1
|
Cao MC, Huang X, Tang BH, Shi HY, Zheng Y, Zhao W. Simultaneous determination of the combined and free concentrations of atorvastatin and its major metabolite in vitro and in vivo based on ultrafiltration coupled with UPLC-MS/MS method: an application in a protein binding rate and metabolism ability study in uremic hemodialysis patients. Front Cardiovasc Med 2024; 11:1461181. [PMID: 39559794 PMCID: PMC11571098 DOI: 10.3389/fcvm.2024.1461181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/09/2024] [Indexed: 11/20/2024] Open
Abstract
Introduction A rapid, accurate, and specific ultrafiltration with ultra-performance liquid chromatographic-tandem mass spectrometry method was validated for the simultaneous determination of the protein binding rate of atorvastatin in uremic patients. Methods: The plasma samples were centrifuged at 6,000 r/min for 15 min at 37°C and the ultrafiltrate was collected. An ACQUITY UPLC® BEH C18 Column with gradient elution of water (0.1% formic acid) and acetonitrile was used for separation at a flow rate of 0.4 ml/min. Results The calibration curves of two analytes in the serum showed excellent linearity over the concentration ranges of 0.05-20.00 ng/ml for atorvastatin, and 0.05-20.00 ng/ml for orthohydroxy atorvastatin, respectively. This method was validated according to standard US food and drug administration and European medicines agency guidelines in terms of selectivity, linearity, detection limits, matrix effects, accuracy, precision, recovery, and stability. This assay can be easily implemented in clinical practice to determine the free and combined concentrations of atorvastatin in the plasma of uremic patients. The final result showed that the average plasma protein binding rate in uremic patients was 86.58 ± 2.04%, relative standard deviation (RSD) (%) = 1.98, while the plasma protein binding rate in patients with normal renal function was 97.62 ± 1.96%, RSD (%) = 2.04. There was a significant difference in the protein binding rate in different types of plasma (P < 0.05), and the protein binding rate decreased with increasing creatinine until it stabilized at nearly 80%. The mean metabolite/prototype ratio of atorvastatin in patients with normal renal function and in patients with uremia was 1.085 and 0.974, respectively. Discussion The metabolic process of atorvastatin may be inhibited in uremic hemodialysis patients, but the total concentration of atorvastatin did not change significantly; due to the decrease of protein binding rate increase the drug distribution of atorvastatin in the liver or muscle tissue, which may increase the risk of certain adverse reactions. We recommend that clinicians use free drug concentration monitoring to adjust the dose of atorvastatin to ensure patient safety for uremic hemodialysis patients.
Collapse
Affiliation(s)
- Ming-Chen Cao
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xin Huang
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Engineering and Technology Research Center for Pediatric Drug Development, Jinan, China
| | - Bo-Hao Tang
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Hai-Yan Shi
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Engineering and Technology Research Center for Pediatric Drug Development, Jinan, China
| | - Yi Zheng
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wei Zhao
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Engineering and Technology Research Center for Pediatric Drug Development, Jinan, China
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
2
|
Riddick DS. Canadian Content in the Pages of Drug Metabolism and Disposition: A Comprehensive Historical Analysis. Drug Metab Dispos 2023; 52:Pages 1-18. [PMID: 37833076 DOI: 10.1124/dmd.123.001517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/28/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023] Open
Abstract
Scientists from Canadian institutions have a rich history of making interesting and important contributions to the journal Drug Metabolism and Disposition (DMD) over the past 51 years. A goal of this minireview is to highlight these contributions and pay tribute to many of the scientists at Canadian institutions that have aided in the evolution of the discipline through their DMD publications. We conducted a geographical and research sectoral analysis of the temporal trends of DMD publications originating from Canadian sources. The fraction of total DMD papers of Canadian origin achieved a peak during the 1990s and since that time, this metric has displayed a pronounced and steady decline to the present situation, where the country needs to be concerned about its potentially vulnerable global status within the realm of drug metabolism and disposition science. Stronger and timely investment by Canadian academic institutions in drug metabolism and disposition science may help to restore the nation's research excellence in this discipline and ensure a more robust pipeline of appropriately trained scientists to take on careers in academia, industry, and government. Significance Statement The substantial contributions made by scientists at Canadian institutions to the journal Drug Metabolism and Disposition (DMD) are highlighted and celebrated in this minireview. Analysis of temporal trends in the fraction of total DMD papers of Canadian origin paints a concerning picture of Canada's current global status in the realm of drug metabolism and disposition science. Further investment in this discipline at Canadian universities may be needed.
Collapse
Affiliation(s)
- David S Riddick
- Department of Pharmacology & Toxicology, University of Toronto, Canada
| |
Collapse
|
3
|
Arakawa H, Kato Y. Emerging Roles of Uremic Toxins and Inflammatory Cytokines in the Alteration of Hepatic Drug Disposition in Patients with Kidney Dysfunction. Drug Metab Dispos 2023; 51:1127-1135. [PMID: 36854605 DOI: 10.1124/dmd.122.000967] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 02/12/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Patients with kidney dysfunction exhibit distinct pharmacokinetic profiles compared to those with normal kidney function. Hence, it is desirable to monitor the drug efficacy and toxicity caused by fluctuations in plasma drug concentrations associated with kidney dysfunction. Recently, pharmacokinetic information of drugs excreted mainly through the urine of patients with kidney dysfunction has been reported via drug-labeling information. Pharmacokinetic changes in drugs mainly eliminated by the liver cannot be overlooked as drug metabolism and/or transport activity in the liver may also be altered in patients with kidney dysfunction; however, the underlying mechanisms remain unclear. To plan an appropriate dosage regimen, it is necessary to clarify the underlying processes of functional changes in pharmacokinetic proteins. In recent years, uremic toxins have been shown to reduce the activity and/or expression of renal and hepatic transporters. This inhibitory effect has been reported to be time-dependent. In addition, inflammatory cytokines, such as interleukin-6, released from immune cells activated by uremic toxins and/or kidney injury can reduce the expression levels of drug-metabolizing enzymes and transporters in human hepatocytes. In this mini-review, we have summarized the renal and hepatic pharmacokinetic changes as well as the potential underlying mechanisms in kidney dysfunction, such as the chronic kidney disease and acute kidney injury. SIGNIFICANCE STATEMENT: Patients with kidney dysfunction exhibit distinct pharmacokinetic profiles compared to those with normal kidney function. Increased plasma concentrations of uremic toxins and inflammatory cytokines during kidney disease may potentially affect the activities and/or expression levels of drug-metabolizing enzymes and transporters in the liver and kidneys.
Collapse
Affiliation(s)
| | - Yukio Kato
- Faculty of Pharmacy, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
4
|
Takita H, Scotcher D, Chu X, Yee KL, Ogungbenro K, Galetin A. Coproporphyrin I as an Endogenous Biomarker to Detect Reduced OATP1B Activity and Shift in Elimination Route in Chronic Kidney Disease. Clin Pharmacol Ther 2022; 112:615-626. [PMID: 35652251 PMCID: PMC9540787 DOI: 10.1002/cpt.2672] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/22/2022] [Indexed: 01/29/2023]
Abstract
Coproporphyrin I (CPI) is an endogenous biomarker of organic anion transporting polypeptide 1B transporter (OATP1B). CPI plasma baseline was reported to increase with severity of chronic kidney disease (CKD). Further, ratio of CPI area under the plasma concentration-time curve (AUCR) in the presence/absence of OATP1B inhibitor rifampin was higher in patients with CKD compared with healthy participants, in contrast to pitavastatin (a clinical OATP1B probe). This study investigated mechanism(s) contributing to altered CPI baseline in patients with CKD by extending a previously developed physiologically-based pharmacokinetic (PBPK) model to this patient population. CKD-related covariates were evaluated in a stepwise manner on CPI fraction unbound in plasma (fu,p ), OATP1B-mediated hepatic uptake clearance (CLactive ), renal clearance (CLR ), and endogenous synthesis (ksyn ). The CPI model successfully recovered increased baseline and rifampin-mediated AUCR in patients with CKD by accounting for the following disease-related changes: 13% increase in fu,p , 29% and 39% decrease in CLactive in mild and moderate to severe CKD, respectively, decrease in CLR proportional to decline in glomerular filtration rate, and 27% decrease in ksyn in severe CKD. Almost complete decline in CPI renal elimination in severe CKD increased its fraction transported by OATP1B, rationalizing differences in the CPI-rifampin interaction observed between healthy participants and patients with CKD. In conclusion, mechanistic modeling performed here supports CKD-related decrease in OATP1B function to inform prospective PBPK modeling of OATP1B-mediated drug-drug interaction in these patients. Monitoring of CPI allows detection of CKD-drug interaction risk for OATP1B drugs with combined hepatic and renal elimination which may be underestimated by extrapolating the interaction risk based on pitavastatin data in healthy participants.
Collapse
Affiliation(s)
- Hiroyuki Takita
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,Development Planning, Clinical Development Center, Asahi Kasei Pharma Corporation, Tokyo, Japan
| | - Daniel Scotcher
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Xiaoyan Chu
- ADME and Discovery Toxicology, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Ka Lai Yee
- Quantitative Pharmacology and Pharmacometrics, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Kayode Ogungbenro
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Aleksandra Galetin
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
5
|
Rattanacheeworn P, Kerr SJ, Kittanamongkolchai W, Townamchai N, Udomkarnjananun S, Praditpornsilpa K, Thanusuwannasak T, Udomnilobol U, Jianmongkol S, Ongpipattanakul B, Prueksaritanont T, Avihingsanon Y, Chariyavilaskul P. Quantification of CYP3A and Drug Transporters Activity in Healthy Young, Healthy Elderly and Chronic Kidney Disease Elderly Patients by a Microdose Cocktail Approach. Front Pharmacol 2021; 12:726669. [PMID: 34603040 PMCID: PMC8486002 DOI: 10.3389/fphar.2021.726669] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/01/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Ageing and chronic kidney disease (CKD) affect pharmacokinetic (PK) parameters. Since mechanisms are related and remain unclear, cytochrome P450 (CYP) 3A and drug transporter activities were investigated in the elderly with or without CKD and compared to healthy adults using a microdose cocktail. Methods: Healthy young participants (n = 20), healthy elderly participants (n = 16) and elderly patients with CKD (n = 17) received, in study period 1, a single dose of microdose cocktail probe containing 30 µg midazolam, 750 µg dabigatran etexilate, 100 µg atorvastatin, 10 µg pitavastatin, and 50 µg rosuvastatin. After a 14-day wash-out period, healthy young participants continued to study period 2 with the microdose cocktail plus rifampicin. PK parameters including area under the plasma concentration-time curve (AUC), maximum plasma drug concentration (Cmax), and half-life were estimated before making pairwise comparisons of geometric mean ratios (GMR) between groups. Results: AUC and Cmax GMR (95% confidence interval; CI) of midazolam, a CYP3A probe substrate, were increased 2.30 (1.70-3.09) and 2.90 (2.16-3.88) fold in healthy elderly and elderly patients with CKD, respectively, together with a prolonged half-life. AUC and Cmax GMR (95%CI) of atorvastatin, another CYP3A substrate, was increased 2.14 (1.52-3.02) fold in healthy elderly and 4.15 (2.98-5.79) fold in elderly patients with CKD, indicating decreased CYP3A activity related to ageing. Associated AUC changes in the probe drug whose activity could be modified by intestinal P-glycoprotein (P-gp) activity, dabigatran etexilate, were observed in patients with CKD. However, whether the activity of pitavastatin and rosuvastatin is modified by organic anion transporting polypeptide 1B (OATP1B) and of breast cancer resistance protein (BCRP), respectively, in elderly participants with or without CKD was inconclusive. Conclusions: CYP3A activity is reduced in ageing. Intestinal P-gp function might be affected by CKD, but further confirmation appears warranted. Clinical Trial Registration:http://www.thaiclinicaltrials.org/ (TCTR 20180312002 registered on March 07, 2018).
Collapse
Affiliation(s)
- Punyabhorn Rattanacheeworn
- Clinical Pharmacokinetics and Pharmacogenomics Research Unit, Chulalongkorn University, Bangkok, Thailand
| | - Stephen J Kerr
- Biostatistics Excellence Center, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Wonngarm Kittanamongkolchai
- Maha Chakri Sirindhorn Clinical Research Center Under the Royal Patronage, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Natavudh Townamchai
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Suwasin Udomkarnjananun
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Kearkiat Praditpornsilpa
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Excellent Center of Geriatrics, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Thanundorn Thanusuwannasak
- Chulalongkorn University Drug and Health Products Innovation Promotion Center, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Udomsak Udomnilobol
- Chulalongkorn University Drug Discovery and Drug Development Research Center, Chulalongkorn University, Bangkok, Thailand
| | - Suree Jianmongkol
- Chulalongkorn University Drug and Health Products Innovation Promotion Center, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand.,Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Boonsri Ongpipattanakul
- Chulalongkorn University Drug and Health Products Innovation Promotion Center, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand.,Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Thomayant Prueksaritanont
- Chulalongkorn University Drug Discovery and Drug Development Research Center, Chulalongkorn University, Bangkok, Thailand
| | - Yingyos Avihingsanon
- Clinical Pharmacokinetics and Pharmacogenomics Research Unit, Chulalongkorn University, Bangkok, Thailand.,Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Pajaree Chariyavilaskul
- Clinical Pharmacokinetics and Pharmacogenomics Research Unit, Chulalongkorn University, Bangkok, Thailand.,Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
6
|
Tanaka T, Ihara M, Fukuma K, Yamamoto H, Washida K, Kimura S, Kada A, Miyata S, Miyata T, Nagatsuka K. Influence of Renal Impairment and Genetic Subtypes on Warfarin Control in Japanese Patients. Genes (Basel) 2021; 12:genes12101537. [PMID: 34680932 PMCID: PMC8535514 DOI: 10.3390/genes12101537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/21/2021] [Accepted: 09/25/2021] [Indexed: 11/16/2022] Open
Abstract
The genotypes of vitamin K epoxide reductase complex 1 (VKORC1) and cytochrome P450 2C9 (CYP2C9) can influence therapeutic warfarin doses. Conversely, nongenetic factors, especially renal function, are associated with warfarin maintenance doses; however, the optimal algorithm for considering genes and renal dysfunction has not been established. This single-center prospective cohort study aimed to evaluate the factors affecting warfarin maintenance doses and develop pharmacogenetics-guided algorithms, including the factors of renal impairment and others. To commence, 176 outpatients who were prescribed warfarin for thromboembolic stroke prophylaxis in the stroke center, were enrolled. Patient characteristics, blood test results, dietary vitamin K intake, and CYP2C9 and VKORC1 (-1639G>A) genotypes were recorded. CYP2C9 and VKORC1 (-1639G>A) genotyping revealed that 80% of the patients had CYP2C9 *1/*1 and VKORC1 mutant AA genotypes. Multiple linear regression analysis demonstrated that the optimal pharmacogenetics-based model comprised age, body surface area, estimated glomerular filtration rate (eGFR), genotypes, vitamin K intake, aspartate aminotransferase levels, and alcohol intake. eGFR exercised a significant impact on the maintenance doses, as an increase in eGFR of 10 mL/min/1.73 m2 escalated the warfarin maintenance dose by 0.6 mg. Reduced eGFR was related to lower warfarin maintenance doses, independent of VKORC1 and CYP2C9 genotypes in Japanese patients.
Collapse
Affiliation(s)
- Tomotaka Tanaka
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka 564-8565, Japan; (M.I.); (K.F.); (K.W.); (S.K.); (K.N.)
- Correspondence:
| | - Masafumi Ihara
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka 564-8565, Japan; (M.I.); (K.F.); (K.W.); (S.K.); (K.N.)
| | - Kazuki Fukuma
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka 564-8565, Japan; (M.I.); (K.F.); (K.W.); (S.K.); (K.N.)
| | - Haruko Yamamoto
- Center for Advancing Clinical and Translational Sciences, National Cerebral and Cardiovascular Center, Suita, Osaka 564-8565, Japan;
| | - Kazuo Washida
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka 564-8565, Japan; (M.I.); (K.F.); (K.W.); (S.K.); (K.N.)
| | - Shunsuke Kimura
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka 564-8565, Japan; (M.I.); (K.F.); (K.W.); (S.K.); (K.N.)
| | - Akiko Kada
- Clinical Research and Development, National Cerebral and Cardiovascular Center, Suita, Osaka 564-8565, Japan;
| | - Shigeki Miyata
- Department of Clinical Laboratory Medicine, National Cerebral and Cardiovascular Center, Suita, Osaka 564-8565, Japan;
| | - Toshiyuki Miyata
- Department of Cerebrovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Osaka 564-8565, Japan;
| | - Kazuyuki Nagatsuka
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka 564-8565, Japan; (M.I.); (K.F.); (K.W.); (S.K.); (K.N.)
| |
Collapse
|
7
|
Droździk M, Oswald S, Droździk A. Impact of kidney dysfunction on hepatic and intestinal drug transporters. Biomed Pharmacother 2021; 143:112125. [PMID: 34474348 DOI: 10.1016/j.biopha.2021.112125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/11/2021] [Accepted: 08/24/2021] [Indexed: 12/16/2022] Open
Abstract
Emerging information suggests that pathology of the kidney may not only affect expression and function of membrane transporters in the organ, but also in the gastrointestinal tract and the liver. Transporter dysfunction may cause effects on handling of drug as well as endogenous compounds with subsequent clinical consequences. A literature search was conducted on Ovid and PubMed databases to select relevant in vitro, animal and human studies that have reported expression, protein abundance and function of the gastrointestinal and liver localized ABC transporters and SLC carriers in kidney dysfunction or uremia states. The altered function of drug transporters in the liver and intestines in kidney failure subjects may provide compensatory activity in handling endogenous compounds (e.g. uremic toxins), which is expected to affect drug pharmacokinetics and local drug actions.
Collapse
Affiliation(s)
- Marek Droździk
- Department of Pharmacology, Faculty of Medicine and Dentistry, Pomeranian Medical University, Powstancow Wlkp 72, 70-111 Szczecin, Poland.
| | - Stefan Oswald
- Institute of Pharmacology and Toxicology, Faculty of Medicine, Rostock University Medical Center, 18057 Rostock, Germany.
| | - Agnieszka Droździk
- Department of Integrated Dentistry, Faculty of Medicine and Dentistry, Pomeranian Medical University, Powstancow Wlkp 72, 70-111 Szczecin, Poland.
| |
Collapse
|
8
|
Campagno RV, Nosetto EC, Brandoni A, Torres AM. Hepatic and renal expression of Oatp1 in obstructive uropathy. First detection of Oatp1 in urine, a potential biomarker. Clin Exp Pharmacol Physiol 2021; 48:987-995. [PMID: 33738813 DOI: 10.1111/1440-1681.13499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 11/29/2022]
Abstract
Obstructive renal diseases affect renal function and kidney integrity. Nevertheless, little is known about its systemic or extra-renal effects. The organic anion transporting polypeptide 1 (Oatp1) is a carrier expressed in liver and kidneys. In this study, the hepatic and renal expression of Oatp1 was evaluated in rats with obstructive nephropathy. Moreover, the urinary excretion of Oatp1 (Oatp1u ) was evaluated as a potential biomarker for this pathology. Male Wistar rats with bilateral ureteral obstruction for 5 hours (BUO5), 24 hours (BUO24) or sham operated were used. After 24 hours of ureteral releasing, liver and kidney functional parameters, histopathology, Oatp1 tissular expression and Oatp1u were evaluated. For Oatp1u evaluation two groups were added; BUO1 and BUO2 (1 and 2 hours of ureteral obstruction, respectively). Both liver and kidney functional parameters and histopathological studies showed alterations in BUO5 and BUO24. In hepatic homogenates, Oatp1 significantly decreased in BUO groups and in total liver membranes no modifications were observed. In renal homogenates, Oatp1 significantly decreased in BUO groups, but in apical kidney membranes, its expression was increased. Oatp1u was only detected in BUO groups, even in those (BUO1, BUO2) in which no alterations in the traditional parameters of renal function were observed. Modulations in liver and renal expression of Oatp1 could be an organism strategy to attenuate the effects of the disease and an attempt to maintain the complex organ cross-talk between liver and kidneys. Oatp1u could be a new, early and specific biomarker of obstructive nephropathy.
Collapse
Affiliation(s)
- Romina V Campagno
- Área Farmacología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, CONICET, Rosario, Argentina
| | - Evangelina C Nosetto
- Área Farmacología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, CONICET, Rosario, Argentina
| | - Anabel Brandoni
- Área Farmacología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, CONICET, Rosario, Argentina
| | - Adriana M Torres
- Área Farmacología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, CONICET, Rosario, Argentina
| |
Collapse
|
9
|
Torres AM, Dnyanmote AV, Granados JC, Nigam SK. Renal and non-renal response of ABC and SLC transporters in chronic kidney disease. Expert Opin Drug Metab Toxicol 2021; 17:515-542. [PMID: 33749483 DOI: 10.1080/17425255.2021.1899159] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The solute carrier (SLC) and the ATP-binding cassette (ABC) transporter superfamilies play essential roles in the disposition of small molecules (endogenous metabolites, uremic toxins, drugs) in the blood, kidney, liver, intestine, and other organs. In chronic kidney disease (CKD), the loss of renal function is associated with altered function of remote organs. As renal function declines, many molecules accumulate in the plasma. Many studies now support the view that ABC and SLC transporters as well as drug metabolizing enzymes (DMEs) in renal and non-renal tissues are directly or indirectly affected by the presence of various types of uremic toxins, including those derived from the gut microbiome; this can lead to aberrant inter-organ communication. AREAS COVERED Here, the expression, localization and/or function of various SLC and ABC transporters as well as DMEs in the kidney and other organs are discussed in the context of CKD and systemic pathophysiology. EXPERT OPINION According to the Remote Sensing and Signaling Theory (RSST), a transporter and DME-centric network that optimizes local and systemic metabolism maintains homeostasis in the steady state and resets homeostasis following perturbations due to renal dysfunction. The implications of this view for pharmacotherapy of CKD are also discussed.
Collapse
Affiliation(s)
- Adriana M Torres
- Pharmacology Area, Faculty of Biochemistry and Pharmaceutical Sciences, National University of Rosario, CONICET, Suipacha 531, S2002LRK Rosario, Argentina
| | - Ankur V Dnyanmote
- Department of Pediatrics, IWK Health Centre - Dalhousie University, 5850 University Ave, Halifax, NS, B3K 6R8, Canada
| | - Jeffry C Granados
- Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0693, USA
| | - Sanjay K Nigam
- Departments of Pediatrics and Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0693, USA
| |
Collapse
|
10
|
Tuey SM, Atilano-Roque A, Charkoftaki G, Thurman JM, Nolin TD, Joy MS. Influence of vitamin D treatment on functional expression of drug disposition pathways in human kidney proximal tubule cells during simulated uremia. Xenobiotica 2021; 51:657-667. [PMID: 33870862 DOI: 10.1080/00498254.2021.1909783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Effects of cholecalciferol (VitD3) and calcitriol (1,25-VitD3), on the expression and function of major vitamin D metabolizing enzymes (cytochrome P450 [CYP]2R1, CYP24A1) and select drug transport pathways (ABCB1/P-gp, SLCO4C1/OATP4C1) were evaluated in human kidney proximal tubule epithelial cells (hPTECs) under normal and uraemic serum conditions.hPTECs were incubated with 10% normal or uraemic serum for 24 h followed by treatment with 2% ethanol vehicle, or 100 and 240 nM doses of VitD3, or 1,25-VitD3 for 6 days. The effects of treatment on mRNA and protein expression and functional activity of select CYP enzymes and transporters were assessedUnder uraemic serum, treatment with 1,25-VitD3 resulted in increased mRNA but decreased protein expression of CYP2R1. Activity of CYP2R1 was not influenced by serum or VitD analogues. CYP24A1 expression was increased with 1,25-VitD3 under normal as well as uraemic serum, although to a lesser extent. ABCB1/P-gp mRNA expression increased under normal and uraemic serum, with exposure to 1,25-VitD3. SLCO4C1/OATP4C1 exhibited increased mRNA but decreased protein expression, under uraemic serum + 1,25-VitD3. Functional assessments of transport showed no changes regardless of exposure to serum or 1,25-VitD3.Key findings indicate that uraemic serum and VitD treatment led to differential effects on the functional expression of CYPs and transporters in hPTECs.
Collapse
Affiliation(s)
- Stacey M Tuey
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, USA
| | - Amandla Atilano-Roque
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, USA
| | - Georgia Charkoftaki
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, USA.,School of Public Health, Yale University, New Haven, CT, USA
| | - Joshua M Thurman
- Division of Nephrology and Hypertension, School of Medicine, University of Colorado, Aurora, CO, USA
| | - Thomas D Nolin
- Department of Pharmacy and Therapeutics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Melanie S Joy
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, USA.,Division of Nephrology and Hypertension, School of Medicine, University of Colorado, Aurora, CO, USA
| |
Collapse
|
11
|
Schijvens AM, de Wildt SN, Schreuder MF. Pharmacokinetics in children with chronic kidney disease. Pediatr Nephrol 2020; 35:1153-1172. [PMID: 31375913 PMCID: PMC7248054 DOI: 10.1007/s00467-019-04304-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/26/2019] [Accepted: 07/02/2019] [Indexed: 12/20/2022]
Abstract
In children, the main causes of chronic kidney disease (CKD) are congenital diseases and glomerular disorders. CKD is associated with multiple physiological changes and may therefore influence various pharmacokinetic (PK) parameters. A well-known consequence of CKD on pharmacokinetics is a reduction in renal clearance due to a decrease in the glomerular filtration rate. The impact of renal impairment on pharmacokinetics is, however, not limited to a decreased elimination of drugs excreted by the kidney. In fact, renal dysfunction may lead to modifications in absorption, distribution, transport, and metabolism as well. Currently, insufficient evidence is available to guide dosing decisions on many commonly used drugs. Moreover, the impact of maturation on drug disposition and action should be taken into account when selecting and dosing drugs in the pediatric population. Clinicians should take PK changes into consideration when selecting and dosing drugs in pediatric CKD patients in order to avoid toxicity and increase efficiency of drugs in this population. The aim of this review is to summarize known PK changes in relation to CKD and to extrapolate available knowledge to the pediatric CKD population to provide guidance for clinical practice.
Collapse
Affiliation(s)
- Anne M Schijvens
- Radboud Institute for Molecular Life Sciences, Department of Pediatric Nephrology, Radboud University Medical Center, Amalia Children's Hospital, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.
| | - Saskia N de Wildt
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Nijmegen, The Netherlands
- Intensive Care and Department of Pediatric Surgery, Erasmus MC Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Michiel F Schreuder
- Radboud Institute for Molecular Life Sciences, Department of Pediatric Nephrology, Radboud University Medical Center, Amalia Children's Hospital, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| |
Collapse
|
12
|
Egeland EJ, Witczak BJ, Zaré HK, Christensen H, Åsberg A, Robertsen I. Chronic Inhibition of CYP3A is Temporarily Reduced by Each Hemodialysis Session in Patients With End-Stage Renal Disease. Clin Pharmacol Ther 2020; 108:866-873. [PMID: 32356565 DOI: 10.1002/cpt.1875] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/21/2020] [Indexed: 12/25/2022]
Abstract
Drug dosing is challenging in patients with end-stage renal disease. Not only is renal drug elimination reduced, but nonrenal clearance pathways are also altered. Increasing evidence suggest that uremia impacts drug metabolizing enzymes and transporters leading to changes in nonrenal clearance. However, the exact mechanisms are not yet fully understood, and the acute effects of dialysis are inadequately investigated. We prospectively phenotyped cytochrome P450 3A (CYP3A; midazolam) and P-glycoprotein (P-gp)/organic anion-transporting proteins (OATP; fexofenadine) in 12 patients on chronic intermittent hemodialysis; a day after ("clean") and a day prior to ("dirty") dialysis. Unbound midazolam clearance decreased with time after dialysis; median (range) reduction of 14% (-3% to 41%) from "clean" to "dirty" day (P = 0.001). Fexofenadine clearance was not affected by time after dialysis (P = 0.68). In conclusion, changes in uremic milieu between dialysis sessions induce a small, direct inhibitory effect on CYP3A activity, but do not alter P-gp/OATP activity.
Collapse
Affiliation(s)
- Erlend Johannessen Egeland
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | | | | | - Hege Christensen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Anders Åsberg
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway.,Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway
| | - Ida Robertsen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| |
Collapse
|
13
|
Xun T, Lin Z, Zhan X, Song S, Mo L, Feng H, Yang Q, Guo D, Yang X. Advanced oxidation protein products upregulate efflux transporter expression and activity through activation of the Nrf-2-mediated signaling pathway in vitro and in vivo. Eur J Pharm Sci 2020; 149:105342. [PMID: 32315774 DOI: 10.1016/j.ejps.2020.105342] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 04/05/2020] [Accepted: 04/05/2020] [Indexed: 12/18/2022]
Abstract
Clinical and benchtop studies suggest that chronic kidney disease (CKD) alters both renal and nonrenal clearance of drugs. Although studies have documented that the accumulating uremic toxins in the body under CKD conditions are humoral factors that alter the expression and/or activity of drug transporters, the specific process is poorly understood. In this study, we found that advanced oxidation protein products (AOPPs), which are a modified protein uremic toxin, could upregulate efflux transporters, including P-glycoprotein (ABCB1), multi-drug resistance-associated protein 2 (ABCC2) and breast cancer resistance protein (ABCG2) expression in CKD rat models and in HepG2 cells. Our research shows that renal function decline was associated with the accumulation of AOPPs in serum and the upregulation of efflux transporters in the liver in two rat models of CKD. In HepG2 cells, AOPPs significantly increased the expression of efflux transporters in a dose- and time-dependent manner and upregulated the mRNA expression, protein expression and activity of efflux transporters, but bovine serum albumin (BSA), a synthetic precursor of AOPPs, had no effect. This effect correlated with AOPPs activation of the nuclear factor E2-related factor 2 (Nrf-2)-mediated signaling pathway. Further investigation of the regulation of Nrf-2 by AOPPs revealed that ML385 and siNrf-2 abolished the upregulatory effects of AOPPs. These findings suggest that AOPPs upregulate ABCB1, ABCG2 and ABCC2 through Nrf-2 signaling pathways. Protein uremic toxins, such as AOPPs, may modify the nonrenal clearance of drugs in patients with CKD through effects on drug transporters.
Collapse
Affiliation(s)
- Tianrong Xun
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen 518100, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Zhufen Lin
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen 518100, China
| | - Xia Zhan
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen 518100, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Shaolian Song
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen 518100, China
| | - Liqian Mo
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Haixing Feng
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Qin Yang
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Dan Guo
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Xixiao Yang
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen 518100, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China; Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
14
|
Bush KT, Singh P, Nigam SK. Gut-derived uremic toxin handling in vivo requires OAT-mediated tubular secretion in chronic kidney disease. JCI Insight 2020; 5:133817. [PMID: 32271169 DOI: 10.1172/jci.insight.133817] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 02/28/2020] [Indexed: 12/12/2022] Open
Abstract
The role of the renal organic anion transporters OAT1 (also known as SLC22A6, originally identified as NKT) and OAT3 (also known as SLC22A8) in chronic kidney disease (CKD) remains poorly understood. This is particularly so from the viewpoint of residual proximal tubular secretion, a key adaptive mechanism to deal with protein-bound uremic toxins in CKD. Using the subtotal nephrectomy (STN) model, plasma metabolites accumulating in STN rats treated with and without the OAT inhibitor, probenecid, were identified. Comparisons with metabolomics data from Oat1-KO and Oat3-KO mice support the centrality of the OATs in residual tubular secretion of uremic solutes, such as indoxyl sulfate, kynurenate, and anthranilate. Overlapping our data with those of published metabolomics data regarding gut microbiome-derived uremic solutes - which can have dual roles in signaling and toxicity - indicates that OATs play a critical role in determining their plasma levels in CKD. Thus, the OATs, along with other SLC and ABC drug transporters, are critical to the movement of uremic solutes across tissues and into various body fluids, consistent with the remote sensing and signaling theory. The data support a role for OATs in modulating remote interorganismal and interorgan communication (gut microbiota-blood-liver-kidney-urine). The results also have implications for understanding drug-metabolite interactions involving uremic toxins.
Collapse
Affiliation(s)
- Kevin T Bush
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| | - Prabhleen Singh
- Division of Nephrology-Hypertension, University of California, San Diego and Veterans Affairs San Diego Healthcare System, San Diego, California, USA.,Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Sanjay K Nigam
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA.,Department of Medicine, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
15
|
Chan G, Hajjar R, Boutin L, Garneau PY, Pichette V, Lafrance JP, Elftouh N, Michaud J, du Souich P. Prospective study of the changes in pharmacokinetics of immunosuppressive medications after laparoscopic sleeve gastrectomy. Am J Transplant 2020; 20:582-588. [PMID: 31529773 DOI: 10.1111/ajt.15602] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 09/08/2019] [Accepted: 09/10/2019] [Indexed: 02/06/2023]
Abstract
Laparoscopic sleeve gastrectomy induces weight loss via the creation of a restrictive gastric tube for early satiety and is associated with an accelerated gastric transit time. A prospective, single-dose pharmacokinetic study was performed, prior to and after laparoscopic sleeve gastrectomy, for tacrolimus, extended-release tacrolimus, mycophenolate mofetil, and enteric-coated mycophenolate sodium. The study included 12 morbidly obese patients in chronic renal failure. The median decrease in body mass index was 8.8 kg/m2 with an excess body weight loss of 54.9%. The AUC24 of all drugs were increased after laparoscopic sleeve gastrectomy by 46%, 55%, 77%, and 74%, respectively. The maximum concentrations were increased for tacrolimus, extended-release tacrolimus, and mycophenolate mofetil by 43%, 46%, and 65%. The apparent total clearances were decreased for tacrolimus, mycophenolate mofetil, and enteric-coated mycophenolate sodium by 36%, 57%, and 38%. Laparoscopic sleeve gastrectomy can be associated with significant changes in pharmacokinetics of the drugs evaluated. The mechanism is likely decreased apparent drug clearance due to an increased drug exposure (from a more distal site of intestinal absorption with decreased intestinal metabolism), or decreased clearance (liver metabolism). Adapting the monitoring of immunosuppression will be important to avoid overdosing and potential side effects.
Collapse
Affiliation(s)
- Gabriel Chan
- Department of Surgery, University of Montréal, Montréal, Québec, Canada.,Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada
| | - Roy Hajjar
- Department of Surgery, University of Montréal, Montréal, Québec, Canada.,Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada
| | - Lucie Boutin
- Service de Néphrologie, Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada
| | - Pierre Y Garneau
- Department of Surgery, University of Montréal, Montréal, Québec, Canada.,Hôpital Sacré-Cœur de Montréal, Montréal, Québec, Canada
| | - Vincent Pichette
- Service de Néphrologie, Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada.,Department of Medicine, University of Montréal, Montréal, Québec, Canada.,Department of Pharmacology, Faculty of Medicine, University of Montréal, Montréal, Québec, Canada
| | - Jean-Philippe Lafrance
- Service de Néphrologie, Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada.,Department of Pharmacology, Faculty of Medicine, University of Montréal, Montréal, Québec, Canada
| | | | - Josée Michaud
- Department of Medicine, University of Montréal, Montréal, Québec, Canada
| | - Patrick du Souich
- Department of Pharmacology, Faculty of Medicine, University of Montréal, Montréal, Québec, Canada
| |
Collapse
|
16
|
Tavakoli M, Tsekouras K, Day R, Dunn KW, Pressé S. Quantitative Kinetic Models from Intravital Microscopy: A Case Study Using Hepatic Transport. J Phys Chem B 2019; 123:7302-7312. [PMID: 31298856 PMCID: PMC6857640 DOI: 10.1021/acs.jpcb.9b04729] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The liver performs critical physiological functions, including metabolizing and removing substances, such as toxins and drugs, from the bloodstream. Hepatotoxicity itself is intimately linked to abnormal hepatic transport, and hepatotoxicity remains the primary reason drugs in development fail and approved drugs are withdrawn from the market. For this reason, we propose to analyze, across liver compartments, the transport kinetics of fluorescein-a fluorescent marker used as a proxy for drug molecules-using intravital microscopy data. To resolve the transport kinetics quantitatively from fluorescence data, we account for the effect that different liver compartments (with different chemical properties) have on fluorescein's emission rate. To do so, we develop ordinary differential equation transport models from the data where the kinetics is related to the observable fluorescence levels by "measurement parameters" that vary across different liver compartments. On account of the steep non-linearities in the kinetics and stochasticity inherent to the model, we infer kinetic and measurement parameters by generalizing the method of parameter cascades. For this application, the method of parameter cascades ensures fast and precise parameter estimates from noisy time traces.
Collapse
Affiliation(s)
- Meysam Tavakoli
- Department of Physics, Indiana University-Purdue University, Indianapolis, Indiana 46202, United States
| | | | - Richard Day
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Kenneth W. Dunn
- Department of Medicine and Biochemistry, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Steve Pressé
- Center for Biological Physics, Arizona State University, Tempe, Arizona 85287, United States
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
17
|
Hanauer Schaab E, Lanchote VL, Balthazar Nardotto GH, Marques Pereira MP, Dantas M, Paiva CE, Barbosa Coelho E. Effect of Lercanidipine on the Pharmacokinetics‐Pharmacodynamics of Carvedilol Enantiomers in Patients With Chronic Kidney Disease. J Clin Pharmacol 2019; 60:75-85. [DOI: 10.1002/jcph.1485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 06/18/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Estela Hanauer Schaab
- Faculdade de Ciências Farmacêuticas de Ribeirão PretoUniversidade de São Paulo Ribeirão Preto Brazil
| | - Vera Lucia Lanchote
- Faculdade de Ciências Farmacêuticas de Ribeirão PretoUniversidade de São Paulo Ribeirão Preto Brazil
| | | | | | - Márcio Dantas
- Faculdade de Medicina de Ribeirão PretoUniversidade de São Paulo Ribeirão Preto Brazil
| | - Carlos Eduardo Paiva
- Faculdade de Medicina de Ribeirão PretoUniversidade de São Paulo Ribeirão Preto Brazil
| | | |
Collapse
|
18
|
Emerging Roles of Aryl Hydrocarbon Receptors in the Altered Clearance of Drugs during Chronic Kidney Disease. Toxins (Basel) 2019; 11:toxins11040209. [PMID: 30959953 PMCID: PMC6521271 DOI: 10.3390/toxins11040209] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/12/2019] [Accepted: 04/03/2019] [Indexed: 12/11/2022] Open
Abstract
Chronic kidney disease (CKD) is a major public health problem, since 300,000,000 people in the world display a glomerular filtration rate (GFR) below 60 mL/min/1.73m². Patients with CKD have high rates of complications and comorbidities. Thus, they require the prescription of numerous medications, making the management of patients very complex. The prescription of numerous drugs associated with an altered renal- and non-renal clearance makes dose adjustment challenging in these patients, with frequent drug-related adverse events. However, the mechanisms involved in this abnormal drug clearance during CKD are not still well identified. We propose here that the transcription factor, aryl hydrocarbon receptor, which is the cellular receptor for indolic uremic toxins, could worsen the metabolism and the excretion of drugs in CKD patients.
Collapse
|
19
|
Recovery of OATP1B Activity after Living Kidney Transplantation in Patients with End-Stage Renal Disease. Pharm Res 2019; 36:59. [DOI: 10.1007/s11095-019-2593-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 02/18/2019] [Indexed: 12/18/2022]
|
20
|
Weigand KM, Schirris TJJ, Houweling M, van den Heuvel JJMW, Koenderink JB, Dankers ACA, Russel FGM, Greupink R. Uremic solutes modulate hepatic bile acid handling and induce mitochondrial toxicity. Toxicol In Vitro 2019; 56:52-61. [PMID: 30639138 DOI: 10.1016/j.tiv.2019.01.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 11/11/2018] [Accepted: 01/07/2019] [Indexed: 12/22/2022]
Abstract
Chronic kidney disease (CKD) is accompanied by accumulating levels of uremic solutes in the circulation. Changes in the size and composition of the bile acid pool have also been observed. We investigated via which mechanisms uremic solutes may interfere with hepatocyte function and thus contribute to altered bile acid handling. We studied interference on the level of bile acid synthesis by cytochrome P450 7A1 (CYP7A1), explored effects on hepatic bile acid transporters, and investigated effects on mitochondrial function. In HEK293 cells overexpressing bile salt transporters, we observed that p-cresyl sulfate inhibited Na+-taurocholate cotransporting polypeptide (NTCP)-mediated uptake of taurocholic acid (TCA), whereas organic anion-transporting polypeptide 1B1 (OATP1B1)-mediated TCA uptake was increased. Assays in transporter-overexpressing membrane vesicles revealed that kynurenic acid inhibited TCA transport via the bile salt efflux pump (BSEP), whereas p-cresyl glucuronide and hippuric acid increased TCA efflux via multidrug resistance-associated protein 3 (MRP3). Moreover, indoxyl sulfate decreased mRNA expression of NTCP, OATP1B3 and CYP7A1 in primary human hepatocytes. Transport studies confirmed a decreased TCA uptake in indoxyl sulfate-exposed hepatocytes. Decreased hepatocyte viability was found for all seven uremic solutes tested, whereas five out of seven also decreased intracellular ATP levels and mitochondrial membrane potential. In conclusion, uremic solutes affect hepatic bile acid transport and mitochondrial function. This can contribute to the altered bile acid homeostasis observed in CKD patients.
Collapse
Affiliation(s)
- Karl M Weigand
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Tom J J Schirris
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Megan Houweling
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jeroen J M W van den Heuvel
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jan B Koenderink
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Anita C A Dankers
- Janssen Pharmaceutical Companies of Johnson & Johnson, Department of Pharmacokinetics, Dynamics and Metabolism, Beerse, Belgium
| | - Frans G M Russel
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Rick Greupink
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
21
|
Evers R, Piquette-Miller M, Polli JW, Russel FGM, Sprowl JA, Tohyama K, Ware JA, de Wildt SN, Xie W, Brouwer KLR. Disease-Associated Changes in Drug Transporters May Impact the Pharmacokinetics and/or Toxicity of Drugs: A White Paper From the International Transporter Consortium. Clin Pharmacol Ther 2018; 104:900-915. [PMID: 29756222 PMCID: PMC6424581 DOI: 10.1002/cpt.1115] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/23/2018] [Accepted: 05/07/2018] [Indexed: 12/11/2022]
Abstract
Drug transporters are critically important for the absorption, distribution, metabolism, and excretion (ADME) of many drugs and endogenous compounds. Therefore, disruption of these pathways by inhibition, induction, genetic polymorphisms, or disease can have profound effects on overall physiology, drug pharmacokinetics, drug efficacy, and toxicity. This white paper provides a review of changes in transporter function associated with acute and chronic disease states, describes regulatory pathways affecting transporter expression, and identifies opportunities to advance the field.
Collapse
Affiliation(s)
- Raymond Evers
- Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co., Kenilworth, New Jersey, USA
| | | | - Joseph W Polli
- Mechanistic Safety and Drug Disposition, GlaxoSmithKline, King of Prussia, Pennsylvania, USA
| | - Frans G M Russel
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jason A Sprowl
- Department of Pharmaceutical, Social and Administrative Sciences, School of Pharmacy, D'Youville College School, Buffalo, New York, USA
| | - Kimio Tohyama
- Drug Metabolism and Pharmacokinetics Research Laboratories, Takeda Pharmaceutical Company, Fujisawa, Kanagawa, Japan
| | - Joseph A Ware
- Department of Small Molecule Pharmaceutical Sciences, Genentech, South San Francisco, California, USA
| | - Saskia N de Wildt
- Department of Pharmacology and Toxicology and Department of Intensive Care, Radboud University Medical Center, Nijmegen, The Netherlands, and Intensive Care and Department of Pediatric Surgery, Erasmus MC Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Wen Xie
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kim L R Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| | | |
Collapse
|
22
|
Severe Renal Impairment Has Minimal Impact on Doravirine Pharmacokinetics. Antimicrob Agents Chemother 2018; 62:AAC.00326-18. [PMID: 29891610 DOI: 10.1128/aac.00326-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 06/02/2018] [Indexed: 02/07/2023] Open
Abstract
Doravirine is a novel nonnucleoside reverse transcriptase inhibitor in development for use with other antiretroviral therapies to treat human immunodeficiency virus type 1 (HIV-1) infection. Doravirine metabolism predominantly occurs via cytochrome P450 3A with <10% of elimination occurring via the renal pathway. As severe renal impairment can alter the pharmacokinetics (PK) of metabolically eliminated drugs, the effect of severe renal impairment on doravirine PK was assessed. A single dose of doravirine 100 mg was administered to subjects aged 18 to 75 years with an estimated glomerular filtration rate (eGFR) of <30 ml/min/1.73 m2 (severe renal impairment group) and healthy controls with an eGFR of ≥80 ml/min/1.73 m2, matched to the mean of the renal impairment group by age (±10 years) and weight (±10 kg). Doravirine plasma concentrations were determined at regular intervals, and safety was monitored throughout. The geometric mean ratios (90% confidence interval) for severe renal impairment/healthy subjects were 1.43 (1.00, 2.04), 1.38 (0.99, 1.92), and 0.83 (0.61, 1.15) for the plasma doravirine area under the curve from zero to infinity (AUC0-∞), plasma concentration at 24 h postdose (C24), and maximum plasma concentration (Cmax), respectively. Doravirine was generally well tolerated in both groups. Based on the overall efficacy, safety, and PK profile of doravirine, the minor effect of severe renal impairment on doravirine PK observed in this study is not considered clinically meaningful. (This study has been registered at ClinicalTrials.gov under identifier NCT02641067.).
Collapse
|
23
|
Santana Machado T, Poitevin S, Paul P, McKay N, Jourde-Chiche N, Legris T, Mouly-Bandini A, Dignat-George F, Brunet P, Masereeuw R, Burtey S, Cerini C. Indoxyl Sulfate Upregulates Liver P-Glycoprotein Expression and Activity through Aryl Hydrocarbon Receptor Signaling. J Am Soc Nephrol 2017; 29:906-918. [PMID: 29222397 DOI: 10.1681/asn.2017030361] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 11/14/2017] [Indexed: 11/03/2022] Open
Abstract
In patients with CKD, not only renal but also, nonrenal clearance of drugs is altered. Uremic toxins could modify the expression and/or activity of drug transporters in the liver. We tested whether the uremic toxin indoxyl sulfate (IS), an endogenous ligand of the transcription factor aryl hydrocarbon receptor, could change the expression of the following liver transporters involved in drug clearance: SLC10A1, SLC22A1, SLC22A7, SLC47A1, SLCO1B1, SLCO1B3, SLCO2B1, ABCB1, ABCB11, ABCC2, ABCC3, ABCC4, ABCC6, and ABCG2 We showed that IS increases the expression and activity of the efflux transporter P-glycoprotein (P-gp) encoded by ABCB1 in human hepatoma cells (HepG2) without modifying the expression of the other transporters. This effect depended on the aryl hydrocarbon receptor pathway. Presence of human albumin at physiologic concentration in the culture medium did not abolish the effect of IS. In two mouse models of CKD, the decline in renal function associated with the accumulation of IS in serum and the specific upregulation of Abcb1a in the liver. Additionally, among 109 heart or kidney transplant recipients with CKD, those with higher serum levels of IS needed higher doses of cyclosporin, a P-gp substrate, to obtain the cyclosporin target blood concentration. This need associated with serum levels of IS independent of renal function. These findings suggest that increased activity of P-gp could be responsible for increased hepatic cyclosporin clearance. Altogether, these results suggest that uremic toxins, such as IS, through effects on drug transporters, may modify the nonrenal clearance of drugs in patients with CKD.
Collapse
Affiliation(s)
- Tacy Santana Machado
- Coordination for the Improvement of Higher Education Personnel (CAPES Foundation), Ministry of Education of Brazil, Brasilia, Brazil.,Aix Marseille University, Faculty of Pharmacy, National Institute of Health and Medical Research (INSERM), Vascular Research Center of Marseille (VRCM), Marseille, France
| | - Stéphane Poitevin
- Aix Marseille University, Faculty of Pharmacy, National Institute of Health and Medical Research (INSERM), Vascular Research Center of Marseille (VRCM), Marseille, France
| | - Pascale Paul
- Aix Marseille University, Faculty of Pharmacy, National Institute of Health and Medical Research (INSERM), Vascular Research Center of Marseille (VRCM), Marseille, France
| | - Nathalie McKay
- Aix Marseille University, Faculty of Pharmacy, National Institute of Health and Medical Research (INSERM), Vascular Research Center of Marseille (VRCM), Marseille, France
| | - Noémie Jourde-Chiche
- Marseille Public University Hospital System (APHM), Conception Hospital, Centre de Néphrologie et Transplantation Rénale, Marseille, France
| | - Tristan Legris
- Marseille Public University Hospital System (APHM), Conception Hospital, Centre de Néphrologie et Transplantation Rénale, Marseille, France
| | - Annick Mouly-Bandini
- Department of Cardiac Surgery, Marseille Public University Hospital System (APHM), La Timone Hospital, Marseille, France
| | - Françoise Dignat-George
- Aix Marseille University, Faculty of Pharmacy, National Institute of Health and Medical Research (INSERM), Vascular Research Center of Marseille (VRCM), Marseille, France
| | - Philippe Brunet
- Marseille Public University Hospital System (APHM), Conception Hospital, Centre de Néphrologie et Transplantation Rénale, Marseille, France.,European Uraemic Toxin Working Group (EUTox) of The European Society for Artificial Organs (ESAO) endorsed by European Renal Association & European Dialysis and Transplant Assiociation (ERA-EDTA), Krems, Austria; and
| | - Rosalinde Masereeuw
- European Uraemic Toxin Working Group (EUTox) of The European Society for Artificial Organs (ESAO) endorsed by European Renal Association & European Dialysis and Transplant Assiociation (ERA-EDTA), Krems, Austria; and.,Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht, The Netherlands
| | - Stéphane Burtey
- Aix Marseille University, Faculty of Pharmacy, National Institute of Health and Medical Research (INSERM), Vascular Research Center of Marseille (VRCM), Marseille, France.,Marseille Public University Hospital System (APHM), Conception Hospital, Centre de Néphrologie et Transplantation Rénale, Marseille, France.,European Uraemic Toxin Working Group (EUTox) of The European Society for Artificial Organs (ESAO) endorsed by European Renal Association & European Dialysis and Transplant Assiociation (ERA-EDTA), Krems, Austria; and
| | - Claire Cerini
- Aix Marseille University, Faculty of Pharmacy, National Institute of Health and Medical Research (INSERM), Vascular Research Center of Marseille (VRCM), Marseille, France;
| |
Collapse
|
24
|
Tan ML, Yoshida K, Zhao P, Zhang L, Nolin TD, Piquette-Miller M, Galetin A, Huang SM. Effect of Chronic Kidney Disease on Nonrenal Elimination Pathways: A Systematic Assessment of CYP1A2, CYP2C8, CYP2C9, CYP2C19, and OATP. Clin Pharmacol Ther 2017; 103:854-867. [PMID: 28990182 PMCID: PMC5947523 DOI: 10.1002/cpt.807] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 07/20/2017] [Indexed: 01/29/2023]
Abstract
Our recent studies have shown that chronic kidney disease (CKD) affects the pharmacokinetics (PKs) of cytochrome P450 (CYP)2D6‐metabolized drugs, whereas effects were less evident on CYP3A4/5. Therefore, the effect of CKD on the disposition of CYP1A2‐metabolized, CYP2C8‐metabolized, CYP2C9‐metabolized, CYP2C19‐metabolized, and organic anion‐transporting polypeptide (OATP)‐transported drugs was investigated. We identified dedicated CKD studies with 6, 5, 6, 4, and 12 “model” substrates for CYP1A2, CYP2C8, CYP2C9, CYP2C19, and OATP, respectively. Our analyses suggest that clearance of OATP substrates decreases as kidney function declines. Similar trends were seen for CYP2C8; but overlap between some CYP2C8 and OATP substrates highlights that their interplay needs further investigation. In contrast, the effect of CKD on CYP1A2, CYP2C9, and CYP2C19 was variable and modest compared to CYP2C8 and OATP. This improved understanding of elimination‐pathway‐dependency in CKD is important to inform the need and conduct of PK studies in these patients for nonrenally eliminated drugs.
Collapse
Affiliation(s)
- Ming-Liang Tan
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Kenta Yoshida
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA.,Current affiliation: Clinical Pharmacology, Genentech Research and Early Development, South San Francisco, California, USA
| | - Ping Zhao
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Lei Zhang
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Thomas D Nolin
- Center for Clinical Pharmaceutical Sciences, Department of Pharmacy and Therapeutics, and Department of Medicine Renal-Electrolyte Division, University of Pittsburgh Schools of Pharmacy and Medicine, Pittsburgh, Pennsylvania, USA
| | | | - Aleksandra Galetin
- Centre for Applied Pharmaceutical Research, School of Heath Sciences, University of Manchester, Manchester, UK
| | - Shiew-Mei Huang
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
25
|
Abstract
Transporters in proximal renal tubules contribute to the disposition of numerous drugs. Furthermore, the molecular mechanisms of tubular secretion have been progressively elucidated during the past decades. Organic anions tend to be secreted by the transport proteins OAT1, OAT3 and OATP4C1 on the basolateral side of tubular cells, and multidrug resistance protein (MRP) 2, MRP4, OATP1A2 and breast cancer resistance protein (BCRP) on the apical side. Organic cations are secreted by organic cation transporter (OCT) 2 on the basolateral side, and multidrug and toxic compound extrusion (MATE) proteins MATE1, MATE2/2-K, P-glycoprotein, organic cation and carnitine transporter (OCTN) 1 and OCTN2 on the apical side. Significant drug-drug interactions (DDIs) may affect any of these transporters, altering the clearance and, consequently, the efficacy and/or toxicity of substrate drugs. Interactions at the level of basolateral transporters typically decrease the clearance of the victim drug, causing higher systemic exposure. Interactions at the apical level can also lower drug clearance, but may be associated with higher renal toxicity, due to intracellular accumulation. Whereas the importance of glomerular filtration in drug disposition is largely appreciated among clinicians, DDIs involving renal transporters are less well recognized. This review summarizes current knowledge on the roles, quantitative importance and clinical relevance of these transporters in drug therapy. It proposes an approach based on substrate-inhibitor associations for predicting potential tubular-based DDIs and preventing their adverse consequences. We provide a comprehensive list of known drug interactions with renally-expressed transporters. While many of these interactions have limited clinical consequences, some involving high-risk drugs (e.g. methotrexate) definitely deserve the attention of prescribers.
Collapse
Affiliation(s)
- Anton Ivanyuk
- Division of Clinical Pharmacology, Lausanne University Hospital (CHUV), Bugnon 17, 1011, Lausanne, Switzerland.
| | - Françoise Livio
- Division of Clinical Pharmacology, Lausanne University Hospital (CHUV), Bugnon 17, 1011, Lausanne, Switzerland
| | - Jérôme Biollaz
- Division of Clinical Pharmacology, Lausanne University Hospital (CHUV), Bugnon 17, 1011, Lausanne, Switzerland
| | - Thierry Buclin
- Division of Clinical Pharmacology, Lausanne University Hospital (CHUV), Bugnon 17, 1011, Lausanne, Switzerland
| |
Collapse
|
26
|
Impairment of the carnitine/organic cation transporter 1-ergothioneine axis is mediated by intestinal transporter dysfunction in chronic kidney disease. Kidney Int 2017; 92:1356-1369. [PMID: 28754554 DOI: 10.1016/j.kint.2017.04.032] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 04/03/2017] [Accepted: 04/18/2017] [Indexed: 01/01/2023]
Abstract
Carnitine/organic cation transporter 1 (OCTN1) is a specific transporter of the food-derived antioxidant ergothioneine. Ergothioneine is absorbed by intestinal OCTN1, distributed through the bloodstream, and incorporated into each organ by OCTN1. OCTN1 expression is upregulated in injured tissues, and promotes ergothioneine uptake to reduce further damage caused by oxidative stress. However, the role of the OCTN1-ergothioneine axis in kidney-intestine cross-talk and chronic kidney disease (CKD) progression remains unclear. Here we assessed ergothioneine uptake via intestinal OCTN1 and confirmed the expression of OCTN1. The ability of OCTN1 to absorb ergothioneine was diminished in mice with CKD. In combination with OCTN1 dysfunction, OCTN1 localization on the intestinal apical cellular membrane was disturbed in mice with CKD. Proteomic analysis, RT-PCR, Western blotting, and immunohistochemistry revealed that PDZ (PSD95, Dlg, and ZO1), a PDZK1 domain-containing protein that regulates the localization of transporters, was decreased in mice with CKD. Decreased intestinal ergothioneine uptake from food decreased ergothioneine levels in the blood of mice with CKD. Despite increased OCTN1 expression and ergothioneine uptake into the kidneys of mice with CKD, ergothioneine levels did not increase. To identify the role of the OCTN1-ergothioneine axis in CKD, we evaluated kidney damage and oxidative stress in OCTN1-knockout mice with CKD and found that kidney fibrosis worsened. Oxidative stress indicators were increased in OCTN1-knockout mice. Moreover, ergothioneine levels in the blood of patients with CKD decreased, which were restored after kidney transplantation. Thus, a novel inter-organ interaction mediated by transporters is associated with CKD progression.
Collapse
|
27
|
Hsueh CH, Hsu V, Zhao P, Zhang L, Giacomini KM, Huang SM. PBPK Modeling of the Effect of Reduced Kidney Function on the Pharmacokinetics of Drugs Excreted Renally by Organic Anion Transporters. Clin Pharmacol Ther 2017; 103:485-492. [DOI: 10.1002/cpt.750] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/02/2017] [Accepted: 05/16/2017] [Indexed: 12/24/2022]
Affiliation(s)
- C-H Hsueh
- Department of Bioengineering and Therapeutic Sciences; University of California San Francisco; San Francisco California USA
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research; US Food and Drug Administration; Silver Spring Maryland USA
- Oak Ridge Institute for Science and Education (ORISE) Fellow; Oak Ridge Tennessee USA
| | - V Hsu
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research; US Food and Drug Administration; Silver Spring Maryland USA
| | - P Zhao
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research; US Food and Drug Administration; Silver Spring Maryland USA
| | - L Zhang
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research; US Food and Drug Administration; Silver Spring Maryland USA
| | - KM Giacomini
- Department of Bioengineering and Therapeutic Sciences; University of California San Francisco; San Francisco California USA
| | - S-M Huang
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research; US Food and Drug Administration; Silver Spring Maryland USA
| |
Collapse
|
28
|
AI Dhaybi O, Bakris GL. Renal Targeted Therapies of Antihypertensive and Cardiovascular Drugs for Patients With Stages 3 Through 5d Kidney Disease. Clin Pharmacol Ther 2017; 102:450-458. [DOI: 10.1002/cpt.758] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/03/2017] [Accepted: 05/29/2017] [Indexed: 12/18/2022]
Affiliation(s)
- O AI Dhaybi
- Department of Medicine; ASH Comprehensive Hypertension Center, University of Chicago Medicine; Chicago Illinois USA
| | - GL Bakris
- Department of Medicine; ASH Comprehensive Hypertension Center, University of Chicago Medicine; Chicago Illinois USA
| |
Collapse
|
29
|
Kropeit D, Scheuenpflug J, Erb-Zohar K, Halabi A, Stobernack HP, Hulskotte EGJ, van Schanke A, Zimmermann H, Rübsamen-Schaeff H. Pharmacokinetics and safety of letermovir, a novel anti-human cytomegalovirus drug, in patients with renal impairment. Br J Clin Pharmacol 2017; 83:1944-1953. [PMID: 28345163 DOI: 10.1111/bcp.13292] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 03/08/2017] [Accepted: 03/14/2017] [Indexed: 12/18/2022] Open
Abstract
AIMS Human cytomegalovirus remains a significant issue for immunocompromised patients and existing viral polymerase targeting therapies are associated with significant toxicity. Accordingly, the viral terminase complex inhibitor, letermovir, is in development. We assessed letermovir pharmacokinetics in renal impairment. METHODS This was a Phase 1, open-label, nonrandomised trial. Estimated glomerular filtration rate based on the Modification of Diet Renal Disease equation was used to create three groups of eight subjects: healthy function (estimated glomerular filtration rate ≥ 90 ml min-1 1.73m-2 ), moderate (30-59 ml min-1 1.73m-2 ) and severe (<30 ml min-1 1.73m-2 ) impairment. Oral letermovir 120 mg was dosed once-daily for 8 days and blood collected for pharmacokinetic analyses. RESULTS All 24 subjects enrolled completed the trial. Moderate and severe renal impairment increased mean unbound letermovir fractions by 11% and 26%, respectively, vs. healthy subjects. Exposure (AUCτ,ss and Css,max ) was increased with renal impairment [least square mean ratios (90% confidence intervals) total letermovir vs. healthy subjects, AUCτ,ss 192% (143-258%) and 142% (83-243%) for moderate and severe impairment, respectively; Css,max 125% (87-182%) and 106% (75-151%), respectively]. Clearance was decreased vs. healthy subjects. Correlation analyses indicated a correlation between decreasing renal function and increased unbound letermovir concentration (R2 = 0.5076, P < 0.0001). Correlations were identified between decreased clearance with both decreased renal function (R2 = 0.0662, P = 0.2249 and R2 = 0.1861, P = 0.0353 total and unbound clearance, respectively) and increased age (R2 = 0.3548, P = 0.0021 and R2 = 0.3166, P = 0.0042 total and unbound clearance, respectively). Multiple-dose letermovir 120 mg was well tolerated across groups. CONCLUSIONS Renal impairment increased exposure to letermovir, although age was a confounding factor.
Collapse
Affiliation(s)
- Dirk Kropeit
- AiCuris Anti-infective Cures GmbH, Wuppertal, Germany
| | | | | | - Atef Halabi
- CRS Clinical Research Services Kiel GmbH, Kiel, Germany
| | | | | | | | | | | |
Collapse
|
30
|
Dion F, Dumayne C, Henley N, Beauchemin S, Arias EB, Leblond FA, Lesage S, Lefrançois S, Cartee GD, Pichette V. Mechanism of insulin resistance in a rat model of kidney disease and the risk of developing type 2 diabetes. PLoS One 2017; 12:e0176650. [PMID: 28459862 PMCID: PMC5411038 DOI: 10.1371/journal.pone.0176650] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 04/13/2017] [Indexed: 12/19/2022] Open
Abstract
Chronic kidney disease is associated with homeostatic imbalances such as insulin resistance. However, the underlying mechanisms leading to these imbalances and whether they promote the development of type 2 diabetes is unknown. The effect of chronic kidney disease on insulin resistance was studied on two different rat strains. First, in a 5/6th nephrectomised Sprague-Dawley rat model of chronic kidney disease, we observed a correlation between the severity of chronic kidney disease and hyperglycemia as evaluated by serum fructosamine levels (p<0.0001). Further, glucose tolerance tests indicated an increase of 25% in glycemia in chronic kidney disease rats (p<0.0001) as compared to controls whereas insulin levels remained unchanged. We also observed modulation of glucose transporters expression in several tissues such as the liver (decrease of ≈40%, p≤0.01) and muscles (decrease of ≈29%, p≤0.05). Despite a significant reduction of ≈37% in insulin-dependent glucose uptake in the muscles of chronic kidney disease rats (p<0.0001), the development of type 2 diabetes was never observed. Second, in a rat model of metabolic syndrome (Zucker Leprfa/fa), chronic kidney disease caused a 50% increased fasting hyperglycemia (p<0.0001) and an exacerbated glycemic response (p<0.0001) during glucose challenge. Similar modulations of glucose transporters expression and glucose uptake were observed in the two models. However, 30% (p<0.05) of chronic kidney disease Zucker rats developed characteristics of type 2 diabetes. Thus, our results suggest that downregulation of GLUT4 in skeletal muscle may be associated with insulin resistance in chronic kidney disease and could lead to type 2 diabetes in predisposed animals.
Collapse
Affiliation(s)
- François Dion
- Centre de recherche de l’Hôpital Maisonneuve-Rosemont, Faculté de Médecine, Centre affilié à l’Université de Montréal, Montréal, Québec, Canada
- Département de pharmacologie, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
- * E-mail: (VP); (FD)
| | - Christopher Dumayne
- Centre de recherche de l’Hôpital Maisonneuve-Rosemont, Faculté de Médecine, Centre affilié à l’Université de Montréal, Montréal, Québec, Canada
- Département de pharmacologie, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Nathalie Henley
- Centre de recherche de l’Hôpital Maisonneuve-Rosemont, Faculté de Médecine, Centre affilié à l’Université de Montréal, Montréal, Québec, Canada
| | - Stéphanie Beauchemin
- Centre de recherche de l’Hôpital Maisonneuve-Rosemont, Faculté de Médecine, Centre affilié à l’Université de Montréal, Montréal, Québec, Canada
| | - Edward B. Arias
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - François A. Leblond
- Centre de recherche de l’Hôpital Maisonneuve-Rosemont, Faculté de Médecine, Centre affilié à l’Université de Montréal, Montréal, Québec, Canada
| | - Sylvie Lesage
- Centre de recherche de l’Hôpital Maisonneuve-Rosemont, Faculté de Médecine, Centre affilié à l’Université de Montréal, Montréal, Québec, Canada
- Département de microbiologie, infectiologie et immunologie, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Stéphane Lefrançois
- Centre INRS-Institut Armand-Frappier, Institut National de la Recherche Scientifique, Laval, Québec, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Gregory D. Cartee
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Vincent Pichette
- Centre de recherche de l’Hôpital Maisonneuve-Rosemont, Faculté de Médecine, Centre affilié à l’Université de Montréal, Montréal, Québec, Canada
- Département de pharmacologie, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
- * E-mail: (VP); (FD)
| |
Collapse
|
31
|
Seifert SM, Castillo-Mancilla JR, Erlandson KM, Anderson PL. Inflammation and pharmacokinetics: potential implications for HIV-infection. Expert Opin Drug Metab Toxicol 2017; 13:641-650. [PMID: 28335648 DOI: 10.1080/17425255.2017.1311323] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
INTRODUCTION The physiological changes accompanying inflammation may alter the pharmacokinetics (PK) of certain medications. Individuals infected with HIV have chronically elevated inflammatory markers despite viral suppression following effective antiretroviral therapy (ART), as well as age-related inflammation. Understanding the potential clinical implications of inflammation on the PK of medications is important for understanding dose-response relationships and necessitates future research. Areas covered: An extensive literature search was carried out using PubMed and associated bibliographies to summarize the current state of knowledge regarding altered PK in response to inflammation and its application to the field of HIV. Expert opinion: Preclinical and clinical studies show that inflammation leads to a downregulation of certain drug metabolizing enzymes and both up and down regulation of transporters depending on the transporter and cell type. Decreased gastric acidity, fluid shifts, and plasma protein alterations also occur with inflammation, leading to potential absorption, distribution, and clearance changes. More research is needed including controlled PK studies to address the clinical relevance of these observations, especially in the aging HIV-infected population. Results from future studies will enable us to better predict drug concentrations in individuals with inflammation, in line with efforts to provide personalized pharmacotherapy in our healthcare system.
Collapse
Affiliation(s)
- Sharon M Seifert
- a Skaggs School of Pharmacy and Pharmaceutical Sciences Department of Pharmaceutical Sciences , University of Colorado , Anschutz Medical Campus, USA
| | - Jose R Castillo-Mancilla
- b School of Medicine, Division of Infectious Diseases , University of Colorado , Anschutz Medical Campus, USA
| | - Kristine M Erlandson
- b School of Medicine, Division of Infectious Diseases , University of Colorado , Anschutz Medical Campus, USA
| | - Peter L Anderson
- a Skaggs School of Pharmacy and Pharmaceutical Sciences Department of Pharmaceutical Sciences , University of Colorado , Anschutz Medical Campus, USA
| |
Collapse
|
32
|
Chow ECY, Quach HP, Zhang Y, Wang JZY, Evans DC, Li AP, Silva J, Tirona RG, Lai Y, Pang KS. Disrupted Murine Gut-to-Human Liver Signaling Alters Bile Acid Homeostasis in Humanized Mouse Liver Models. J Pharmacol Exp Ther 2017; 360:174-191. [PMID: 27789682 DOI: 10.1124/jpet.116.236935] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 10/25/2016] [Indexed: 03/08/2025] Open
Abstract
The humanized liver mouse model is being exploited increasingly for human drug metabolism studies. However, its model stability, intercommunication between human hepatocytes and mouse nonparenchymal cells in liver and murine intestine, and changes in extrahepatic transporter and enzyme expressions have not been investigated. We examined these issues in FRGN [fumarylacetoacetate hydrolase (Fah-/-), recombination activating gene 2 (Rag2-/-), and interleukin 2 receptor subunit gamma (IL-2rg -/-) triple knockout] on nonobese diabetic (NOD) background] and chimeric mice: mFRGN and hFRGN (repopulated with mouse or human hepatocytes, respectively). hFRGN mice showed markedly higher levels of liver cholesterol, biliary bilirubin, and bile acids (liver, bile, and plasma; mainly human forms, but also murine bile acids) but lower transforming growth factor beta receptor 2 (TGFBR2) mRNA expression levels (10%) in human hepatocytes and other proliferative markers in mouse nonparenchymal cells (Tgf-β1) and cholangiocytes [plasma membrane-bound, G protein-coupled receptor for bile acids (Tgr5)], suggestive of irregular regeneration processes in hFRGN livers. Changes in gene expression in murine intestine, kidney, and brain of hFRGN mice, in particular, induction of intestinal farnesoid X receptor (Fxr) genes: fibroblast growth factor 15 (Fgf15), mouse ileal bile acid binding protein (Ibabp), small heterodimer partner (Shp), and the organic solute transporter alpha (Ostα), were observed. Proteomics revealed persistence of remnant murine proteins (cyotchrome P450 7α-hydroxylase (Cyp7a1) and other enzymes and transporters) in hFRGN livers and suggest the likelihood of mouse activity. When compared with normal human liver tissue, hFRGN livers showed lower SHP mRNA and higher CYP7A1 (300%) protein expression, consequences of tβ- and tα-muricholic acid-mediated inhibition of the FXR-SHP cascade and miscommunication between intestinal Fgf15 and human liver fibroblast growth factor receptor 4 (FGFR4), as confirmed by the unchanged hepatic pERK/total ERK ratio. Dysregulation of hepatocyte proliferation and bile acid homeostasis in hFRGN livers led to hepatotoxicity, gallbladder distension, liver deformity, and other extrahepatic changes, making questionable the use of the preparation for drug metabolism studies.
Collapse
Affiliation(s)
- Edwin C Y Chow
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada (E.C.Y.C., H.P.Q., J.Z.Y.W., K.S.P.); Bristol Myers Squibb, Pharmaceutical Candidate Optimization Department, Princeton, New Jersey (Y.Z., Y.L.); Pharmacokinetics, Dynamics, and Metabolism, Janssen Research and Development, LLC, Spring House, Pennsylvania (D.C.E., J.S.); In Vitro ADMET Laboratories, Columbia, Maryland (A.P.L.); Department of Physiology and Pharmacology and Medicine, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada (R.G.T.)
| | - Holly P Quach
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada (E.C.Y.C., H.P.Q., J.Z.Y.W., K.S.P.); Bristol Myers Squibb, Pharmaceutical Candidate Optimization Department, Princeton, New Jersey (Y.Z., Y.L.); Pharmacokinetics, Dynamics, and Metabolism, Janssen Research and Development, LLC, Spring House, Pennsylvania (D.C.E., J.S.); In Vitro ADMET Laboratories, Columbia, Maryland (A.P.L.); Department of Physiology and Pharmacology and Medicine, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada (R.G.T.)
| | - Yueping Zhang
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada (E.C.Y.C., H.P.Q., J.Z.Y.W., K.S.P.); Bristol Myers Squibb, Pharmaceutical Candidate Optimization Department, Princeton, New Jersey (Y.Z., Y.L.); Pharmacokinetics, Dynamics, and Metabolism, Janssen Research and Development, LLC, Spring House, Pennsylvania (D.C.E., J.S.); In Vitro ADMET Laboratories, Columbia, Maryland (A.P.L.); Department of Physiology and Pharmacology and Medicine, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada (R.G.T.)
| | - Jason Z Y Wang
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada (E.C.Y.C., H.P.Q., J.Z.Y.W., K.S.P.); Bristol Myers Squibb, Pharmaceutical Candidate Optimization Department, Princeton, New Jersey (Y.Z., Y.L.); Pharmacokinetics, Dynamics, and Metabolism, Janssen Research and Development, LLC, Spring House, Pennsylvania (D.C.E., J.S.); In Vitro ADMET Laboratories, Columbia, Maryland (A.P.L.); Department of Physiology and Pharmacology and Medicine, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada (R.G.T.)
| | - David C Evans
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada (E.C.Y.C., H.P.Q., J.Z.Y.W., K.S.P.); Bristol Myers Squibb, Pharmaceutical Candidate Optimization Department, Princeton, New Jersey (Y.Z., Y.L.); Pharmacokinetics, Dynamics, and Metabolism, Janssen Research and Development, LLC, Spring House, Pennsylvania (D.C.E., J.S.); In Vitro ADMET Laboratories, Columbia, Maryland (A.P.L.); Department of Physiology and Pharmacology and Medicine, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada (R.G.T.)
| | - Albert P Li
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada (E.C.Y.C., H.P.Q., J.Z.Y.W., K.S.P.); Bristol Myers Squibb, Pharmaceutical Candidate Optimization Department, Princeton, New Jersey (Y.Z., Y.L.); Pharmacokinetics, Dynamics, and Metabolism, Janssen Research and Development, LLC, Spring House, Pennsylvania (D.C.E., J.S.); In Vitro ADMET Laboratories, Columbia, Maryland (A.P.L.); Department of Physiology and Pharmacology and Medicine, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada (R.G.T.)
| | - Jose Silva
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada (E.C.Y.C., H.P.Q., J.Z.Y.W., K.S.P.); Bristol Myers Squibb, Pharmaceutical Candidate Optimization Department, Princeton, New Jersey (Y.Z., Y.L.); Pharmacokinetics, Dynamics, and Metabolism, Janssen Research and Development, LLC, Spring House, Pennsylvania (D.C.E., J.S.); In Vitro ADMET Laboratories, Columbia, Maryland (A.P.L.); Department of Physiology and Pharmacology and Medicine, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada (R.G.T.)
| | - Rommel G Tirona
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada (E.C.Y.C., H.P.Q., J.Z.Y.W., K.S.P.); Bristol Myers Squibb, Pharmaceutical Candidate Optimization Department, Princeton, New Jersey (Y.Z., Y.L.); Pharmacokinetics, Dynamics, and Metabolism, Janssen Research and Development, LLC, Spring House, Pennsylvania (D.C.E., J.S.); In Vitro ADMET Laboratories, Columbia, Maryland (A.P.L.); Department of Physiology and Pharmacology and Medicine, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada (R.G.T.)
| | - Yurong Lai
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada (E.C.Y.C., H.P.Q., J.Z.Y.W., K.S.P.); Bristol Myers Squibb, Pharmaceutical Candidate Optimization Department, Princeton, New Jersey (Y.Z., Y.L.); Pharmacokinetics, Dynamics, and Metabolism, Janssen Research and Development, LLC, Spring House, Pennsylvania (D.C.E., J.S.); In Vitro ADMET Laboratories, Columbia, Maryland (A.P.L.); Department of Physiology and Pharmacology and Medicine, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada (R.G.T.)
| | - K Sandy Pang
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada (E.C.Y.C., H.P.Q., J.Z.Y.W., K.S.P.); Bristol Myers Squibb, Pharmaceutical Candidate Optimization Department, Princeton, New Jersey (Y.Z., Y.L.); Pharmacokinetics, Dynamics, and Metabolism, Janssen Research and Development, LLC, Spring House, Pennsylvania (D.C.E., J.S.); In Vitro ADMET Laboratories, Columbia, Maryland (A.P.L.); Department of Physiology and Pharmacology and Medicine, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada (R.G.T.)
| |
Collapse
|
33
|
Shimamura M, Miyakawa J, Doi M, Okada K, Kurumatani H, Mori Y, Oshida K, Nakajo I, Oikawa K, Ushigome F, Miyashita A, Isono M, Miyamoto Y. The Pharmacokinetics of Beraprost Sodium Following Single Oral Administration to Subjects With Impaired Kidney Function. J Clin Pharmacol 2016; 57:524-535. [PMID: 27681484 DOI: 10.1002/jcph.835] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 09/24/2016] [Indexed: 11/10/2022]
Abstract
The purpose of the present study was to evaluate the pharmacokinetics of beraprost sodium (BPS) and its active enantiomer, BPS-314d, in Japanese subjects with impaired kidney function. The plasma and urine concentrations of BPS and BPS-314d were measured following the single oral administration of 120 μg of BPS as the sustained-release tablet, TRK-100STP, under fasting conditions to 18 subjects with impaired kidney function (stage 2, 3, and 4 chronic kidney disease [CKD] as categorized by the estimated glomerular filtration rate) and to 6 age-, body weight-, and gender-matched subjects with normal kidney function (stage 1 CKD). The Cmax values (mean ± SD) of BPS in stage 1, 2, 3, and 4 CKD, respectively, were 84.9 ± 22.9, 119.8 ± 36.4, 190.6 ± 137.3, and 240.2 ± 110.5 pg/mL; its AUC0-48h were 978 ± 226, 1252 ± 427, 1862 ± 964, and 1766 ± 806 pg·h/mL, respectively, and its cumulative urinary excretion rates were 0.704 ± 0.351%, 0.638 ± 0.292%, 0.485 ± 0.294%, and 0.159 ± 0.136%. The Cmax values of BPS-314d were 22.4 ± 6.4, 30.8 ± 8.5, 46.7 ± 30.6, and 54.4 ± 25.2 pg/mL, its AUC0-48h were 155 ± 56, 226 ± 67, 341 ± 176, and 329 ± 143 pg·h/mL, and its cumulative urinary excretion rates were 0.428 ± 0.242%, 0.349 ± 0.179%, 0.356 ± 0.270%, and 0.096 ± 0.099%, respectively. Adverse events were reported in 2 subjects with stage 2 CKD and 1 subject with stage 4 CKD. The Cmax and AUC0-48h of BPS and BPS-314d were higher based on the severity of impaired kidney function. No relationship was observed between the incidence of adverse events and the severity, and tolerability was confirmed. We consider that dose adjustment is not necessary, but BPS is more carefully treated in patients with impaired kidney function.
Collapse
Affiliation(s)
- Masahiro Shimamura
- Pharmaceutical Clinical Research Department, Toray Industries, Inc, Tokyo, Japan
| | - Jun Miyakawa
- Pharmaceutical Clinical Research Department, Toray Industries, Inc, Tokyo, Japan
| | - Masaaki Doi
- Clinical Data Science & Quality Management Department, Toray Industries, Inc, Tokyo, Japan
| | - Kiyonobu Okada
- Clinical Data Science & Quality Management Department, Toray Industries, Inc, Tokyo, Japan
| | - Hajimu Kurumatani
- Pharmaceutical Clinical Research Department, Toray Industries, Inc, Tokyo, Japan
| | - Yoshitaka Mori
- Pharmaceutical Clinical Research Department, Toray Industries, Inc, Tokyo, Japan
| | - Keiyu Oshida
- Pharmaceutical Research Laboratories, Toray Industries, Inc, Kanagawa, Japan
| | - Ikumi Nakajo
- Clinical Pharmacology Global Development, Astellas Pharma Inc, Tokyo, Japan
| | - Keishi Oikawa
- Clinical Pharmacology Global Development, Astellas Pharma Inc, Tokyo, Japan
| | - Fumihiko Ushigome
- Analysis & Pharmacokinetics Research Laboratories, Drug Discovery Research, Astellas Pharma Inc, Ibaraki, Japan
| | - Aiji Miyashita
- Analysis & Pharmacokinetics Research Laboratories, Drug Discovery Research, Astellas Pharma Inc, Ibaraki, Japan
| | - Masanao Isono
- Pharmaceutical Clinical Research Department, Toray Industries, Inc, Tokyo, Japan
| | - Yohei Miyamoto
- Pharmaceutical Clinical Research Department, Toray Industries, Inc, Tokyo, Japan
| |
Collapse
|
34
|
Benefield RJ, Barker BC, Gast CM, Alexander DP. Patient Variables Associated with Nafcillin Plasma Concentrations and Toxicity. Pharmacotherapy 2016; 36:994-1002. [PMID: 27485941 DOI: 10.1002/phar.1805] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVES PRIMARY OBJECTIVE To retrospectively review nafcillin plasma concentrations (CNAF ) and determine nafcillin clearance (CLNAF ) in a diverse sample of patients treated with nafcillin administered as a continuous infusion. SECONDARY OBJECTIVE To identify clinical variables associated with CLNAF and nafcillin-related adverse drug reactions (ADRs). METHODS Retrospective chart review of patients receiving nafcillin via continuous infusion at University of Utah Health Care from 2006 to 2013 who had at least one steady-state CNAF measured. CLNAF was determined by dividing the nafcillin rate of infusion by CNAF . Adverse drug reactions (ADRs) were defined using the National Institutes of Health, Division of Microbiology and Infectious Diseases criteria and scored for probability of association with nafcillin by using Naranjo criteria. Multivariate models were constructed to identify independent variables associated with CLNAF and ADRs. MAIN RESULTS Seventy-six CNAF from 54 patients were included. Median CLNAF was 13.9 L/hour (range ≤ 4.2 to 36.9 L/hr). Congestive heart failure (p=0.007), hyperbilirubinemia (p<0.0001), and serum creatinine (p<0.0001) were associated with reduced CLNAF , and Hispanic race (p=0.002) was associated with increased CLNAF by multivariate analysis. Twenty patients (37.0%) experienced an ADR. CNAF were significantly higher between patients that experienced an ADR and those that did not (66.0 vs 25.5 mg/L, p<0.001). Individual ADRs associated with CNAF included hepatotoxicity (62.8 vs 27.0 mg/L, p=0.001), nausea/vomiting (80.0 vs 28.5 mg/L, p=0.01), and diarrhea (66.5 vs 26.5 mg/L, p<0.001). Multivariate analysis identified CNAF as being independently associated with ADRs. A putative toxicity relationship between CNAF and predicted probability of ADR was established. CONCLUSIONS Several patient variables were associated with impaired CLNAF , and elevated CNAF were associated with ADRs. Additional studies assessing the utility of nafcillin therapeutic drug monitoring to minimize toxicity are warranted.
Collapse
Affiliation(s)
- Russell J Benefield
- Department of Pharmacy, University of Utah Health Care, Salt Lake City, Utah. .,Department of Pharmacotherapy, University of Utah College of Pharmacy, Salt Lake City, Utah.
| | - Brian C Barker
- Department of Pharmacy, University of Utah Health Care, Salt Lake City, Utah
| | - Christopher M Gast
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Donald P Alexander
- Department of Pharmacy, University of Utah Health Care, Salt Lake City, Utah.,Department of Pharmacotherapy, University of Utah College of Pharmacy, Salt Lake City, Utah
| |
Collapse
|
35
|
Naud J, Harding J, Lamarche C, Beauchemin S, Leblond FA, Pichette V. Effects of Chronic Renal Failure on Brain Cytochrome P450 in Rats. Drug Metab Dispos 2016; 44:1174-9. [PMID: 27271372 DOI: 10.1124/dmd.116.070052] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 05/18/2016] [Indexed: 02/13/2025] Open
Abstract
Chronic renal failure (CRF) impedes renal excretion of drugs and their metabolism by reducing the expression of liver cytochrome P450 (P450). Uremic serum contains factors, such as parathyroid hormone (PTH), that decrease liver P450s. The P450s are also involved in the metabolism of xenobiotics in the brain. This study investigates: 1) the effects of CRF on rat brain P450, 2) the role of PTH in the downregulation of brain P450s in CRF rats, and 3) the effects of PTH on P450s in astrocytes. Protein and mRNA expression of P450s were assessed in the brain of CRF and control (CTL) rats, as well as from CTL or CRF rats that underwent parathyroidectomy (PTX) 1 week before nephrectomy. CYP3A activity was measured using 3-[(3, 4-difluorobenzyl) oxy]-5, 5-dimethyl-4-[4-methylsulfonyl) phenyl] furan-2(5H)-1 metabolism in brain microsomal preparation. CYP3A protein expression was assessed in primary cultured astrocytes incubated with serum obtained from CRF or CTL rats or with PTH. Significant downregulations (≥40%) of CYP1A, CYP2C11, and CYP3A proteins were observed in microsomes from CRF rat brains. CYP3A activity reduction was also observed. CYP3A expression and activity were unaffected in PTX-pretreated CRF rats. Serum of PTX-treated CRF rats had no impact on CYP3A levels in astrocytes compared with that of untreated CRF rats. Finally, PTH addition to normal calf serum induced a reduction in CYP3A protein similar to CRF serum, suggesting that CRF-induced hyperparathyroidism is associated with a significant decrease in P450 drug-metabolizing enzymes in the brain, which may have implications in drug response.
Collapse
Affiliation(s)
- Judith Naud
- Service de néphrologie et Centre de recherche de l'Hôpital Maisonneuve-Rosemont (J.N., J.H., C.L., S.B., F.A.L., V.P.), and Département de pharmacologie (J.N., J.H., V.P.), Faculté de Médecine, Université de Montréal, Québec, Canada
| | - Jessica Harding
- Service de néphrologie et Centre de recherche de l'Hôpital Maisonneuve-Rosemont (J.N., J.H., C.L., S.B., F.A.L., V.P.), and Département de pharmacologie (J.N., J.H., V.P.), Faculté de Médecine, Université de Montréal, Québec, Canada
| | - Caroline Lamarche
- Service de néphrologie et Centre de recherche de l'Hôpital Maisonneuve-Rosemont (J.N., J.H., C.L., S.B., F.A.L., V.P.), and Département de pharmacologie (J.N., J.H., V.P.), Faculté de Médecine, Université de Montréal, Québec, Canada
| | - Stephanie Beauchemin
- Service de néphrologie et Centre de recherche de l'Hôpital Maisonneuve-Rosemont (J.N., J.H., C.L., S.B., F.A.L., V.P.), and Département de pharmacologie (J.N., J.H., V.P.), Faculté de Médecine, Université de Montréal, Québec, Canada
| | - Francois A Leblond
- Service de néphrologie et Centre de recherche de l'Hôpital Maisonneuve-Rosemont (J.N., J.H., C.L., S.B., F.A.L., V.P.), and Département de pharmacologie (J.N., J.H., V.P.), Faculté de Médecine, Université de Montréal, Québec, Canada
| | - Vincent Pichette
- Service de néphrologie et Centre de recherche de l'Hôpital Maisonneuve-Rosemont (J.N., J.H., C.L., S.B., F.A.L., V.P.), and Département de pharmacologie (J.N., J.H., V.P.), Faculté de Médecine, Université de Montréal, Québec, Canada
| |
Collapse
|
36
|
Neves DV, Lanchote VL, Moysés Neto M, Cardeal da Costa JA, Vieira CP, Coelho EB. Influence of chronic kidney disease and haemodialysis treatment on pharmacokinetics of nebivolol enantiomers. Br J Clin Pharmacol 2016; 82:83-91. [PMID: 26914703 DOI: 10.1111/bcp.12917] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 01/19/2016] [Accepted: 02/18/2016] [Indexed: 11/29/2022] Open
Abstract
AIM The present study evaluated the pharmacodynamics and pharmacokinetics of nebivolol enantiomers in patients with chronic kidney disease (CKD) and in patients undergoing haemodialysis. METHODS Forty-three adult patients were distributed into three groups: healthy volunteers and hypertensive patients with normal kidney function (n = 22); patients with stage 3 and 4 CKD (n = 11); and patients with stage 5 CKD undergoing haemodialysis (n = 10). The subjects received a single oral dose of 10 mg racemic nebivolol. Serial blood samples were collected up to 48 h after administration of the drug and heart rate variation was measured over the same interval during the isometric handgrip test. The nebivolol enantiomers in plasma were analysed by liquid chromatography-tandem mass spectrometry. RESULTS The pharmacokinetics of nebivolol is enantioselective, with a greater plasma proportion of l-nebivolol. CKD increased the area under the concentration-time curve (AUC) of l-nebivolol (6.83 ng.h ml(-1) vs. 9.94 ng.h ml(-1) ) and d-nebivolol (4.15 ng.h ml(-1) vs. 7.30 ng.h ml(-1) ) when compared with the control group. However, the AUC values of l-nebivolol (6.41 ng.h ml(-1) ) and d-nebivolol (4.95 ng.h ml(-1) ) did not differ between the haemodialysis and control groups. The administration of a single dose of 10 mg nebivolol did not alter the heart rate variation induced by isometric exercise in the investigated patients. CONCLUSIONS Stage 3 and 4 CKD increases the plasma concentrations of both nebivolol enantiomers, while haemodialysis restores the pharmacokinetic parameters to values similar to those observed in the control group. No significant difference in heart rate variation induced by isometric exercise was observed between the investigated groups after the administration of a single oral dose of 10 mg nebivolol.
Collapse
Affiliation(s)
- Daniel V Neves
- Department of Clinical Analysis, Food Science and Toxicology, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Vera L Lanchote
- Department of Clinical Analysis, Food Science and Toxicology, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Miguel Moysés Neto
- Department of Internal Medicine, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - José A Cardeal da Costa
- Department of Internal Medicine, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Carolina P Vieira
- Department of Clinical Analysis, Food Science and Toxicology, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Eduardo B Coelho
- Department of Internal Medicine, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
37
|
Frey R, Becker C, Unger S, Schmidt A, Wensing G, Mück W. Assessment of the effects of renal impairment and smoking on the pharmacokinetics of a single oral dose of the soluble guanylate cyclase stimulator riociguat (BAY 63-2521). Pulm Circ 2016; 6:S15-26. [PMID: 27162624 PMCID: PMC4860531 DOI: 10.1086/685017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 06/28/2015] [Indexed: 12/26/2022] Open
Abstract
Renal impairment is a common comborbidity in patients with pulmonary hypertension. The breakdown of riociguat, an oral soluble guanylate cyclase stimulator used to treat pulmonary hypertension, may be affected by smoking because polycyclic aromatic hydrocarbons in tobacco smoke induce expression of one of the metabolizing enzymes, CYP1A1. Two nonrandomized, nonblinded studies were therefore performed to investigate the pharmacokinetics and safety of a single oral dose of riociguat 1.0 mg in individuals with mild, moderate, or severe renal impairment compared with age-, weight-, and sex-matched healthy controls, including either smokers and nonsmokers (study I) or nonsmokers alone (study II). Pharmacokinetic analyses focused on the integrated per-protocol data set of both studies (N = 63). In patients with renal impairment, the renal clearance of riociguat was reduced and its terminal half-life prolonged compared with those in healthy controls. There was a monotonic relationship between creatinine clearance on treatment day and riociguat renal clearance (R (2) = 0.62). However, increased riociguat exposure with decreasing renal function was not strictly proportional. Riociguat exposure appeared to be greater in nonsmokers than in the combined population of smokers and nonsmokers, irrespective of renal function. Adverse events were mild to moderate and in line with the mode of action of riociguat. No serious adverse events occurred. In conclusion, renal impairment was associated with reduced riociguat clearance compared with that in controls; however, riociguat exposure in patients with renal impairment was highly variable, and ranges overlapped with those observed in healthy controls.
Collapse
Affiliation(s)
- Reiner Frey
- Clinical Pharmacology, Pharma Research Center, Bayer Pharma, Wuppertal, Germany
| | - Corina Becker
- Clinical Pharmacology, Pharma Research Center, Bayer Pharma, Wuppertal, Germany
| | - Sigrun Unger
- Global Biostatistics, Pharma Research Center, Bayer Pharma, Wuppertal, Germany
| | - Anja Schmidt
- Clinical Pharmacology, Pharma Research Center, Bayer Pharma, Wuppertal, Germany
| | - Georg Wensing
- Clinical Pharmacology, Pharma Research Center, Bayer Pharma, Wuppertal, Germany
| | - Wolfgang Mück
- Clinical Pharmacology, Pharma Research Center, Bayer Pharma, Wuppertal, Germany
| |
Collapse
|
38
|
Tieu A, House AA, Urquhart BL. Drug Disposition Issues in CKD: Implications for Drug Discovery and Regulatory Approval. Adv Chronic Kidney Dis 2016; 23:63-6. [PMID: 26979144 DOI: 10.1053/j.ackd.2016.01.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 01/11/2016] [Accepted: 01/12/2016] [Indexed: 12/21/2022]
Abstract
Patients with chronic kidney disease (CKD) have several comorbidities that require pharmacologic intervention including hypertension, diabetes, anemia, and cardiovascular disease. Advanced CKD patients (eg, treated with hemodialysis) take an average of 12 medications concurrently and are known to suffer from an increased number of medication-related adverse drug events. Recent basic and clinical research has identified altered renal and nonrenal drug clearance in CKD as one mediator of the increased adverse drug events observed in this patient population. This review will briefly describe pharmacokinetic considerations in CKD, review the Food and Drug Administration guidelines for performing pharmacokinetic studies in CKD patients, and outline the roles of academia, industry, and regulatory agencies in improving drug safety in CKD patients.
Collapse
|
39
|
Rodieux F, Wilbaux M, van den Anker JN, Pfister M. Effect of Kidney Function on Drug Kinetics and Dosing in Neonates, Infants, and Children. Clin Pharmacokinet 2015; 54:1183-204. [PMID: 26138291 PMCID: PMC4661214 DOI: 10.1007/s40262-015-0298-7] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neonates, infants, and children differ from adults in many aspects, not just in age, weight, and body composition. Growth, maturation and environmental factors affect drug kinetics, response and dosing in pediatric patients. Almost 80% of drugs have not been studied in children, and dosing of these drugs is derived from adult doses by adjusting for body weight/size. As developmental and maturational changes are complex processes, such simplified methods may result in subtherapeutic effects or adverse events. Kidney function is impaired during the first 2 years of life as a result of normal growth and development. Reduced kidney function during childhood has an impact not only on renal clearance but also on absorption, distribution, metabolism and nonrenal clearance of drugs. 'Omics'-based technologies, such as proteomics and metabolomics, can be leveraged to uncover novel markers for kidney function during normal development, acute kidney injury, and chronic diseases. Pharmacometric modeling and simulation can be applied to simplify the design of pediatric investigations, characterize the effects of kidney function on drug exposure and response, and fine-tune dosing in pediatric patients, especially in those with impaired kidney function. One case study of amikacin dosing in neonates with reduced kidney function is presented. Collaborative efforts between clinicians and scientists in academia, industry, and regulatory agencies are required to evaluate new renal biomarkers, collect and share prospective pharmacokinetic, genetic and clinical data, build integrated pharmacometric models for key drugs, optimize and standardize dosing strategies, develop bedside decision tools, and enhance labels of drugs utilized in neonates, infants, and children.
Collapse
Affiliation(s)
- Frederique Rodieux
- Department of Pediatric Clinical Pharmacology, Pediatric Pharmacology and Pharmacometrics Research Center, University Children's Hospital (UKBB), University of Basel, Spitalstrasse 33, CH-4056, Basel, Switzerland.
| | - Melanie Wilbaux
- Department of Pediatric Clinical Pharmacology, Pediatric Pharmacology and Pharmacometrics Research Center, University Children's Hospital (UKBB), University of Basel, Spitalstrasse 33, CH-4056, Basel, Switzerland
| | - Johannes N van den Anker
- Department of Pediatric Clinical Pharmacology, Pediatric Pharmacology and Pharmacometrics Research Center, University Children's Hospital (UKBB), University of Basel, Spitalstrasse 33, CH-4056, Basel, Switzerland.
- Division of Pediatric Clinical Pharmacology, Children's National Health System, Washington, DC, USA.
- Intensive Care, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands.
| | - Marc Pfister
- Department of Pediatric Clinical Pharmacology, Pediatric Pharmacology and Pharmacometrics Research Center, University Children's Hospital (UKBB), University of Basel, Spitalstrasse 33, CH-4056, Basel, Switzerland
- Quantitative Solutions LP, Menlo Park, CA, USA
| |
Collapse
|
40
|
Walsh DR, Nolin TD, Friedman PA. Drug Transporters and Na+/H+ Exchange Regulatory Factor PSD-95/Drosophila Discs Large/ZO-1 Proteins. Pharmacol Rev 2015; 67:656-80. [PMID: 26092975 PMCID: PMC4485015 DOI: 10.1124/pr.115.010728] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Drug transporters govern the absorption, distribution, and elimination of pharmacologically active compounds. Members of the solute carrier and ATP binding-cassette drug transporter family mediate cellular drug uptake and efflux processes, thereby coordinating the vectorial movement of drugs across epithelial barriers. To exert their physiologic and pharmacological function in polarized epithelia, drug transporters must be targeted and stabilized to appropriate regions of the cell membrane (i.e., apical versus basolateral). Despite the critical importance of drug transporter membrane targeting, the mechanisms that underlie these processes are largely unknown. Several clinically significant drug transporters possess a recognition sequence that binds to PSD-95/Drosophila discs large/ZO-1 (PDZ) proteins. PDZ proteins, such as the Na(+)/H(+) exchanger regulatory factor (NHERF) family, act to stabilize and organize membrane targeting of multiple transmembrane proteins, including many clinically relevant drug transporters. These PDZ proteins are normally abundant at apical membranes, where they tether membrane-delimited transporters. NHERF expression is particularly high at the apical membrane in polarized tissue such as intestinal, hepatic, and renal epithelia, tissues important to drug disposition. Several recent studies have highlighted NHERF proteins as determinants of drug transporter function secondary to their role in controlling membrane abundance and localization. Mounting evidence strongly suggests that NHERF proteins may have clinically significant roles in pharmacokinetics and pharmacodynamics of several pharmacologically active compounds and may affect drug action in cancer and chronic kidney disease. For these reasons, NHERF proteins represent a novel class of post-translational mediators of drug transport and novel targets for new drug development.
Collapse
Affiliation(s)
- Dustin R Walsh
- Laboratory for G Protein-Coupled Receptor Biology, Department of Pharmacology and Chemical Biology, and Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (P.A.F.); and Center for Clinical Pharmaceutical Sciences, Department of Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania (D.R.W., T.D.N.)
| | - Thomas D Nolin
- Laboratory for G Protein-Coupled Receptor Biology, Department of Pharmacology and Chemical Biology, and Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (P.A.F.); and Center for Clinical Pharmaceutical Sciences, Department of Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania (D.R.W., T.D.N.)
| | - Peter A Friedman
- Laboratory for G Protein-Coupled Receptor Biology, Department of Pharmacology and Chemical Biology, and Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (P.A.F.); and Center for Clinical Pharmaceutical Sciences, Department of Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania (D.R.W., T.D.N.)
| |
Collapse
|
41
|
Naud J, Dumayne C, Nolin TD, Leblond FA, Pichette V. Pharmacocinétique des médicaments en insuffisance rénale : nouveautés. Nephrol Ther 2015; 11:144-51. [DOI: 10.1016/j.nephro.2014.12.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 12/23/2014] [Accepted: 12/23/2014] [Indexed: 01/05/2023]
|
42
|
Thomson BK, Nolin TD, Velenosi TJ, Feere DA, Knauer MJ, Asher LJ, House AA, Urquhart BL. Effect of CKD and Dialysis Modality on Exposure to Drugs Cleared by Nonrenal Mechanisms. Am J Kidney Dis 2015; 65:574-82. [DOI: 10.1053/j.ajkd.2014.09.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 09/11/2014] [Indexed: 01/17/2023]
|
43
|
Lalande L, Charpiat B, Leboucher G, Tod M. Consequences of renal failure on non-renal clearance of drugs. Clin Pharmacokinet 2015; 53:521-32. [PMID: 24861189 DOI: 10.1007/s40262-014-0146-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Kidney disease not only alters the renal elimination but also the non-renal disposition of drugs that are metabolized by the liver. Indeed, modifications in the expression and activity of intestinal and hepatic drug metabolism enzymes and uptake and efflux transporters have been reported. Accumulated uremic toxins, inflammatory cytokines, and parathyroid hormones may modulate these proteins either directly or by inhibiting gene expression. This can lead to important unintended variations in exposure and response when drugs are administered without dose adjustment for reduced renal function. This review summarizes our current understanding of non-renal clearance in circumstances of chronic and acute renal failure with experimental but also clinical studies. It also evaluates the clinical impact on drug disposition. Predicting the extent of the drug disposition modification is difficult first because of the complex interplay between metabolic enzymes and transport proteins but also because of the differential effects in the different organs (liver, intestines). Recommendations of the US FDA are presented as they may be potentially helpful tools to predict these modifications when no specific pharmacokinetic studies are available.
Collapse
Affiliation(s)
- Laure Lalande
- Department of Pharmacy, Groupement Hospitalier Nord, Hospices Civils de Lyon, 103 Grande Rue de la Croix Rousse, 69317, Lyon Cedex 04, France,
| | | | | | | |
Collapse
|
44
|
Nigam SK, Bush KT, Martovetsky G, Ahn SY, Liu HC, Richard E, Bhatnagar V, Wu W. The organic anion transporter (OAT) family: a systems biology perspective. Physiol Rev 2015; 95:83-123. [PMID: 25540139 PMCID: PMC4281586 DOI: 10.1152/physrev.00025.2013] [Citation(s) in RCA: 345] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The organic anion transporter (OAT) subfamily, which constitutes roughly half of the SLC22 (solute carrier 22) transporter family, has received a great deal of attention because of its role in handling of common drugs (antibiotics, antivirals, diuretics, nonsteroidal anti-inflammatory drugs), toxins (mercury, aristolochic acid), and nutrients (vitamins, flavonoids). Oats are expressed in many tissues, including kidney, liver, choroid plexus, olfactory mucosa, brain, retina, and placenta. Recent metabolomics and microarray data from Oat1 [Slc22a6, originally identified as NKT (novel kidney transporter)] and Oat3 (Slc22a8) knockouts, as well as systems biology studies, indicate that this pathway plays a central role in the metabolism and handling of gut microbiome metabolites as well as putative uremic toxins of kidney disease. Nuclear receptors and other transcription factors, such as Hnf4α and Hnf1α, appear to regulate the expression of certain Oats in conjunction with phase I and phase II drug metabolizing enzymes. Some Oats have a strong selectivity for particular signaling molecules, including cyclic nucleotides, conjugated sex steroids, odorants, uric acid, and prostaglandins and/or their metabolites. According to the "Remote Sensing and Signaling Hypothesis," which is elaborated in detail here, Oats may function in remote interorgan communication by regulating levels of signaling molecules and key metabolites in tissues and body fluids. Oats may also play a major role in interorganismal communication (via movement of small molecules across the intestine, placental barrier, into breast milk, and volatile odorants into the urine). The role of various Oat isoforms in systems physiology appears quite complex, and their ramifications are discussed in the context of remote sensing and signaling.
Collapse
Affiliation(s)
- Sanjay K Nigam
- Departments of Pediatrics, Medicine, Cellular and Molecular Medicine, Bioengineering, and Family and Preventative Medicine, University of California, San Diego, La Jolla, California
| | - Kevin T Bush
- Departments of Pediatrics, Medicine, Cellular and Molecular Medicine, Bioengineering, and Family and Preventative Medicine, University of California, San Diego, La Jolla, California
| | - Gleb Martovetsky
- Departments of Pediatrics, Medicine, Cellular and Molecular Medicine, Bioengineering, and Family and Preventative Medicine, University of California, San Diego, La Jolla, California
| | - Sun-Young Ahn
- Departments of Pediatrics, Medicine, Cellular and Molecular Medicine, Bioengineering, and Family and Preventative Medicine, University of California, San Diego, La Jolla, California
| | - Henry C Liu
- Departments of Pediatrics, Medicine, Cellular and Molecular Medicine, Bioengineering, and Family and Preventative Medicine, University of California, San Diego, La Jolla, California
| | - Erin Richard
- Departments of Pediatrics, Medicine, Cellular and Molecular Medicine, Bioengineering, and Family and Preventative Medicine, University of California, San Diego, La Jolla, California
| | - Vibha Bhatnagar
- Departments of Pediatrics, Medicine, Cellular and Molecular Medicine, Bioengineering, and Family and Preventative Medicine, University of California, San Diego, La Jolla, California
| | - Wei Wu
- Departments of Pediatrics, Medicine, Cellular and Molecular Medicine, Bioengineering, and Family and Preventative Medicine, University of California, San Diego, La Jolla, California
| |
Collapse
|
45
|
Ryan JC, Dunn KW, Decker BS. Effects of chronic kidney disease on liver transport: quantitative intravital microscopy of fluorescein transport in the rat liver. Am J Physiol Regul Integr Comp Physiol 2014; 307:R1488-92. [PMID: 25339682 DOI: 10.1152/ajpregu.00371.2014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Clinical studies indicate that hepatic drug transport may be altered in chronic kidney disease (CKD). Uremic solutes associated with CKD have been found to alter the expression and/or activity of hepatocyte transporters in experimental animals and in cultured cells. However, given the complexity and adaptability of hepatic transport, it is not clear whether these changes translate into significant alterations in hepatic transport in vivo. To directly measure the effect of CKD on hepatocyte transport in vivo, we conducted quantitative intravital microscopy of transport of the fluorescent organic anion fluorescein in the livers of rats following 5/6th nephrectomy, an established model of CKD. Our quantitative analysis of fluorescein transport showed that the rate of hepatocyte uptake was reduced by ∼20% in 5/6th nephrectomized rats, consistent with previous observations of Oatp downregulation. However, the overall rate of transport into bile canaliculi was unaffected, suggesting compensatory changes in Mrp2-mediated secretion. Our study suggests that uremia resulting from 5/6th nephrectomy does not significantly impact the overall hepatic clearance of an Oatp substrate.
Collapse
Affiliation(s)
- Jennifer C Ryan
- Division of Nephrology, School of Medicine, Indiana University, Indianapolis, Indiana; and Department of Medicine, School of Medicine, Indiana University, Indianapolis, Indiana
| | - Kenneth W Dunn
- Division of Nephrology, School of Medicine, Indiana University, Indianapolis, Indiana; and Department of Medicine, School of Medicine, Indiana University, Indianapolis, Indiana
| | - Brian S Decker
- Division of Nephrology, School of Medicine, Indiana University, Indianapolis, Indiana; and Department of Medicine, School of Medicine, Indiana University, Indianapolis, Indiana
| |
Collapse
|
46
|
Velenosi TJ, Urquhart BL. Pharmacokinetic considerations in chronic kidney disease and patients requiring dialysis. Expert Opin Drug Metab Toxicol 2014; 10:1131-43. [PMID: 24961255 DOI: 10.1517/17425255.2014.931371] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Chronic kidney disease (CKD) is the progressive decline in renal function over time. Patients with end-stage renal disease require renal replacement therapy such as hemodialysis to support life. Hemodialysis patients require several medications to treat a variety of comorbid conditions. Polypharmacy accompanied by alterations in the pharmacokinetics of medications places hemodialysis patients at increased risk of drug accumulation and adverse events. AREAS COVERED We review alterations in the pharmacokinetics of drugs in hemodialysis patients. The major areas of pharmacokinetics, absorption, distribution, metabolism and excretion, are covered and, where appropriate, differences between dialysis patients and non-dialysis CKD patients are compared. In addition, we review the importance of drug dialyzability and its potential impact on drug efficacy. Finally, we describe important clinical examples demonstrating nonrenal drug clearance is significantly altered in CKD. EXPERT OPINION Decreases in renal drug excretion experienced by hemodialysis patients have been known for years. Recent animal and human clinical pharmacokinetic studies have highlighted that nonrenal clearance of drugs is also substantially decreased in CKD. Clinical pharmacokinetic studies are required to determine the optimal dosage of drugs in CKD and hemodialysis patients in order to decrease the incidence of adverse medication events in these patient populations.
Collapse
Affiliation(s)
- Thomas J Velenosi
- Western University, Schulich School of Medicine and Dentistry, Department of Physiology and Pharmacology , London, Ontario , Canada
| | | |
Collapse
|
47
|
Effects of renal impairment on the pharmacokinetics of morinidazole: uptake transporter-mediated renal clearance of the conjugated metabolites. Antimicrob Agents Chemother 2014; 58:4153-61. [PMID: 24820074 DOI: 10.1128/aac.02414-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Morinidazole is a novel 5-nitroimidazole antimicrobial drug that undergoes extensive metabolism in humans via N(+)-glucuronidation (N(+)-glucuronide of S-morinidazole [M8-1] and N(+)-glucuronide of R-morinidazole [M8-2]) and sulfation (sulfate conjugate of morinidazole [M7]). Our objectives were to assess the effects of renal impairment on the pharmacokinetics (PK) of morinidazole and to elucidate the potential mechanisms. In this parallel-group study, healthy subjects and patients with severe renal impairment received an intravenous infusion of 500 mg of morinidazole. Plasma and urine samples were collected and analyzed. The areas under the plasma concentration-time curves (AUC) for M7, M8-1, and M8-2 were 15.1, 20.4, and 17.4 times higher, respectively, in patients with severe renal impairment than in healthy subjects, while the AUC for morinidazole was 1.5 times higher. The urinary recovery of the major metabolites was not significantly different between the two groups over 0 to 48 h, but the renal clearances of M7, M8-1, and M8-2 in patients were 85.3%, 92.5%, and 92.2% lower, respectively. In vitro transporter studies revealed that M7 is a substrate for organic anion transporter 1 (OAT1) and OAT3 (Km = 28.6 and 54.0 μM, respectively). Only OAT3 transported M8-1 and M8-2. Morinidazole was not a substrate for the transporter-transfected cells examined. These results revealed that the function or activity of renal uptake transporters might be impaired in patients with severe renal impairment, which accounted for dramatically increased plasma exposure and reduced renal clearance of the conjugated metabolites of morinidazole, the substrates of renal transporters in patients. It will help clinicians to adjust the dose in patients with severe renal impairment and to predict possible transporter-based drug-drug interactions.
Collapse
|
48
|
Alomar MJ. Factors affecting the development of adverse drug reactions (Review article). Saudi Pharm J 2014; 22:83-94. [PMID: 24648818 PMCID: PMC3950535 DOI: 10.1016/j.jsps.2013.02.003] [Citation(s) in RCA: 249] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 02/13/2013] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES To discuss the effect of certain factors on the occurrence of Adverse Drug Reactions (ADRs). DATA SOURCES A systematic review of the literature in the period between 1991 and 2012 was made based on PubMed, the Cochrane database of systematic reviews, EMBASE and IDIS. Key words used were: medication error, adverse drug reaction, iatrogenic disease factors, ambulatory care, primary health care, side effects and treatment hazards. SUMMARY Many factors play a crucial role in the occurrence of ADRs, some of these are patient related, drug related or socially related factors. Age for instance has a very critical impact on the occurrence of ADRs, both very young and very old patients are more vulnerable to these reactions than other age groups. Alcohol intake also has a crucial impact on ADRs. Other factors are gender, race, pregnancy, breast feeding, kidney problems, liver function, drug dose and frequency and many other factors. The effect of these factors on ADRs is well documented in the medical literature. Taking these factors into consideration during medical evaluation enables medical practitioners to choose the best drug regimen. CONCLUSION Many factors affect the occurrence of ADRs. Some of these factors can be changed like smoking or alcohol intake others cannot be changed like age, presence of other diseases or genetic factors. Understanding the different effects of these factors on ADRs enables healthcare professionals to choose the most appropriate medication for that particular patient. It also helps the healthcare professionals to give the best advice to patients. Pharmacogenomics is the most recent science which emphasizes the genetic predisposition of ADRs. This innovative science provides a new perspective in dealing with the decision making process of drug selection.
Collapse
Affiliation(s)
- Muaed Jamal Alomar
- Address: P.O. Box 222319, Al Ain, United Arab Emirates. Tel.: +971 507157641; fax: +971 37378728.
| |
Collapse
|
49
|
Cressman AM, Petrovic V, Piquette-Miller M. Inflammation-mediated changes in drug transporter expression/activity: implications for therapeutic drug response. Expert Rev Clin Pharmacol 2014; 5:69-89. [DOI: 10.1586/ecp.11.66] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
50
|
Gai Z, Chu L, Hiller C, Arsenijevic D, Penno CA, Montani JP, Odermatt A, Kullak-Ublick GA. Effect of chronic renal failure on the hepatic, intestinal, and renal expression of bile acid transporters. Am J Physiol Renal Physiol 2013; 306:F130-7. [PMID: 24197062 DOI: 10.1152/ajprenal.00114.2013] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Although the kidney is believed to play a minor role in bile acid (BA) excretion, chronic renal failure (CRF) has been reported to be associated with increased serum bile acid levels and alterations in BA homeostasis. The mechanisms for elevated BA levels are poorly understood in both clinical and experimental studies. This study was designed to examine the effects of naturally progressing CRF of longer duration on the hepatic and renal mRNA and protein levels of the BA-synthesizing enzyme Cyp7a1 and the BA transporters Ntcp, Bsep, Mrp3, Ost-α, and Ost-β. Sprague-Dawley rats were randomized to the CRF group (⅚ nephrectomy) or to the sham-operated control group and were analyzed 8 wk after surgery. Results obtained in the CRF rats were compared with those obtained in rats that had undergone uninephrectomy (UNX). The CRF group exhibited significantly increased plasma cholesterol and BA concentrations. Hepatic Cyp7a1 mRNA and protein levels were almost identical in the two groups. Hepatic Mrp3, Ost-α, and Ost-β expression was increased, suggesting increased basolateral efflux of bile acids into the blood. However, no such changes in BA transporter expression were observed in the remnant kidney. In UNX rats, similar changes in plasma BA levels and in the expression of BA transporters were found. We hypothesize that the increase in plasma BA is an early event in the progression of CRF and is caused by increased efflux across the basolateral hepatocyte membrane.
Collapse
Affiliation(s)
- Zhibo Gai
- Dept. of Clinical Pharmacology and Toxicology, Univ. Hospital Zurich, Rämistrasse 100, CH-8091 Zurich, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|