1
|
Huang C, Wang T, Chen R, Xu Y. Discovery of CMNPD31124 as a novel marine-derived PKMYT1 inhibitor for pancreatic ductal adenocarcinoma therapy: computational and biological insights. Front Pharmacol 2025; 16:1569765. [PMID: 40290442 PMCID: PMC12022493 DOI: 10.3389/fphar.2025.1569765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Accepted: 03/10/2025] [Indexed: 04/30/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains one of the deadliest cancers due to its late diagnosis, resistance to therapy, and a dismal 5-year survival rate of only 12%. Overexpression of PKMYT1-a key regulator of the cell cycle-correlates with poor patient outcomes, making it a promising therapeutic target. In this study, we identify CMNPD31124, a novel marine-derived indole alkaloid, as a potent PKMYT1 inhibitor. Molecular docking revealed that CMNPD31124 has superior binding affinity compared to the reference compound Cpd 4, forming robust interactions with critical residues such as CYS-190, TYR-121, and GLY-122. Molecular dynamics simulations further demonstrated its stable binding conformation and dynamic adaptability, with Chai-1 modeling supporting a covalent binding mechanism at the PKMYT1 active site. Importantly, in vitro assays showed that CMNPD31124 exhibits an IC50 of 18.6 μM in MiaPaCa-2 cells and 31.7 μM in BXPC3 cells, while concentrations up to 80 μM did not significantly affect normal pancreatic cells. Despite these promising results, toxicity predictions indicate potential hepatotoxicity and neurotoxicity, highlighting the need for further structural optimization. This work lays a solid foundation for the rational design of PKMYT1 inhibitors by integrating computational methods with insights from marine natural products.
Collapse
Affiliation(s)
- Chaojie Huang
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicinesla, Hangzhou, China
| | - Ting Wang
- The Third Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Rui Chen
- College of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Yunyun Xu
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
2
|
Nagaya Y, Nozaki Y. In vitro-in vivo scaling of cytochrome P450-mediated metabolic clearance using a relative activity factor approach. Drug Metab Dispos 2025; 53:100065. [PMID: 40199158 DOI: 10.1016/j.dmd.2025.100065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 03/05/2025] [Accepted: 03/07/2025] [Indexed: 04/10/2025] Open
Abstract
Quantitative prediction of hepatic clearance is a key element in predicting the human pharmacokinetic profile in the nonclinical stages. In the present study, we focused on the major cytochrome P450 (P450) isoforms (CYP1A2, CYP2C9, CYP2C19, CYP2D6, CYP3A4) and tested a relative activity factor (RAF) method to quantitatively predict in vivo hepatic intrinsic clearance (CLh,int,vivo) and fraction metabolized (fm) by the P450 isoforms directly from an in vitro recombinant P450 system. We selected multiple probe substrates for CYP1A2 (caffeine, tizanidine, phenacetin), CYP2C9 ((S)-acenocoumarol, glimepiride, lornoxicam, tolbutamide, (S)-warfarin), CYP2C19 ((S)-lansoprazole, omeprazole, pantoprazole), CYP2D6 (desipramine, metoprolol, nebivolol, tolterodine), and CYP3A4 (alprazolam, felodipine, midazolam, nisoldipine, sildenafil, triazolam) to calculate the representative RAF value for each P450 isoform based on the in vivo-to-in vitro clearance ratio of the multiple probe substrates. The most pronounced substrate dependency of the RAF values was noted for CYP3A4 (2698 [alprazolam] to 19073 [nisoldipine] pmol P450/kg). Using the geometric mean of the RAF values for each isoform, a within 3-fold prediction of the CLh,int,vivo was obtained for all the 11 test drugs, except glibenclamide, which is a known substrate of hepatic uptake transporters. The fm values of the responsible P450 isoform(s) could be well predicted for mexiletine, tamsulosin, risperidone, celecoxib, and glibenclamide. This simple, practical RAF method can be one of the useful nonclinical methods to estimate the CLh,int,vivo and fm mediated by the major P450 isoforms, which would promote earlier understanding of the impact of genetic polymorphisms and drug-drug interactions on the human pharmacokinetics of the substrate compounds. SIGNIFICANCE STATEMENT: The relative activity factor method has been used for extrapolating in vitro clearance from recombinant systems to liver microsomes, but this study utilized this method to predict in vivo hepatic clearance and fraction metabolized values. By applying relative activity factor values obtained from multiple probe substrates, this study was able to quantitatively predict the in vivo clearances mediated by CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4. This simple, practical method will help optimize metabolic clearances via the major cytochrome P450 isoforms in the nonclinical stages.
Collapse
Affiliation(s)
- Yoko Nagaya
- Global Drug Metabolism and Pharmacokinetics, Eisai Co, Ltd, Ibaraki, Japan.
| | - Yoshitane Nozaki
- Global Drug Metabolism and Pharmacokinetics, Eisai Co, Ltd, Ibaraki, Japan
| |
Collapse
|
3
|
Ejiohuo O, Bajia D, Pawlak J, Szczepankiewicz A. Asoprisnil as a Novel Ligand Interacting with Stress-Associated Glucocorticoid Receptor. Biomedicines 2024; 12:2745. [PMID: 39767652 PMCID: PMC11726916 DOI: 10.3390/biomedicines12122745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 01/16/2025] Open
Abstract
Background/objective: The glucocorticoid receptor (GR) is critical in regulating cortisol production during stress. This makes it a key target for treating conditions associated with hypothalamic-pituitary-adrenal (HPA) axis dysregulation, such as mental disorders. This study explores novel ligands beyond mifepristone for their potential to modulate GR with improved efficacy and safety. By investigating these interactions, we seek to identify new pharmacotherapeutic options for stress-related mental illness. Methods: The ligands asoprisnil, campestanol, and stellasterol were selected based on structural similarities to mifepristone (reference ligand) and evaluated for pharmacological and ADME (absorption, distribution, metabolism, and excretion) properties using the SwissADME database. Molecular docking with AutoDock 4.2.6 and molecular dynamics simulations were performed to investigate ligand-protein interactions with the human glucocorticoid receptor, and binding free energies were calculated using MMPBSA. Results: Pharmacokinetic analysis revealed that asoprisnil exhibited high gastrointestinal absorption and obeyed Lipinski's rule, while mifepristone crossed the blood-brain barrier. Toxicological predictions showed that mifepristone was active for neurotoxicity and immunotoxicity, while asoprisnil, campestanol, and stellasterol displayed lower toxicity profiles. Asoprisnil demonstrated the highest stability in molecular dynamics simulations, with the highest negative binding energy of -62.35 kcal/mol, when compared to mifepristone, campestanol, and stellasterol, with binding energies of -57.08 kcal/mol, -49.99 kcal/mol, and -46.69 kcal/mol, respectively. Conclusion: This makes asoprisnil a potentially favourable therapeutic candidate compared to mifepristone. However, further validation of asoprisnil's interaction, efficacy, and safety in stress-related mental disorders through experimental studies and clinical trials is needed.
Collapse
Affiliation(s)
- Ovinuchi Ejiohuo
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, 61-701 Poznan, Poland;
- Doctoral School, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznan, Poland;
- Molecular and Cell Biology Unit, Poznan University of Medical Sciences, 60-572 Poznan, Poland;
| | - Donald Bajia
- Doctoral School, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznan, Poland;
- Department of Pediatric Oncology, Hematology and Transplantology, Poznan University of Medical Sciences, 60-572 Poznan, Poland
| | - Joanna Pawlak
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, 61-701 Poznan, Poland;
| | | |
Collapse
|
4
|
AlSaeed MJ, Ramdhan P, Malave JG, Eljilany I, Langaee T, McDonough CW, Seabra G, Li C, Cavallari LH. Assessing the Performance of In silico Tools and Molecular Dynamics Simulations for Predicting Pharmacogenetic Variant Impact. Clin Pharmacol Ther 2024; 116:1082-1089. [PMID: 38894625 DOI: 10.1002/cpt.3348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/02/2024] [Indexed: 06/21/2024]
Abstract
The ability of freely available in silico tools to predict the effect of non-synonymous single nucleotide polymorphisms (nsSNPs) in pharmacogenes on protein function is not well defined. We assessed the performance of seven sequence-based (SIFT, PolyPhen2, mutation accessor, FATHMM, PhD-SNP, MutPred2, and SNPs & Go) and five structure-based (mCSM, SDM, DDGun, CupSat, and MAESTROweb) tools in predicting the impact of 118 nsSNPs in the CYP2C19, CYP2C9, CYP2B6, CYP2D6, and DPYD genes with known function (24 normal, one increased, 42 decreased, and 51 no-function). Sequence-based tools had a higher median (IQR) positive predictive value (89% [89-94%] vs. 12% [10-15%], P < 0.001) and lower negative predictive value (30% [24-34%] vs. 90% [80-93%], P < 0.001) than structure-based tools. Accuracy did not significantly differ between sequence-based (59% [37-67%]) and structure-based (34% [23-44%]) tools (P = 0.070). Notably, the no-function CYP2C9*3 allele and decreased function CYP2C9*8 allele were predicted incorrectly as tolerated by 100% of sequenced-based tools and as stabilizing by 60% and 20% of structure-based tools, respectively. As a case study, we performed mutational analysis for the CYP2C9*1, *3 (I359L), and *8 (R150H) proteins through molecular dynamic (MD) simulations using S-warfarin as the substrate. The I359L variant increased the distance of the major metabolic site of S-warfarin to the oxy-ferryl center of CYP2C9, and I359L and R150H caused shifts in the conformation of S-warfarin to a position less favorable for metabolism. These data suggest that MD simulations may better capture the impact of nsSNPs in pharmacogenes than other tools.
Collapse
Affiliation(s)
- Maryam Jamal AlSaeed
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision Medicine, College of Pharmacy, University of Florida, Gainesville, Florida, USA
- Department of Pharmacy Practice, College of Clinical Pharmacy, King Faisal University, Al Hofuf, Saudi Arabia
| | - Peter Ramdhan
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Jean Gabriel Malave
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision Medicine, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Islam Eljilany
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision Medicine, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Taimour Langaee
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision Medicine, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Caitrin W McDonough
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision Medicine, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Gustavo Seabra
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Chenglong Li
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Larisa H Cavallari
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision Medicine, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
5
|
Stolfi F, Abreu H, Sinella R, Nembrini S, Centonze S, Landra V, Brasso C, Cappellano G, Rocca P, Chiocchetti A. Omics approaches open new horizons in major depressive disorder: from biomarkers to precision medicine. Front Psychiatry 2024; 15:1422939. [PMID: 38938457 PMCID: PMC11210496 DOI: 10.3389/fpsyt.2024.1422939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 05/28/2024] [Indexed: 06/29/2024] Open
Abstract
Major depressive disorder (MDD) is a recurrent episodic mood disorder that represents the third leading cause of disability worldwide. In MDD, several factors can simultaneously contribute to its development, which complicates its diagnosis. According to practical guidelines, antidepressants are the first-line treatment for moderate to severe major depressive episodes. Traditional treatment strategies often follow a one-size-fits-all approach, resulting in suboptimal outcomes for many patients who fail to experience a response or recovery and develop the so-called "therapy-resistant depression". The high biological and clinical inter-variability within patients and the lack of robust biomarkers hinder the finding of specific therapeutic targets, contributing to the high treatment failure rates. In this frame, precision medicine, a paradigm that tailors medical interventions to individual characteristics, would help allocate the most adequate and effective treatment for each patient while minimizing its side effects. In particular, multi-omic studies may unveil the intricate interplays between genetic predispositions and exposure to environmental factors through the study of epigenomics, transcriptomics, proteomics, metabolomics, gut microbiomics, and immunomics. The integration of the flow of multi-omic information into molecular pathways may produce better outcomes than the current psychopharmacological approach, which targets singular molecular factors mainly related to the monoamine systems, disregarding the complex network of our organism. The concept of system biomedicine involves the integration and analysis of enormous datasets generated with different technologies, creating a "patient fingerprint", which defines the underlying biological mechanisms of every patient. This review, centered on precision medicine, explores the integration of multi-omic approaches as clinical tools for prediction in MDD at a single-patient level. It investigates how combining the existing technologies used for diagnostic, stratification, prognostic, and treatment-response biomarkers discovery with artificial intelligence can improve the assessment and treatment of MDD.
Collapse
Affiliation(s)
- Fabiola Stolfi
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), Università del Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), Università del Piemonte Orientale, Novara, Italy
| | - Hugo Abreu
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), Università del Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), Università del Piemonte Orientale, Novara, Italy
| | - Riccardo Sinella
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), Università del Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), Università del Piemonte Orientale, Novara, Italy
| | - Sara Nembrini
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), Università del Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), Università del Piemonte Orientale, Novara, Italy
| | - Sara Centonze
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), Università del Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), Università del Piemonte Orientale, Novara, Italy
| | - Virginia Landra
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, Turin, Italy
| | - Claudio Brasso
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, Turin, Italy
| | - Giuseppe Cappellano
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), Università del Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), Università del Piemonte Orientale, Novara, Italy
| | - Paola Rocca
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, Turin, Italy
| | - Annalisa Chiocchetti
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), Università del Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), Università del Piemonte Orientale, Novara, Italy
| |
Collapse
|
6
|
Frybortova V, Satka S, Jourova L, Zapletalova I, Srejber M, Briolotti P, Daujat-Chavanieu M, Gerbal-Chaloin S, Anzenbacher P, Otyepka M, Anzenbacherova E. On the Possible Effect of Phytic Acid (Myo-Inositol Hexaphosphoric Acid, IP6) on Cytochromes P450 and Systems of Xenobiotic Metabolism in Different Hepatic Models. Int J Mol Sci 2024; 25:3610. [PMID: 38612422 PMCID: PMC11011971 DOI: 10.3390/ijms25073610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
As compounds of natural origin enter human body, it is necessary to investigate their possible interactions with the metabolism of drugs and xenobiotics in general, namely with the cytochrome P450 (CYP) system. Phytic acid (myo-inositol hexaphosphoric acid, IP6) is mainly present in plants but is also an endogenous compound present in mammalian cells and tissues. It has been shown to exhibit protective effect in many pathological conditions. For this paper, its interaction with CYPs was studied using human liver microsomes, primary human hepatocytes, the HepG2 cell line, and molecular docking. Docking experiments and absorption spectra demonstrated the weak ability of IP6 to interact in the heme active site of CYP1A. Molecular docking suggested that IP6 preferentially binds to the protein surface, whereas binding to the active site of CYP1A2 was found to be less probable. Subsequently, we investigated the ability of IP6 to modulate the metabolism of xenobiotics for both the mRNA expression and enzymatic activity of CYP1A enzymes. Our findings revealed that IP6 can slightly modulate the mRNA levels and enzyme activity of CYP1A. However, thanks to the relatively weak interactions of IP6 with CYPs, the chances of the mechanisms of clinically important drug-drug interactions involving IP6 are low.
Collapse
Affiliation(s)
- Veronika Frybortova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University Olomouc, 775 15 Olomouc, Czech Republic; (V.F.); (E.A.)
| | - Stefan Satka
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University Olomouc, 775 15 Olomouc, Czech Republic; (V.F.); (E.A.)
| | - Lenka Jourova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University Olomouc, 775 15 Olomouc, Czech Republic; (V.F.); (E.A.)
| | - Iveta Zapletalova
- Department of Pharmacology, Faculty of Medicine and Dentistry, Palacky University Olomouc, 775 15 Olomouc, Czech Republic;
| | - Martin Srejber
- Czech Advanced Technology and Research Institute (CATRIN), Palacky University Olomouc, 779 00 Olomouc, Czech Republic
| | - Philippe Briolotti
- Institute for Regenerative Medicine and Biotherapy (IRMB), University Montpellier, INSERM, CHU Montpellier, F-34000 Montpellier, France (S.G.-C.)
| | - Martine Daujat-Chavanieu
- Institute for Regenerative Medicine and Biotherapy (IRMB), University Montpellier, INSERM, CHU Montpellier, F-34000 Montpellier, France (S.G.-C.)
| | - Sabine Gerbal-Chaloin
- Institute for Regenerative Medicine and Biotherapy (IRMB), University Montpellier, INSERM, CHU Montpellier, F-34000 Montpellier, France (S.G.-C.)
| | - Pavel Anzenbacher
- Department of Pharmacology, Faculty of Medicine and Dentistry, Palacky University Olomouc, 775 15 Olomouc, Czech Republic;
| | - Michal Otyepka
- Czech Advanced Technology and Research Institute (CATRIN), Palacky University Olomouc, 779 00 Olomouc, Czech Republic
- IT4Innovations, VŠB—Technical University of Ostrava, 708 00 Ostrava, Czech Republic
| | - Eva Anzenbacherova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University Olomouc, 775 15 Olomouc, Czech Republic; (V.F.); (E.A.)
| |
Collapse
|
7
|
Potential food-drug interaction risk of thymoquinone with warfarin. Chem Biol Interact 2022; 365:110070. [DOI: 10.1016/j.cbi.2022.110070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/15/2022] [Accepted: 07/20/2022] [Indexed: 11/22/2022]
|
8
|
Towards the Elucidation of the Pharmacokinetics of Voriconazole: A Quantitative Characterization of Its Metabolism. Pharmaceutics 2022; 14:pharmaceutics14030477. [PMID: 35335853 PMCID: PMC8948939 DOI: 10.3390/pharmaceutics14030477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 12/28/2022] Open
Abstract
The small-molecule drug voriconazole (VRC) shows a complex and not yet fully understood metabolism. Consequently, its in vivo pharmacokinetics are challenging to predict, leading to therapy failures or adverse events. Thus, a quantitative in vitro characterization of the metabolism and inhibition properties of VRC for human CYP enzymes was aimed for. The Michaelis-Menten kinetics of voriconazole N-oxide (NO) formation, the major circulating metabolite, by CYP2C19, CYP2C9 and CYP3A4, was determined in incubations of human recombinant CYP enzymes and liver and intestine microsomes. The contribution of the individual enzymes to NO formation was 63.1% CYP2C19, 13.4% CYP2C9 and 29.5% CYP3A4 as determined by specific CYP inhibition in microsomes and intersystem extrapolation factors. The type of inhibition and inhibitory potential of VRC, NO and hydroxyvoriconazole (OH-VRC), emerging to be formed independently of CYP enzymes, were evaluated by their effects on CYP marker reactions. Time-independent inhibition by VRC, NO and OH-VRC was observed on all three enzymes with NO being the weakest and VRC and OH-VRC being comparably strong inhibitors of CYP2C9 and CYP3A4. CYP2C19 was significantly inhibited by VRC only. Overall, the quantitative in vitro evaluations of the metabolism contributed to the elucidation of the pharmacokinetics of VRC and provided a basis for physiologically-based pharmacokinetic modeling and thus VRC treatment optimization.
Collapse
|
9
|
Study on the Effect of Three CYP2C9 Variants on Drug–Drug Interaction Related to Six Drugs In Vitro by LC–MS/MS Method. Chromatographia 2022. [DOI: 10.1007/s10337-021-04126-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Zou P, Heath A, Sewell C, Lu Y, Tran D, Seo SK. EXOGENOUS Sex Hormones and Sex Hormone Receptor Modulators in COVID-19: Rationale and Clinical Pharmacology Considerations. Clin Pharmacol Ther 2021; 111:559-571. [PMID: 34888850 DOI: 10.1002/cpt.2508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/03/2021] [Indexed: 11/12/2022]
Abstract
Male patients with coronavirus disease 2019 (COVID-19) fare much worse than female patients in COVID-19 severity and mortality according to data from several studies. Because of this sex disparity, researchers hypothesize that the use of exogenous sex hormone therapy and sex hormone receptor modulators might provide therapeutic potential for patients with COVID-19. Repurposing approved drugs or drug candidates at late-stage clinical development could expedite COVID-19 therapy development because their clinical formulation, routes of administration, dosing regimen, clinical pharmacology, and potential adverse events have already been established or characterized in humans. A number of exogenous sex hormones and sex hormone receptor modulators are currently or will be under clinical investigation for COVID-19 therapy. In this review, we discuss the rationale for exogenous sex hormones and sex hormone receptor modulators in COVID-19 treatment, summarize ongoing and planned clinical trials, and discuss some of the clinical pharmacology considerations on clinical study design. To inform clinical study design and facilitate the clinical development of exogenous sex hormones and sex hormone receptor modulators for COVID-19 therapy, clinical investigators should pay attention to clinical pharmacology factors, such as dosing regimen, special populations (i.e., geriatrics, pregnancy, lactation, and renal/hepatic impairment), and drug interactions.
Collapse
Affiliation(s)
- Peng Zou
- Division of Cardiometabolic and Endocrine Pharmacology, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Agiua Heath
- Division of Urology, Obstetrics, and Gynecology, Office of New Drugs, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Catherine Sewell
- Division of Urology, Obstetrics, and Gynecology, Office of New Drugs, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Yanhui Lu
- Division of Cardiometabolic and Endocrine Pharmacology, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Doanh Tran
- Division of Cardiometabolic and Endocrine Pharmacology, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Shirley K Seo
- Division of Cardiometabolic and Endocrine Pharmacology, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
11
|
Abstract
There are many factors which are known to cause variability in human in vitro enzyme kinetic data. Factors such as the source of enzyme and how it was prepared, the genetics and background of the donor, how the in vitro studies are designed, and how the data are analyzed contribute to variability in the resulting kinetic parameters. It is important to consider not only the factors which cause variability within an experiment, such as selection of a probe substrate, but also those that cause variability when comparing kinetic data across studies and laboratories. For example, the artificial nature of the microsomal lipid membrane and microenvironment in some recombinantly expressed enzymes, relative to those found in native tissue microsomes, has been shown to influence enzyme activity and thus can be a source of variability when comparing across the two different systems. All of these factors, and several others, are discussed in detail in the chapter below. In addition, approaches which can be used to visualize the uncertainty arising from the use of enzyme kinetic data within the context of predicting human pharmacokinetics are discussed.
Collapse
|
12
|
Tang LWT, Teng JW, Koh SK, Zhou L, Go ML, Chan ECY. Mechanism-Based Inactivation of Cytochrome P450 3A4 and 3A5 by the Fibroblast Growth Factor Receptor Inhibitor Erdafitinib. Chem Res Toxicol 2021; 34:1800-1813. [PMID: 34189909 DOI: 10.1021/acs.chemrestox.1c00178] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Erdafitinib (ERD) is a first-in-class pan inhibitor of fibroblast growth factor receptor 1-4 that has garnered global regulatory approval for the treatment of advanced or metastatic urothelial carcinoma. Although it has been previously reported that ERD elicits time-dependent inhibition (TDI) of cytochrome P450 (P450) 3A4 (CYP3A4), the exact biochemical nature underpinning this observation remains obfuscated. Moreover, it is also uninterrogated if CYP3A5-its highly homologous counterpart-could be susceptible to such interactions. Mechanism-based inactivation (MBI) of P450 is a unique subset of TDI that hinges on prior bioactivation of the drug to a reactive intermediate and possesses profound clinical and toxicological implications due to its irreversible nature. Here, we investigated and confirmed that ERD inactivated both CYP3A isoforms in a time-, concentration-, and NADPH-dependent manner with KI, kinact, and partition ratio of 4.01 and 10.04 μM, 0.120 and 0.045 min-1, and 32 and 55 for both CYP3A4 and CYP3A5, respectively, when rivaroxaban was employed as the probe substrate. Co-incubation with an alternative substrate or direct inhibitor of CYP3A attenuated the rate of inactivation, whereas the addition of glutathione or catalase did not induce such protection. The lack of enzyme activity recovery following dialysis for 4 h and oxidation with potassium ferricyanide combined with the lack of a Soret peak in spectral scans collectively substantiated that ERD is an irreversible covalent MBI of CYP3A. Finally, glutathione trapping and high-resolution mass spectrometry experiments illuminated a plausible bioactivation mechanism of ERD by CYP3A arising from metabolic epoxidation of its quinoxaline ring.
Collapse
Affiliation(s)
- Lloyd Wei Tat Tang
- Department of Pharmacy, Faculty of Science, National University of Singapore, 169856 Singapore
| | - Jian Wei Teng
- Department of Pharmacy, Faculty of Science, National University of Singapore, 169856 Singapore
| | | | - Lei Zhou
- Singapore Eye Research Institute (SERI), Singapore.,Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, 117597 Singapore.,Ophthalmology and Visual Sciences Academia Clinical Program, Duke-National University of Singapore Medical School, 169857 Singapore
| | - Mei Lin Go
- Department of Pharmacy, Faculty of Science, National University of Singapore, 169856 Singapore
| | - Eric Chun Yong Chan
- Department of Pharmacy, Faculty of Science, National University of Singapore, 169856 Singapore
| |
Collapse
|
13
|
Sodhi JK, Halladay JS. Case Study 9: Probe-Dependent Binding Explains Lack of CYP2C9 Inactivation by 1-Aminobenzotriazole (ABT). Methods Mol Biol 2021; 2342:765-779. [PMID: 34272716 DOI: 10.1007/978-1-0716-1554-6_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The potential for new chemical entities to inhibit the major cytochrome P450 (CYP) isoforms is routinely evaluated to minimize the risk of developing drugs with drug-drug interaction liabilities. CYP inhibition assays are routinely performed in a high-throughput format to efficiently screen large numbers of compounds. In evaluating a time-saving assay using diclofenac as the CYP2C9 probe substrate, a discrepancy was observed in which minimal inhibition was detected using diclofenac whereas using (S)-warfarin resulted in potent inhibition, supporting the presence of dual-binding sites in the relatively large CYP2C9 active site cavity.These observations provided further insights into explaining the reported ineffective inactivation of CYP2C9 for the pan-CYP inactivator 1-aminobenzotriazole (ABT). Mechanistic reversible and time-dependent inhibition experiments revealed that the ineffective CYP2C9 inactivation by ABT was also probe-dependent, with utilization of (S)-warfarin as the probe substrate resulting in more potent CYP2C9 inhibition by ABT compared to diclofenac. Addition of (S)-warfarin to the reversible and time-dependent inhibition experiments between ABT and diclofenac resulted in an attenuation of the inhibitory effects of ABT on CYP2C9-mediated diclofenac metabolism. Molecular docking studies further confirmed that (S)-warfarin and diclofenac preferentially bind in different regions of the CYP2C9 active site, with (S)-warfarin occupying a distal "warfarin-binding pocket" and diclofenac occupying a binding site close to the active heme moiety. ABT preferentially binds in the distal warfarin-binding pocket, supporting that diclofenac is minimally deterred from access to the CYP2C9 active site in the presence of ABT, thus resulting in minimal inactivation. Simultaneously docking of (S)-warfarin and ABT revealed that (S)-warfarin outcompetes ABT for the distal binding site and results in the binding of ABT to the CYP2C9 active site, supporting the observations of potent inactivation of CYP2C9 when (S)-warfarin is the probe substrate.These results highlight that probe selection is crucial when evaluating CYP inhibition potential, and it is recommended that multiple probes be utilized for CYP2C9, similar to the approach routinely employed for CYP3A4. Further, utilization of ABT as a pan-inhibitor of CYP activity for investigational compounds, both in vitro and in vivo, should be accompanied with the understanding that residual CYP-mediated oxidative metabolism could potentially be observed for CYP2C9 substrates and should not necessarily be attributed to non-P450-mediated metabolism.
Collapse
Affiliation(s)
- Jasleen K Sodhi
- Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California, San Francisco, CA, USA.
| | | |
Collapse
|
14
|
Paragas EM, Choughule K, Jones JP, Barr JT. Enzyme Kinetics, Pharmacokinetics, and Inhibition of Aldehyde Oxidase. Methods Mol Biol 2021; 2342:257-284. [PMID: 34272698 DOI: 10.1007/978-1-0716-1554-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Aldehyde oxidase (AO) has emerged as an important drug metabolizing enzyme over the last decade. Several compounds have failed in the clinic because the clearance or toxicity was underestimated by preclinical species. Human AO is much more active than rodent AO, and dogs do not have functional AO. Metabolic products from AO-catalyzed oxidation are generally nonreactive and often they have much lower solubility. AO metabolism is not limited to oxidation as AO can also catalyze reduction of oxygen and nitrite. Reduction of oxygen leads to the reactive oxygen species (ROS) superoxide radical anion and hydrogen peroxide. Reduction of nitrite leads to the formation of nitric oxide with potential pharmacological implications. AO is also reported to catalyze the reductive metabolism of nitro-compounds, N-oxides, sulfoxides, isoxazoles, isothiazoles, nitrite, and hydroxamic acids. These reductive transformations may cause toxicity due to the formation of reactive metabolites. Moreover, the inhibition kinetics are complex, and multiple probe substrates should be used when assessing the potential for DDIs. Finally, AO appears to be amenable to computational predictions of both regioselectivity and rates of reaction, which holds promise for virtual screening.
Collapse
Affiliation(s)
- Erickson M Paragas
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA, USA
| | - Kanika Choughule
- Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck, Boston, MA, USA
| | - Jeffrey P Jones
- Department of Chemistry, Washington State University, Pullman, WA, USA
| | - John T Barr
- Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck, South San Francisco, CA, USA.
| |
Collapse
|
15
|
Shiozawa A, Yamaori S, Kamijo S, Ohmori S. Effects of acid and lactone forms of statins on S-warfarin 7-hydroxylation catalyzed by human liver microsomes and recombinant CYP2C9 variants (CYP2C9.1 and CYP2C9.3). Drug Metab Pharmacokinet 2020; 36:100364. [PMID: 33341662 DOI: 10.1016/j.dmpk.2020.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/21/2020] [Accepted: 10/24/2020] [Indexed: 01/21/2023]
Abstract
The inhibition of CYP2C9-mediated warfarin metabolism by acid or lactone forms of statin converted in the body and effects of CYP2C9 genetic variants on their inhibition are not fully understood. Here, the effects of acid and lactone forms of statins on S-warfarin 7-hydroxylation were investigated in vitro. S-Warfarin 7-hydroxylase activities of human liver microsomes (HLMs), recombinant CYP2C9.1 (rCYP2C9.1), and rCYP2C9.3 (Ile359Leu variant) in the presence of statins were determined by high-performance liquid chromatography. Lactone forms of atorvastatin, lovastatin, pitavastatin, pravastatin, rosuvastatin, and simvastatin inhibited the activity of HLMs more potently than the corresponding acid forms, whereas fluvastatin acid showed stronger inhibition than fluvastatin lactone. When the effects of statins on rCYP2C9 variants were examined, inhibition profiles of acid versus lactone forms of statins except for fluvastatin were similar between rCYP2C9.1 and rCYP2C9.3. However, the degrees of inhibition by atorvastatin lactone, fluvastatin acid, fluvastatin lactone, lovastatin lactone, and pitavastatin lactone (Ki values) were significantly different between these variants. These results indicated that lactone forms of statins other than fluvastatin showed more potent inhibition of CYP2C9-catalyzed S-warfarin 7-hydroxylation than the corresponding acid forms. Furthermore, our results indicated that Ile359Leu substitution in CYP2C9 affected the inhibitory potencies of statins.
Collapse
Affiliation(s)
- Ayaka Shiozawa
- Department of Pharmacy, Shinshu University Hospital, 3-1-1 Asahi, Matsumoto, 390-8621, Japan; Department of Biochemical Pharmacology and Toxicology, Graduate School of Medicine, Shinshu University, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| | - Satoshi Yamaori
- Department of Pharmacy, Shinshu University Hospital, 3-1-1 Asahi, Matsumoto, 390-8621, Japan; Department of Biochemical Pharmacology and Toxicology, Graduate School of Medicine, Shinshu University, 3-1-1 Asahi, Matsumoto, 390-8621, Japan.
| | - Shinobu Kamijo
- Department of Biochemical Pharmacology and Toxicology, Graduate School of Medicine, Shinshu University, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| | - Shigeru Ohmori
- Department of Pharmacy, Shinshu University Hospital, 3-1-1 Asahi, Matsumoto, 390-8621, Japan; Department of Biochemical Pharmacology and Toxicology, Graduate School of Medicine, Shinshu University, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| |
Collapse
|
16
|
Lack of Correlation between In Vitro and In Vivo Studies on the Inhibitory Effects of (‒)-Sophoranone on CYP2C9 is Attributable to Low Oral Absorption and Extensive Plasma Protein Binding of (‒)-Sophoranone. Pharmaceutics 2020; 12:pharmaceutics12040328. [PMID: 32272615 PMCID: PMC7238241 DOI: 10.3390/pharmaceutics12040328] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 04/02/2020] [Accepted: 04/05/2020] [Indexed: 02/02/2023] Open
Abstract
(‒)-Sophoranone (SPN) is a bioactive component of Sophora tonkinensis with various pharmacological activities. This study aims to evaluate its in vitro and in vivo inhibitory potential against the nine major CYP enzymes. Of the nine tested CYPs, it exerted the strongest inhibitory effect on CYP2C9-mediated tolbutamide 4-hydroxylation with the lowest IC50 (Ki) value of 0.966 ± 0.149 μM (0.503 ± 0.0383 μM), in a competitive manner. Additionally, it strongly inhibited other CYP2C9-catalyzed diclofenac 4′-hydroxylation and losartan oxidation activities. Upon 30 min pre-incubation of human liver microsomes with SPN in the presence of NADPH, no obvious shift in IC50 was observed, suggesting that SPN is not a time-dependent inactivator of the nine CYPs. However, oral co-administration of SPN had no significant effect on the pharmacokinetics of diclofenac and 4′-hydroxydiclofenac in rats. Overall, SPN is a potent inhibitor of CYP2C9 in vitro but not in vivo. The very low permeability of SPN in Caco-2 cells (Papp value of 0.115 × 10−6 cm/s), which suggests poor absorption in vivo, and its high degree of plasma protein binding (>99.9%) may lead to the lack of in vitro–in vivo correlation. These findings will be helpful for the safe and effective clinical use of SPN.
Collapse
|
17
|
Yadav J, Paragas E, Korzekwa K, Nagar S. Time-dependent enzyme inactivation: Numerical analyses of in vitro data and prediction of drug-drug interactions. Pharmacol Ther 2020; 206:107449. [PMID: 31836452 PMCID: PMC6995442 DOI: 10.1016/j.pharmthera.2019.107449] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cytochrome P450 (CYP) enzyme kinetics often do not conform to Michaelis-Menten assumptions, and time-dependent inactivation (TDI) of CYPs displays complexities such as multiple substrate binding, partial inactivation, quasi-irreversible inactivation, and sequential metabolism. Additionally, in vitro experimental issues such as lipid partitioning, enzyme concentrations, and inactivator depletion can further complicate the parameterization of in vitro TDI. The traditional replot method used to analyze in vitro TDI datasets is unable to handle complexities in CYP kinetics, and numerical approaches using ordinary differential equations of the kinetic schemes offer several advantages. Improvement in the parameterization of CYP in vitro kinetics has the potential to improve prediction of clinical drug-drug interactions (DDIs). This manuscript discusses various complexities in TDI kinetics of CYPs, and numerical approaches to model these complexities. The extrapolation of CYP in vitro TDI parameters to predict in vivo DDIs with static and dynamic modeling is discussed, along with a discussion on current gaps in knowledge and future directions to improve the prediction of DDI with in vitro data for CYP catalyzed drug metabolism.
Collapse
Affiliation(s)
- Jaydeep Yadav
- Amgen Inc., 360 Binney Street, Cambridge, MA 02142, United States; Department of Pharmaceutical Sciences, Temple University, Philadelphia, PA 19140, United States
| | - Erickson Paragas
- Department of Pharmaceutical Sciences, Temple University, Philadelphia, PA 19140, United States
| | - Ken Korzekwa
- Department of Pharmaceutical Sciences, Temple University, Philadelphia, PA 19140, United States
| | - Swati Nagar
- Department of Pharmaceutical Sciences, Temple University, Philadelphia, PA 19140, United States.
| |
Collapse
|
18
|
Roles of CYP2C9 and its variants (CYP2C9*2 and CYP2C9*3) in the metabolism of 6-methoxy-2-napthylacetic acid, an active metabolite of the prodrug nabumetone. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2020. [DOI: 10.1007/s40005-019-00428-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
19
|
Usman M, Zhen-Han Z, Ze-Na C, Jun-Ping H, Wen Q, Chang-Qing Y, Miyu N, Toshiyuki S. Effect of iguratimod on diclofenac metabolism by CYP2C9 in rats and human recombinant CYP2C9 yeast cells. BRAZ J PHARM SCI 2019. [DOI: 10.1590/s2175-97902019000117240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
| | | | | | | | - Qian Wen
- Nanjing BRT-Biomed Co. Ltd, China
| | | | | | | |
Collapse
|
20
|
Dekker SJ, Dohmen F, Vermeulen NPE, Commandeur JNM. Characterization of kinetics of human cytochrome P450s involved in bioactivation of flucloxacillin: inhibition of CYP3A-catalysed hydroxylation by sulfaphenazole. Br J Pharmacol 2018; 176:466-477. [PMID: 30447161 PMCID: PMC6329626 DOI: 10.1111/bph.14548] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 10/19/2018] [Accepted: 10/27/2018] [Indexed: 01/18/2023] Open
Abstract
Background and Purpose The aim of this study was to characterize the human cytochrome P450s (CYPs) involved in oxidative bioactivation of flucloxacillin to 5‐hydroxymethyl flucloxacillin, a metabolite with high cytotoxicity towards biliary epithelial cells. Experimental Approach The CYPs involved in hydroxylation of flucloxacillin were characterized using recombinant human CYPs, pooled liver microsomes in the presence of CYP‐specific inhibitors and by correlation analysis using a panel of liver microsomes from 16 donors. Key Results Recombinant CYPs showing the highest specific activity were CYP3A4, CYP3A7 and to lower extent CYP2C9 and CTP2C8. Michaelis–Menten enzyme kinetics were determined for pooled human liver microsomes, recombinant CYP3A4, CYP3A7 and CYP2C9. Surprisingly, sulfaphenazole appeared to be a potent inhibitor of 5′‐hydroxylation of flucloxacillin by both recombinant CYP3A4 and CYP3A7. Conclusions and Implications The combined results show that the 5′‐hydroxylation of flucloxacillin is primarily catalysed by CYP3A4, CYP3A7 and CYP2C9. The large variability of the hepatic expression of these enzymes could affect the formation of 5′‐hydroxymethyl flucloxacillin, which may determine the differences in susceptibility to flucloxacillin‐induced liver injury. Additionally, the strong inhibition in CYP3A‐catalysed flucloxacillin metabolism by sulfaphenazole suggests that unanticipated drug–drug interactions could occur with coadministered drugs.
Collapse
Affiliation(s)
- Stefan J Dekker
- Division of Molecular Toxicology, Amsterdam Institute for Molecules Medicine and Systems (AIMMS), Vrije Universiteit, Amsterdam, The Netherlands
| | - Floor Dohmen
- Division of Molecular Toxicology, Amsterdam Institute for Molecules Medicine and Systems (AIMMS), Vrije Universiteit, Amsterdam, The Netherlands
| | - Nico P E Vermeulen
- Division of Molecular Toxicology, Amsterdam Institute for Molecules Medicine and Systems (AIMMS), Vrije Universiteit, Amsterdam, The Netherlands
| | - Jan N M Commandeur
- Division of Molecular Toxicology, Amsterdam Institute for Molecules Medicine and Systems (AIMMS), Vrije Universiteit, Amsterdam, The Netherlands
| |
Collapse
|
21
|
Fujino R, Hashizume K, Aoyama S, Maeda K, Ito K, Toshimoto K, Lee W, Ninomiya SI, Sugiyama Y. Strategies to improve the prediction accuracy of hepatic intrinsic clearance of three antidiabetic drugs: Application of the extended clearance concept and consideration of the effect of albumin on CYP2C metabolism and OATP1B-mediated hepatic uptake. Eur J Pharm Sci 2018; 125:181-192. [DOI: 10.1016/j.ejps.2018.09.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/03/2018] [Accepted: 09/28/2018] [Indexed: 01/20/2023]
|
22
|
Storelli F, Desmeules J, Daali Y. Genotype-sensitive reversible and time-dependent CYP2D6 inhibition in human liver microsomes. Basic Clin Pharmacol Toxicol 2018; 124:170-180. [PMID: 30192434 DOI: 10.1111/bcpt.13124] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 08/27/2018] [Indexed: 01/16/2023]
Abstract
Cytochrome P450 (CYP) 2D6 metabolizes a wide range of xenobiotics and is characterized by a huge interindividual variability. A recent clinical study highlighted differential magnitude of CYP inhibition as a function of CYP2D6 genotype. The aim of this study was to investigate the effect of CYP2D6 genotype on the inhibition of dextromethorphan O-demethylation by duloxetine and paroxetine in human liver microsomes (HLMs). The study focused on genotypes defined by the combination of two fully functional alleles (activity score 2, AS 2, n = 6), of one fully functional and one reduced allele (activity score 1.5, AS 1.5, n = 4) and of one fully functional and one non-functional allele (activity score 1, AS 1, n = 6), which all predict extensive metabolizer phenotype. Kinetic experiments showed that maximal reaction velocity was affected by CYP2D6 genotype, with a decrease in 33% of Vmax in AS 1 HLMs compared to AS 2 (P = 0.06). No difference in inhibition parameters Ki , KI and kinact was observed neither with the competitive inhibitor duloxetine nor with the time-dependent inhibitor paroxetine. Among the genotypes tested, we found no difference in absolute CYP2D6 microsomal levels with ELISA immunoquantification. Therefore, our results suggest that genotype-sensitive magnitude of drug-drug interactions recently observed in vivo is likely to be due to differential amounts of functional enzymes at the microsomal level rather than to a difference in inhibition potencies across genotypes, which motivates for further quantitative proteomic investigations of functional and variant CYP2D6 alleles.
Collapse
Affiliation(s)
- Flavia Storelli
- Division of Clinical Pharmacology and Toxicology, Geneva University Hospitals, University of Geneva, Geneva, Switzerland.,Geneva-Lausanne School of Pharmacy, University of Geneva, Geneva, Switzerland
| | - Jules Desmeules
- Division of Clinical Pharmacology and Toxicology, Geneva University Hospitals, University of Geneva, Geneva, Switzerland.,Geneva-Lausanne School of Pharmacy, University of Geneva, Geneva, Switzerland.,Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Youssef Daali
- Division of Clinical Pharmacology and Toxicology, Geneva University Hospitals, University of Geneva, Geneva, Switzerland.,Geneva-Lausanne School of Pharmacy, University of Geneva, Geneva, Switzerland.,Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
23
|
Takaoka N, Sanoh S, Okuda K, Kotake Y, Sugahara G, Yanagi A, Ishida Y, Tateno C, Tayama Y, Sugihara K, Kitamura S, Kurosaki M, Terao M, Garattini E, Ohta S. Inhibitory effects of drugs on the metabolic activity of mouse and human aldehyde oxidases and influence on drug–drug interactions. Biochem Pharmacol 2018; 154:28-38. [DOI: 10.1016/j.bcp.2018.04.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/16/2018] [Indexed: 12/19/2022]
|
24
|
Different inhibitory effects of azole-containing drugs and pesticides on CYP2C9 polymorphic forms: An in vitro study. Toxicol In Vitro 2018; 50:249-256. [DOI: 10.1016/j.tiv.2018.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 03/30/2018] [Accepted: 04/01/2018] [Indexed: 11/23/2022]
|
25
|
Wang S, Tang X, Yang T, Xu J, Zhang J, Liu X, Liu L. Predicted contributions of cytochrome P450s to drug metabolism in human liver microsomes using relative activity factor were dependent on probes. Xenobiotica 2018; 49:161-168. [PMID: 29375004 DOI: 10.1080/00498254.2018.1433902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Contributions of cytochrome P450 (CYP450) isoforms to drug metabolism are often predicted using relative activity factor (RAF) method, assuming RAF values were independent of probe. We aimed to report probe-dependent characteristic of RAF values using CYP3A4 or CYP2C9 probes. Metabolism of four CYP3A4 probes (testosterone, midazolam, verapamil and atorvastatin) and three CYP2C9 probes (tolbutamide, diclofenac and S-warfarin) in human liver microsomes (HLM) and cDNA-expressed recombinant CYP450 (Rec-CYP450) systems were characterized and RAFCL value was estimated as ratio of probe intrinsic clearance in HLM to that in Rec-CYP450. CYP450i contributions to metabolic reaction of a probe were predicted using other probes and compared with data from specific inhibitions. Contributions of CYP3A4 and CYP2C9 to metabolism of deoxypodophyllotoxin and nateglinide were also predicted. RAF values were dependent on probes, leading to probe-dependently predicted contributions. Predicted contributions of CYP3A4 to formations of 6β-hydroxytestosterone, 1'-hydroxymidazolam, norverapamil, ortho-hydroxyatorvastatin and para-hydroxyatorvastatin using other probes were 47.46-219.46%, 21.62-98.87%, 186.49-462.44%, 21.87-101.15% and 53.62-247.97%, respectively. Predicted contributions of CYP3A4 and CYP2C9 to nateglinide metabolism were 8.18-37.84% and 36.08-94.04%, separately. In conclusion, CYP450i contribution to drug metabolism in HLM estimated using RAF approach were probe-dependent. Therefore, contribution of each isoform must be confirmed by multiple probes.
Collapse
Affiliation(s)
- Shuting Wang
- a Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy , China Pharmaceutical University , Nanjing , China
| | - Xiange Tang
- a Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy , China Pharmaceutical University , Nanjing , China
| | - Tingting Yang
- a Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy , China Pharmaceutical University , Nanjing , China
| | - Jiong Xu
- a Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy , China Pharmaceutical University , Nanjing , China
| | - Jiaxin Zhang
- a Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy , China Pharmaceutical University , Nanjing , China
| | - Xiaodong Liu
- a Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy , China Pharmaceutical University , Nanjing , China
| | - Li Liu
- a Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy , China Pharmaceutical University , Nanjing , China
| |
Collapse
|
26
|
Bedada SK, Neerati P. Evaluation of the effect of quercetin treatment on CYP2C9 enzyme activity of diclofenac in healthy human volunteers. Phytother Res 2017; 32:305-311. [DOI: 10.1002/ptr.5978] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/27/2017] [Accepted: 10/13/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Satish Kumar Bedada
- Drug Metabolism and Pharmacokinetics Division; University College of Pharmaceutical Sciences, Kakatiya University; Warangal Telangana State India
| | - Prasad Neerati
- Drug Metabolism and Pharmacokinetics Division; University College of Pharmaceutical Sciences, Kakatiya University; Warangal Telangana State India
| |
Collapse
|
27
|
Siu YA, Lai WG. Impact of Probe Substrate Selection on Cytochrome P450 Reaction Phenotyping Using the Relative Activity Factor. Drug Metab Dispos 2017; 45:183-189. [PMID: 27934636 DOI: 10.1124/dmd.116.073510] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 11/30/2016] [Indexed: 12/17/2022] Open
Abstract
Accurately assessing the contribution of cytochrome P450 (P450) isoforms to overall metabolic clearance is important for prediction of clinical drug-drug interactions (DDIs). The relative activity factor (RAF) approach in P450 reaction phenotyping assumes that the interaction between P450-selective probes and testing systems is the same as the interaction of drug candidate with those systems. To test this assumption, an intersystem clearance ratio (ICR) was created to evaluate the difference in values between RAF-scaled intrinsic clearance (CLint) and measured CLint in human liver microsomes (HLMs). The RAF value for CYP3A4 or CYP2C9 derived from a particular P450-selective probe reaction was applied to calculate RAF-scaled CLint for other probe reactions of the same P450 isoform in a crossover manner and compared with the measured HLM CLint When RAF derived from midazolam or nifedipine was used for CYP3A4, the ICR for testosterone 6β-hydroxylation was 31 and 25, respectively, suggesting significantly diverse interactions of CYP3A4 probes with the testing systems. Such ICR differences were less profound among probes for CYP2C9. In addition, these RAF values were applied to losartan and meloxicam, whose metabolism is mostly CYP2C9 mediated. Only using the RAF derived from testosterone for CYP3A4 produced the expected CYP2C9 contribution of 72%-87% and 47%-69% for metabolism of losartan and meloxicam, respectively. RAF derived from other CYP3A4 probes would have attributed predominantly to CYP3A4 and led to incorrect prediction of DDIs. Our study demonstrates a significant impact of probe substrate selection on P450 phenotyping using the RAF approach, and the ICR may provide a potential solution.
Collapse
Affiliation(s)
- Y Amy Siu
- Drug Metabolism and Pharmacokinetics Department, Biopharmaceutical Assessments, Eisai Inc., Andover, Massachusetts
| | - W George Lai
- Drug Metabolism and Pharmacokinetics Department, Biopharmaceutical Assessments, Eisai Inc., Andover, Massachusetts
| |
Collapse
|
28
|
Shen Z, Tieu K, Wilson D, Bucci G, Gillen M, Lee C, Kerr B. Evaluation of Pharmacokinetic Interactions Between Lesinurad, a New Selective Urate Reabsorption Inhibitor, and Commonly Used Drugs for Gout Treatment. Clin Pharmacol Drug Dev 2017; 6:377-387. [DOI: 10.1002/cpdd.323] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 11/02/2016] [Indexed: 11/08/2022]
Affiliation(s)
| | - Kathy Tieu
- Ardea Biosciences; Inc; San Diego CA USA
| | | | - Gail Bucci
- Ardea Biosciences; Inc; San Diego CA USA
| | | | | | | |
Collapse
|
29
|
Ueng YF, Lu CK, Yang SH, Wang HJ, Huang CC. Potentiation of the anticoagulation effect of warfarin by the herbal remedy Shu-Jing-Hwo-Shiee-Tang in rats: The dosing regimen and pharmacokinetic interaction. Drug Metab Pharmacokinet 2016; 32:85-91. [PMID: 28111103 DOI: 10.1016/j.dmpk.2016.11.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 11/30/2016] [Accepted: 11/30/2016] [Indexed: 12/20/2022]
Abstract
The herbal remedy Shu-Jing-Hwo-Shiee-Tang (SJHST) has been used in traditional Chinese medical care for the treatment of osteoarthritis. This study aims to examine the influence of SJHST on the oxidation and anticoagulation effect of warfarin in male rats. In three SJHST preparations (S1-S3), hesperidin, gentiopicrin, and paeoniflorin were identified as chemical marker ingredients. The inhibition of liver microsomal warfarin 7-hydroxylation (WOH) activity by 50% methanolic extracts of SJHST was potentiated by β-glucosidase pretreatment, but not by NADPH-fortified microsomal preincubation. Among various ingredients and their β-glucosidase-hydrolyzed products, hesperetin caused the most potent inhibition of WOH. Oral administration of S2 to rats at 2 h after warfarin treatment (WS22-h post), but not co-treatment (WS2co), decreased warfarin clearance and increased the maximal plasma concentration and the area under the curve (AUC0-t, AUC0-∞) of plasma concentration versus time of warfarin administration. S2 and S3 did not change the coagulation parameters. At 24 h after warfarin administration, the WS22-h post and WS32-h post groups had a prothrombin time longer than that of the warfarin group. These results demonstrate that a 2-h post-treatment of rats with SJHST caused pharmacokinetic interaction with warfarin, resulting in prothrombin time prolongation.
Collapse
Affiliation(s)
- Yune-Fang Ueng
- Divisions of Basic Chinese Medicine, National Research Institute of Chinese Medicine, Taipei, Taiwan, ROC; Department of Pharmacology, School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC; Institute of Biopharmaceutical Sciences, School of Pharmaceutical Science, National Yang-Ming University, Taipei, Taiwan, ROC; Institute of Medical Sciences, School of Medicine, Taipei Medical University, Taipei, Taiwan, ROC.
| | - Chung-Kuang Lu
- Chinese Medicinal Chemistry, National Research Institute of Chinese Medicine, Taipei, Taiwan, ROC; Department of Life Sciences and Institute of Genome Sciences, School of Life Sciences, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Sien-Hung Yang
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan City, Taiwan, ROC; Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taipei, Taiwan, ROC
| | - Hong-Jaan Wang
- School of Pharmacy, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Chiung-Chiao Huang
- Divisions of Basic Chinese Medicine, National Research Institute of Chinese Medicine, Taipei, Taiwan, ROC
| |
Collapse
|
30
|
Isvoran A, Louet M, Vladoiu DL, Craciun D, Loriot MA, Villoutreix BO, Miteva MA. Pharmacogenomics of the cytochrome P450 2C family: impacts of amino acid variations on drug metabolism. Drug Discov Today 2016; 22:366-376. [PMID: 27693711 DOI: 10.1016/j.drudis.2016.09.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 07/22/2016] [Accepted: 09/20/2016] [Indexed: 12/18/2022]
Abstract
Pharmacogenomics investigates DNA and RNA variations in the human genome related to drug responses. Cytochrome P450 (CYP) is a supergene family of drug-metabolizing enzymes responsible for the metabolism of approximately 90% of human drugs. Among the major CYP isoforms, the CYP2C subfamily is of clinical significance because it metabolizes approximately 20% of clinically administrated drugs and represents several variant alleles leading to adverse drug reactions or altering drug efficacy. Here, we review recent progress on understanding the interindividual variability of the CYP2C members and the functional and clinical impact on drug metabolism. We summarize current advances in the molecular modeling of CYP2C polymorphisms and discuss the structural bases and molecular mechanisms of amino acid variants of CYP2C members that affect drug metabolism.
Collapse
Affiliation(s)
- Adriana Isvoran
- Department of Biology and Chemistry, West University of Timisoara, 16 Pestalozzi, Timisoara 300115, Romania; Advanced Environmental Research Laboratories, West University of Timisoara, 4 Oituz, Timisoara 300086, Romania
| | - Maxime Louet
- Université Paris Diderot, Sorbonne Paris Cité, Inserm UMR-S 973, Molécules Thérapeutiques In silico, 39 rue Helene Brion, 75013 Paris, France; INSERM, U973, Paris, France
| | - Diana Larisa Vladoiu
- Department of Biology and Chemistry, West University of Timisoara, 16 Pestalozzi, Timisoara 300115, Romania; Advanced Environmental Research Laboratories, West University of Timisoara, 4 Oituz, Timisoara 300086, Romania
| | - Dana Craciun
- Teacher Training Department, West University of Timisoara, Blvd. V. Parvan, Timisoara 300223, Romania
| | - Marie-Anne Loriot
- INSERM UMR_S1147, Centre Universitaire des Saints-Pères, 45 rue des saints-Pères, 75006 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Assistance Publique - Hôpitaux de Paris (AP-HP), Hôpital Européen Georges Pompidou, Service de Biochimie, 20 rue Leblanc, 75015 Paris, France
| | - Bruno O Villoutreix
- Université Paris Diderot, Sorbonne Paris Cité, Inserm UMR-S 973, Molécules Thérapeutiques In silico, 39 rue Helene Brion, 75013 Paris, France; INSERM, U973, Paris, France
| | - Maria A Miteva
- Université Paris Diderot, Sorbonne Paris Cité, Inserm UMR-S 973, Molécules Thérapeutiques In silico, 39 rue Helene Brion, 75013 Paris, France; INSERM, U973, Paris, France.
| |
Collapse
|
31
|
Zak M, Yuen PW, Liu X, Patel S, Sampath D, Oeh J, Liederer BM, Wang W, O’Brien T, Xiao Y, Skelton N, Hua R, Sodhi J, Wang Y, Zhang L, Zhao G, Zheng X, Ho YC, Bair KW, Dragovich PS. Minimizing CYP2C9 Inhibition of Exposed-Pyridine NAMPT (Nicotinamide Phosphoribosyltransferase) Inhibitors. J Med Chem 2016; 59:8345-68. [DOI: 10.1021/acs.jmedchem.6b00697] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Mark Zak
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Po-wai Yuen
- Pharmaron Beijing Co. Ltd., 6 Taihe Road, BDA, Beijing 100176, PR China
| | - Xiongcai Liu
- Pharmaron Beijing Co. Ltd., 6 Taihe Road, BDA, Beijing 100176, PR China
| | - Snahel Patel
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Deepak Sampath
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jason Oeh
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Bianca M. Liederer
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Weiru Wang
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Thomas O’Brien
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Yang Xiao
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Nicholas Skelton
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Rongbao Hua
- Pharmaron Beijing Co. Ltd., 6 Taihe Road, BDA, Beijing 100176, PR China
| | - Jasleen Sodhi
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Yunli Wang
- Pharmaron Beijing Co. Ltd., 6 Taihe Road, BDA, Beijing 100176, PR China
| | - Lei Zhang
- Pharmaron Beijing Co. Ltd., 6 Taihe Road, BDA, Beijing 100176, PR China
| | - Guiling Zhao
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Xiaozhang Zheng
- FORMA Therapeutics Inc., 500 Arsenal Street, Watertown, Massachusetts 02472, United States
| | - Yen-Ching Ho
- FORMA Therapeutics Inc., 500 Arsenal Street, Watertown, Massachusetts 02472, United States
| | - Kenneth W. Bair
- FORMA Therapeutics Inc., 500 Arsenal Street, Watertown, Massachusetts 02472, United States
| | - Peter S. Dragovich
- Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
32
|
Anderson LL, Berns EJ, Bugga P, George AL, Mrksich M. Measuring Drug Metabolism Kinetics and Drug-Drug Interactions Using Self-Assembled Monolayers for Matrix-Assisted Laser Desorption-Ionization Mass Spectrometry. Anal Chem 2016; 88:8604-9. [PMID: 27467208 DOI: 10.1021/acs.analchem.6b01750] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The competition of two drugs for the same metabolizing enzyme is a common mechanism for drug-drug interactions that can lead to altered kinetics in drug metabolism and altered elimination rates in vivo. With the prevalence of multidrug therapy, there is great potential for serious drug-drug interactions and adverse drug reactions. In an effort to prevent adverse drug reactions, the FDA mandates the evaluation of the potential for metabolic inhibition by every new chemical entity. Conventional methods for assaying drug metabolism (e.g., those based on HPLC) have been established for measuring drug-drug interactions; however, they are low-throughput. Here we describe an approach to measure the catalytic activity of CYP2C9 using the high-throughput technique self-assembled monolayers for matrix-assisted laser desorption-ionization (SAMDI) mass spectrometry. We measured the kinetics of CYP450 metabolism of the substrate, screened a set of drugs for inhibition of CYP2C9 and determined the Ki values for inhibitors. The throughput of this platform may enable drug metabolism and drug-drug interactions to be interrogated at a scale that cannot be achieved with current methods.
Collapse
Affiliation(s)
- Lyndsey L Anderson
- Department of Pharmacology, Northwestern University Feinberg School of Medicine , Chicago, Illinois 60611, United States
| | | | | | - Alfred L George
- Department of Pharmacology, Northwestern University Feinberg School of Medicine , Chicago, Illinois 60611, United States
| | - Milan Mrksich
- Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine , Chicago, Illinois 60611, United States
| |
Collapse
|
33
|
Shah RR, Gaedigk A, LLerena A, Eichelbaum M, Stingl J, Smith RL. CYP450 genotype and pharmacogenetic association studies: a critical appraisal. Pharmacogenomics 2016; 17:259-75. [DOI: 10.2217/pgs.15.172] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Despite strong pharmacological support, association studies using genotype-predicted phenotype as a variable have yielded conflicting or inconclusive evidence to promote personalized pharmacotherapy. Unless the patient is a genotypic poor metabolizer, imputation of patient's metabolic capacity (or metabolic phenotype), a major factor in drug exposure-related clinical response, is a complex and highly challenging task because of limited number of alleles interrogated, population-specific differences in allele frequencies, allele-specific substrate-selectivity and importantly, phenoconversion mediated by co-medications and inflammatory co-morbidities that modulate the functional activity of drug metabolizing enzymes. Furthermore, metabolic phenotype and clinical outcomes are not binary functions; there is large intragenotypic and intraindividual variability. Therefore, the ability of association studies to identify relationships between genotype and clinical outcomes can be greatly enhanced by determining phenotype measures of study participants and/or by therapeutic drug monitoring to correlate drug concentrations with genotype and actual metabolic phenotype. To facilitate improved analysis and reporting of association studies, we propose acronyms with the prefixes ‘g’ (genotype-predicted phenotype) and ‘m’ (measured metabolic phenotype) to better describe this important variable of the study subjects. Inclusion of actually measured metabolic phenotype, and when appropriate therapeutic drug monitoring, promises to reveal relationships that may not be detected by using genotype alone as the variable.
Collapse
Affiliation(s)
| | - Andrea Gaedigk
- Clinical Pharmacology, Toxicology &, Therapeutic Innovation, Children's Mercy-Kansas City, 2401 Gillham Rd, Kansas City, MO 64108, USA
- School of Medicine, University of Missouri-Kansas City, MO, USA
| | - Adrián LLerena
- CICAB Clinical Research Centre, Extremadura University Hospital & Medical School, Badajoz, Spain
| | - Michel Eichelbaum
- Dr. Margarete Fischer-Bosch – Institut für Klinische Pharmakologie, 70376 Stuttgart Auerbachstr., 112 Germany
| | - Julia Stingl
- Centre for Translational Medicine, University of Bonn Medical School, Bonn, Germany
| | - Robert L Smith
- Department of Surgery & Cancer, Faculty of Medicine, Imperial College, South Kensington Campus, London, UK
| |
Collapse
|
34
|
Schwengber A, Prado HJ, Zilli DA, Bonelli PR, Cukierman AL. Carbon nanotubes buckypapers for potential transdermal drug delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 57:7-13. [DOI: 10.1016/j.msec.2015.07.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 05/09/2015] [Accepted: 07/10/2015] [Indexed: 12/25/2022]
|
35
|
Peng Y, Wu H, Zhang X, Zhang F, Qi H, Zhong Y, Wang Y, Sang H, Wang G, Sun J. A comprehensive assay for nine major cytochrome P450 enzymes activities with 16 probe reactions on human liver microsomes by a single LC/MS/MS run to support reliablein vitroinhibitory drug–drug interaction evaluation. Xenobiotica 2015; 45:961-77. [DOI: 10.3109/00498254.2015.1036954] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
36
|
Yamaori S, Takami K, Shiozawa A, Sakuyama K, Matsuzawa N, Ohmori S. In vitro inhibition of CYP2C9-mediated warfarin 7-hydroxylation by iguratimod: possible mechanism of iguratimod-warfarin interaction. Biol Pharm Bull 2015; 38:441-7. [PMID: 25757926 DOI: 10.1248/bpb.b14-00711] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Iguratimod is a novel disease-modifying antirheumatic drug. A blue letter (safety advisory) for drug interaction between iguratimod and warfarin was issued by the Ministry of Health, Labour and Welfare of Japan in May 2013. Iguratimod may affect warfarin metabolism catalyzed by CYP. However, it is not clear whether iguratimod inhibits warfarin oxidation. This study was performed to investigate the effects of iguratimod on warfarin 7-hydroxylation with human liver microsomes (HLMs) and recombinant CYP enzymes. Iguratimod concentration-dependently inhibited R,S-warfarin 7-hydroxylase activity of HLMs with an IC50 value of 15.2 µM. The inhibitory effect was examined with S-warfarin and R-warfarin to determine which enantiomer was more potently inhibited by iguratimod. Iguratimod potently inhibited the S-warfarin 7-hydroxylase activity of HLMs with an IC50 value of 14.1 µM, but showed only slight inhibition of R-warfarin 7-hydroxylation. Furthermore, iguratimod inhibited the S-warfarin 7-hydroxylase activity of recombinant CYP2C9.1 (rCYP2C9.1) and rCYP2C9.3 in a concentration-dependent manner with IC50 values of 10.8 and 20.1 µM, respectively. Kinetic analysis of the inhibition of S-warfarin 7-hydroxylation by iguratimod indicated competitive-type inhibition for HLMs and rCYP2C9.1 but mixed-type inhibition for rCYP2C9.3. The Ki values for HLMs, rCYP2C9.1, and rCYP2C9.3 were 6.74, 4.23, and 14.2 µM, respectively. Iguratimod did not exert metabolism-dependent inhibition of S-warfarin 7-hydroxylation. These results indicated that iguratimod is a potent direct inhibitor of CYP2C9-mediated warfarin 7-hydroxylation and that its inhibitory effect on CYP2C9.1 was more sensitive than that on CYP2C9.3.
Collapse
Affiliation(s)
- Satoshi Yamaori
- Department of Pharmacy, Shinshu University Hospital, 3-1-1;Department of Biochemical Pharmacology and Toxicology, Graduate School of Medicine, Shinshu University 390-8621, Japan
| | | | | | | | | | | |
Collapse
|
37
|
Metabolic drug-drug interaction potential of macrolactin A and 7-O-succinyl macrolactin A assessed by evaluating cytochrome P450 inhibition and induction and UDP-glucuronosyltransferase inhibition in vitro. Antimicrob Agents Chemother 2014; 58:5036-46. [PMID: 24890600 DOI: 10.1128/aac.00018-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Macrolactin A (MA) and 7-O-succinyl macrolactin A (SMA), polyene macrolides containing a 24-membered lactone ring, show antibiotic effects superior to those of teicoplanin against vancomycin-resistant enterococci and methicillin-resistant Staphylococcus aureus. MA and SMA are currently being evaluated as antitumor agents in preclinical studies in Korea. We evaluated the potential of MA and SMA for the inhibition or induction of human liver cytochrome P450 (CYP) enzymes and UDP-glucuronosyltransferases (UGTs) in vitro to assess their safety as new molecular entities. We demonstrated that MA and SMA are potent competitive inhibitors of CYP2C9, with Ki values of 4.06 μM and 10.6 μM, respectively. MA and SMA also weakly inhibited UGT1A1 activity, with Ki values of 40.1 μM and 65.3 μM, respectively. However, these macrolactins showed no time-dependent inactivation of the nine CYPs studied. In addition, MA and SMA did not induce CYP1A2, CYP2B6, or CYP3A4/5. On the basis of an in vitro-in vivo extrapolation, our data strongly suggested that MA and SMA are unlikely to cause clinically significant drug-drug interactions mediated via inhibition or induction of most of the CYPs involved in drug metabolism in vivo, except for the inhibition of CYP2C9 by MA. Similarly, MA and SMA are unlikely to inhibit the activity of UGT1A1, UGT1A4, UGT1A6, UGT1A9, and UGT2B7 enzymes in vivo. Although further investigations will be required to clarify the in vivo interactions of MA with CYP2C9-targeted drugs, our findings offer a clearer understanding and prediction of drug-drug interactions for the safe use of MA and SMA in clinical practice.
Collapse
|
38
|
Sodhi JK, Ford KA, Mukadam S, Wong S, Hop CECA, Khojasteh SC, Halladay JS. 1-Aminobenzotriazole coincubated with (S)-warfarin results in potent inactivation of CYP2C9. Drug Metab Dispos 2014; 42:813-7. [PMID: 24550229 DOI: 10.1124/dmd.113.055913] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
1-Aminobenzotriazole (ABT) is a nonselective, mechanism-based inactivator of cytochrome P450 (P450) and a useful tool compound to discern P450- from non-P450-mediated metabolism. ABT effectively inactivates major human P450 isoforms, with the notable exception of CYP2C9. Here we propose that ABT preferentially binds to the warfarin-binding pocket in the CYP2C9 active-site cavity; thus, ABT bioactivation and subsequent inactivation is not favored. Therefore, coincubation with (S)-warfarin would result in displacement of ABT from the warfarin-binding pocket and subsequent binding to the active site, converting ABT into a potent inactivator of CYP2C9. To test this hypothesis, in vitro studies were conducted using various coincubation combinations of ABT and (S)-warfarin or diclofenac to modulate the effectiveness of CYP2C9 inactivation by ABT. Coincubation of ABT with (S)-warfarin (diclofenac probe substrate) resulted in potent inactivation, whereas weak inactivation was observed following coincubation of ABT with diclofenac [(S)-warfarin probe substrate]. The kinetic parameters of time-dependent inhibition of ABT for CYP2C9 in the absence and presence of (S)-warfarin (20 μM) were 0.0826 and 0.273 min(-1) for kinact and 3.49 and 0.157 mM for KI, respectively. In addition, a 73.4-fold shift was observed in the in vitro potency (kinact/KI ratio), with an increase from 23.7 ml/min/mmol (ABT alone) to 1740 ml/min/mmol [ABT with (S)-warfarin (20 μM)]. These findings were supported by in silico structural modeling, which showed ABT preferentially binding to the warfarin-binding pocket and the displacement of ABT to the active site in the presence of (S)-warfarin.
Collapse
Affiliation(s)
- Jasleen K Sodhi
- Department of Drug Metabolism and Pharmacokinetics (J.K.S., S.M., S.W., C.E.C.A.H., S.C.K., J.S.H.) and Department of Safety Assessment (K.A.F.), Genentech, Inc., South San Francisco, CA
| | | | | | | | | | | | | |
Collapse
|
39
|
Barr JT, Choughule K, Jones JP. Enzyme kinetics, inhibition, and regioselectivity of aldehyde oxidase. Methods Mol Biol 2014; 1113:167-186. [PMID: 24523113 DOI: 10.1007/978-1-62703-758-7_9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The aldehyde oxidase (AO) enzyme family plays an increasing role in drug development. However, a number of compounds that are AO substrates have failed in the clinic because the clearance or toxicity is underestimated by preclinical species. Human AO is much more active than rodent AO, and dogs do not have functional AO. While AOs normally make non-reactive metabolites such as lactams, the metabolic products often have much lower solubility that can lead to renal failure. While an endogenous substrate for the oxidation reaction is not known, electron acceptors for the reductive part of the reaction include oxygen and nitrites. Reduction of oxygen leads to the reactive oxygen species (ROS) superoxide radical anion, and hydrogen peroxide. Reduction of nitrite leads to the formation of nitric oxide with potential pharmacological implications. To date, no clinically important drug-drug interactions (DDIs) have been observed for AOs. However, the inhibition kinetics are complex, and multiple probe substrates should be used when assessing the potential for DDIs. Finally, AO appears to be amenable to computational predictions of both regioselectivity and rates of reaction, which holds promise for virtual screening.
Collapse
Affiliation(s)
- John T Barr
- Department of Chemistry, Washington State University, Pullman, WA, USA
| | | | | |
Collapse
|
40
|
Wang YH, Gibson CR. Variability in human in vitro enzyme kinetics. Methods Mol Biol 2014; 1113:337-362. [PMID: 24523120 DOI: 10.1007/978-1-62703-758-7_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
There are many factors which are known to cause variability in human in vitro enzyme kinetic data. Factors such as the source of enzyme and how it was prepared, the genetics and background of the donor, how the in vitro studies are designed, and how the data are analyzed contribute to variability in the resulting kinetic parameters. It is important to consider not only the factors which cause variability within an experiment, such as selection of a probe substrate, but also those that cause variability when comparing kinetic data across studies and laboratories. For example, the artificial nature of the microsomal lipid membrane and microenvironment in some recombinantly expressed enzymes, relative to those found in native tissue microsomes, has been shown to influence enzyme activity and thus can be a source of variability when comparing across the two different systems. All of these factors, and several others, are discussed in detail in the chapter below.
Collapse
Affiliation(s)
- Ying-Hong Wang
- Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck Research Laboratories, West Point, PA, USA
| | | |
Collapse
|
41
|
Zhang N, Seguin RP, Kunze KL, Zhang YY, Jeong H. Characterization of inhibition kinetics of (S)-warfarin hydroxylation by noscapine: implications in warfarin therapy. Drug Metab Dispos 2013; 41:2114-23. [PMID: 24046330 PMCID: PMC3834133 DOI: 10.1124/dmd.113.053330] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Accepted: 09/17/2013] [Indexed: 11/22/2022] Open
Abstract
Noscapine is an antitussive and potential anticancer drug. Clinically significant interactions between warfarin and noscapine have been previously reported. In this study, to provide a basis for warfarin dosage adjustment, the inhibition kinetics of noscapine against warfarin metabolism was characterized. Our enzyme kinetics data obtained from human liver microsomes and recombinant CYP2C9 proteins indicate that noscapine is a competitive inhibitor of the (S)-warfarin 7-hydroxylation reaction by CYP2C9. Interestingly, noscapine also inhibited (S)-warfarin metabolism in a NADPH- and time-dependent manner, and removal of unbound noscapine and its metabolites by ultrafiltration did not reverse inhibition of (S)-warfarin metabolism by noscapine, suggesting mechanism-based inhibition of CYP2C9 by noscapine. Spectral scanning of the reaction between CYP2C9 and noscapine revealed the formation of an absorption spectrum at 458 nm, indicating the formation of a metabolite-intermediate complex. Surprisingly, noscapine is a 2- to 3-fold more efficient inactivator of CYP2C9.2 and CYP2C9.3 variants than it is of the wild type, by unknown mechanisms. Based on the inhibitory kinetic data, (S)-warfarin exposure is predicted to increase up to 7-fold (depending on CYP2C9 genotypes) upon noscapine coadministration, mainly due to mechanism-based inactivation of CYP2C9 by noscapine. Together, these results indicate that mechanism-based inhibition of CYP2C9 by noscapine may dramatically alter pharmacokinetics of warfarin and provide a basis for warfarin dosage adjustment when noscapine is coadministered.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Medicinal Chemistry and Pharmacognosy (N.Z.), Department of Pharmacy Practice (Y.-Y.Z., H.J.), and Department of Biopharmaceutical Sciences (H.J.), College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois; and Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, Washington (R.P.S., K.L.K.)
| | | | | | | | | |
Collapse
|
42
|
Lapins M, Worachartcheewan A, Spjuth O, Georgiev V, Prachayasittikul V, Nantasenamat C, Wikberg JES. A unified proteochemometric model for prediction of inhibition of cytochrome p450 isoforms. PLoS One 2013; 8:e66566. [PMID: 23799117 PMCID: PMC3684587 DOI: 10.1371/journal.pone.0066566] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Accepted: 05/08/2013] [Indexed: 11/17/2022] Open
Abstract
A unified proteochemometric (PCM) model for the prediction of the ability of drug-like chemicals to inhibit five major drug metabolizing CYP isoforms (i.e. CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A4) was created and made publicly available under the Bioclipse Decision Support open source system at www.cyp450model.org. In regards to the proteochemometric modeling we represented the chemical compounds by molecular signature descriptors and the CYP-isoforms by alignment-independent description of composition and transition of amino acid properties of their protein primary sequences. The entire training dataset contained 63 391 interactions and the best PCM model was obtained using signature descriptors of height 1, 2 and 3 and inducing the model with a support vector machine. The model showed excellent predictive ability with internal AUC = 0.923 and an external AUC = 0.940, as evaluated on a large external dataset. The advantage of PCM models is their extensibility making it possible to extend our model for new CYP isoforms and polymorphic CYP forms. A key benefit of PCM is that all proteins are confined in one single model, which makes it generally more stable and predictive as compared with single target models. The inclusion of the model in Bioclipse Decision Support makes it possible to make virtual instantaneous predictions (∼100 ms per prediction) while interactively drawing or modifying chemical structures in the Bioclipse chemical structure editor.
Collapse
Affiliation(s)
- Maris Lapins
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
43
|
Akiyoshi T, Ito M, Murase S, Miyazaki M, Guengerich FP, Nakamura K, Yamamoto K, Ohtani H. Mechanism-based inhibition profiles of erythromycin and clarithromycin with cytochrome P450 3A4 genetic variants. Drug Metab Pharmacokinet 2013; 28:411-5. [PMID: 23514827 DOI: 10.2133/dmpk.dmpk-12-rg-134] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Inhibition of cytochrome P450 (CYP) 3A4 is the major cause of drug-drug interactions (DDI). We have previously reported that the genetic variation of CYP3A4 significantly affected the inhibitory profiles of typical competitive inhibitors. In addition to competitive inhibition, some clinically significant DDI are attributable to mechanism-based inhibition (MBI). However, the differences in the MBI kinetics among CYP3A4 genetic variants remain to be characterized. In this study, we quantitatively investigated the inhibition kinetics of MBI inhibitors, erythromycin and clarithromycin, on the CYP3A4 variants CYP3A4.1, 4.2, 4.7, 4.16, and 4.18. The activity of CYP3A4 was assessed using testosterone 6β-hydroxylation with recombinant CYP3A4. Both erythromycin and clarithromycin decreased the activity of CYP3A4 in a time-dependent manner. The maximum inactivation rate constants, k(inact,max), of erythromycin for CYP3A4.2 and CYP3A4.7 were 0.5-fold that for CYP3A4.1, while that for CYP3A4.16 and CYP3A4.18 were similar to that for CYP3A4.1. The K(I) values of erythromycin for CYP3A4.2, 4.7, 4.16, and 4.18 were 1.2-, 0.4-, 2.2- and 0.72-fold those of CYP3A4.1, respectively. Similar results were obtained for clarithromycin. In conclusion, the inhibitory profiles of MBI inhibitors, as well as competitive inhibitors, may possibly differ among CYP3A4 variants. This difference may contribute to interindividual differences in the extent of DDI based on MBI.
Collapse
|
44
|
Hirota T, Eguchi S, Ieiri I. Impact of genetic polymorphisms in CYP2C9 and CYP2C19 on the pharmacokinetics of clinically used drugs. Drug Metab Pharmacokinet 2012; 28:28-37. [PMID: 23165865 DOI: 10.2133/dmpk.dmpk-12-rv-085] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Human cytochrome P450 (CYP) is a superfamily of hemoproteins which oxidize a number of endogenous compounds and xenobiotics. The human CYP2C subfamily consists of four members: CYP2C8, CYP2C9, CYP2C18 and CYP2C19. CYP2C9 and CYP2C19 are important drug-metabolizing enzymes and together metabolize approximately 20% of therapeutically used drugs. Forty-two allelic variants for CYP2C9 and 34 for CYP2C19 have been reported. The frequencies of these variants show marked inter-ethnic variation. The functional consequences of genetic polymorphisms have been examined, and many studies have shown the clinical importance of these polymorphisms. Current evidence suggests that taking the genetically determined metabolic capacity of CYP2C9 and CYP2C19 into account has the potential to improve individual risk/benefit relationships. However, more prospective studies with clinical endpoints are needed before the paradigm of "personalized medicine" based on the variants can be established. This review summarizes the currently available important information on this topic.
Collapse
Affiliation(s)
- Takeshi Hirota
- Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | | | | |
Collapse
|
45
|
González-Pérez V, Connolly EA, Bridges AS, Wienkers LC, Paine MF. Impact of organic solvents on cytochrome P450 probe reactions: filling the gap with (S)-Warfarin and midazolam hydroxylation. Drug Metab Dispos 2012; 40:2136-42. [PMID: 22896727 PMCID: PMC3477202 DOI: 10.1124/dmd.112.047134] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 08/14/2012] [Indexed: 12/18/2022] Open
Abstract
(S)-Warfarin 7-hydroxylation and midazolam 1'-hydroxylation are among the preferred probe substrate reactions for CYP2C9 and CYP3A4/5, respectively. The impact of solvents on enzyme activity, kinetic parameters, and predicted in vivo hepatic clearance (Cl(H)) associated with each reaction has not been evaluated. The effects of increasing concentrations [0.1-2% (v/v)] of six organic solvents (acetonitrile, methanol, ethanol, dimethyl sulfoxide, acetone, isopropanol) were first tested on each reaction using human liver microsomes (HLMs), human intestinal microsomes (midazolam 1'-hydroxylation only), and recombinant enzymes. Across enzyme sources, relative to water, acetonitrile and methanol had the least inhibitory effect on (S)-warfarin 7-hydroxylation (0-58 and 9-96%, respectively); acetonitrile, methanol, and ethanol had the least inhibitory effect on midazolam 1'-hydroxylation (0-29, 0-22, and 0-20%, respectively). Using HLMs, both acetonitrile and methanol (0.1-2%) decreased the V(max) (32-60 and 24-65%, respectively) whereas methanol (2%) increased the K(m) (100%) of (S)-warfarin-hydroxylation. (S)-Warfarin Cl(H) was underpredicted by 21-65% (acetonitrile) and 13-84% (methanol). Acetonitrile, methanol, and ethanol had minimal to modest impact on both the kinetics of midazolam 1'-hydroxylation (10-24%) and predicted midazolam Cl(H) (2-20%). In conclusion, either acetonitrile or methanol at ≤0.1% is recommended as the primary organic solvent for the (S)-warfarin 7-hydroxylation reaction; acetonitrile is preferred if higher solvent concentrations are required. Acetonitrile, methanol, and ethanol at ≤2% are recommended as primary organic solvents for the midazolam 1'-hydroxylation reaction. This information should facilitate optimization of experimental conditions and improve the interpretation and accuracy of in vitro-in vivo predictions involving these two preferred cytochrome P450 probe substrate reactions.
Collapse
Affiliation(s)
- Vanessa González-Pérez
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | |
Collapse
|
46
|
Darnell M, Ulvestad M, Ellis E, Weidolf L, Andersson TB. In vitro evaluation of major in vivo drug metabolic pathways using primary human hepatocytes and HepaRG cells in suspension and a dynamic three-dimensional bioreactor system. J Pharmacol Exp Ther 2012; 343:134-44. [PMID: 22776955 DOI: 10.1124/jpet.112.195834] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2025] Open
Abstract
Major human specific metabolites, not detected during in vivo and in vitro preclinical studies, may cause unexpected drug interactions and toxicity in human and delays in clinical programs. Thus, reliable preclinical tools for the detection of major human metabolites are of high importance. The aim of this study was to compare major drug metabolic pathways in HepaRG cells, a human hepatoma cell line, to fresh human hepatocytes, cryopreserved human hepatocytes, and human in vivo data. Furthermore, the maintenance of cytochrome P450 (P450) and UDP-glucuronosyltransferase (UGT) activities in a dynamic three-dimensional (3D) bioreactor were evaluated over time by using HepaRG cells and human hepatocytes. (14)C-diclofenac and a candidate from AstraZeneca's drug development program, (14)C-AZD6610, which are metabolized by P450 and UGT in vivo, were used as model substrates. The proportion of relevant biotransformation pathways of the investigated drug was clearly different in the various cell systems. The hydroxylation route was favored in primary human hepatocytes, whereas the glucuronidation route was favored in HepaRG cells. The human in vivo metabolite profile of AZD6610 was best represented by human hepatocytes, whereas all major diclofenac metabolites were detected in HepaRG cells. Moreover, the metabolite profiles in cryopreserved and fresh human hepatocytes were essentially the same. The liver bioreactor using both fresh human hepatocytes and HepaRG cells retained biotransformation capacity over 1 week. Thus, the incubation time can be increased from a few hours in suspension to several days in 3D cultures, which opens up for detection of metabolites from slowly metabolized drugs.
Collapse
Affiliation(s)
- Malin Darnell
- DMPK Innovative Medicines, AstraZeneca R&D Mölndal, Mölndal, Sweden
| | | | | | | | | |
Collapse
|
47
|
Yamaori S, Kushihara M, Koeda K, Yamamoto I, Watanabe K. Significance of CYP2C9 genetic polymorphism in inhibitory effect of Δ9-tetrahydrocannabinol on CYP2C9 activity. Forensic Toxicol 2012. [DOI: 10.1007/s11419-012-0148-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
48
|
Brill MJE, Diepstraten J, van Rongen A, van Kralingen S, van den Anker JN, Knibbe CAJ. Impact of obesity on drug metabolism and elimination in adults and children. Clin Pharmacokinet 2012; 51:277-304. [PMID: 22448619 DOI: 10.2165/11599410-000000000-00000] [Citation(s) in RCA: 267] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The prevalence of obesity in adults and children is rapidly increasing across the world. Several general (patho)physiological alterations associated with obesity have been described, but the specific impact of these alterations on drug metabolism and elimination and its consequences for drug dosing remains largely unknown. In order to broaden our knowledge of this area, we have reviewed and summarized clinical studies that reported clearance values of drugs in both obese and non-obese patients. Studies were classified according to their most important metabolic or elimination pathway. This resulted in a structured review of the impact of obesity on metabolic and elimination processes, including phase I metabolism, phase II metabolism, liver blood flow, glomerular filtration and tubular processes. This literature study shows that the influence of obesity on drug metabolism and elimination greatly differs per specific metabolic or elimination pathway. Clearance of cytochrome P450 (CYP) 3A4 substrates is lower in obese as compared with non-obese patients. In contrast, clearance of drugs primarily metabolized by uridine diphosphate glucuronosyltransferase (UGT), glomerular filtration and/or tubular-mediated mechanisms, xanthine oxidase, N-acetyltransferase or CYP2E1 appears higher in obese versus non-obese patients. Additionally, in obese patients, trends indicating higher clearance values were seen for drugs metabolized via CYP1A2, CYP2C9, CYP2C19 and CYP2D6, while studies on high-extraction-ratio drugs showed somewhat inconclusive results. Very limited information is available in obese children, which prevents a direct comparison between data obtained in obese children and obese adults. Future clinical studies, especially in children, adolescents and morbidly obese individuals, are needed to extend our knowledge in this clinically important area of adult and paediatric clinical pharmacology.
Collapse
Affiliation(s)
- Margreke J E Brill
- Department of Clinical Pharmacy, St Antonius Hospital, Nieuwegein, the Netherlands
| | | | | | | | | | | |
Collapse
|
49
|
Effect of P450 oxidoreductase variants on the metabolism of model substrates mediated by CYP2C9.1, CYP2C9.2, and CYP2C9.3. Pharmacogenet Genomics 2012; 22:590-7. [DOI: 10.1097/fpc.0b013e3283544062] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
50
|
Yokotani K, Chiba T, Sato Y, Taki Y, Yamada S, Shinozuka K, Murata M, Umegaki K. Hepatic cytochrome P450 mediates interaction between warfarin and Coleus forskohlii extract in vivo and in vitro. J Pharm Pharmacol 2012; 64:1793-801. [DOI: 10.1111/j.2042-7158.2012.01563.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Abstract
Objectives
This study aimed to determine whether Coleus forskohlii extract (CFE) influences the anticoagulant action of warfarin in mice in vivo and its relationship with hepatic cytochrome P450 (CYP).
Methods
Mice were fed various doses of CFE standardised with 10% forskolin in a normal diet for one week, or in protein diets containing 7% and 20% casein (low and normal) for four weeks. They were then administered with warfarin by gavage on the last two days of the treatment regimen, and blood coagulation parameters, as well as hepatic CYP, were analysed at 18 h after the last dose. Direct interaction between CFE and forskolin with CYP2C was evaluated in vitro.
Key findings
CFE dose dependently increased hepatic total CYP content and S-warfarin 7-hydroxylase activity at a dietary level of ≥0.05%. Warfarin-induced anticoagulation was attenuated by CFE in parallel with CYP induction. The findings were similar in mice fed diets containing CFE and different ratios of protein. CFE directly inhibited CYP2C activity in mouse and human liver microsomes in vitro, whereas forskolin was only slightly inhibitory.
Conclusions
CFE attenuates the anticoagulant action of warfarin by inducing hepatic CYP2C; thus, caution is required with the combination of warfarin and dietary supplements containing CFE.
Collapse
Affiliation(s)
- Kaori Yokotani
- Information Center, National Institute of Health and Nutrition, Shinjuku-ku, Japan
- Department of Nutrition and Food Science, Ochanomizu University, Bunkyo-ku, Tokyo, Japan
| | - Tsuyoshi Chiba
- Information Center, National Institute of Health and Nutrition, Shinjuku-ku, Japan
| | - Yoko Sato
- Information Center, National Institute of Health and Nutrition, Shinjuku-ku, Japan
| | - Yuko Taki
- Department of Pharmacokinetics and Pharmacodynamics and Global COE Program, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka-shi, Shizuoka, Japan
| | - Shizuo Yamada
- Department of Pharmacokinetics and Pharmacodynamics and Global COE Program, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka-shi, Shizuoka, Japan
| | - Kazumasa Shinozuka
- Department of Pharmacology, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya, Hyogo, Japan
| | - Masatsune Murata
- Department of Nutrition and Food Science, Ochanomizu University, Bunkyo-ku, Tokyo, Japan
| | - Keizo Umegaki
- Information Center, National Institute of Health and Nutrition, Shinjuku-ku, Japan
| |
Collapse
|