on the acoustic side. After determining level balance and the delay needed to achieve synchronous stimulation of the two ears, the just noticeable difference in ITD was measured using an adaptive procedure. Seven out of 11 listeners were sensitive to ITDs, with a median just noticeable difference of 438 μs. Out of the four listeners who were not sensitive to ITD, one listener reported binaural fusion, and three listeners reported no binaural fusion. To enable ITD sensitivity, a frequency-dependent delay of the electrical stimulus was required to synchronize the electric and acoustic signals at the level of the auditory nerve. Using subjective fusion measures and refined by ITD sensitivity, it was possible to match a CI electrode to an acoustic frequency range. This shows the feasibility of these measures for the allocation of acoustic frequency ranges to electrodes when fitting a CI to a subject with (near) normal hearing in the contralateral ear.
Collapse
|
23
|
Hu H, Dietz M, Williges B, Ewert SD. Better-ear glimpsing with symmetrically-placed interferers in bilateral cochlear implant users. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2018; 143:2128. [PMID: 29716260 DOI: 10.1121/1.5030918] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
For a frontal target in spatially symmetrically placed interferers, normal hearing (NH) listeners can use "better-ear glimpsing" to select time-frequency segments with favorable signal-to-noise ratio in either ear. With an ideal monaural better-ear mask (IMBM) processing, some studies showed that NH listeners can reach similar performance as in the natural binaural listening condition, although interaural phase differences at low frequencies can further improve performance. In principle, bilateral cochlear implant (BiCI) listeners could use the same better-ear glimpsing, albeit without exploiting interaural phase differences. Speech reception thresholds of NH and BiCI listeners were measured in three interferers (speech-shaped stationary noise, nonsense speech, or single talker) either co-located with the target, symmetrically placed at ±60°, or independently presented to each ear, with and without IMBM processing. Furthermore, a bilateral noise vocoder based on the BiCI electrodogram was used in the same NH listeners. Headphone presentation and direct stimulation with head-related transfer functions for spatialization were used in NH and BiCI listeners, respectively. Compared to NH listeners, both NH listeners with vocoder and BiCI listeners showed strongly reduced binaural benefit from spatial separation. However, both groups greatly benefited from IMBM processing as part of the stimulation strategy.
Collapse
Affiliation(s)
- Hongmei Hu
- Medizinische Physik, Carl von Ossietzky Universität Oldenburg and Cluster of Excellence "Hearing4all," Küpkersweg 74, 26129, Oldenburg, Germany
| | - Mathias Dietz
- Medizinische Physik, Carl von Ossietzky Universität Oldenburg and Cluster of Excellence "Hearing4all," Küpkersweg 74, 26129, Oldenburg, Germany
| | - Ben Williges
- Medizinische Physik, Carl von Ossietzky Universität Oldenburg and Cluster of Excellence "Hearing4all," Küpkersweg 74, 26129, Oldenburg, Germany
| | - Stephan D Ewert
- Medizinische Physik, Carl von Ossietzky Universität Oldenburg and Cluster of Excellence "Hearing4all," Küpkersweg 74, 26129, Oldenburg, Germany
| |
Collapse
|
24
|
Corrective binaural processing for bilateral cochlear implant patients. PLoS One 2018; 13:e0187965. [PMID: 29351279 PMCID: PMC5774684 DOI: 10.1371/journal.pone.0187965] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 10/30/2017] [Indexed: 11/19/2022] Open
Abstract
Although bilateral cochlear implant users receive input to both ears, they nonetheless have relatively poor localization abilities in the horizontal plane. This is likely because of the two binaural cues, they have good sensitivity to interaural differences of level (inter-aural level differences, or ILDs), but not those of time (inter-aural time differences; ITDs). Here, localization performance is assessed in six bilateral cochlear implant patients when instantaneous ITDs are measured and converted to ILDs, a strategy that results in larger-than-typical ILDs. The added ILDs are corrective, in that they are derived from individual listener performance across both frequency and azimuth, so that they are small where a listener performs well, and increase as performance deviates from ideal. Results show significantly improved localization performance as a result of this strategy, with two of the six listeners achieving levels of performance typically observed in NH listeners.
Collapse
|
25
|
Ehlers E, Goupell MJ, Zheng Y, Godar SP, Litovsky RY. Binaural sensitivity in children who use bilateral cochlear implants. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2017; 141:4264. [PMID: 28618809 PMCID: PMC5464955 DOI: 10.1121/1.4983824] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 05/04/2017] [Accepted: 05/08/2017] [Indexed: 05/29/2023]
Abstract
Children who are deaf and receive bilateral cochlear implants (BiCIs) perform better on spatial hearing tasks using bilateral rather than unilateral inputs; however, they underperform relative to normal-hearing (NH) peers. This gap in performance is multi-factorial, including the inability of speech processors to reliably deliver binaural cues. Although much is known regarding binaural sensitivity of adults with BiCIs, less is known about how the development of binaural sensitivity in children with BiCIs compared to NH children. Sixteen children (ages 9-17 years) were tested using synchronized research processors. Interaural time differences and interaural level differences (ITDs and ILDs, respectively) were presented to pairs of pitch-matched electrodes. Stimuli were 300-ms, 100-pulses-per-second, constant-amplitude pulse trains. In the first and second experiments, discrimination of interaural cues (either ITDs or ILDs) was measured using a two-interval left/right task. In the third experiment, subjects reported the perceived intracranial position of ITDs and ILDs in a lateralization task. All children demonstrated sensitivity to ILDs, possibly due to monaural level cues. Children who were born deaf had weak or absent sensitivity to ITDs; in contrast, ITD sensitivity was noted in children with previous exposure to acoustic hearing. Therefore, factors such as auditory deprivation, in particular, lack of early exposure to consistent timing differences between the ears, may delay the maturation of binaural circuits and cause insensitivity to binaural differences.
Collapse
Affiliation(s)
- Erica Ehlers
- University of Wisconsin-Madison, Waisman Center, 1500 Highland Avenue, Madison, Wisconsin 53705, USA
| | - Matthew J Goupell
- Department of Hearing and Speech Sciences, University of Maryland, College Park, Maryland 20742, USA
| | - Yi Zheng
- Beijing Advanced Innovation Center for Future Education, Beijing Normal University, Beijing 100875, China
| | - Shelly P Godar
- University of Wisconsin-Madison, Waisman Center, 1500 Highland Avenue, Madison, Wisconsin 53705, USA
| | - Ruth Y Litovsky
- University of Wisconsin-Madison, Waisman Center, 1500 Highland Avenue, Madison, Wisconsin 53705, USA
| |
Collapse
|