1
|
Palanki R, Peranteau WH, Mitchell MJ. Delivery technologies for in utero gene therapy. Adv Drug Deliv Rev 2021; 169:51-62. [PMID: 33181188 PMCID: PMC7855052 DOI: 10.1016/j.addr.2020.11.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/13/2020] [Accepted: 11/04/2020] [Indexed: 12/19/2022]
Abstract
Advances in prenatal imaging, molecular diagnostic tools, and genetic screening have unlocked the possibility to treat congenital diseases in utero prior to the onset of clinical symptoms. While fetal surgery and in utero stem cell transplantation can be harnessed to treat specific structural birth defects and congenital hematological disorders, respectively, in utero gene therapy allows for phenotype correction of a wide range of genetic disorders within the womb. However, key challenges to realizing the broad potential of in utero gene therapy are biocompatibility and efficiency of intracellular delivery of transgenes. In this review, we outline the unique considerations to delivery of in utero gene therapy components and highlight advances in viral and non-viral delivery platforms that meet these challenges. We also discuss specialized delivery technologies for in utero gene editing and provide future directions to engineer novel delivery modalities for clinical translation of this promising therapeutic approach.
Collapse
Affiliation(s)
- Rohan Palanki
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - William H Peranteau
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; The Center for Fetal Research, Division of General, Thoracic and Fetal Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
2
|
Badaoui S, Hopkins AM, Rodrigues AD, Miners JO, Sorich MJ, Rowland A. Application of Model Informed Precision Dosing to Address the Impact of Pregnancy Stage and CYP2D6 Phenotype on Foetal Morphine Exposure. AAPS JOURNAL 2021; 23:15. [PMID: 33404848 DOI: 10.1208/s12248-020-00541-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 11/24/2020] [Indexed: 02/06/2023]
Abstract
Guidance regarding the effect of codeine and its metabolites on foetal development is limited by small studies and inconsistent findings. The primary objective was to use physiologically based pharmacokinetic modelling to investigate the impact of gestational stage and maternal CYP2D6 phenotype on foetal morphine exposure following codeine administration. Full body physiologically based pharmacokinetic models were developed and verified for codeine and morphine using Simcyp (version 19.1). The impact of gestational age and maternal CYP2D6 phenotype on foetal and maternal morphine and codeine exposure following oral codeine administration was modelled in a cohort of 250 pregnant females and foetuses at gestational weeks 0 (mothers only), 6, 12, 24 and 36. Consistent with the known effect on codeine metabolism, a clinically meaningful (> 1.65-fold) increase in foetal morphine AUC was observed in the CYP2D6 UM phenotype cohort compared to the CYP2D6 EM and PM phenotype cohorts. The mean (95% CI) foetal morphine AUC in the CYP2D6 UM cohort of 0.988 (0.902 to 1.073) ng/mL.h was 1.8-fold higher than the CYP2D6 EM cohort of 0.546 (0.492 to 0.600) ng/mL.h (p < 0.001). Despite a 2.8-fold increase in maternal CYP2D6 protein abundance between gestational weeks 6 and 36, the mean foetal morphine AUC in the CYP2D6 EM and UM phenotype cohorts reduced by 1.55- and 1.75-fold, respectively, over this period. Maternal CYP2D6 phenotype is a significant determinant of foetal morphine AUC. Simulations suggest that the greatest risk with respect to foetal morphine exposure is during the first trimester of pregnancy, particularly in CYP2D6 UM phenotype mothers.
Collapse
Affiliation(s)
- Sarah Badaoui
- College of Medicine and Public Health, Flinders University, Flinders Medical Centre, Bedford Park, Adelaide, SA, 5042, Australia
| | - Ashley M Hopkins
- College of Medicine and Public Health, Flinders University, Flinders Medical Centre, Bedford Park, Adelaide, SA, 5042, Australia
| | - A David Rodrigues
- ADME Sciences, Medicine Design, Pfizer Worldwide Research & Development, Groton, CT, USA
| | - John O Miners
- College of Medicine and Public Health, Flinders University, Flinders Medical Centre, Bedford Park, Adelaide, SA, 5042, Australia
| | - Michael J Sorich
- College of Medicine and Public Health, Flinders University, Flinders Medical Centre, Bedford Park, Adelaide, SA, 5042, Australia
| | - Andrew Rowland
- College of Medicine and Public Health, Flinders University, Flinders Medical Centre, Bedford Park, Adelaide, SA, 5042, Australia.
| |
Collapse
|
3
|
Pritham UA, McKay L. Safe management of chronic pain in pregnancy in an era of opioid misuse and abuse. J Obstet Gynecol Neonatal Nurs 2014; 43:554-567. [PMID: 25123962 DOI: 10.1111/1552-6909.12487] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2014] [Indexed: 01/17/2023] Open
Abstract
Safe and effective management of chronic pain in pregnancy is challenging. Use of over-the-counter analgesics, opioids, opioid substitution therapies, complementary and alternative therapies, antidepressants, and anxiolytics each have benefits and risks for the mother and neonate that must be considered. Because of their potency, opioids are often used despite associated risks for adverse effects, abuse, diversion, and addiction. Development of a pain management protocol for the counsel and care of pregnant women with pain is necessary.
Collapse
|
4
|
Abildskov K, Weldy P, Garland M. Molecular cloning of the baboon UDP-glucuronosyltransferase 2B gene family and their activity in conjugating morphine. Drug Metab Dispos 2010; 38:545-53. [PMID: 20071451 PMCID: PMC2845934 DOI: 10.1124/dmd.109.030635] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Accepted: 01/13/2010] [Indexed: 02/02/2023] Open
Abstract
Glucuronidation by UDP-glucuronyltransferase 2B enzymes (UGT2Bs) is a major pathway for the elimination of endobiotics and xenobiotics, including therapeutic drugs. Morphine, a probe drug for UGT2B7, is metabolized to morphine-3-beta-glucuronide (M3G) and morphine-6-beta-glucuronide (M6G) in humans. Morphine has been used in a series of experiments in the baboon to characterize developmental changes in fetal glucuronidation. This study identifies the baboon UGT2B family of enzymes, compares them with that of the human and the monkey (Macaca fascicularis), and measures the activity of the individual baboon UGT2Bs toward morphine. UGT2B cDNAs were cloned from the liver of adult and newborn baboons and expressed in human embryonic kidney 293 cells. The UGT activity toward morphine was assessed by the rate of formation of M3G and M6G by high-performance liquid chromatography. Eight baboon UGT2Bs were cloned and identified: UGT2B41 and UGT2B42, which are 90% homologous to human UGT2B4; UGT2B43, which is 93% homologous to human UGT2B15; and UGT2B39, UGT2B40, UGT2B44, UGT2B45, and UGT2B46, which are 89 to 91% homologous to human UGT2B7. Homology between baboon and monkey UGT2B ranged from 92.6 to 99.1%, with the primary protein structure of UGT2B43 being 99.1% identical to monkey UGT2B20, including a unique R96I substitution. Gene conversion interfered with the phylogenetic signal in the baboon UGT2B7-like and the monkey UGT2B4-like groups and led to concerted evolution of these enzymes. All of the baboon UGT2Bs metabolized morphine to both M3G and M6G. This study lays the foundation for investigating the regulation of UGT2B enzymes during fetal and neonatal development in the baboon.
Collapse
Affiliation(s)
- Kirsten Abildskov
- Department of Pediatrics, Columbia University, New York, New York 10032, USA.
| | | | | |
Collapse
|
5
|
Concheiro M, Jones HE, Johnson RE, Choo R, Shakleya DM, Huestis MA. Maternal buprenorphine dose, placenta buprenorphine, and metabolite concentrations and neonatal outcomes. Ther Drug Monit 2010; 32:206-15. [PMID: 20216119 PMCID: PMC2921577 DOI: 10.1097/ftd.0b013e3181d0bd68] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Buprenorphine is approved as pharmacotherapy for opioid dependence in nonpregnant patients in multiple countries and is currently under investigation for pregnant women in the United States and Europe. This research evaluates the disposition of buprenorphine, opiates, cocaine, and metabolites in five term placentas from a US cohort. Placenta and matched meconium concentrations were compared, and relationships among maternal buprenorphine dose, placenta concentrations, and neonatal outcomes after controlled administration during gestation were investigated. Buprenorphine and/or metabolites were detected in all placenta specimens and were uniformly distributed across this tissue (coefficient of variation less than 27.5%, four locations), except for buprenorphine in three placentas. In two of these, buprenorphine was not detected in some locations and in the third placenta was totally absent. Median (range) concentrations were 1.6 ng/g buprenorphine (not detected to 3.2), 14.9 ng/g norbuprenorphine (6.2-24.2), 3 ng/g buprenorphine-glucuronide (1.3-5.0), and 14.7 ng/g norbuprenorphine-glucuronide (11.4-25.8). Placenta is a potential alternative matrix for detecting in utero buprenorphine exposure, but at lower concentrations (15- to 70-fold) than in meconium. Statistically significant correlations were observed for mean maternal daily dose from enrollment to delivery and placenta buprenorphine-glucuronide concentration and for norbuprenorphine-glucuronide concentrations and time to neonatal abstinence syndrome onset and duration, for norbuprenorphine/norbuprenorphine-glucuronide ratio and maximum neonatal abstinence syndrome score, and newborn length. Analysis of buprenorphine and metabolites in this alternative matrix, an abundant waste product available at the time of delivery, may be valuable for prediction of neonatal outcomes for clinicians treating newborns of buprenorphine-exposed women.
Collapse
Affiliation(s)
- Marta Concheiro
- Chemistry and Drug Metabolism, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD
| | - Hendreé E. Jones
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Rolley E. Johnson
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
- Reckitt Benckiser Pharmaceuticals, Inc., Richmond, VA
| | - Robin Choo
- Department of Biology, University of Pittsburgh, Titusville, PA
| | - Diaa M. Shakleya
- Chemistry and Drug Metabolism, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD
| | - Marilyn A. Huestis
- Chemistry and Drug Metabolism, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD
| |
Collapse
|
6
|
Quantification of fatty acid ethyl esters (FAEE) and ethyl glucuronide (EtG) in meconium from newborns for detection of alcohol abuse in a maternal health evaluation study. Anal Bioanal Chem 2010; 396:2469-77. [DOI: 10.1007/s00216-010-3474-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 01/14/2010] [Accepted: 01/14/2010] [Indexed: 10/19/2022]
|
7
|
Myllynen P, Immonen E, Kummu M, Vähäkangas K. Developmental expression of drug metabolizing enzymes and transporter proteins in human placenta and fetal tissues. Expert Opin Drug Metab Toxicol 2009; 5:1483-99. [DOI: 10.1517/17425250903304049] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
8
|
Van Calsteren K, Devlieger R, De Catte L, D'Hooghe T, Chai DC, Mwenda JM, Vergote I, Amant F. Feasibility of ultrasound-guided percutaneous samplings in the pregnant baboon: a model for studies on transplacental transport. Reprod Sci 2008; 16:280-5. [PMID: 19087981 DOI: 10.1177/1933719108324890] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE A study was conducted to test the feasibility of cordocenteses and amniocenteses at different gestational ages in pregnant baboons. STUDY DESIGN Experiments were performed in 10 pregnant baboons at a median gestational age of 131 (range 92-169) days. At different time intervals, percutaneous samplings of amniotic fluid and fetal blood were performed under ultrasound guidance. Simultaneously, maternal blood samples were drawn. RESULTS With a median fetal weight of 431 g (range 111-690 g), 29 of 30 cordocenteses (96.6%) and all 30 amniocenteses and maternal samplings (100%) were successful in obtaining the required quantities for analysis. One cordocentesis was abandoned because of insufficient visualization of the umbilical cord due to a placental haemorrhage. CONCLUSION Percutaneous amniocentesis and cordocentesis can be performed with a high success rate in the pregnant baboon model. In combination with a 100% success rate in obtaining simultaneous maternal blood samples, this method is able to provide data on transplacental transport.
Collapse
Affiliation(s)
- Kristel Van Calsteren
- Department of Obstetrics & Gynecology, University Hospital Gasthuisberg, Katholieke Universiteit Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Garland M, Abildskov KM, Kiu TW, Daniel SS, Weldy P, Stark RI. Placental transfer and fetal elimination of morphine-3-beta-glucuronide in the pregnant baboon. Drug Metab Dispos 2008; 36:1859-68. [PMID: 18566040 PMCID: PMC2587090 DOI: 10.1124/dmd.108.021352] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The glucuronide metabolites of several widely used drugs are detected in fetal plasma after maternal drug administration. However, the disposition of these metabolites is poorly understood and clinical concerns have been raised about accumulation of active metabolites in the fetus. For this reason, morphine-3-beta-glucuronide (M3G), an active metabolite of morphine, was studied to provide quantitative data on disposition. Maternal, fetal, and bidirectional placental clearances of M3G were measured in three pregnant baboons. During maternal infusion of M3G to steady-state, the glucuronide metabolite readily appeared in fetal plasma achieving a mean +/- S.D. fetal-to-maternal concentration ratio of 0.79 +/- 0.04. In paired maternal and fetal infusions, steady-state clearances were 53 +/- 3 (maternal), 1.5 +/- 0.5 (maternal-to-fetal), 2.6 +/- 0.1 (fetal-to-maternal), and -0.70 +/- 0.6 ml x min(-1) (fetal). These clearance values support bidirectional transfer of M3G across the placenta and indicate negligible direct clearance from the fetus. The clearance of M3G across the placenta is more than 20-fold less than that of morphine. Despite this low index of permeability, placental transfer contributes significantly to the glucuronide pool in the fetus. Placental transfer emerges as the major clearance pathway for the glucuronide from the fetus and suggests a component of active efflux. What is more, the results do not support the concept of sequestration in the fetal intestine as a significant route of clearance. Together these results clarify the distribution and clearance of glucuronides in the pregnant primate and facilitate prediction of fetal exposure to active metabolites.
Collapse
Affiliation(s)
- Marianne Garland
- Perinatal Research Laboratory, Division of Neonatology, Columbia University, New York, New York 10032, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Kacinko SL, Jones HE, Johnson RE, Choo RE, Huestis MA. Correlations of maternal buprenorphine dose, buprenorphine, and metabolite concentrations in meconium with neonatal outcomes. Clin Pharmacol Ther 2008; 84:604-12. [PMID: 18701886 DOI: 10.1038/clpt.2008.156] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
For the first time, relationships among maternal buprenorphine dose, meconium buprenorphine and metabolite concentrations, and neonatal outcomes are reported. Free and total buprenorphine and norbuprenorphine, nicotine, opiates, cocaine, benzodiazepines, and metabolites were quantified in meconium from 10 infants born to women who had received buprenorphine during pregnancy. Neither cumulative nor total third-trimester maternal buprenorphine dose predicted meconium concentrations or neonatal outcomes. Total buprenorphine meconium concentrations and buprenorphine/norbuprenorphine ratios were significantly related to neonatal abstinence syndrome (NAS) scores >4. As free buprenorphine concentration and percentage free buprenorphine increased, head circumference decreased. Thrice-weekly urine tests for opiates, cocaine, and benzodiazepines and self-reported smoking data from the mother were compared with data from analysis of the meconium to estimate in utero exposure. Time of last drug use and frequency of use during the third trimester were important factors associated with drug-positive meconium specimens. The results suggest that buprenorphine and metabolite concentrations in the meconium may predict the onset and frequency of NAS.
Collapse
Affiliation(s)
- S L Kacinko
- Chemistry and Drug Metabolism, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland, USA
| | | | | | | | | |
Collapse
|
11
|
Abstract
This paper is the 29th consecutive installment of the annual review of research concerning the endogenous opioid system, now spanning 30 years of research. It summarizes papers published during 2006 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurological disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, CUNY, 65-30 Kissena Blvd., Flushing, NY 11367, United States.
| |
Collapse
|
12
|
|
13
|
Myllynen P, Pasanen M, Vähäkangas K. The fate and effects of xenobiotics in human placenta. Expert Opin Drug Metab Toxicol 2007; 3:331-46. [PMID: 17539742 DOI: 10.1517/17425255.3.3.331] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
During past decades, knowledge on placental drug metabolism and mechanisms of placental transfer has increased significantly. Most pharmaceutical drugs administered during pregnancy cross the placenta to some extent. The important properties determining the placental transfer by passive diffusion are molecular weight, pK(a), lipid solubility and protein binding. In addition to passive diffusion, compounds may cross the placenta via active transfer, facilitated diffusion, phagocytosis and pinocytosis. This review gives an update of efflux transporter proteins and xenobiotic-metabolizing enzymes that modify the fate and effects of drugs in the placenta.
Collapse
Affiliation(s)
- Päivi Myllynen
- Researcher, University of Oulu, Department of Pharmacology and Toxicology, PO Box 5000, 90014 Oulu, Finland.
| | | | | |
Collapse
|